1
|
Delcourte S, Etievant A, Haddjeri N. Role of central serotonin and noradrenaline interactions in the antidepressants' action: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 259:7-81. [PMID: 33541681 DOI: 10.1016/bs.pbr.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of antidepressant drugs, in the last 6 decades, has been associated with theories based on a deficiency of serotonin (5-HT) and/or noradrenaline (NA) systems. Although the pathophysiology of major depression (MD) is not fully understood, numerous investigations have suggested that treatments with various classes of antidepressant drugs may lead to an enhanced 5-HT and/or adapted NA neurotransmissions. In this review, particular morpho-physiological aspects of these systems are first considered. Second, principal features of central 5-HT/NA interactions are examined. In this regard, the effects of the acute and sustained antidepressant administrations on these systems are discussed. Finally, future directions including novel therapeutic strategies are proposed.
Collapse
Affiliation(s)
- Sarah Delcourte
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Adeline Etievant
- Integrative and Clinical Neurosciences EA481, University of Bourgogne Franche-Comté, Besançon, France
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
2
|
Micov AM, Tomić MA, Todorović MB, Vuković MJ, Pecikoza UB, Jasnic NI, Djordjevic JD, Stepanović-Petrović RM. Vortioxetine reduces pain hypersensitivity and associated depression-like behavior in mice with oxaliplatin-induced neuropathy. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109975. [PMID: 32464241 DOI: 10.1016/j.pnpbp.2020.109975] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Chronic pain and depression commonly occur together so dual-acting agents might be particularly useful. The population of patients with chemotherapy-induced neuropathy is increasing in parallel with the increase of population of cancer survivors and there is a compelling need for satisfactory treatment of symptoms of neuropathy and concomitant depression. We examined the effects of vortioxetine, a novel antidepressant with unique mechanism of action, on pain hypersensitivity and depression-like behavior in oxaliplatin-induced neuropathy model in mice (OIPN). Vortioxetine (1-10 mg/kg, p.o.) significantly and dose-dependently reduced mechanical allodynia in von Frey test and cold allodynia in acetone test in OIPN mice, in both repeated prophylactic and acute therapeutic treatment regimens. It also reduced depression-like behavior in the forced swimming test in OIPN mice, in both treatment paradigms. Its antiallodynic and antidepressive-like effects were comparable to those exerted by duloxetine (1-15 mg/kg, p.o.). The antiallodynic and antidepressive-like effects of repeatedly administered vortioxetine might be related to the increased content of 5-hydroxytryptamine (5-HT) and noradrenaline (NA), detected in the brainstem of treated OIPN mice. These results indicate that vortioxetine could be potentially useful in prevention and treatment of chemotherapy-induced neuropathy, for the relief of pain and concomitant depressive symptoms. It should be further tested to this regard in clinical settings.
Collapse
Affiliation(s)
- Ana M Micov
- University of Belgrade - Faculty of Pharmacy, Department of Pharmacology, Belgrade, Serbia
| | - Maja A Tomić
- University of Belgrade - Faculty of Pharmacy, Department of Pharmacology, Belgrade, Serbia.
| | - Marija B Todorović
- University of Belgrade - Faculty of Pharmacy, Department of Pharmacology, Belgrade, Serbia
| | - Milja J Vuković
- University of Belgrade - Faculty of Pharmacy, Department of Pharmacology, Belgrade, Serbia
| | - Uroš B Pecikoza
- University of Belgrade - Faculty of Pharmacy, Department of Pharmacology, Belgrade, Serbia
| | - Nebojsa I Jasnic
- University of Belgrade - Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Belgrade, Serbia
| | - Jelena D Djordjevic
- University of Belgrade - Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Belgrade, Serbia
| | | |
Collapse
|
3
|
McMorris T, Barwood M, Corbett J. Central fatigue theory and endurance exercise: Toward an interoceptive model. Neurosci Biobehav Rev 2018; 93:93-107. [DOI: 10.1016/j.neubiorev.2018.03.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/15/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
|
4
|
Perez-Palomar B, Mollinedo-Gajate I, Berrocoso E, Meana JJ, Ortega JE. Serotonin 5-HT 3 receptor antagonism potentiates the antidepressant activity of citalopram. Neuropharmacology 2018; 133:491-502. [PMID: 29477299 DOI: 10.1016/j.neuropharm.2018.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/31/2018] [Accepted: 02/21/2018] [Indexed: 12/16/2022]
Abstract
Activation of serotonin 5-HT3 receptor (5HT3R) in the locus coeruleus (LC), the principal somatodendritic noradrenergic area, decreases LC firing activity and noradrenaline (NA) release in prefrontal cortex (PFC). Blockade of 5HT3R in coadministration with selective serotonin reuptake inhibitors (SSRIs) has been proposed as a potential strategy to accelerate the onset of action of SSRIs. Dual-probe microdialysis in rats was used to evaluate the involvement of 5HT3R in the in vivo effect exerted by the SSRI citalopram on NA release. Besides, forced swimming test (FST) was carried out in mice to evaluate the antidepressant-like effect of citalopram in combination with a 5HT3R antagonist (Y25130). Systemic administration of the 5HT3R agonist SR57227 (10 mg/kg i.p.) increased NA in LC (Emax = 200 ± 27%) and PFC (Emax = 133 ± 2%). The increase in PFC was enhanced in local presence into LC of Y25130 (50 μM) (Emax = 296 ± 41%) suggesting an inhibitory function on NA release exerted by the activation of 5HT3R located in somatodendritic areas. Citalopram administration (10 mg/kg i.p.) increased NA in LC (Emax = 185 ± 11%) and decreased it in PFC (Emax = -35 ± 7%). Intra-LC (50 μM) or systemic co-administration of Y25130 (10 mg/kg i.p.) with citalopram (10 mg/kg i.p.) switched NA release in the PFC from an inhibition to a stimulatory effect. In mice FST, systemic coadministration of citalopram (2.5 mg/kg i.p.) and Y25130 (10 mg/kg i.p.) potentiated the decrease of immobility time through the increase of both swimming and climbing behaviours. These results suggest that the addition of a 5HT3R antagonist to SSRIs could represent a feasible strategy to improve antidepressant response.
Collapse
Affiliation(s)
- Blanca Perez-Palomar
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
| | - Irene Mollinedo-Gajate
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Biocruces Health Research Institute, Spain
| | - Jorge E Ortega
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Biocruces Health Research Institute, Spain.
| |
Collapse
|
5
|
Ago Y, Hasebe S, Hiramatsu N, Hashimoto H, Takuma K, Matsuda T. Psychopharmacology of combined activation of the serotonin 1A and σ 1 receptors. Eur J Pharmacol 2017; 809:172-177. [PMID: 28529139 DOI: 10.1016/j.ejphar.2017.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
The selective serotonin (5-HT) reuptake inhibitors (SSRIs) are generally used for the treatment of major depressive disorders, and the 5-HT1A and σ1 receptors are considered to be targets for treatment of psychiatric disorders. Some SSRIs such as fluvoxamine have agonistic activity towards for the σ1 receptor, but it is not known whether the effect on the receptor plays a key role in the pharmacological effects. We have recently demonstrated that fluvoxamine shows an anti-anhedonic effect in picrotoxin-induced model of anxiety/depression, while the SSRI paroxetine, which have little affinity for the σ1 receptor, does not. We also suggest that the anti-anhedonic effect of fluvoxamine is mediated by combined activation of the 5-HT1A and σ1 receptors and it is associated with activation of prefrontal dopaminergic system. In these studies, picrotoxin-treated mice and adrenalectomized/castrated mice were used as decreased GABAA receptor function and neurosteroid-deficient models, respectively. These findings suggest that the functional interaction between the 5-HT1A and σ1 receptors activates prefrontal dopaminergic system under the conditions of decreased brain GABAA receptor function and the neurochemical effect is linked to the behavioral effect. This review summarizes the pharmacological role of the 5-HT1A and σ1 receptors, focusing on the functional interaction between these receptors, and the role of prefrontal dopaminergic system in depressive-like behaviors.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shigeru Hasebe
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Naoki Hiramatsu
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, 1-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuhiro Takuma
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
6
|
Korte SM, Prins J, Van den Bergh FS, Oosting RS, Dupree R, Korte-Bouws GA, Westphal KG, Olivier B, Denys DA, Garland A, Güntürkün O. The 5-HT1A/1B-receptor agonist eltoprazine increases both catecholamine release in the prefrontal cortex and dopamine release in the nucleus accumbens and decreases motivation for reward and “waiting” impulsivity, but increases “stopping” impulsivity. Eur J Pharmacol 2017; 794:257-269. [DOI: 10.1016/j.ejphar.2016.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
7
|
David DJ, Tritschler L, Guilloux JP, Gardier AM, Sanchez C, Gaillard R. [Pharmacological properties of vortioxetine and its pre-clinical consequences]. Encephale 2016; 42:1S12-23. [PMID: 26879252 DOI: 10.1016/s0013-7006(16)30015-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selective Serotonin Reuptake Inhibitors (SSRIs) are extensively used for the treatment of major depressive disorder (MDD). SSRIs are defined as indirect receptor agonists since the activation of postsynaptic receptors is a consequence of an increase in extracellular concentrations of serotonin (5-HT) mediated by the blockade of serotonin transporter. The activation of some serotoninergic receptors (5-HT1A, post-synaptic, 5-HT1B post-synaptic, 5-HT2B, and 5-HT4), but not all (5-HT1A, pre-synaptic, 5-HT1B pre-synaptic, 5-HT2A, 5-HT2C, 5-HT3, and probably 5-HT6), induces anxiolytic/antidepressive - like effects. Targetting specifically some of them could potentially improve the onset of action and/or efficacy and/or prevent MD relapse. Vortioxetine (Brintellix, 1- [2-(2,4-dimethylphenyl-sulfanyl)-phenyl]-piperazine) is a novel multi-target antidepressant drug approved by the Food and Drug Administration (FDA) and by European Medicines Agency. Its properties are markedly different from the extensively prescribed SSRIs. Compared to the SSRIs, vortioxetine is defined as a multimodal antidepressant drug since it is not only a serotonin reuptake inhibitor, but also a 5-HT1D, 5-HT3, 5-HT7 receptor antagonist, 5-HT1B receptor partial agonist and 5-HT1A receptor agonist. This specific pharmacological profile enables vortioxetine to affect not only the serotoninergic and noradrenergic systems, but also the histaminergic, cholinergic, gamma-butyric acid (GABA) ergic and glutamatergic ones. Thus, vortioxetine not only induces antidepressant-like or anxiolytic-like activity but also improves cognitive parameters in several animal models. Indeed, vortioxetine was shown to improve working memory, episodic memory, cognitive flexibility and spatial memory in young adult rodents and also in old animal models. These specific effects of the vortioxetine are of interest considering that cognitive dysfunction is a common comorbidity to MDD. Altogether, even though this molecule still needs to be investigated further, especially in the insufficient-response to antidepressant drugs, vortioxetine is already an innovative therapeutic option for the treatment of major depression.
Collapse
Affiliation(s)
- D J David
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France; DJD et LT ont contribué de façon équivalente à l'élaboration du manuscrit
| | - L Tritschler
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France; DJD et LT ont contribué de façon équivalente à l'élaboration du manuscrit
| | - J-P Guilloux
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France
| | - A M Gardier
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France
| | - C Sanchez
- Lundbeck Research USA, Inc., 215 College Road, 07652 Paramus, NJ, United States
| | - R Gaillard
- Service Hospitalo-Universitaire - Addictologie, Centre Hospitalier Sainte Anne, 1, rue Cabanis, 75674 Paris cedex 14, France.
| |
Collapse
|
8
|
Sahli ZT, Banerjee P, Tarazi FI. The Preclinical and Clinical Effects of Vilazodone for the Treatment of Major Depressive Disorder. Expert Opin Drug Discov 2016; 11:515-23. [PMID: 26971593 PMCID: PMC4841022 DOI: 10.1517/17460441.2016.1160051] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Major depressive disorder (MDD) is the leading cause of disability worldwide, and according to the STAR*D trial, only 33% of patients with MDD responded to initial drug therapy. Augmentation of the leading class of antidepressant treatment, selective serotonin reuptake inhibitors (SSRIs), with the 5-HT1A receptor agonist buspirone has been shown to be effective in treating patients that do not respond to initial SSRI therapy. This suggests that newer treatments may improve the clinical picture of MDD. The US Food and Drug Administration (FDA) approved the antidepressant drug vilazodone (EMD 68843), a novel SSRI and 5-HT1A receptor partial agonist. Vilazodone has a half-life between 20-24 hours, reaches peak plasma concentrations at 3.7-5.3 hours, and is primarily metabolized by the hepatic CYP450 3A4 enzyme system. AREAS COVERED The authors review the preclinical and clinical profile of vilazodone. The roles of serotonin, the 5-HT1A receptor, and current pharmacotherapy approaches for MDD are briefly reviewed. Next, the preclinical pharmacological, behavioral, and physiological effects of vilazodone are presented, followed by the pharmacokinetic properties and metabolism of vilazodone in humans. Last, a brief summary of the main efficacy, safety, and tolerability outcomes of clinical trials of vilazodone is provided. EXPERT OPINION Vilazodone has shown efficacy versus placebo in improving depression symptoms in several double-blind, placebo-controlled trials. The long-term safety and tolerability of vilazodone treatment has also been established. Further studies are needed that directly compare patients treated with an SSRI (both with and without an adjunctive 5-HT1A partial agonist) versus patients treated with vilaozodone.
Collapse
Affiliation(s)
- Zeyad T Sahli
- a Department of Psychiatry and Neuroscience Program , Harvard Medical School, McLean Hospital , Belmont , MA , USA.,b School of Medicine , American University of Beirut , Beirut , Lebanon
| | - Pradeep Banerjee
- c Forest Research Institute , Jersey City , NJ , USA , an affiliate of Allergan Inc
| | - Frank I Tarazi
- a Department of Psychiatry and Neuroscience Program , Harvard Medical School, McLean Hospital , Belmont , MA , USA
| |
Collapse
|
9
|
Biagioni AF, de Oliveira RC, de Oliveira R, da Silva JA, dos Anjos-Garcia T, Roncon CM, Corrado AP, Zangrossi H, Coimbra NC. 5-Hydroxytryptamine 1A receptors in the dorsomedial hypothalamus connected to dorsal raphe nucleus inputs modulate defensive behaviours and mediate innate fear-induced antinociception. Eur Neuropsychopharmacol 2016; 26:532-45. [PMID: 26749090 DOI: 10.1016/j.euroneuro.2015.12.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023]
Abstract
The dorsal raphe nucleus (DRN) is an important brainstem source of 5-hydroxytryptamine (5-HT), and 5-HT plays a key role in the regulation of panic attacks. The aim of the present study was to determine whether 5-HT1A receptor-containing neurons in the medial hypothalamus (MH) receive neural projections from DRN and to then determine the role of this neural substrate in defensive responses. The neurotracer biotinylated dextran amine (BDA) was iontophoretically microinjected into the DRN, and immunohistochemical approaches were then used to identify 5HT1A receptor-labelled neurons in the MH. Moreover, the effects of pre-treatment of the dorsomedial hypothalamus (DMH) with 8-OH-DPAT and WAY-100635, a 5-HT1A receptor agonist and antagonist, respectively, followed by local microinjections of bicuculline, a GABAA receptor antagonist, were investigated. We found that there are many projections from the DRN to the perifornical lateral hypothalamus (PeFLH) but also to DMH and ventromedial (VMH) nuclei, reaching 5HT1A receptor-labelled perikarya. DMH GABAA receptor blockade elicited defensive responses that were followed by antinociception. DMH treatment with 8-OH-DPAT decreased escape responses, which strongly suggests that the 5-HT1A receptor modulates the defensive responses. However, DMH treatment with WAY-100635 failed to alter bicuculline-induced defensive responses, suggesting that 5-HT exerts a phasic influence on 5-HT1A DMH neurons. The activation of the inhibitory 5-HT1A receptor had no effect on antinociception. However, blockade of the 5-HT1A receptor decreased fear-induced antinociception. The present data suggest that the ascending pathways from the DRN to the DMH modulate panic-like defensive behaviours and mediate antinociceptive phenomenon by recruiting 5-HT1A receptor in the MH.
Collapse
Affiliation(s)
- Audrey Franceschi Biagioni
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Rithiele Cristina de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Ricardo de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil; Mato Grosso Federal University Medical School (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, 78550-000 Sinop, Mato Grosso, Brazil
| | - Juliana Almeida da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Tayllon dos Anjos-Garcia
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Camila Marroni Roncon
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Alexandre Pinto Corrado
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Hélio Zangrossi
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil.
| |
Collapse
|
10
|
Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): actions at serotonin receptors may enhance downstream release of four pro-cognitive neurotransmitters. CNS Spectr 2015; 20:515-9. [PMID: 26062986 DOI: 10.1017/s1092852915000358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vortioxetine is an antidepressant with multiple pharmacologic modes of action that enhance release of dopamine, norepinephrine, acetylcholine, and histamine.
Collapse
|
11
|
Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): blocking 5HT3 receptors enhances release of serotonin, norepinephrine, and acetylcholine. CNS Spectr 2015; 20:455-9. [PMID: 26122791 DOI: 10.1017/s1092852915000346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. 5HT3 receptor antagonism is one of these actions, and this leads to increased release of norepinephrine (NE), acetylcholine (ACh), and serotonin (5HT) within various brain circuits.
Collapse
|
12
|
Rubio-Casillas A, Rodríguez-Quintero C, Rodríguez-Manzo G, Fernández-Guasti A. Unraveling the modulatory actions of serotonin on male rat sexual responses. Neurosci Biobehav Rev 2015; 55:234-46. [DOI: 10.1016/j.neubiorev.2015.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 12/29/2022]
|
13
|
Dale E, Bang-Andersen B, Sánchez C. Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem Pharmacol 2015; 95:81-97. [DOI: 10.1016/j.bcp.2015.03.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/13/2015] [Indexed: 12/28/2022]
|
14
|
Role of the 5-HT1A autoreceptor in the enhancement of fluvoxamine-induced increases in prefrontal dopamine release by adrenalectomy/castration in mice. J Pharmacol Sci 2015; 127:232-5. [DOI: 10.1016/j.jphs.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 11/20/2022] Open
|
15
|
Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: Review of preclinical and clinical data. Pharmacol Ther 2015; 145:43-57. [DOI: 10.1016/j.pharmthera.2014.07.001] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 12/21/2022]
|
16
|
Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats. Int J Neuropsychopharmacol 2014; 17:1695-706. [PMID: 24852131 PMCID: PMC4162520 DOI: 10.1017/s1461145714000571] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current treatments for depression, including serotonin-specific reuptake inhibitors (SSRIs), are only partially effective, with a high incidence of residual symptoms, relapse, and treatment resistance. Loss of cognitive flexibility, a component of depression, is associated with dysregulation of the prefrontal cortex. Reversal learning, a form of cognitive flexibility, is impaired by chronic stress, a risk factor for depression, and the stress-induced impairment in reversal learning is sensitive to chronic SSRI treatment, and is mimicked by serotonin (5-HT) depletion. Vortioxetine, a novel, multimodal-acting antidepressant, is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist, and inhibits the 5-HT transporter. Using adult male rats, we first investigated the direct effects of vortioxetine, acting at post-synaptic 5-HT receptors, on reversal learning that was compromised by 5-HT depletion using 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), effectively eliminating any contribution of 5-HT reuptake blockade. PCPA induced a reversal learning impairment that was alleviated by acute or sub-chronic vortioxetine administration, suggesting that post-synaptic 5-HT receptor activation contributes to the effects of vortioxetine. We then investigated the effects of chronic dietary administration of vortioxetine on reversal learning that had been compromised in intact animals exposed to chronic intermittent cold (CIC) stress, to assess vortioxetine's total pharmacological effect. CIC stress impaired reversal learning, and chronic vortioxetine administration prevented the reversal-learning deficit. Together, these results suggest that the direct effect of vortioxetine at 5-HT receptors may contribute to positive effects on cognitive flexibility deficits, and may enhance the effect of 5-HT reuptake blockade.
Collapse
|
17
|
Alkam T, Kim HC, Mamiya T, Yamada K, Hiramatsu M, Nabeshima T. Evaluation of cognitive behaviors in young offspring of C57BL/6J mice after gestational nicotine exposure during different time-windows. Psychopharmacology (Berl) 2013; 230:451-63. [PMID: 23793357 DOI: 10.1007/s00213-013-3175-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 06/03/2013] [Indexed: 12/28/2022]
Abstract
Gestational nicotine exposure is associated with cognitive abnormalities in young offspring. However, practical strategies for prevention or treatment of impaired cognitive behaviors of offspring are not available due to the lack of systematic investigation of underlying mechanism. Therefore, this study aimed at examining the effects of gestational and/or perinatal nicotine exposure (GPNE) on cognitive behaviors in offspring of C57BL/6J mice to provide systematic behavioral data. Pregnant mice were exposed to nicotine via sweetened drinking water during six time-windows, including gestational day 0 to day 13 (G0-G13), G14-postnatal day 0 (P0), G0-P0, G14-P7, G0-P7, and P0-P7. During P42-P56 days, both male and female offspring were given a battery of behavioral tests. Depending on the time of exposure, GPNE impaired working memory, object-based attention, and prepulse inhibition in male and female offspring to different extents. Nicotine exposure during G14-P0 also decreased norepinephrine turnover in the prefrontal cortex on P28 and P56. Overall results indicate that nicotine exposure during any time-windows of development impairs cognitive behaviors in offspring, and suggest that certain time-windows, e.g., G14-P0, should be selected for further studies on the underlying neurochemical or molecular mechanisms.
Collapse
Affiliation(s)
- Tursun Alkam
- Research Project on the Risk of Chemical Substances, Food Hygiene Association, The Ministry of Health, Labour and Welfare, Tokyo, 100-8916, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Dawson LA. The discovery and development of vilazodone for the treatment of depression: a novel antidepressant or simply another SSRI? Expert Opin Drug Discov 2013; 8:1529-39. [DOI: 10.1517/17460441.2013.855195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Diepenbroek C, Serlie MJ, Fliers E, Kalsbeek A, la Fleur SE. Brain areas and pathways in the regulation of glucose metabolism. Biofactors 2013; 39:505-13. [PMID: 23913677 DOI: 10.1002/biof.1123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/28/2013] [Indexed: 11/11/2022]
Abstract
Glucose is the most important source of fuel for the brain and its concentration must be kept within strict boundaries to ensure the organism's optimal fitness. To maintain glucose homeostasis, an optimal balance between glucose uptake and glucose output is required. Besides managing acute changes in plasma glucose concentrations, the brain controls a daily rhythm in glucose concentrations. The various nuclei within the hypothalamus that are involved in the control of both these processes are well known. However, novel studies indicate an additional role for brain areas that are originally appreciated in other processes than glucose metabolism. Therefore, besides the classic hypothalamic pathways, we will review cortico-limbic brain areas and their role in glucose metabolism.
Collapse
Affiliation(s)
- Charlene Diepenbroek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
20
|
Lu AA21004, a novel multimodal antidepressant, produces regionally selective increases of multiple neurotransmitters--a rat microdialysis and electrophysiology study. Eur Neuropsychopharmacol 2013; 23:133-45. [PMID: 22612991 DOI: 10.1016/j.euroneuro.2012.04.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/12/2012] [Accepted: 04/14/2012] [Indexed: 11/22/2022]
Abstract
The monoaminergic network, including serotonin (5-HT), norepinephrine (NE), and dopamine (DA) pathways, is highly interconnected and has a well-established role in mood disorders. Preclinical research suggests that 5-HT receptor subtypes, including 5-HT1A, 5-HT1B, 5-HT3, and 5-HT7 receptors as well as the 5-HT transporter (SERT), may have important roles in treating depression. This study evaluated the neuropharmacological profile of Lu AA21004, a novel multimodal antidepressant combining 5-HT3 and 5-HT7 receptor antagonism, 5-HT1B receptor partial agonism, 5-HT1A receptor agonism, and SERT inhibition in recombinant cell lines. Extracellular 5-HT, NE and DA levels were evaluated in the ventral hippocampus (vHC), medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) after acute and subchronic treatment with Lu AA21004 or escitalopram. The acute effects of LuAA21004 on NE and DA neuronal firing were also evaluated in the locus coeruleus (LC) and ventral tegmental area (VTA), respectively. Acute Lu AA21004 dose-dependently increased 5-HT in the vHC, mPFC and NAc. Maximal 5-HT levels in the vHC were higher than those in the mPFC. Furthermore, mPFC 5-HT levels were increased at low SERT occupancy levels. In the vHC and mPFC, but not the NAc, high Lu AA21004 doses increased NE and DA levels. Lu AA21004 slightly decreased LC NE neuronal firing and had no effect on VTA DA firing. Results are discussed in context of occupancy at 5-HT3, 5-HT1B and 5-HT1A receptors and SERT. In conclusion, Lu AA21004, acting via two pharmacological modalities, 5-HT receptor modulation and SERT inhibition, results in a brain region-dependent increase of multiple neurotransmitter concentrations.
Collapse
|
21
|
Nikolaus S, Hautzel H, Heinzel A, Müller HW. Key players in major and bipolar depression--a retrospective analysis of in vivo imaging studies. Behav Brain Res 2012; 232:358-90. [PMID: 22483788 DOI: 10.1016/j.bbr.2012.03.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/13/2012] [Accepted: 03/17/2012] [Indexed: 11/30/2022]
Abstract
In the present study, we evaluated the contribution of the individual synaptic constituents of all assessed neurotransmitter systems by subjecting all available in vivo imaging studies on patients with unipolar major depressive disorder (MDD) and bipolar depression (BD) to a retrospective analysis. In acute MDD, findings revealed significant increases of prefrontal and frontal DA synthesis, decreases of thalamic and midbrain SERT, increases of insular SERT, decreases of midbrain 5-HT(1A) receptors and decreases of prefrontal, frontal, occipital and cingulate 5-HT(2A) receptors, whereas, in remission, decreases of striatal D₂ receptors, midbrain SERT, frontal, parietal, temporal, occipital and cingulate 5-HT(1A) receptors and parietal 5-HT(2A) receptors were observed. In BD, findings indicated a trend towards increased striatal D₂ receptors in depression and mania, decreased striatal DA synthesis in remission and decreased frontal D₁ receptors in all three conditions. Additionally, there is some evidence that ventrostriatal and hippocampal SERT may be decreased in depression, whereas in remission and mania elevations of thalamic and midbrain SERT, respectively, were observed. Moreover, in depression, limbic 5-HT(1A) receptors were elevated, whereas in mania a decrease of both cortical and limbic 5-HT(2A) receptor binding was observed. Furthermore, in depression, prefrontal, frontal, occipital and cingulate M2 receptor binding was found to be reduced. From this, a complex pattern of dysregulations within and between neurotransmitter systems may be derived, which is likely to be causally linked not only with the subtype and duration of disease but also with the predominance of individual symptoms and with the kind and duration of pharmacological treatment(s).
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
22
|
Yamamura S, Abe M, Nakagawa M, Ochi S, Ueno SI, Okada M. Different actions for acute and chronic administration of mirtazapine on serotonergic transmission associated with raphe nuclei and their innervation cortical regions. Neuropharmacology 2010; 60:550-60. [PMID: 21195096 DOI: 10.1016/j.neuropharm.2010.12.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/14/2010] [Accepted: 12/20/2010] [Indexed: 11/18/2022]
Abstract
The atypical antidepressant, mirtazapine enhances noradrenergic transmission, but its effects on serotonergic transmission remain to be clarified. The present study determined the effects of acute and chronic administration of mirtazapine on serotonergic transmissions in raphe nuclei and their innervation regions, frontal and entorhinal cortex, using multiple-probes microdialysis with real-time PCR and western blotting. Acute administration of mirtazapine did not affect extracellular serotonin level in raphe nuclei or cortex; however, chronic administration increased extracellular serotonin level in raphe nuclei without affecting that in cortex. Blockade of 5-HT1A receptor, but not that of the 5-HT2A/2C receptor, enhanced the effects of acute administration of mirtazapine on extracellular serotonin level in raphe nuclei. Chronic mirtazapine administration reduced the inhibitory function associated with somatodendritic 5-HT1A receptor in raphe nuclei, but enhanced postsynaptic 5-HT1A receptor in serotonergic innervated cortical regions. Chronic administration reduced the expression of mRNA and protein of serotonin transporter and 5-HT1A receptor in raphe nuclei, but not in the cortices. These results suggested that acute administration of mirtazapine probably activated serotonergic transmission, but its stimulatory action was abolished by activated inhibitory 5-HT1A receptor. Chronic administration of mirtazapine resulted in increased extracellular serotonin level via reduction of serotonin transporter with reduction of somatodendritic 5-HT1A autoreceptor function in raphe nuclei. These pharmacological actions of mirtazapine include its serotonergic profiles as noradrenergic and specific serotonergic antidepressant (NaSSA).
Collapse
Affiliation(s)
- Satoshi Yamamura
- Department of Psychiatry, Division of Neuroscience, Mie University, Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Dawson LA, Watson JM. Vilazodone: a 5-HT1A receptor agonist/serotonin transporter inhibitor for the treatment of affective disorders. CNS Neurosci Ther 2010; 15:107-17. [PMID: 19499624 DOI: 10.1111/j.1755-5949.2008.00067.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Vilazodone (EMD 68843; 5-{4-[4-(5-cyano-3-indolyl)-butyl]-1-piperazinyl}-benzofuran-2-carboxamide hydrochloride) is a combined serotonin specific reuptake inhibitor (SSRI) and 5-HT1A receptor partial agonist currently under clinical evaluation for the treatment of major depression. This molecule was designed based on the premise that negative feedback circuitry, mediated via 5-HT1 receptors, limits the acute SSRI-induced enhancements in serotonergic neurotransmission. If the hypothesis is correct, combination of SSRI with 5-HT1A partial agonism should temporally enhance the neuroplastic adaptation and subsequently hasten therapeutic efficacy compared to current treatments. Preclinical in vitro evaluation has confirmed vilazodone's primary pharmacological profile both in clonal and native systems, that is, serotonin reuptake blockade and 5-HT1A partial agonism. However, in vivo and in contrast to combination of 8-OH-DPAT and paroxetine, vilazodone selectively enhanced serotonergic output in the prefrontal cortex of rats. Behavioral evaluations, in the ultrasonic vocalization model of anxiety in rats, demonstrated anxiolytic efficacy. In the forced swim test (a putative model of depression), vilazodone also showed efficacy but at a single dose only. In man, vilazodone abolished REM sleep and demonstrated clinical antidepressant efficacy equivalent to an SSRI. Ongoing clinical evaluations will hopefully reveal whether the founding hypothesis was valid and if vilazodone will produce a more rapid onset of antidepressant efficacy.
Collapse
Affiliation(s)
- Lee A Dawson
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, Essex, UK
| | | |
Collapse
|
24
|
Haenisch B, Bilkei-Gorzo A, Caron MG, Bönisch H. Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression. J Neurochem 2009; 111:403-16. [PMID: 19694905 DOI: 10.1111/j.1471-4159.2009.06345.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diverse factors such as changes in neurotrophins and brain plasticity have been proposed to be involved in the actions of antidepressant drugs (ADs). However, in mouse models of depression based on chronic stress, it is still unclear whether simultaneous changes in behavior and neurotrophin expression occur and whether these changes can be corrected or prevented comparably by chronic administration of ADs or genetic manipulations that produce antidepressant-like effects such as the knockout of the norepinephrine transporter (NET) gene. Here we show that chronic restraint or social defeat stress induce comparable effects on behavior and changes in the expression of neurotrophins in depression-related brain regions. Chronic stress caused down-regulation of BDNF, nerve growth factor, and neurotrophin-3 in hippocampus and cerebral cortex and up-regulation of these targets in striatal regions. In wild-type mice, these effects could be prevented by concomitant chronic administration of five pharmacologically diverse ADs. In contrast, NET knock out (NETKO) mice were resistant to stress-induced depressive-like changes in behavior and brain neurotrophin expression. Thus, the resistance of the NETKO mice to the stress-induced depression-associated behaviors and biochemical changes highlight the importance of noradrenergic pathways in the maintenance of mood. In addition, these mice represent a useful model to study depression-resistant behaviors, and they might help to provide deeper insights into the identification of downstream targets involved in the mechanisms of antidepressants.
Collapse
Affiliation(s)
- Britta Haenisch
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
25
|
Learning and memory in 5-HT1A-receptor mutant mice. Behav Brain Res 2008; 195:78-85. [DOI: 10.1016/j.bbr.2008.02.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/15/2008] [Accepted: 02/15/2008] [Indexed: 11/22/2022]
|
26
|
|
27
|
O'Leary OF, Bechtholt AJ, Crowley JJ, Hill TE, Page ME, Lucki I. Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology (Berl) 2007; 192:357-71. [PMID: 17318507 DOI: 10.1007/s00213-007-0728-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 01/26/2007] [Indexed: 11/29/2022]
Abstract
RATIONALE Few studies have investigated whether the behavioral effects elicited by different types of antidepressant drugs are mediated by either serotonin (5-HT) or the catecholamines norepinephrine (NE) and dopamine (DA). OBJECTIVES By depleting 5-HT, or NE and DA, the present study investigated the contributions of these monoamines to the acute behavioral effects of selective serotonin reuptake inhibitors (SSRIs; fluoxetine and citalopram) and norepinephrine reuptake inhibitors (NRIs; desipramine and reboxetine) in the mouse tail suspension test (TST). RESULTS Depletion of 5-HT tissue content by para-chlorophenylalanine (PCPA), an inhibitor of tryptophan hydroxylase, completely blocked reductions of immobility by the SSRIs in the TST. In contrast, PCPA did not alter the behavioral effects of the NRIs. Inhibition of catecholamine synthesis by alpha-methyl-para-tyrosine (AMPT) reduced brain NE and DA tissue content, whereas disruption of vesicular storage with reserpine decreased brain NE, DA and 5-HT tissue content. However, neither treatment completely prevented responses to desipramine, fluoxetine, or citalopram in the TST. Depleting both newly synthesized and vesicular components of NE and DA transmission with a combination of reserpine and AMPT completely prevented the behavioral effects of desipramine, reboxetine, and fluoxetine and attenuated those of citalopram. Although PCPA did not alter baseline immobility, AMPT and reserpine increased baseline values in the TST. CONCLUSIONS These studies demonstrated that endogenous 5-HT synthesis mediates the behavioral effects of SSRIs, but not NRIs, in the TST. In contrast, disruption of the behavioral effects of NRI and SSRI antidepressants required disruption of both catecholamine synthesis and vesicular storage and release mechanisms.
Collapse
Affiliation(s)
- Olivia F O'Leary
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
28
|
Hong ZY, Huang ZL, Qu WM, Eguchi N. Orexin A promotes histamine, but not norepinephrine or serotonin, release in frontal cortex of mice. Acta Pharmacol Sin 2005; 26:155-9. [PMID: 15663891 DOI: 10.1111/j.1745-7254.2005.00523.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM To investigate the effects of orexin A on release of histamine, norepinephrine, and serotonin in the frontal cortex of mice. METHODS Samples for measuring histamine, norepinephrine, and serotonin contents were collected by in vivo microdialysis of the frontal cortex of anesthetized mice. The histamine, noradrenaline, and serotonin content in dialysates were measured by HPLC techniques. RESULTS Intracrebroventricular injection of orexin A at doses of 12.5, 50, and 200 pmol per mouse promoted histamine release from the frontal cortex in a dose-dependent manner. At the highest dose given, 200 pmol, orexin A significantly induced histamine release, with the maximal magnitude being 230% over the mean basal release. The enhanced histamine release was sustained for 140 min, and then gradually returned to the basal level. However, no change in norepinephrine or serotonin release was observed under application of the same dose of orexin A. CONCLUSION These results suggest that the arousal effect of orexin A is mainly mediated by histamine, not by norepinephrine or serotonin.
Collapse
Affiliation(s)
- Zong-Yuan Hong
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
| | | | | | | |
Collapse
|
29
|
Hughes ZA, Starr KR, Langmead CJ, Hill M, Bartoszyk GD, Hagan JJ, Middlemiss DN, Dawson LA. Neurochemical evaluation of the novel 5-HT1A receptor partial agonist/serotonin reuptake inhibitor, vilazodone. Eur J Pharmacol 2005; 510:49-57. [PMID: 15740724 DOI: 10.1016/j.ejphar.2005.01.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 12/10/2004] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
Vilazodone has been reported to be an inhibitor of 5-hydoxytryptamine (5-HT) reuptake and a partial agonist at 5-HT1A receptors. Using [35S]GTPgammaS binding in rat hippocampal tissue, vilazodone was demonstrated to have an intrinsic activity comparable to the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Vilazodone (1-10 mg/kg p.o.) dose-dependently displaced in vivo [3H]DASB (N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine) binding from rat cortex and hippocampus, indicating that vilazodone occupies 5-HT transporters in vivo. Using in vivo microdialysis, vilazodone (10 mg/kg p.o.) was demonstrated to cause a 2-fold increase in extracellular 5-HT but no change in noradrenaline or dopamine levels in frontal cortex of freely moving rats. In contrast, administration of 8-OH-DPAT (0.3 mg/kg s.c.), either alone or in combination with a serotonin specific reuptake inhibitor (SSRI; paroxetine, 3 mg/kg p.o.), produced no increase in cortical 5-HT whilst increasing noradrenaline and dopamine 2 and 4 fold, respectively. A 2-fold increase in extracellular 5-HT levels (but no change in noradrenaline or dopamine levels) was observed after combination of the 5-HT(1A) receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(pyridinyl)cyclohexanecarboxamide) (WAY-100635; 0.3 mg/kg s.c.) and paroxetine (3 mg/kg p.o.). In summary, vilazodone behaved as a high efficacy partial agonist at the rat hippocampal 5-HT1A receptors in vitro and occupied 5-HT transporters in vivo. In vivo vilazodone induced a selective increase in extracellular levels of 5-HT in the rat frontal cortex. This profile was similar to that seen with a 5-HT1A receptor antagonist plus an SSRI but in contrast to 8-OH-DPAT either alone or in combination with paroxetine.
Collapse
Affiliation(s)
- Zoë A Hughes
- Neuropharmacology Research, Psychiatry CEDD, Glaxo Smith Kline, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Herpfer I, Hunt SP, Stanford SC. A comparison of neurokinin 1 receptor knock-out (NK1−/−) and wildtype mice: exploratory behaviour and extracellular noradrenaline concentration in the cerebral cortex of anaesthetised subjects. Neuropharmacology 2005; 48:706-19. [PMID: 15814105 DOI: 10.1016/j.neuropharm.2004.12.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 11/22/2004] [Accepted: 12/17/2004] [Indexed: 11/17/2022]
Abstract
In behavioural screens, mice lacking functional NK1 receptors (NK1-/-) resemble wildtypes (NK1+/+) that have been given an antianxiety/antidepressant drug. Most, if not all, antidepressants increase noradrenergic transmission in the brain. Here, we have used in vivo microdialysis to compare the concentrations of extracellular noradrenaline ('efflux') in the cerebral cortex of anaesthetised NK1-/- and NK1+/+ mice. The effects of systemic administration of the antidepressant, desipramine, with and without local infusion of the alpha(2)-adrenoceptor antagonist, RX821002, were also evaluated. Finally, we compared the effects of desipramine on behaviour of NK1+/+ and NK1-/- mice in an activity chamber and in a light/dark exploration box. Basal noradrenaline efflux was increased 2 to 4-fold in NK1-/- mice compared with NK1+/+ mice but there was no difference in the effects of desipramine. RX821002 increased noradrenaline efflux in all vehicle-injected mice but, in desipramine-pretreated mice, noradrenaline efflux was increased in NK1+/+ mice, only. All behaviours in the light/dark exploration box differed in the two genotypes. Furthermore, with the exception of 'grooming', the effects of desipramine on behaviour of NK1-/- mice could be explained by the effects of this antidepressant on locomotor activity. Finally, alpha(2)-adrenoceptors are possibly desensitised in NK1-/- mice. We have yet to establish whether this is a cause or a consequence of the increased noradrenaline efflux.
Collapse
Affiliation(s)
- Inga Herpfer
- Department of Pharmacology, University College London, UK
| | | | | |
Collapse
|
31
|
Géranton SM, Heal DJ, Stanford SC. 5-HT has contrasting effects in the frontal cortex, but not the hypothalamus, on changes in noradrenaline efflux induced by the monoamine releasing-agent, d-amphetamine, and the reuptake inhibitor, BTS 54 354. Neuropharmacology 2004; 46:511-8. [PMID: 14975675 DOI: 10.1016/j.neuropharm.2003.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 10/09/2003] [Accepted: 10/16/2003] [Indexed: 11/17/2022]
Abstract
There is extensive evidence for functional interactions between central noradrenergic and serotonergic neurones. Here, dual-probe microdialysis was used in freely-moving rats to compare the effects of 5-HT on noradrenergic transmission in the rat frontal cortex and hypothalamus. We studied the effects of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA; which depleted 5-HT stores in both the frontal cortex and the hypothalamus), on spontaneous efflux of noradrenaline and on the noradrenergic responses to d-amphetamine, and the monoamine reuptake inhibitor, BTS 54 354. pCPA pretreatment alone did not affect spontaneous noradrenaline efflux in either brain region, whether or not alpha2-autoreceptors were inactivated by administration of the alpha2-antagonist, atipamezole (1 mg/kg i.p). However, in the frontal cortex, pCPA pretreatment augmented the amplitude of, and prolonged, the noradrenergic response to local infusion of d-amphetamine (10 microM). In contrast, pCPA abolished the increase in cortical noradrenaline efflux induced by local infusion of BTS 54 354 (50 microM). In the hypothalamus, pCPA did not affect the amplitude of the response to either of these agents but did prolong the effects of d-amphetamine on noradrenaline efflux. These findings suggest that serotonergic transmission has complex effects on the noradrenergic response to drugs that increase noradrenergic transmission in the frontal cortex, but has less influence in the hypothalamus.
Collapse
Affiliation(s)
- Sandrine M Géranton
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
32
|
Scherder E, Knol D, van Someren E, Deijen JB, Binnekade R, Tilders F, Sergeant J. Effects of low-frequency cranial electrostimulation on the rest-activity rhythm and salivary cortisol in Alzheimer's disease. Neurorehabil Neural Repair 2003; 17:101-8. [PMID: 12814055 DOI: 10.1177/0888439003017002004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE In previous studies, cranial electrostimulation (CES) had positive effects on sleep in depressed patients and in patients with vascular dementia. The present study examined the effects of low-frequency CES on the rest-activity rhythm and cortisol levels of patients with probable Alzheimer's disease (AD). METHOD It was hypothesised that a decreased level of cortisol would parallel a positive effect of low-frequency CES on nocturnal restlessness. Sixteen AD patients were randomly assigned to an experimental group (n = 8) or a control group (n = 8). The experimental group was treated with CES, whereas the control group received sham stimulation, for 30 minutes a day, during 6 weeks. The rest-activity rhythm was assessed by actigraphy. Cortisol was measured repeatedly in the saliva throughout the day by means of salivette tubes. RESULTS Low-frequency CES did not improve the rest-activity rhythm in AD patients. Moreover, both groups showed an increase instead of a decrease in the level of cortisol. CONCLUSIONS These preliminary results suggest that low-frequency CES has no positive effect on the rest-activity rhythm in AD patients. An alternative research design with high-frequency CES in AD is discussed.
Collapse
Affiliation(s)
- Erik Scherder
- Department of Clinical Neuropsychology, Vrije Universiteit, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
33
|
Ago Y, Sakaue M, Baba A, Matsuda T. Selective reduction by isolation rearing of 5-HT1A receptor-mediated dopamine release in vivo in the frontal cortex of mice. J Neurochem 2002; 83:353-9. [PMID: 12423245 DOI: 10.1046/j.1471-4159.2002.01128.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serotonin (5-HT)1A receptors modulate in vivo release of brain monoaminergic neurotransmitters which may be involved in isolation-induced aggressive behavior. The present study examined the effect of isolation rearing on the 5-HT1A receptor-mediated modulation of dopamine (DA), 5-HT and noradrenaline (NA) release in the frontal cortex of mice. The selective 5-HT1A receptor agonist (S)-5-[-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole HCl (MKC-242) increased the release of DA and NA and decreased the release of 5-HT in the frontal cortex of mice. The effect of MKC-242 on DA release was significantly less in isolation-reared mice than in group-reared mice, while effects of the drug on NA and 5-HT release did not differ between both groups. The effect of the other 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin on cortical DA release was also less in isolation-reared mice than in group-reared mice, and that of the drug on cortical 5-HT release did not differ between both groups. In contrast to MKC-242-induced DA release, amphetamine-induced increase in cortical DA release in vivo was greater in isolation-reared mice. The present findings suggest that isolation rearing enhances the activity of cortical dopaminergic neurons and reduces selectively the 5-HT1A receptor-mediated release of DA in the cortex.
Collapse
Affiliation(s)
- Y Ago
- Laboratory of Medicinal Pharmacology, and Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
34
|
Weidenfeld J, Feldman S, Itzik A, Van de Kar LD, Newman ME. Evidence for a mutual interaction between noradrenergic and serotonergic agonists in stimulation of ACTH and corticosterone secretion in the rat. Brain Res 2002; 941:113-7. [PMID: 12031553 DOI: 10.1016/s0006-8993(02)02641-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the mutual interactions between hypothalamic norepinephrine (NE) and serotonin (5-HT) in mediating the ACTH and corticosterone responses to direct stimulation of the paraventricular nucleus (PVN) with adrenergic and serotonergic agonists. The hormone responses to the intrahypothalamic injection of the alpha1-adrenergic agonist phenylephrine (20 nmol/2 microl) were significantly reduced by prior depletion of hypothalamic 5-HT with intra-PVN injection of the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), but not after depletion of hypothalamic NE by intra-PVN injection of the noradrenergic neurotoxin 6-hydroxydopamine (6-OHDA). The ACTH and corticosterone responses to intrahypothalamic injection of the 5-HT(1A) receptor agonist 8-OH-DPAT (20 n mol/2 microl) were significantly reduced by depletion of hypothalamic NE with 6-OHDA, but not after depletion of hypothalamic 5-HT with 5,7-DHT. These mutual interactions between the NE and 5-HT neuronal systems, which innervate the PVN, may explain previous findings of equivalent reductions in the hypothalamic-pituitary-adrenal axis responses to neural stimulation after neurotoxic lesioning of either the NE or 5-HT systems.
Collapse
Affiliation(s)
- Joseph Weidenfeld
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University-Hadassah Medical School, POB 12000, Jerusalem 91120, Israel.
| | | | | | | | | |
Collapse
|
35
|
Takahashi S, Yoshinobu Y, Aida R, Shimomura H, Akiyama M, Moriya T, Shibata S. Extended action of MKC-242, a selective 5-HT(1A) receptor agonist, on light-induced Per gene expression in the suprachiasmatic nucleus in mice. J Neurosci Res 2002; 68:470-8. [PMID: 11992474 DOI: 10.1002/jnr.10225] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We reported previously that (S)-5-[3-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole hydrochloride (MKC-242) (3 mg kg(-1), i.p.), a selective 5-HT(1A) receptor agonist, accelerated the re-entrainment of hamster wheel-running rhythms to a new 8 hr delayed or advanced light-dark cycle, and also potentiated the phase advance of the wheel-running rhythm produced by light pulses. The molecular mechanism underlying MKC-242-induced potentiation of this phase shift, however, has not yet been elucidated. We examined the effects of MKC-242 on light-induced mPer1 and mPer2 mRNA expression in the suprachiasmatic nucleus (SCN) of mice. MKC-242 (5 mg kg(-1), i.p.) potentiated light-induced mPer1 and mPer2 expression in the SCN of mice housed in constant darkness for 2 days, when mRNA levels were observed 3 hr after light-exposure. More potentiating action of MKC-242 on mPer2 expression in the SCN was observed in mice housed in constant darkness for 9-10 days. This facilitatory action of MKC-242 on mPer1 expression was antagonized by WAY100635, a selective 5-HT(1A) receptor blocker, indicating that MKC-242 activated 5-HT(1A) receptors. Other drugs such as 8-hydroxy-dipropylaminotetralin (10 mg kg(-1), i.p.), paroxetine (10 mg kg(-1), i.p.), buspirone (10 mg kg(-1), i.p.), and diazepam (10 mg kg(-1), i.p.) did not display a potentiating action on light-induced mPer1 and mPer2 expression in the SCN. In the behavioral experiments, we found that MKC-242 (5 mg kg(-1), i.p.) potentiated light-induced phase delays of free-running rhythm in mice. The present results suggest that prolonged increase of mPer1 or mPer2 expression in the SCN by MKC-242 may be involved in the potentiation of photic entrainment by MKC-242 in mice.
Collapse
Affiliation(s)
- Satomi Takahashi
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Hajós-Korcsok E, Sharp T. Electrical stimulation of the dorsal and median raphe nuclei increases extracellular noradrenaline in rat hippocampus: Evidence for a 5-HT-independent mechanism. Pharmacol Biochem Behav 2002; 71:807-13. [PMID: 11888571 DOI: 10.1016/s0091-3057(01)00718-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have used raphe stimulation combined with in vivo measurements of extracellular dopamine to investigate interactions between the 5-hydroxytryptamine (5-HT) and dopamine systems. Here we have tested whether the same approach can be used to investigate interactions between the 5-HT and noradrenaline systems. Electrical stimulation of the dorsal raphe nucleus (DRN) or median raphe nucleus (MRN) was performed in anaesthetised rats implanted with microdialysis probes in the hippocampus and locus coeruleus (LC). DRN stimulation (3, 5 and 10 Hz) evoked a frequency-dependent increase in extracellular noradrenaline in the hippocampus. MRN stimulation had a similar effect. Both DRN and MRN stimulations enhanced extracellular 5-HT levels in the LC and previous studies have demonstrated that extracellular 5-HT also increases in the hippocampus. However, the increase in hippocampal noradrenaline evoked by DRN stimulation was not altered by 5-HT neuronal lesions, which reduced 5-HT metabolite levels by 90%. In conclusion, electrical stimulation of the midbrain raphe increases extracellular noradrenaline in the hippocampus, however, experiments in 5-HT-lesioned animals suggest that this response is not mediated by 5-HT. Although raphe stimulation may be useful to investigate interactions between 5-HT and dopamine, our data indicate that the same approach may not be feasible for 5-HT and noradrenaline.
Collapse
Affiliation(s)
- Eva Hajós-Korcsok
- University Department of Clinical Pharmacology, Radcliffe Infirmary, Woodstock Road, OX2 6HE, Oxford, UK.
| | | |
Collapse
|
37
|
Picazo O, Rosenblatt JS, Fernández-Guasti A. The differential effect of the anxiolytic agent 8-OH-DPAT during lactation is independent of pup withdrawal and maternal behavior. Psychoneuroendocrinology 2000; 25:693-706. [PMID: 10938449 DOI: 10.1016/s0306-4530(00)00019-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Injection of the serotonergic agonist, 8-hydroxy-2-(di-n-propylamino-tetralin (8-OH-DPAT) (0.5 mg/kg ip) produced a clear anxiolytic-like effect (as measured in the burying behavior test), after parturition, which remains until day 6 of lactation. Thereafter 8-OH-DPAT completely lacked action. In order to analyze whether lactation prevented the action of 8-OH-DPAT, dams were separated from their pups for five consecutive days. The blockade of the anxiolytic effect of 8-OH-DPAT does not disappear by isolation of the mothers from their offspring or from neighboring pups. Finally, to investigate the possible role of maternal behavior in the blockade of the anxiolytic effect of 8-OH-DPAT a third experiment was made in which ovariectomized females were rendered maternal by the sensitization procedure. These females respond normally to the antianxiety actions of 8-OH-DPAT. Results suggest that a long-term clue triggered by lactation, possibly related to prolactin secretion, interferes with the anxiolytic effect of 8-OH-DPAT.
Collapse
Affiliation(s)
- O Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional Plan de San Luis y Diaz Mirón. Col. Sto. Tomás., 11340, México City, Mexico.
| | | | | |
Collapse
|
38
|
Lejeune F, Millan MJ. Pindolol excites dopaminergic and adrenergic neurons, and inhibits serotonergic neurons, by activation of 5-HT1A receptors. Eur J Neurosci 2000; 12:3265-75. [PMID: 10998110 DOI: 10.1046/j.1460-9568.2000.00222.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pindolol accelerates the clinical actions of selective serotonin reuptake inhibitors (SSRIs) in man, and modulates extracellular levels of monoamines in corticolimbic structures in rats. Herein, we examined its influence upon electrical activity of serotonergic, dopaminergic and adrenergic perikarya in the dorsal raphe nucleus (DRN), ventral tegmental area (VTA) and locus coeruleus (LC) of anaesthetized rats. In analogy to the serotonin1A (5-HT1A) agonist, 8-OH-DPAT (-100%), pindolol dose-dependently (0.063- 1.0 mg/kg) decreased (-70%) the firing rate of serotonergic neurons. The inhibitory action of pindolol was abolished by the selective 5-HT1A antagonist, WAY-100,635 (0.031 mg/kg). In contrast, 8-OH-DPAT (+26%) and pindolol (0.25-4.0 mg/kg, +60%) dose-dependently increased the firing rate of dopaminergic cells. Of 57 neurons recorded (pindolol, 2.0 mg/kg), 36 (63%) were excited, 11 (19%) were unaffected and 10 (18%) were inhibited. This variable influence could be attributed to regularly firing neurons in the parabrachial subdivision, inasmuch as all neurons in the paranigral subnucleus were excited. The facilitation of firing by pindolol was accompanied by an increase in burst firing throughout the VTA. Both the increases in burst firing and in firing rate were reversed by WAY-100,635 (0.031 mg/kg). Finally, the electrical activity of adrenergic neurons was dose-dependently enhanced by 8-OH-DPAT and pindolol (+99% and +83%, respectively). WAY-100,635 reversed this excitation and, itself, inhibited the activity of adrenergic neurons. In conclusion, via engagement of 5-HT1A receptors, pindolol inhibits serotonergic, and activates dopaminergic and adrenergic, neurons in anaesthetized rats. Such actions may contribute to its influence upon mood, both alone and in association with antidepressant agents.
Collapse
Affiliation(s)
- F Lejeune
- Institut de Recherches Servier, Centre de Recherches de Croissy, Department of Psychopharmacology, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France
| | | |
Collapse
|
39
|
Hatanaka K, Yatsugi S, Yamaguchi T. Effect of acute treatment with YM992 on extracellular norepinephrine levels in the rat frontal cortex. Eur J Pharmacol 2000; 395:31-6. [PMID: 10781670 DOI: 10.1016/s0014-2999(00)00173-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of acute treatment with (S)-2-[[(7-fluoroindan-4-yl)oxy]methyl]morpholine monohydrochloride (YM992), venlafaxine, fluoxetine and citalopram on extracellular norepinephrine levels were examined in the rat frontal cortex by in vivo microdialysis. YM992 (3, 10, 30 mg/kg, i.p.) dose-dependently increased extracellular norepinephrine levels (3-fold at 10 mg/kg, 5. 5-fold at 30 mg/kg). While venlafaxine and 30 mg/kg fluoxetine also produced significant increases in norepinephrine levels, 30 mg/kg citalopram had no effect. The combined administration of MDL100,907 (a selective 5-HT(2A) receptor antagonist) and citalopram did significantly increase norepinephrine levels compared with either saline or citalopram treatment. Therefore, a synergistic effect due to 5-HT reuptake inhibition and 5-HT(2A) receptor antagonism of YM992 may partly contribute to the increase of extracellular norepinephrine levels. YM992 enhances the neurotransmission of not only 5-HT system but also norepinephrine, and as such may have a preclinical profile different from that of a selective serotonin reuptake inhibitor.
Collapse
Affiliation(s)
- K Hatanaka
- Neuroscience Research, Pharmacology Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co. Ltd., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
40
|
Ichikawa J, Meltzer HY. The effect of serotonin(1A) receptor agonism on antipsychotic drug-induced dopamine release in rat striatum and nucleus accumbens. Brain Res 2000; 858:252-63. [PMID: 10708676 DOI: 10.1016/s0006-8993(99)02346-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Serotonin (5-HT)(1A) receptor agonism may be of interest in regard to both the antipsychotic action and extrapyramidal symptoms (EPS) of antipsychotic drugs (APD) based, in part, on the effect of 5-HT(1A) receptor stimulation on the release of dopamine (DA) in the nucleus accumbens (NAC) and striatum (STR), respectively. We investigated the effect of R(+)-8-hydroxy-2-(di-n-propylamino)-tetralin (R(+)-8-OH-DPAT) and n-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-n-(2-pyridinyl)cyclohe xanecarboxamide trihydrochloride (WAY100635), a selective 5-HT(1A) receptor agonist and antagonist, respectively, on basal and APD-induced DA release. In both STR and NAC, R(+)-8-OH-DPAT (0.2 mg/kg) decreased basal DA release; R(+)-8-OH-DPAT (0.05 mg/kg) inhibited DA release produced by the 5-HT(2A)/D(2) receptor antagonists clozapine (20 mg/kg), low dose risperidone (0.01 and 0. 03 mg/kg) and amperozide (10 mg/kg), but not that produced by high dose risperidone (0.1 and 1.0 mg/kg) or haloperidol (0.01-1.0 mg/kg), potent D(2) receptor antagonists. This R(+)-8-OH-DPAT-induced inhibition of the effects of clozapine, risperidone and amperozide was antagonized by WAY100635 (0.05 mg/kg). WAY100635 (0.1-0.5 mg/kg) alone increased DA release in the STR but not NAC. The selective 5-HT(2A) receptor antagonist M100907 (1 mg/kg) did not alter the effect of R(+)-8-OH-DPAT or WAY100635 alone on basal DA release in either region. These results suggest that 5-HT(1A) receptor stimulation inhibits basal and some APD-induced DA release in the STR and NAC, and that this effect is unlikely to be mediated by an interaction with 5-HT(2A) receptors. The significance of these results for EPS and antipsychotic action is discussed.
Collapse
Affiliation(s)
- J Ichikawa
- The First Floor Laboratory, Psychopharmacology Division, Department of Psychiatry, Vanderbilt University School of Medicine, 1601 23rd Avenue South, Suite 306, The Psychiatric Hospital at Vanderbilt, Nashville, TN 37212, USA.
| | | |
Collapse
|
41
|
Suwabe A, Kubota M, Niwa M, Kobayashi K, Kanba S. Effect of a 5-HT(1A) receptor agonist, flesinoxan, on the extracellular noradrenaline level in the hippocampus and on the locomotor activity of rats. Brain Res 2000; 858:393-401. [PMID: 10708692 DOI: 10.1016/s0006-8993(00)01941-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have studied effects of 5-hydroxytryptamine 1A (5-HT(1A)) receptor-selective compounds on the extracellular noradrenaline (NA) level in the hippocampus of rats using microdialysis and on their locomotor activity. A selective 5-HT(1A) receptor agonist, flesinoxan (5 mg/kg, i.p.) increased the extracellular NA level in the hippocampus, and increased the locomotor activity. Both responses were blocked by pretreatment with a 5-HT(1A) receptor antagonist, WAY100635 (1 mg/kg, i.p.) and an alpha(2) adrenoceptor agonist, clonidine (50 microg/kg, i.p.). Bilateral intrahippocampal injection of flesinoxan (200 nmol in 2 microl, respectively) increased the locomotor activity of rats and the intrahippocampal perfusion of flesinoxan (1 mM, 2 microl/min) increased the extracellular NA level in the hippocampus. Bilateral intrahippocampal injections of a small amount of WAY100635 (0.1 nmol in 2 microl, respectively) blocked the flesinoxan (5 mg/kg, i.p.)-induced hyperactivity. Flesinoxan (5 mg/kg, i.p.) did not significantly influence the level of serotonin or its major metabolite in the hippocampus, or dopamine or its metabolites in the striatum. In conclusion, these behavioral as well as pharmacological results indicate that postsynaptic 5-HT(1A) receptor activation by flesinoxan increase the extracellular NA level in the hippocampus, which may be the cause of the increase of the locomotor activity.
Collapse
Affiliation(s)
- A Suwabe
- Department of Neuropsychiatry, Yamanashi Medical University, Shimokato 1110, Tamaho-cho, Yamanashi 409-3898, Japan
| | | | | | | | | |
Collapse
|
42
|
Sakaue M, Somboonthum P, Nishihara B, Koyama Y, Hashimoto H, Baba A, Matsuda T. Postsynaptic 5-hydroxytryptamine(1A) receptor activation increases in vivo dopamine release in rat prefrontal cortex. Br J Pharmacol 2000; 129:1028-34. [PMID: 10696105 PMCID: PMC1571922 DOI: 10.1038/sj.bjp.0703139] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
5-Hydroxytryptamine (5-HT) plays a role in the regulation of 3, 4-dihydroxyphenylethylamine (dopamine) neurons in the brain, but the precise mechanism of regulation by 5-HT(1A) receptors of dopamine release has not been defined. The present study describes the effect of 5-¿3-[[(2S)-1,4-benzodioxan-2ylmethyl]amino]propoxy¿-1, 3-benzodioxole HCl (MKC-242), a highly potent and selective 5-HT(1A) receptor agonist, on dopamine release in the prefrontal cortex using microdialysis in the freely moving rat. Subcutaneous injection of MKC-242 (0.3 - 1.0 mg kg(-1)) increased extracellular levels of dopamine in the prefrontal cortex. The effect of MKC-242 in the prefrontal cortex was antagonized by pretreatment with the selective 5-HT(1A) receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xanecarboxamide (WAY100635; 1 mg kg(-1), i.p.). Local application of WAY100635 (10 microM) via a microdialysis probe antagonized the effect of systemic MKC-242 in an increasing dopamine release, and locally infused 8-hydroxy-2-(di-n-propylamino)tetralin (10 microM) increased dopamine release in the prefrontal cortex. MKC-242 increased cortical dopamine release in the rats pretreated with 5, 7-dihydroxytryptamine (150 microgram, i.c.v.) that caused an almost complete reduction in cortical 5-HT content. The effect of MKC-242 to increase dopamine release was also observed in the hippocampus, but not in the striatum or nucleus accumbens. Fluoxetine, a selective serotonin reuptake inhibitor, increased dopamine release in the prefrontal cortex, but not in the nucleus accumbens, while buspirone, a 5-HT(1A) receptor agonist, increased dopamine release in both brain regions. The present results indicate that activation of postsynaptic 5-HT(1A) receptors increases dopamine release in a brain region-specific manner.
Collapse
Affiliation(s)
- M Sakaue
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamado-oka, Suita, Osaka 565-0871 Japan
| | - P Somboonthum
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamado-oka, Suita, Osaka 565-0871 Japan
| | - B Nishihara
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamado-oka, Suita, Osaka 565-0871 Japan
| | - Y Koyama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamado-oka, Suita, Osaka 565-0871 Japan
| | - H Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamado-oka, Suita, Osaka 565-0871 Japan
| | - A Baba
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamado-oka, Suita, Osaka 565-0871 Japan
| | - T Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamado-oka, Suita, Osaka 565-0871 Japan
- Author for correspondence:
| |
Collapse
|
43
|
Vergé D, Calas A. Serotoninergic neurons and serotonin receptors: gains from cytochemical approaches. J Chem Neuroanat 2000; 18:41-56. [PMID: 10708918 DOI: 10.1016/s0891-0618(99)00050-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Serotonergic systems, their phylogeny and ontogeny have been thoroughly described up to the ultrastructural level, thanks to the multiplicity of methodological approaches. They have often been referred to as a 'Rosetta stone', as several features first described for serotonin neurons or paraneurons have been then extended to other neurotransmitter systems: coexistence with neuropeptides or even a canonical neurotransmitter (GABA), volume transmission, regrowth after lesioning, and characterization of multiple receptor subtypes. This review deals with the contributions of neuroanatomical approaches for studying serotoninergic systems, and focuses on recent advances concerning the topological relationships between serotonergic innervation, receptors and target cells. This aspect is particularly important with regard to the possibility for serotonin to act through classical synaptic transmission and/or non-junctional transmission. Serotonin then can selectively regulate different neuronal systems through the activation of distinct receptor subtypes, which in turn can be linked to different transduction pathways. Neurocytochemical approaches constitute unique tools to analyse both anatomical and functional characteristics of complex neuronal systems.
Collapse
Affiliation(s)
- D Vergé
- Laboratoire de Neurobiologie des Signaux Intercellulaires, Institut des Neurosciences, Université Pierre et Marie Curie, CNRS UMR 7624, 7 Quai Saint-Bernard, 75005, Paris, France.
| | | |
Collapse
|
44
|
Hajós-Korcsok E, Sharp T. Effect of 5-HT(1A) receptor ligands on Fos-like immunoreactivity in rat brain: evidence for activation of noradrenergic transmission. Synapse 1999; 34:145-53. [PMID: 10502313 DOI: 10.1002/(sici)1098-2396(199911)34:2<145::aid-syn7>3.0.co;2-d] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study investigated the effects of 8-OH-DPAT and various other 5-HT(1A) receptor agonists on brain noradrenergic transmission using Fos-like immunoreactivity (Fos-LI) as a marker of neural activation. Administration of 8-OH-DPAT (0.1 and 1 mg/kg) induced a marked and dose-related increase in the number of cells positive for Fos-LI in the locus coeruleus (LC), the main source of noradrenergic projections to the forebrain. This effect was also induced by the non-selective, partial 5-HT(1A) receptor agonist buspirone (10 mg/kg). The effect of both 8-OH-DPAT (0.1 mg/kg) and buspirone (10 mg/kg) on Fos-LI in the LC was blocked by pretreatment with the selective 5-HT(1A) receptor antagonist WAY 100635 (1 mg/kg). The active S(-)-enantiomer of the partial 5-HT(1A) receptor agonist (+/-)-MDL 75005EF (1 mg/kg) also induced the expression of Fos-LI in the LC, whereas the inactive R(+)-enantiomer of (+/-)-MDL 73005EF at the same dose did not. In addition to the LC, 8-OH-DPAT (0.1 mg/kg) also induced a marked increase in Fos-LI in various forebrain areas including the medial prefrontal cortex (infralimbic and cingulate cortical areas). More detailed analysis of the Fos response to 8-OH-DPAT in the medial prefrontal cortex revealed that the effect was attenuated by pretreatment with a combination of the beta(1)- and beta(2)-adrenoceptor antagonists ICI 118551 (4 mg/kg) and metoprolol (4 mg/kg), but not the alpha(1)-adrenoceptor antagonist prazosin (5 mg/kg). Taken together, the present findings provide immunocytochemical evidence that 5-HT(1A) receptor agonists activate noradrenergic neurones in the LC and that this leads to increased noradrenergic transmission at postsynaptic sites in the forebrain (specifically medial prefrontal cortex).
Collapse
Affiliation(s)
- E Hajós-Korcsok
- University Department of Clinical Pharmacology, Radcliffe Infirmary, Oxford, UK
| | | |
Collapse
|
45
|
Liang Y, Luo S, Cincotta AH. Long-term infusion of norepinephrine plus serotonin into the ventromedial hypothalamus impairs pancreatic islet function. Metabolism 1999; 48:1287-9. [PMID: 10535392 DOI: 10.1016/s0026-0495(99)90269-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To examine the possibility of a cause-effect relationship between enhanced monoamine content in the ventromedial hypothalamus ([VMH] a characteristic of hyperinsulinemic and insulin-resistant animals) and islet dysfunction, we infused norepinephrine ([NE] 25 nmol/h) and/or serotonin ([5-HT] 2.5 nmol/h) into the VMH of normal hamsters for 5 weeks and then examined insulin release from the isolated pancreatic islets. VMH infusion of NE + 5-HT, but not of either neurotransmitter alone, produced a marked leftward shift in the dose-response curve of glucose-induced insulin release (twofold to sixfold increase at 5 to 7.5 mmol/L glucose v vehicle-treated animals). In addition, the islet responsiveness to 1 micromol/L NE and 10 micromol/L acetylcholine was abolished in these NE + 5-HT VMH-infused hamsters. These findings indicate that an increase of NE and 5-HT content in the VMH can induce dysregulation of islet insulin release in response to glucose and neurotransmitters. Inasmuch as VMH NE and 5-HT levels are elevated in hyperinsulinemic and insulin-resistant animals, the present findings suggest that an endogenous increase in these hypothalamic monoamines may contribute to islet dysfunction, which is one of the characteristics of type 2 diabetes.
Collapse
Affiliation(s)
- Y Liang
- Pre-clinical Research Laboratory, Ergo Science, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
46
|
Cincotta AH, Meier AH, Cincotta M. Bromocriptine improves glycaemic control and serum lipid profile in obese Type 2 diabetic subjects: a new approach in the treatment of diabetes. Expert Opin Investig Drugs 1999; 8:1683-1707. [PMID: 11139820 DOI: 10.1517/13543784.8.10.1683] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bromocriptine, a potent dopamine D(2) receptor agonist, has been shown to reduce insulin resistance, glucose intolerance and hyperlipidaemia in both numerous animal studies and in Phase II studies. Bromocriptine has been used worldwide for over 20 years to treat Parkinson's disease, macroprolactinoma and other disorders; it has been found to be generally safe. We therefore investigated the possible beneficial effects of Ergoset(R) (Ergo Science Corp.), a new quick release formulation of bromocriptine, on glycaemic control and serum lipid profile in obese Type 2 diabetic subjects in two large Phase III studies. A large, randomised, double-blind placebo-controlled study was conducted in which Ergoset was given once daily at 8 am. (4.8 mg maximum dose) for 24 weeks as adjunctive therapy to sulphonylurea (485 subjects) to obese Type 2 diabetics held on a weight- maintaining diet. Treatment efficacy parameters included change from baseline in glycated haemoglobin A(1c) (HbA(1c)), fasting and post-prandial serum glucose, insulin, triglyceride and free fatty acid levels. Baseline glycated haemoglobin, fasting glucose, insulin, triglyceride and free fatty acid levels did not differ between treatment groups. and on average were 9.4 +/- 0.05%, 222 +/- 2 mg/dl, 24 +/- 1 µU/ml, 248 +/- 11 mg/dl, and 850 +/- 32 µEq/l, respectively. A similarly designed study of Ergoset as monotherapy in Type 2 diabetics (154 subjects) with similar baseline clinical characteristics was conducted. Addition of Ergoset treatment to sulphonylurea reduced percent glycated HbA(1c) by 0.55 (P < 0.0001) (approximately 1.0 for responders, 65% of population), fasting and post-prandial glucose by 23 and 26 mg/dl (P < 0.0002), fasting and post-prandial triglycerides by 72 and 63 mg/dl (P < 0.005) and fasting and post-prandial free fatty acids by 150 and 165 µEq/l (P < 0.05), relative to placebo. Twelve percent of all Ergoset subjects, compared to 3% of placebo subjects, withdrew from the study due to adverse events. The most common events causing withdrawal were nausea, dizziness, asthenia, and rhinitis (representing 4.5, 3.3, 2.0, and 0.8% of the total Ergoset populations, respectively). The incidence of serious adverse events did not differ between Ergoset- (3.4%) and placebo- (4.3%) treated subjects. Ergoset as monotherapy also improved glycaemic control (0.56 HbA(1c) decrease relative to placebo after 24 weeks of treatment; P < 0.02). Once daily Ergoset treatment improves glycaemic control and serum lipid profile and is well-tolerated in obese Type 2 diabetics.
Collapse
Affiliation(s)
- A H Cincotta
- Ergo Science Corp., North Andover Mills, 43 High Street, North Andover, MA 01845, USA.
| | | | | |
Collapse
|
47
|
Gobert A, Rivet JM, Cistarelli L, Melon C, Millan MJ. Buspirone modulates basal and fluoxetine-stimulated dialysate levels of dopamine, noradrenaline and serotonin in the frontal cortex of freely moving rats: activation of serotonin1A receptors and blockade of alpha2-adrenergic receptors underlie its actions. Neuroscience 1999; 93:1251-62. [PMID: 10501449 DOI: 10.1016/s0306-4522(99)00211-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The serotonin1A receptor partial agonist, buspirone, also displays antagonist properties at D2 receptors and is metabolized to the alpha2-adrenergic receptor antagonist, 1-(2-pyrimidinyl-piperazine). Herein, we examined mechanisms underlying the influence of buspirone alone, and in association with the serotonin reuptake inhibitor, fluoxetine, upon extracellular levels of serotonin, dopamine and noradrenaline simultaneously quantified in the frontal cortex of freely moving rats. Buspirone (0.01-2.5 mg/kg, s.c.) dose-dependently decreased dialysate levels of serotonin (-50%), and increased those of dopamine (+100%) and noradrenaline (+140%). The reduction by buspirone of serotonin levels was abolished by the serotonin1A receptor antagonist, WAY 100,635 (0.16), which did not, however, modify its influence upon dopamine and noradrenaline. In contrast to buspirone, the serotonin reuptake inhibitor, fluoxetine (10.0), increased frontocortical levels of serotonin (+ 120%), dopamine (+55%) and noradrenaline (+90%). Buspirone dose-dependently (0.01-2.5) decreased the induction by fluoxetine of serotonin levels yet potentiated (three-fold) its elevation of dopamine and noradrenaline levels. The serotonin1A agonist, 8-hydroxy-2-(di-n-propyl-amino)-tetralin (0.16), mimicked the action of buspirone in reducing resting levels of serotonin (-60%) and in enhancing those of dopamine (+135%) and noradrenaline (+165%). Like buspirone, it attenuated the influence of fluoxetine upon serotonin levels, yet facilitated its influence upon dopamine and noradrenaline levels. In contrast, WAY 100,635 selectively potentiated the increase in levels of serotonin (two-fold) versus dopamine and noradrenaline elicited by fluoxetine. Further, WAY 100,635 abolished the inhibitory influence of buspirone upon fluoxetine-induced serotonin release, but only partly interfered with its potentiation of fluoxetine-induced increases in dopamine and noradrenaline levels. The D2/D3 receptor antagonist, raclopride (0.16), increased basal dopamine (+60%) levels but little influenced those of serotonin and noradrenaline, and failed to modify the action of fluoxetine. The alpha2-adrenergic receptor antagonist, 1-(2-pyrimidinyl-piperazine) (2.5), which did not modify resting levels of serotonin, markedly increased those of dopamine (+90%) and noradrenaline (+190%) and potentiated (two-fold) the increases in dialysate levels of dopamine, noradrenaline and serotonin provoked by fluoxetine. Further, the alpha2-adrenergic receptor agonist, S18616, attenuated the enhancement by buspirone of the fluoxetine-induced increase in levels of dopamine and noradrenaline. In conclusion, the inhibitory influence of buspirone upon resting and fluoxetine-stimulated serotonin levels reflects its agonist properties at serotonin1A autoreceptors. The facilitatory influence of buspirone upon resting and fluoxetine-stimulated dopamine and noradrenaline levels may also involve its serotonin1A properties. However, its principal mechanism of action in this respect is probably the alpha2-adrenergic antagonist properties of its metabolite, 1-(2-pyrimidinyl-piperazine). The present observations are of significance to experimental and clinical studies of the influence of buspirone upon depressive states, alone and in association with antidepressant agents.
Collapse
Affiliation(s)
- A Gobert
- Institut de Recherches Servier, Psychopharmacology Department, Croissy-sur-Seine, Paris, France
| | | | | | | | | |
Collapse
|
48
|
Abstract
It is now nearly 5 years since the last of the currently recognised 5-HT receptors was identified in terms of its cDNA sequence. Over this period, much effort has been directed towards understanding the function attributable to individual 5-HT receptors in the brain. This has been helped, in part, by the synthesis of a number of compounds that selectively interact with individual 5-HT receptor subtypes--although some 5-HT receptors still lack any selective ligands (e.g. 5-ht1E, 5-ht5A and 5-ht5B receptors). The present review provides background information for each 5-HT receptor subtype and subsequently reviews in more detail the functional responses attributed to each receptor in the brain. Clearly this latter area has moved forward in recent years and this progression is likely to continue given the level of interest associated with the actions of 5-HT. This interest is stimulated by the belief that pharmacological manipulation of the central 5-HT system will have therapeutic potential. In support of which, a number of 5-HT receptor ligands are currently utilised, or are in clinical development, to reduce the symptoms of CNS dysfunction.
Collapse
Affiliation(s)
- N M Barnes
- Department of Pharmacology, The Medical School, University of Birmingham, Edgbaston, UK.
| | | |
Collapse
|
49
|
Rodriguez-Manzo G. Blockade of the establishment of the sexual inhibition resulting from sexual exhaustion by the Coolidge effect. Behav Brain Res 1999; 100:245-54. [PMID: 10212072 DOI: 10.1016/s0166-4328(98)00137-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous data from our laboratory and others suggest that the motivational component of male rat sexual behaviour plays an important role in the sexual satiation phenomenon. The aim of the present study was to establish the effect of a physiological increase in sexual motivation, by means of changing the stimulus female (Coolidge effect), on the sexual exhaustion phenomenon and to assess the impact of lesioning the central noradrenergic (NA) system on the Coolidge effect. Results suggest that: (a) interfering with the putative sexual motivation decline resulting from multiple ejaculation, by changing the stimulus female, interferes with the establishment of an inhibitory process responsible for the sexual inhibition that follows sexual satiation; and (b) the neurotoxic lesion of the NA system does not block the stimulatory effect of such manipulation. It is concluded that different mechanisms modulate sexual behaviour expression in sexually exhausted male rats depending on the type of stimulus challenge to which they are subjected, i.e. pharmacological or physiological.
Collapse
Affiliation(s)
- G Rodriguez-Manzo
- Departamento de Farmacología y Toxicología, CINVESTAV, Instituto Mexicano de Psiquiatría, México, DF.
| |
Collapse
|
50
|
Hajós-Korcsok E, McQuade R, Sharp T. Influence of 5-HT1A receptors on central noradrenergic activity: microdialysis studies using (+/-)-MDL 73005EF and its enantiomers. Neuropharmacology 1999; 38:299-306. [PMID: 10218872 DOI: 10.1016/s0028-3908(98)00175-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies indicate that 5-HT1A receptor agonists stimulate noradrenaline release in the brain. Here we investigate the mechanism underlying the increase in extracellular noradrenaline induced by (+/-)-MDL 73005EF, a weak 5-HT1A receptor agonist. Extracellular noradrenaline was measured in the hippocampus of the awake rat using microdialysis. (+/-)-MDL 73005EF (0.1, 1 and 5 mg/kg s.c.) caused a dose-related increase in noradrenaline. The active S(-)- enantiomer of MDL 73005EF (1 mg/kg s.c.) also increased noradrenaline whereas the inactive R(+)- enantiomer (1 mg/kg s.c.) did not. Measurements of extracellular 5-HT in hippocampus of anaesthetised rats confirmed that the 5-HT1A receptor agonist action of (+/-)-MDL 73005EF resides in the S(-)- enantiomer. Thus, S(-)-MDL 73005EF (0.3 and 1 mg/kg s.c.) markedly decreased 5-HT, whereas R(+)-MDL 73005EF (1 mg/kg s.c.) did not. The noradrenaline response to (+/-)-MDL 73005EF (1 mg/kg s.c.) was significantly blocked by the selective 5-T1A receptor antagonist, WAY 100635 (1 but not 0.3 mg/kg s.c). The noradrenaline response to (+/-)-MDL 73005EF (1 mg/kg s.c.) was not modified by pretreatment with the 5-HT synthesis inhibitor p-chlorophenylalanine. Intra-hippocampal application of (+/-)-MDL 73005EF (10 microM in perfusion medium) did not increase noradrenaline. Although (+/-)-MDL 73005EF has moderate affinity for dopamine D2 binding sites, the dopamine D2 receptor antagonist, remoxipride (1 mg/kg s.c.) did not increase noradrenaline. In conclusion, our data suggest that (+/-)-MDL 73005EF increases noradrenaline release in rat hippocampus through activation of 5HT1A receptors that appear to be located postsynaptically. These data are discussed in relation to the antidepressant/anxiolytic effects of 5-HT1A agonists.
Collapse
Affiliation(s)
- E Hajós-Korcsok
- Department of Clinical Pharmacology, University of Oxford, Radcliffe Infirmary, UK
| | | | | |
Collapse
|