1
|
Maimaitiyiming A, An H, Xing C, Li X, Li Z, Bai J, Luo C, Zhuo T, Huang X, Maimaiti A, Aikemu A, Wang Y. Machine learning-driven mast cell gene signatures for prognostic and therapeutic prediction in prostate cancer. Heliyon 2024; 10:e35157. [PMID: 39170129 PMCID: PMC11336432 DOI: 10.1016/j.heliyon.2024.e35157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Background The role of Mast cells has not been thoroughly explored in the context of prostate cancer's (PCA) unpredictable prognosis and mixed immunotherapy outcomes. Our research aims to employs a comprehensive computational methodology to evaluate Mast cell marker gene signatures (MCMGS) derived from a global cohort of 1091 PCA patients. This approach is designed to identify a robust biomarker to assist in prognosis and predicting responses to immunotherapy. Methods This study initially identified mast cell-associated biomarkers from prostate adenocarcinoma (PRAD) patients across six international cohorts. We employed a variety of machine learning techniques, including Random Forest, Support Vector Machine (SVM), Lasso regression, and the Cox Proportional Hazards Model, to develop an effective MCMGS from candidate genes. Subsequently, an immunological assessment of MCMGS was conducted to provide new insights into the evaluation of immunotherapy responses and prognostic assessments. Additionally, we utilized Gene Set Enrichment Analysis (GSEA) and pathway analysis to explore the biological pathways and mechanisms associated with MCMGS. Results MCMGS incorporated 13 marker genes and was successful in segregating patients into distinct high- and low-risk categories. Prognostic efficacy was confirmed by survival analysis incorporating MCMGS scores, alongside clinical parameters such as age, T stage, and Gleason scores. High MCMGS scores were correlated with upregulated pathways in fatty acid metabolism and β-alanine metabolism, while low scores correlated with DNA repair mechanisms, homologous recombination, and cell cycle progression. Patients classified as low-risk displayed increased sensitivity to drugs, indicating the utility of MCMGS in forecasting responses to immune checkpoint inhibitors. Conclusion The combination of MCMGS with a robust machine learning methodology demonstrates considerable promise in guiding personalized risk stratification and informing therapeutic decisions for patients with PCA.
Collapse
Affiliation(s)
- Abudukeyoumu Maimaitiyiming
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hengqing An
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| | - Chen Xing
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| | - Xiaodong Li
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| | - Zhao Li
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Junbo Bai
- Department of Pediatric Urology, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cheng Luo
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tao Zhuo
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xin Huang
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Aierpati Maimaiti
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Yujie Wang
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| |
Collapse
|
2
|
Sierra-Marquez J, Schaller L, Sassenbach L, Ramírez-Fernández A, Alt P, Rissiek B, Zimmer B, Schredelseker J, Hector J, Stähler T, Koch-Nolte F, Staab-Weijnitz CA, Dietrich A, Kopp R, Nicke A. Different localization of P2X4 and P2X7 receptors in native mouse lung - lack of evidence for a direct P2X4-P2X7 receptor interaction. Front Immunol 2024; 15:1425938. [PMID: 38953020 PMCID: PMC11215518 DOI: 10.3389/fimmu.2024.1425938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction P2X receptors are a family of homo- and heterotrimeric cation channels gated by extracellular ATP. The P2X4 and P2X7 subunits show overlapping expression patterns and have been involved in similar physiological processes, such as pain and inflammation as well as various immune cell functions. While formation of P2X2/P2X3 heterotrimers produces a distinct pharmacological phenotype and has been well established, functional identification of a P2X4/P2X7 heteromer has been difficult and evidence for and against a physical association has been found. Most of this evidence stems, however, from in vitro model systems. Methods Here, we used a P2X7-EGFP BAC transgenic mouse model as well as P2X4 and P2X7 knock-out mice to re-investigate a P2X4-P2X7 interaction in mouse lung by biochemical and immunohistochemical experiments as well as quantitative expression analysis. Results No detectable amounts of P2X4 could be co-purified from mouse lung via P2X7-EGFP. In agreement with these findings, immuno-histochemical analysis using a P2X7-specific nanobody revealed only limited overlap in the cellular and subcellular localizations of P2X4 and P2X7 in both the native lung tissue and primary cells. Comparison of P2X4 and P2X7 transcript and protein levels in the respective gene-deficient and wild type mice showed no mutual interrelation between their expression levels in whole lungs. However, a significantly reduced P2rx7 expression was found in alveolar macrophages of P2rx4 -/- mice. Discussion In summary, our detailed analysis of the cellular and subcellular P2X4 and P2X7 localization and expression does not support a physiologically relevant direct association of P2X4 and P2X7 subunits or receptors in vivo.
Collapse
Affiliation(s)
- Juan Sierra-Marquez
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Lena Schaller
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Lukas Sassenbach
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Antonio Ramírez-Fernández
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Philipp Alt
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Béla Zimmer
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Johann Schredelseker
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hector
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tobias Stähler
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Germany
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Robin Kopp
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. The mast cells - Cytokines axis in Autism Spectrum Disorder. Neuropharmacology 2024; 249:109890. [PMID: 38431049 DOI: 10.1016/j.neuropharm.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disturbance, diagnosed in early childhood. It is associated with varying degrees of dysfunctional communication and social skills, repetitive and stereotypic behaviors. Regardless of the constant increase in the number of diagnosed patients, there are still no established treatment schemes in global practice. Many children with ASD have allergic symptoms, often in the absence of mast cell (MC) positive tests. Activation of MCs may release molecules related to inflammation and neurotoxicity, which contribute to the pathogenesis of ASD. The aim of the present paper is to enrich the current knowledge regarding the relationship between MCs and ASD by providing PPI network analysis-based data that reveal key molecules and immune pathways associated with MCs in the pathogenesis of autism. Network and enrichment analyzes were performed using receptor information and secreted molecules from activated MCs identified in ASD patients. Our analyses revealed cytokines and key marker molecules for MCs degranulation, molecular pathways of key mediators released during cell degranulation, as well as various receptors. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, is important for elucidating the pathogenesis of ASD and developing effective future treatments for autistic patients by discovering new therapeutic target molecules.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand; Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University-Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
4
|
Sluyter R, McEwan TBD, Sophocleous RA, Stokes L. Methods for studying P2X4 receptor ion channels in immune cells. J Immunol Methods 2024; 526:113626. [PMID: 38311008 DOI: 10.1016/j.jim.2024.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
The P2X4 receptor is a trimeric ligand-gated ion channel activated by adenosine 5'-triphosphate (ATP). P2X4 is present in immune cells with emerging roles in inflammation and immunity, and related disorders. This review aims to provide an overview of the methods commonly used to study P2X4 in immune cells, focusing on those methods used to assess P2RX4 gene expression, the presence of the P2X4 protein, and P2X4 ion channel activity in these cells from humans, dogs, mice and rats. P2RX4 gene expression in immune cells is commonly assessed using semi-quantitative and quantitative reverse-transcriptase-PCR. The presence of P2X4 protein in immune cells is mainly assessed using anti-P2X4 polyclonal antibodies with immunoblotting or immunochemistry, but the use of these antibodies, as well as monoclonal antibodies and nanobodies to detect P2X4 with flow cytometry is increasing. Notably, use of an anti-P2X4 monoclonal antibody and flow cytometry has revealed that P2X4 is present on immune cells with a rank order of expression in eosinophils, then neutrophils and monocytes, then basophils and B cells, and finally T cells. P2X4 ion channel activity has been assessed mainly by Ca2+ flux assays using the cell permeable Ca2+-sensitive dyes Fura-2 and Fluo-4 with fluorescence microscopy, spectrophotometry, or flow cytometry. However, other methods including electrophysiology, and fluorescence assays measuring Na+ flux (using sodium green tetra-acetate) and dye uptake (using YO-PRO-12+) have been applied. Collectively, these methods have demonstrated the presence of functional P2X4 in monocytes and macrophages, microglia, eosinophils, mast cells and CD4+ T cells, with other evidence suggestive of functional P2X4 in dendritic cells, neutrophils, B cells and CD8+ T cells.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Tahnee B-D McEwan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
5
|
Salcman B, Bahri R, West PW, Tontini C, Affleck K, Bulfone-Paus S. P2X7 Receptor-Induced Human Mast Cell Degranulation Is Enhanced by Interleukin 33. Int J Mol Sci 2024; 25:1730. [PMID: 38339008 PMCID: PMC10855801 DOI: 10.3390/ijms25031730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
MCs are tissue-resident immune cells that strategically reside in barrier organs and respond effectively to a wide range of stimuli, such as IL-33, a mediator released upon epithelial damage. Adenosine triphosphate (ATP) accumulates at sites of tissue injury and is known to modulate MC activities. This study investigated how an inflammatory tissue environment rich in IL-33 modulates the ATP-mediated activation of MCs. Human primary MCs primed with IL-33 displayed a strongly increased response to ATP but not ADP. This resulted in increased degranulation, IL-8 release, and pERK1/2 signalling. Such effects are unique to IL-33 stimulation and not shared by the epithelial alarmin, TSLP. MC exposure to IL-33 also increased membrane expression of purinergic and ATP-binding P2X receptors. The use of selective P2X receptor inhibitors identified P2X7 receptor as the key mediator of the enhanced ATP-induced ERK1/2 signalling and degranulation in IL-33-primed MCs. Whilst the inhibition of P2X1 and P2X4 receptors had no effect on MC degranulation, inhibiting these receptors together with P2X7 resulted in further decreased MC-mediated degranulation. These data therefore point toward the potential mechanisms by which IL-33 contributes to the modulation of ATP-mediated activation in human MCs.
Collapse
Affiliation(s)
- Barbora Salcman
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| | - Peter W. West
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| | - Chiara Tontini
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| | | | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| |
Collapse
|
6
|
Zhang HL, Sandai D, Zhang ZW, Song ZJ, Babu D, Tabana Y, Dahham SS, Adam Ahmed Adam M, Wang Y, Wang W, Zhang HL, Zhao R, Barakat K, Harun MSR, Shapudin SNM, Lok B. Adenosine triphosphate induced cell death: Mechanisms and implications in cancer biology and therapy. World J Clin Oncol 2023; 14:549-569. [PMID: 38179405 PMCID: PMC10762532 DOI: 10.5306/wjco.v14.i12.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023] Open
Abstract
Adenosine triphosphate (ATP) induced cell death (AICD) is a critical cellular process that has garnered substantial scientific interest for its profound relevance to cancer biology and to therapeutic interventions. This comprehensive review unveils the intricate web of AICD mechanisms and their intricate connections with cancer biology. This review offers a comprehensive framework for comprehending the multifaceted role of AICD in the context of cancer. This is achieved by elucidating the dynamic interplay between systemic and cellular ATP homeostasis, deciphering the intricate mechanisms governing AICD, elucidating its intricate involvement in cancer signaling pathways, and scrutinizing validated key genes. Moreover, the exploration of AICD as a potential avenue for cancer treatment underscores its essential role in shaping the future landscape of cancer therapeutics.
Collapse
Affiliation(s)
- Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Doblin Sandai
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Zhong-Wen Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Sabbar Saad Dahham
- Department of Science, University of Technology and Applied Sciences Rustaq, Rustaq 10 P.C. 329, Oman
| | - Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, United States
| | - Yong Wang
- Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Long Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Mohammad Syamsul Reza Harun
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Siti Nurfatimah Mohd Shapudin
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Bronwyn Lok
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| |
Collapse
|
7
|
Yang S, Chen S, Zhao Y, Wu T, Wang Y, Li T, Fu L, Ye T, Hu Y, Chen H. Identification of a coagulation-related signature correlated with immune infiltration and their prognostic implications in lung adenocarcinoma. Thorac Cancer 2023; 14:3295-3308. [PMID: 37795779 PMCID: PMC10665780 DOI: 10.1111/1759-7714.15121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a fatal form of lung cancer with a poor prognosis. Coagulation system had been confirmed closely related to tumor progression and the hypercoagulable state encouraged the immune infiltration and development of tumor cells, leading to a poor prognosis in cancer patients. However, the use of the coagulation-related genes (CRGs) for prognosis in LUAD has yet to be determined. In this study, we constructed an immune-related signature (CRRS) and identified a potential coagulation-related biomarker (P2RX1). METHODS We obtained a total of 209 CRGs based on two coagulation-related KEGG pathways, then developed the CRRS signature by using the TCGA-LUAD RNA-seq data via the procedure of LASSO-Cox regression, stepwise-Cox regression, univariate and multivariate Cox regression. Grouped by the CRRS, Kaplan-Meier survival curves and receiver operating characteristic curves were drawn for the training and validation sets, respectively. In addition, single-sample gene set enrichment analysis was exploited to explore immune infiltration level. Moreover, immunophenotypes and immunotherapy grouped by CRRS were further analyzed. RESULTS We developed an immune-related signature (CRRS) composed of COL1A2, F2, PLAUR, C4BPA, and P2RX1 in LUAD. CRRS was an independent risk factor for overall survival and displayed stable and powerful performance. Additionally, CRRS possessed distinctly superior accuracy than traditional clinical variables and molecular features. Functional analysis indicated that the differentially high expressed genes in the low-risk group significantly enriched in T cell and B cell receptor signaling pathways. The low-risk group was sensitive to anti-PD-1/PD-L1 immunotherapy and displayed abundant immune infiltration and immune checkpoint gene expression. Finally, we identified an independent prognostic gene P2RX1. Low expression of P2RX1 associated with poor overall survival and decreased immune infiltration. CONCLUSIONS Our study revealed a significant correlation between CRRS and immune infiltration. CRRS could serve as a promising tool to improve the clinical outcomes for individual LUAD patients.
Collapse
Affiliation(s)
- Siqian Yang
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiChina
- Institute of Biostatistics, School of Life Sciences, Human Phenome InstituteFudan UniversityShanghaiChina
| | - Shiqi Chen
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiChina
- Institute of Thoracic OncologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yue Zhao
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiChina
- Institute of Thoracic OncologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Tao Wu
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yuquan Wang
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiChina
- Institute of Biostatistics, School of Life Sciences, Human Phenome InstituteFudan UniversityShanghaiChina
| | - Tingting Li
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiChina
- Institute of Biostatistics, School of Life Sciences, Human Phenome InstituteFudan UniversityShanghaiChina
| | - Liwan Fu
- Center for Non‐communicable Disease ManagementBeijing Children's HospitalBeijingChina
| | - Ting Ye
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiChina
- Institute of Thoracic OncologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yue‐Qing Hu
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiChina
- Institute of Biostatistics, School of Life Sciences, Human Phenome InstituteFudan UniversityShanghaiChina
- Shanghai Center for Mathematical SciencesFudan UniversityShanghaiChina
| | - Haiquan Chen
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiChina
- Institute of Biostatistics, School of Life Sciences, Human Phenome InstituteFudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
8
|
Schulman ES, Nishi H, Pelleg A. Degranulation of human mast cells: modulation by P2 receptors' agonists. Front Immunol 2023; 14:1216580. [PMID: 37868982 PMCID: PMC10585249 DOI: 10.3389/fimmu.2023.1216580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023] Open
Abstract
Since the late 1970s, there has been an alarming increase in the incidence of asthma and its morbidity and mortality. Acute obstruction and inflammation of allergic asthmatic airways are frequently caused by inhalation of exogenous substances such as allergens cross-linking IgE receptors expressed on the surface of the human lung mast cells (HLMC). The degree of constriction of human airways produced by identical amounts of inhaled allergens may vary from day to day and even hour to hour. Endogenous factors in the human mast cell (HMC)'s microenvironment during allergen exposure may markedly modulate the degranulation response. An increase in allergic responsiveness may significantly enhance bronchoconstriction and breathlessness. This review focuses on the role that the ubiquitous endogenous purine nucleotide, extracellular adenosine 5'-triphosphate (ATP), which is a component of the damage-associated molecular patterns, plays in mast cells' physiology. ATP activates P2 purinergic cell-surface receptors (P2R) to trigger signaling cascades resulting in heightened inflammatory responses. ATP is the most potent enhancer of IgE-mediated HLMC degranulation described to date. Current knowledge of ATP as it relates to targeted receptor(s) on HMC along with most recent studies exploring HMC post-receptor activation pathways are discussed. In addition, the reviewed studies may explain why brief, minimal exposures to allergens (e.g., dust, cat, mouse, and grass) can unpredictably lead to intense clinical reactions. Furthermore, potential therapeutic approaches targeting ATP-related enhancement of allergic reactions are presented.
Collapse
Affiliation(s)
- Edward S. Schulman
- Division of Pulmonary, Critical Care and Allergy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Haruhisa Nishi
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, United States
| |
Collapse
|
9
|
Haque TT, Taruselli MT, Kee SA, Dailey JM, Pondicherry N, Gajewski-Kurdziel PA, Zellner MP, Stephenson DJ, Straus DB, Kankaria R, Jackson KG, Chumanevich AP, Fukuoka Y, Schwartz LB, Blakely RD, Oskeritzian CA, Chalfant CE, Martin RK, Ryan JJ. Fluoxetine restrains allergic inflammation by targeting an FcɛRI-ATP positive feedback loop in mast cells. Sci Signal 2023; 16:eabc9089. [PMID: 37699080 PMCID: PMC10759315 DOI: 10.1126/scisignal.abc9089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
There is a clinical need for new treatment options addressing allergic disease. Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants that have anti-inflammatory properties. We tested the effects of the SSRI fluoxetine on IgE-induced function of mast cells, which are critical effectors of allergic inflammation. We showed that fluoxetine treatment of murine or human mast cells reduced IgE-mediated degranulation, cytokine production, and inflammatory lipid secretion, as well as signaling mediated by the mast cell activator ATP. In a mouse model of systemic anaphylaxis, fluoxetine reduced hypothermia and cytokine production. Fluoxetine was also effective in a model of allergic airway inflammation, where it reduced bronchial responsiveness and inflammation. These data show that fluoxetine suppresses mast cell activation by impeding an FcɛRI-ATP positive feedback loop and support the potential repurposing of this SSRI for use in allergic disease.
Collapse
Affiliation(s)
- Tamara. T Haque
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - Marcela T. Taruselli
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - Sydney A. Kee
- Departments of Biology, Virginia Commonwealth University, Richmond, VA
| | - Jordan M. Dailey
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - Neha Pondicherry
- Departments of Biology, Virginia Commonwealth University, Richmond, VA
| | - Paula A. Gajewski-Kurdziel
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458
| | - Matthew P. Zellner
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - Daniel J. Stephenson
- Department of Cell Biology, University of Virginia-School of Medicine, Charlottesville, VA, 22903
| | - David B. Straus
- Departments of Biology, Virginia Commonwealth University, Richmond, VA
| | - Roma Kankaria
- Departments of Biology, Virginia Commonwealth University, Richmond, VA
| | - Kaitlyn G. Jackson
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - Alena P. Chumanevich
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Yoshihiro Fukuoka
- Departments of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Lawrence B Schwartz
- Departments of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458
| | - Carole A. Oskeritzian
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Charles E. Chalfant
- Department of Cell Biology, University of Virginia-School of Medicine, Charlottesville, VA, 22903
- Medicine, University of Virginia-School of Medicine, Charlottesville, VA, 22903
- UVA Comprehensive Cancer Center, University of Virginia-School of Medicine, Charlottesville, VA, 22903
- Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298
| | - Rebecca K. Martin
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - John J. Ryan
- Departments of Biology, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
10
|
Molcak H, Jiang K, Campbell CJ, Matsubara JA. Purinergic signaling via P2X receptors and mechanisms of unregulated ATP release in the outer retina and age-related macular degeneration. Front Neurosci 2023; 17:1216489. [PMID: 37496736 PMCID: PMC10366617 DOI: 10.3389/fnins.2023.1216489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Age-related macular degeneration (AMD) is a chronic and progressive inflammatory disease of the retina characterized by photoceptor loss and significant central visual impairment due to either choroidal neovascularization or geographic atrophy. The pathophysiology of AMD is complex and multifactorial, driven by a combination of modifiable and non-modifiable risk factors, molecular mechanisms, and cellular processes that contribute to overall disease onset, severity, and progression. Unfortunately, due to the structural, cellular, and pathophysiologic complexity, therapeutic discovery is challenging. While purinergic signaling has been investigated for its role in the development and treatment of ocular pathologies including AMD, the potential crosstalk between known contributors to AMD, such as the complement cascade and inflammasome activation, and other biological systems, such as purinergic signaling, have not been fully characterized. In this review, we explore the interactions between purinergic signaling, ATP release, and known contributors to AMD pathogenesis including complement dysregulation and inflammasome activation. We begin by identifying what is known about purinergic receptors in cell populations of the outer retina and potential sources of extracellular ATP required to trigger purinergic receptor activation. Next, we examine evidence in the literature that the purinergic system accelerates AMD pathogenesis leading to apoptotic and pyroptotic cell death in retinal cells. To fully understand the potential role that purinergic signaling plays in AMD, more research is needed surrounding the expression, distribution, functions, and interactions of purinergic receptors within cells of the outer retina as well as potential crosstalk with other systems. By determining how these processes are affected in the context of purinergic signaling, it will improve our understanding of the mechanisms that drive AMD pathogenesis which is critical in developing treatment strategies that prevent or slow progression of the disease.
Collapse
Affiliation(s)
- Haydn Molcak
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| | - Kailun Jiang
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| | | | - Joanne A. Matsubara
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| |
Collapse
|
11
|
Abstract
Within the family of purinergic receptors, the P2X1 receptor is a ligand-gated ion channel that plays a role in urogenital, immune and cardiovascular function. Specifically, the P2X1 receptor has been implicated in controlling smooth muscle contractions of the vas deferens and therefore has emerged as an exciting drug target for male contraception. In addition, the P2X1 receptor contributes to smooth muscle contractions of the bladder and is a target to treat bladder dysfunction. Finally, platelets and neutrophils have populations of P2X1 receptors that could be targeted for thrombosis and inflammatory conditions. Drugs that specifically target the P2X1 receptor have been challenging to develop, and only recently have small molecule antagonists of the P2X1 receptor been available. However, these ligands need further biological validation for appropriate selectivity and drug-like properties before they will be suitable for use in preclinical models of disease. Although the atomic structure of the P2X1 receptor has yet to be determined, the recent discovery of several other P2X receptor structures and improvements in the field of structural biology suggests that this is now a distinct possibility. Such efforts may significantly improve drug discovery efforts at the P2X1 receptor.
Collapse
|
12
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
13
|
Sophocleous RA, Ooi L, Sluyter R. The P2X4 Receptor: Cellular and Molecular Characteristics of a Promising Neuroinflammatory Target. Int J Mol Sci 2022; 23:ijms23105739. [PMID: 35628550 PMCID: PMC9147237 DOI: 10.3390/ijms23105739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
The adenosine 5′-triphosphate-gated P2X4 receptor channel is a promising target in neuroinflammatory disorders, but the ability to effectively target these receptors in models of neuroinflammation has presented a constant challenge. As such, the exact role of P2X4 receptors and their cell signalling mechanisms in human physiology and pathophysiology still requires further elucidation. To this end, research into the molecular mechanisms of P2X4 receptor activation, modulation, and inhibition has continued to gain momentum in an attempt to further describe the role of P2X4 receptors in neuroinflammation and other disease settings. Here we provide an overview of the current understanding of the P2X4 receptor, including its expression and function in cells involved in neuroinflammatory signalling. We discuss the pharmacology of P2X4 receptors and provide an overview of P2X4-targeting molecules, including agonists, positive allosteric modulators, and antagonists. Finally, we discuss the use of P2X4 receptor modulators and antagonists in models of neuroinflammatory cell signalling and disease.
Collapse
Affiliation(s)
- Reece Andrew Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: ; Tel.: +612-4221-5508
| |
Collapse
|
14
|
Obayashi K, Yoshida K, Ito MA, Mori T, Yamamoto K, Imai T, Matsuoka I. Synergistic Cytokine Production by ATP and PGE 2 via P2X4 and EP 3 Receptors in Mouse Bone-Marrow-Derived Mast Cells. Cells 2022; 11:616. [PMID: 35203267 PMCID: PMC8870111 DOI: 10.3390/cells11040616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/31/2022] Open
Abstract
ATP is an important intercellular messenger in the extracellular space. In mast cells (MCs), ATP stimulates the ionotropic P2X4 receptor (P2X4R), resulting in enhanced degranulation and exacerbation of acute allergic reactions. In this study, we investigate whether ATP regulates inflammatory cytokine production in MCs. Gene expression was analyzed by quantitative RT-PCR, and cytokine production was measured using ELISA. The stimulation of mouse bone-marrow-derived MCs (BMMCs) with ATP alone had little effect on cytokine secretion. However, the co-stimulation with prostaglandin (PG) E2 resulted in a marked increase in the secretion of various cytokines, such as tumor necrosis factor-α, interleukin (IL)-6, and IL-13, accompanied by an increase in their mRNA levels. The effects of ATP were inhibited by P2X4R antagonists and diminished in BMMCs derived from P2X4R-deficient mice, suggesting that P2X4R mediated the reaction. The effects of PGE2 were mimicked by an EP3 receptor (EP3R) agonist and blocked by an EP3R antagonist. The synergistic cytokine mRNA elevations induced by ATP and PGE2 were blocked by nuclear factor-κB and Ca2+-calcineurin signaling inhibitors. Altogether, these results suggest that combining P2X4R and EP3R signaling enhances acute degranulation and the subsequent cytokine secretion, exacerbating allergic inflammation.
Collapse
Affiliation(s)
- Kosuke Obayashi
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Gunma, Japan; (K.O.); (K.Y.); (M.-a.I.)
| | - Kazuki Yoshida
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Gunma, Japan; (K.O.); (K.Y.); (M.-a.I.)
| | - Masa-aki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Gunma, Japan; (K.O.); (K.Y.); (M.-a.I.)
| | - Tetsuya Mori
- Laboratory of Allergy and Immunology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Gunma, Japan;
| | - Kimiko Yamamoto
- Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Toshiyashu Imai
- Discovery Research Laboratories, Nippon Chemiphar Co., Ltd., Misato 341-0005, Saitama, Japan;
| | - Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Gunma, Japan; (K.O.); (K.Y.); (M.-a.I.)
| |
Collapse
|
15
|
Kong X, Bennett WC, Jania CM, Chason KD, German Z, Adouli J, Budney SD, Oby BT, van Heusden C, Lazarowski ER, Jaspers I, Randell SH, Hedgespeth BA, Cruse G, Hua X, Schworer SA, Smith GJ, Kelada SN, Tilley SL. Identification of an ATP/P2X7/mast cell pathway mediating ozone-induced bronchial hyperresponsiveness. JCI Insight 2021; 6:e140207. [PMID: 34546976 PMCID: PMC8663556 DOI: 10.1172/jci.insight.140207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
Ozone is a highly reactive environmental pollutant with well-recognized adverse effects on lung health. Bronchial hyperresponsiveness (BHR) is one consequence of ozone exposure, particularly for individuals with underlying lung disease. Our data demonstrated that ozone induced substantial ATP release from human airway epithelia in vitro and into the airways of mice in vivo and that ATP served as a potent inducer of mast cell degranulation and BHR, acting through P2X7 receptors on mast cells. Both mast cell-deficient and P2X7 receptor-deficient (P2X7-/-) mice demonstrated markedly attenuated BHR to ozone. Reconstitution of mast cell-deficient mice with WT mast cells and P2X7-/- mast cells restored ozone-induced BHR. Despite equal numbers of mast cells in reconstituted mouse lungs, mice reconstituted with P2X7-/- mast cells demonstrated significantly less robust BHR than mice reconstituted with WT mast cells. These results support a model where P2X7 on mast cells and other cell types contribute to ozone-induced BHR.
Collapse
Affiliation(s)
- Xiaomei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - William C Bennett
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Corey M Jania
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Kelly D Chason
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Zachary German
- Marsico Lung Institute and
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jennifer Adouli
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Samuel D Budney
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Brandon T Oby
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Catharina van Heusden
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Eduardo R Lazarowski
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Ilona Jaspers
- Department of Pediatrics and Center for Environmental Medicine, Asthma, and Lung Biology and
| | - Scott H Randell
- Marsico Lung Institute and
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Barry A Hedgespeth
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Xiaoyang Hua
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Otolaryngology - Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stephen A Schworer
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
- Division of Allergy and Immunology, Department of Pediatrics, and
| | - Gregory J Smith
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Samir Np Kelada
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen L Tilley
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Salcman B, Affleck K, Bulfone-Paus S. P2X Receptor-Dependent Modulation of Mast Cell and Glial Cell Activities in Neuroinflammation. Cells 2021; 10:cells10092282. [PMID: 34571930 PMCID: PMC8471135 DOI: 10.3390/cells10092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022] Open
Abstract
Localisation of mast cells (MCs) at the abluminal side of blood vessels in the brain favours their interaction with glial cells, neurons, and endothelial cells, resulting in the activation of these cells and the release of pro-inflammatory mediators. In turn, stimulation of glial cells, such as microglia, astrocytes, and oligodendrocytes may result in the modulation of MC activities. MCs, microglia, astrocytes, and oligodendrocytes all express P2X receptors (P2XRs) family members that are selectively engaged by ATP. As increased concentrations of extracellular adenosine 5′-triphosphate (ATP) are present in the brain in neuropathological conditions, P2XR activation in MCs and glial cells contributes to the control of their communication and amplification of the inflammatory response. In this review we discuss P2XR-mediated MC activation, its bi-directional effect on microglia, astrocytes and oligodendrocytes and role in neuroinflammation.
Collapse
Affiliation(s)
- Barbora Salcman
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
| | - Karen Affleck
- GlaxoSmithKline, Immunology Research Unit, Stevenage SG1 2NY, UK;
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
- Correspondence:
| |
Collapse
|
17
|
Nadzirin IB, Fortuny-Gomez A, Ngum N, Richards D, Ali S, Searcey M, Fountain SJ. Taspine is a natural product that suppresses P2X4 receptor activity via phosphoinositide 3-kinase inhibition. Br J Pharmacol 2021; 178:4859-4872. [PMID: 34398973 DOI: 10.1111/bph.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND & PURPOSE P2X4 is a ligand-gated cation channel activated by extracellular ATP, involved in neuropathic pain, inflammation and arterial tone. EXPERIMENTAL APPROACH Natural products were screened against human or mouse P2X4 activity using fura-2 loaded 1321N1 cells for measurement of intracellular Ca2+ responses; whole-cell currents were measured by patch clamp electrophysiological. Human primary macrophage chemokine release was used to assess effect of taspine on inflammatory cell function. An enzymatic assay was performed to assess the effect of taspine on recombinant PI3-kinase. KEY RESULTS A natural product screen identified taspine as an inhibitor of human P2X4 activity. Taspine inhibits human and mouse P2X4-mediated Ca2+ influx in 1321N1 cells expressing receptors (IC50 1.6±0.4 μM and 1.6±0.3 μM, respectively), but lacked activity at human P2X2, P2X3, P2X2/3 and P2X7 receptors. Taspine inhibited the maximal response at human and mouse P2X4 but had no effect on ATP potency. Taspine has a slow onset rate (~15 mins for half-maximal inhibition), irreversible over 30 minutes of washout. Taspine inhibits P2X4-mediated Ca2+ signalling in mouse BV-2 microglia cells and human primary macrophage. Taspine inhibited P2X4-mediated CXCL5 secretion in human primary macrophage. Taspine reversed ivermectin-induced potentiation of P2X4 currents in 1321N1 stably expressing cells. The known PI3-kinase inhibitor LY294002 mimicked the properties of taspine on P2X4-mediated Ca2+ influx and whole-cell currents. Taspine directly inhibited the enzymatic activity of recombinant PI3-kinase in a competitive manner. CONCLUSIONS AND IMPLICATIONS Taspine is a novel natural product P2X4 inhibitor, mediating its effect through PI3-kinase inhibitor rather than receptor antagonism. Taspine can inhibit the pro-inflammatory signalling by P2X4 in human primary macrophage.
Collapse
Affiliation(s)
- Izzuddin Bin Nadzirin
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park.,Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan Campus, Kuantan, Malaysia
| | - Anna Fortuny-Gomez
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park
| | - Neville Ngum
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park
| | - David Richards
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park
| | - Seema Ali
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park
| | - Mark Searcey
- School of Pharmacy, University of East Anglia, Norwich Research Park
| | - Samuel J Fountain
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park
| |
Collapse
|
18
|
Jiang Y, Ye F, Du Y, Zong Y, Tang Z. P2X7R in Mast Cells is a Potential Target for Salicylic Acid and Aspirin in Treatment of Inflammatory Pain. J Inflamm Res 2021; 14:2913-2931. [PMID: 34239315 PMCID: PMC8259951 DOI: 10.2147/jir.s313348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022] Open
Abstract
Background Mast cells are well known for their role in inflammatory pain. P2X7 receptor (P2X7R) has attracted much attention due to its prominent role in inflammatory diseases. Salicylates are commonly used anti-inflammatory and analgesic drugs. Until now, little has been known about whether P2X7R in mast cells is involved in inflammatory pain and whether it is a potential target for salicylates. Methods First, the expression of P2X receptors in mouse peritoneal mast cells was detected by using RT-PCR, immunofluorescence, calcium imaging and electrophysiological technique. In addition, the functions of P2X receptors, especially P2X7R, in mast cells were studied by using QPCR, ELISA and behavioral tests. Furthermore, P2X7R was used as a target to screen for some anti-inflammatory monomers that could inhibit its activity. At last, the effect of salicylic acid (SA) and aspirin (ASA) on the activity of P2X7R was studied by using calcium imaging, electrophysiological technique, ELISA, real-time PCR, behavioral tests, immunofluorescence and molecular docking. Results We found that P2X1, P2X3, P2X4 and P2X7 receptors were expressed in mouse peritoneal mast cells. The functions of different P2X receptors were various. Activation of P2X7R in mouse mast cells induced the release of inflammatory mediators, such as histamine, IL-1β, and CCL3. In addition, inflammation pain induced by high concentrations of ATP could be alleviated by P2X7R blockers or mast cell defects. Interestingly, SA or ASA could reduce high concentrations of ATP-induced inward current, P2X7R upregulation, mediators release, and inflammatory pain. SA or ASA also inhibited the inward current evoked by P2X7R agonist, BZATP. Molecular docking showed that SA or ASA had affinity for the cytoplasmic GDP-binding region of P2X7R. Conclusion P2X7R in mast cells was involved in inflammation pain by releasing inflammatory mediators, and P2X7R might be a potential target for SA and ASA analgesia.
Collapse
Affiliation(s)
- Yucui Jiang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Fan Ye
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Ying Du
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Yingxin Zong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Zongxiang Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Sandhu JK, Kulka M. Decoding Mast Cell-Microglia Communication in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22031093. [PMID: 33499208 PMCID: PMC7865982 DOI: 10.3390/ijms22031093] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia, resident immune cells of the central nervous system (CNS), play a pivotal role in immune surveillance and maintenance of neuronal health. Mast cells are also important resident immune cells of the CNS but they are underappreciated and understudied. Both microglia and mast cells are endowed with an array of signaling receptors that recognize microbes and cellular damage. As cellular sensors and effectors in the CNS, they respond to many CNS perturbations and have been implicated in neuroinflammation and neurodegeneration. Mast cells contain numerous secretory granules packaged with a plethora of readily available and newly synthesized compounds known as 'mast cell mediators'. Mast cells act as 'first responders' to a pathogenic stimuli and respond by degranulation and releasing these mediators into the extracellular milieu. They alert other glial cells, including microglia to initiate neuroinflammatory processes that culminate in the resolution of injury. However, failure to resolve the pathogenic process can lead to persistent activation, release of pro-inflammatory mediators and amplification of neuroinflammatory responses, in turn, resulting in neuronal dysfunction and demise. This review discusses the current understanding of the molecular conversation between mast cells and microglia in orchestrating immune responses during two of the most prevalent neurodegenerative diseases, namely Alzheimer's disease and Parkinson's disease. Here we also survey the potential emerging therapeutic approaches targeting common pathways in mast cells and microglia to extinguish the fire of inflammation.
Collapse
Affiliation(s)
- Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: (J.K.S.); (M.K.); Tel.: +1-613-993-5304 (J.K.S.); +1-780-641-1687 (M.K.)
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (J.K.S.); (M.K.); Tel.: +1-613-993-5304 (J.K.S.); +1-780-641-1687 (M.K.)
| |
Collapse
|
20
|
Ma C, Luo H, Cao J, Zheng X, Zhang J, Zhang Y, Fu Z. Identification of a Novel Tumor Microenvironment-Associated Eight-Gene Signature for Prognosis Prediction in Lung Adenocarcinoma. Front Mol Biosci 2020; 7:571641. [PMID: 33102522 PMCID: PMC7546815 DOI: 10.3389/fmolb.2020.571641] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lung cancer has become the most common cancer type and caused the most cancer deaths. Lung adenocarcinoma (LUAD) is one of the major types of lung cancer. Accumulating evidence suggests the tumor microenvironment is correlated with the tumor progress and the patient's outcome. This study aimed to establish a gene signature based on tumor microenvironment that can predict patients' outcomes for LUAD. Methods Dataset TCGA-LUAD, downloaded from the TCGA portal, were taken as training cohort, and dataset GSE72094, obtained from the GEO database, was set as validation cohort. In the training cohort, ESTIMATE algorithm was applied to find intersection differentially expressed genes (DEGs) among tumor microenvironment. Kaplan-Meier analysis and univariate Cox regression model were performed on intersection DEGs to preliminarily screen prognostic genes. Besides, the LASSO Cox regression model was implemented to build a multi-gene signature, which was then validated in the validation cohorts through Kaplan-Meier, Cox, and receiver operating characteristic curve (ROC) analyses. In addition, the correlation between tumor mutational burden (TMB) and risk score was evaluated by Spearman test. GSEA and immune infiltrating analyses were conducted for understanding function annotation and the role of the signature in the tumor microenvironment. Results An eight-gene signature was built, and it was examined by Kaplan-Meier analysis, revealing that a significant overall survival difference was seen. The eight-gene signature was further proven to be independent of other clinico-pathologic parameters via the Cox regression analyses. Moreover, the ROC analysis demonstrated that this signature owned a better predictive power of LUAD prognosis. The eight-gene signature was correlated with TMB. Furthermore, GSEA and immune infiltrating analyses showed that the exact pathways related to the characteristics of eight-genes signature, and identified the vital roles of Mast cells resting and B cells naive in the prognosis of the eight-gene signature. Conclusion Identifying the eight-gene signature (INSL4, SCN7A, STAP1, P2RX1, IKZF3, MS4A1, KLRB1, and ACSM5) could accurately identify patients' prognosis and had close interactions with Mast cells resting and B cells naive, which may provide insight into personalized prognosis prediction and new therapies for LUAD patients.
Collapse
Affiliation(s)
- Chao Ma
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jing Cao
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiangyu Zheng
- Department of Laboratory Medicine, the Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinjun Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanmin Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zongqiang Fu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
21
|
El-Saber Batiha G, Alqahtani A, Ilesanmi OB, Saati AA, El-Mleeh A, Hetta HF, Magdy Beshbishy A. Avermectin Derivatives, Pharmacokinetics, Therapeutic and Toxic Dosages, Mechanism of Action, and Their Biological Effects. Pharmaceuticals (Basel) 2020; 13:E196. [PMID: 32824399 PMCID: PMC7464486 DOI: 10.3390/ph13080196] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Avermectins are a group of drugs that occurs naturally as a product of fermenting Streptomyces avermitilis, an actinomycetes, isolated from the soil. Eight different structures, including ivermectin, abamectin, doramectin, eprinomectin, moxidectin, and selamectin, were isolated and divided into four major components (A1a, A2a, B1a and B2a) and four minor components (A1b, A2b, B1b, and B2b). Avermectins are generally used as a pesticide for the treatment of pests and parasitic worms as a result of their anthelmintic and insecticidal properties. Additionally, they possess anticancer, anti-diabetic, antiviral, antifungal, and are used for treatment of several metabolic disorders. Avermectin generally works by preventing the transmission of electrical impulse in the muscle and nerves of invertebrates, by amplifying the glutamate effects on the invertebrates-specific gated chloride channel. Avermectin has unwanted effects or reactions, especially when administered indiscriminately, which include respiratory failure, hypotension, and coma. The current review examines the mechanism of actions, biosynthesis, safety, pharmacokinetics, biological toxicity and activities of avermectins.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Omotayo B. Ilesanmi
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Otuoke 561, Nigeria;
| | - Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University Makkah, Mecca 24382, Saudi Arabia;
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shibin Al Kawm 32511, Egypt;
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
| |
Collapse
|
22
|
Bonvini SJ, Birrell MA, Dubuis E, Adcock JJ, Wortley MA, Flajolet P, Bradding P, Belvisi MG. Novel airway smooth muscle-mast cell interactions and a role for the TRPV4-ATP axis in non-atopic asthma. Eur Respir J 2020; 56:13993003.01458-2019. [PMID: 32299856 PMCID: PMC7330131 DOI: 10.1183/13993003.01458-2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/27/2020] [Indexed: 01/28/2023]
Abstract
Mast cell–airway smooth muscle (ASM) interactions play a major role in the immunoglobulin (Ig)E- dependent bronchoconstriction seen in asthma but less is known about IgE-independent mechanisms of mast cell activation. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) activation causes contraction of human ASM via the release of cysteinyl leukotrienes (cysLTs) but the mechanism is unknown. The objective of the present study was to investigate a role for IgE-independent, mast cell–ASM interaction in TRPV4-induced bronchospasm. A technique not previously applied to respiratory research now uncovers important IgE-independent mechanisms involved in human mast cell–airway smooth muscle interactions that may be responsible for the bronchospasm associated with non-atopic asthmahttp://bit.ly/2U1n5nT
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Contributed equally
| | - Mark A Birrell
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Contributed equally
| | - Eric Dubuis
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - John J Adcock
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael A Wortley
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Pauline Flajolet
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Bradding
- Dept of Infection, Immunity and Inflammation, University of Leicester University, Institute for Lung Health, Glenfield Hospital, Leicester, UK
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK .,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
23
|
Tian M, Abdelrahman A, Baqi Y, Fuentes E, Azazna D, Spanier C, Densborn S, Hinz S, Schmid R, Müller CE. Discovery and Structure Relationships of Salicylanilide Derivatives as Potent, Non-acidic P2X1 Receptor Antagonists. J Med Chem 2020; 63:6164-6178. [PMID: 32345019 DOI: 10.1021/acs.jmedchem.0c00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antagonists for the ATP-gated ion channel receptor P2X1 have potential as antithrombotics and for treating hyperactive bladder and inflammation. In this study, salicylanilide derivatives were synthesized based on a screening hit. P2X1 antagonistic potency was assessed in 1321N1 astrocytoma cells stably transfected with the human P2X1 receptor by measuring inhibition of the ATP-induced calcium influx. Structure-activity relationships were analyzed, and selectivity versus other P2X receptor subtypes was assessed. The most potent compounds, N-[3,5-bis(trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide (1, IC50 0.0192 μM) and N-[3,5-bis(trifluoromethyl)phenyl]-4-chloro-2-hydroxybenzamide (14, IC50 0.0231 μM), displayed >500-fold selectivity versus P2X2 and P2X3, and 10-fold selectivity versus P2X4 and P2X7 receptors, and inhibited collagen-induced platelet aggregation. They behaved as negative allosteric modulators, and molecular modeling studies suggested an extracellular binding site. Besides selective P2X1 antagonists, compounds with ancillary P2X4 and/or P2X7 receptor inhibition were discovered. These compounds represent the first potent, non-acidic, allosteric P2X1 receptor antagonists reported to date.
Collapse
Affiliation(s)
- Maoqun Tian
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, 123 Muscat, Oman
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, 3460000 Talca, Chile
| | - Djamil Azazna
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Claudia Spanier
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sabrina Densborn
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K.,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, U.K
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
24
|
Yoshida K, Ito MA, Sato N, Obayashi K, Yamamoto K, Koizumi S, Tanaka S, Furuta K, Matsuoka I. Extracellular ATP Augments Antigen-Induced Murine Mast Cell Degranulation and Allergic Responses via P2X4 Receptor Activation. THE JOURNAL OF IMMUNOLOGY 2020; 204:3077-3085. [PMID: 32358018 DOI: 10.4049/jimmunol.1900954] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/06/2020] [Indexed: 01/09/2023]
Abstract
Extracellular ATP released from stimulated and/or damaged cells modulates physiological responses via stimulation of various purinoceptors. We previously showed that ATP potentiated the Ag-induced mast cell (MC) degranulation via purinoceptors pharmacologically similar to the ionotropic P2X4 receptor. In this study, we investigated the role of P2X4 receptor in MC degranulation induced by stimulation of IgE-FcεRI complex with Ag, using bone marrow-derived MCs (BMMCs) prepared from wild type and P2X4 receptor-deficient (P2rx4-/- ) mice. ATP significantly increased Ag-induced degranulation in BMMCs prepared from wild type mice. This effect of ATP was reduced in BMMCs prepared from P2rx4-/- mice. The potentiating effect of ATP was restored by expressing P2X4 receptor in P2rx4-/- BMMCs. The P2X4 receptor-mediated effects were maintained even after differentiating into the connective tissue-type MCs. P2X4 receptor stimulation did not affect the Ag-induced Ca2+ response but enhanced Ag-induced early signals, such as tyrosine phosphorylation of Syk and phospholipase C-γ. Interestingly, these effects of ATP on Syk phosphorylation were not impaired by pretreatment with Cu2+, an inhibitor of the P2X4 receptor channel, or removal of external Ca2+, suggesting that a mechanisms other than Ca2+ influx through ion channel activity may be involved. In vivo experiments revealed that systemic and intradermal passive anaphylaxis responses were significantly alleviated in P2rx4-/- mice. Taken together, the present data suggest that the P2X4 receptor plays an essential role in ATP-induced upregulation of MC degranulation in response to Ag, and also contributes to the Ag-induced allergic response in vivo.
Collapse
Affiliation(s)
- Kazuki Yoshida
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| | - Masa-Aki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| | - Naoko Sato
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| | - Kosuke Obayashi
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| | - Kimiko Yamamoto
- Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; and
| | - Kazuyuki Furuta
- Department of Immunobiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan;
| |
Collapse
|
25
|
Effects of nanoparticles on neuroinflammation in a mouse model of asthma. Respir Physiol Neurobiol 2019; 271:103292. [PMID: 31542455 DOI: 10.1016/j.resp.2019.103292] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023]
Abstract
The interaction between chronic inflammation and neural dysfunction points to a link between the nervous and immune systems in the airways. In particular, environmental exposure to nanoparticles (NPs), defined as particulate matter having one dimension <100 nm, is associated with an enhanced risk of childhood and adult asthma. However, the impact of NPs on the neural response in asthma remains to be determined. This study determined the impact of NPs on neuroinflammation in a mouse model of allergic asthma. Ovalbumin (OVA) sensitized mice were treated with saline (Sham), OVA challenged and exposed to 200 μg/m3 NPs 1 h a day for 3 days on days 21-23 in a closed-system chamber attached to a ultrasonic nebulizer. The effect of NPs on the levels of neuropeptides, transient receptor potential vanilloid 1 (TRPV1), TRPV4, P2 × 4, and P2 × 7 was assessed by enzyme-linked immunosorbent assays, immunoblotting, and immunohistochemistry. NP exposure increased airway inflammation and responsiveness in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. The lung tissue levels of TRPV1, TRPV4, P2 × 4, and P2 × 7 were increased in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. The substance P, adenosine triphosphate (ATP), and calcitonin gene-related peptide (CGRP) levels in bronchoalveolar lavage fluid were increased in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. Bradykinin, ATP, and CGRP were dose dependently increased in NP-exposed normal human bronchial epithelial (NHBE) cells. The calcium concentration was increased in NHBE cells exposed to NPs for 8 h. These results indicate that neuroinflammation can be involved in the pathogenesis of bronchial asthma and that NPs can exacerbate asthma via neuromediator release.
Collapse
|
26
|
Mahaut Smith MP, Evans RJ, Vial C. Development of a P2X1-eYFP receptor knock-in mouse to track receptors in real time. Purinergic Signal 2019; 15:397-402. [PMID: 31286385 PMCID: PMC6736900 DOI: 10.1007/s11302-019-09666-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/19/2019] [Indexed: 01/22/2023] Open
Abstract
A P2X1-eYFP knock-in mouse was generated to study receptor expression and mobility in smooth muscle and blood cells. eYFP was added to the C-terminus of the P2X1R and replaced the native P2X1R. Fluorescence corresponding to P2X1-eYFPR was detected in urinary bladder smooth muscle, platelets and megakaryocytes. ATP-evoked currents from wild type and P2X1-eYFP isolated urinary bladder smooth muscle cells had the same peak current amplitude and time-course showing that the eYFP addition had no obvious effect on properties. Fluorescence recovery after photobleaching (FRAP) in bladder smooth muscle cells demonstrated that surface P2X1Rs are mobile and their movement is reduced following cholesterol depletion. Compared to the platelet and megakaryocyte, P2X1-eYFP fluorescence was negligible in red blood cells and the majority of smaller marrow cells. The spatial pattern of P2X1-eYFP fluorescence in the megakaryocyte along with FRAP assessment of mobility suggested that P2X1Rs are expressed extensively throughout the membrane invagination system of this cell type. The current study highlights that the spatiotemporal properties of P2X1R expression can be monitored in real time in smooth muscle cells and megakaryocytes/platelets using the eYFP knock-in mouse model.
Collapse
Affiliation(s)
- Martyn P Mahaut Smith
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Catherine Vial
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
27
|
Ruiz-Rodríguez VM, Cortes-García JD, de Jesús Briones-Espinoza M, Rodríguez-Varela E, Vega-Cárdenas M, Gómez-Otero A, García-Hernández MH, Portales-Pérez DP. P2X4 receptor as a modulator in the function of P2X receptor in CD4+ T cells from peripheral blood and adipose tissue. Mol Immunol 2019; 112:369-377. [PMID: 31279218 DOI: 10.1016/j.molimm.2019.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/25/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
Abstract
Obesity is characterized by immune cell infiltration and inflammation. Purinergic receptors such as P2X1, 4 and 7 are expressed on immune cells and their activation contributes with an inflammatory response. However, the simultaneous expression of P2X1, 4 and 7 during overweight or obesity have not been described. Therefore, the aim of this study was to determine single and simultaneously expression and function of the P2X1, 4 and 7 receptors in lymphocytes and CD4 + T cells from peripheral blood (PB) and adipose tissue (AT). Our results showed a higher expression of the P2X4 receptor on CD4 + T cells from PB regarding P2X7 and P2X1 receptor expression. In addition, P2X4 receptor expression on CD4 + T cells from PB and AT was increased in individuals with BMI ≥ 25 Kg/m2. Moreover, a higher simultaneous expression of the P2X4 and P2X7 receptors on CD4 + T cells from AT compared to CD4 + T cells expressing P2X1 and P2X7 receptors simultaneously. Besides, CD4 + T cells expressing P2X4 and P2X7 receptors from PB and AT were augmented in individuals with BMI ≥ 25 Kg/m2. In addition, the percentage of lymphocytes and also CD4 + T cells expressing P2X4 receptor were elevated both in PB and AT compared to cells expressing P2X7 or P2X1. However, CD4 + T cells expressing P2X4 and P2X7 were augmented in AT compared to PB. The function of the receptors showed a lower shedding of CD62 L in adipose tissue mononuclear cells (ATMC) compared with peripheral blood mononuclear cells (PBMC) and a greater participation of P2X4 in the mobilization of intracellular calcium. We concluded that it was possible to determine for the first time the simultaneous expression of purinergic receptors in ATMC, where the P2X4 receptor has a greater participation in the activation of CD4 + T cells possibly modulating the function of the other two receptors.
Collapse
Affiliation(s)
- Victor Manuel Ruiz-Rodríguez
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico
| | - Juan Diego Cortes-García
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico
| | | | - Eduardo Rodríguez-Varela
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico
| | - Mariela Vega-Cárdenas
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico
| | - Arturo Gómez-Otero
- Aesthetic and Corrective Plastic Surgery Clinic, San Luis Potosí, S.L.P., Mexico
| | | | - Diana Patricia Portales-Pérez
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico; Translational and Molecular Medicine Department, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico.
| |
Collapse
|
28
|
Benzaquen J, Heeke S, Janho Dit Hreich S, Douguet L, Marquette CH, Hofman P, Vouret-Craviari V. Alternative splicing of P2RX7 pre-messenger RNA in health and diseases: Myth or reality? Biomed J 2019; 42:141-154. [PMID: 31466708 PMCID: PMC6717933 DOI: 10.1016/j.bj.2019.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) tremendously increases the use of genetic information by generating protein isoforms that differ in protein-protein interactions, catalytic activity and/or subcellular localization. This review is not dedicated to AS in general, but rather we focus our attention on AS of P2RX7 pre-mRNA. Whereas P2RX7 mRNA is expressed by virtually all eukaryotic mammalian cells, the expression of this channel receptor is restrained to certain cells. When expressed at the cell membrane, P2RX7 controls downstream events including release of inflammatory molecules, phagocytosis, cell proliferation and death and metabolic events. Therefore, P2RX7 is an important actor of health and diseases. In this review, we summarize the general mechanisms leading to AS. Further, we recapitulate our current knowledge concerning the functional regions in P2RX7, identified at the genetic or exonic levels, and how AS may affect the expression of these regions. Finally, the potential of P2RX7 splice variants to control the fate of cancer cells is discussed.
Collapse
Affiliation(s)
- Jonathan Benzaquen
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; FHU OncoAge, Nice, France
| | - Simon Heeke
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France; FHU OncoAge, Nice, France
| | | | | | - Charles Hugo Marquette
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; FHU OncoAge, Nice, France; University of Cote d'Azur, CHU de Nice, Department of Pulmonary Medicine, FHU OncoAge, Nice, France
| | - Paul Hofman
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France; Hospital-Related Biobank (BB-0033-00025), Pasteur Hospital, Nice, France; FHU OncoAge, Nice, France
| | | |
Collapse
|
29
|
Méndez-Enríquez E, Hallgren J. Mast Cells and Their Progenitors in Allergic Asthma. Front Immunol 2019; 10:821. [PMID: 31191511 PMCID: PMC6548814 DOI: 10.3389/fimmu.2019.00821] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Mast cells and their mediators have been implicated in the pathogenesis of asthma and allergy for decades. Allergic asthma is a complex chronic lung disease in which several different immune cells, genetic factors and environmental exposures influence the pathology. Mast cells are key players in the asthmatic response through secretion of a multitude of mediators with pro-inflammatory and airway-constrictive effects. Well-known mast cell mediators, such as histamine and bioactive lipids are responsible for many of the physiological effects observed in the acute phase of allergic reactions. The accumulation of mast cells at particular sites of the allergic lung is likely relevant to the asthma phenotype, severity and progression. Mast cells located in different compartments in the lung and airways have different characteristics and express different mediators. According to in vivo experiments in mice, lung mast cells develop from mast cell progenitors induced by inflammatory stimuli to migrate to the airways. Human mast cell progenitors have been identified in the blood circulation. A high frequency of circulating human mast cell progenitors may reflect ongoing pathological changes in the allergic lung. In allergic asthma, mast cells become activated mainly via IgE-mediated crosslinking of the high affinity receptor for IgE (FcεRI) with allergens. However, mast cells can also be activated by numerous other stimuli e.g. toll-like receptors and MAS-related G protein-coupled receptor X2. In this review, we summarize research with implications on the role and development of mast cells and their progenitors in allergic asthma and cover selected activation pathways and mast cell mediators that have been implicated in the pathogenesis. The review places an emphasis on describing mechanisms identified using in vivo mouse models and data obtained by analysis of clinical samples.
Collapse
Affiliation(s)
- Erika Méndez-Enríquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Janks L, Sprague RS, Egan TM. ATP-Gated P2X7 Receptors Require Chloride Channels To Promote Inflammation in Human Macrophages. THE JOURNAL OF IMMUNOLOGY 2018; 202:883-898. [PMID: 30598517 DOI: 10.4049/jimmunol.1801101] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/25/2018] [Indexed: 12/28/2022]
Abstract
Immune cells of myeloid origin show robust expression of ATP-gated P2X7 receptors, two-transmembrane ion channels permeable to Na+, K+, and Ca2+ Receptor activation promotes inflammasome activation and release of the proinflammatory cytokines IL-1β and IL-18. In this study, we show that ATP generates facilitating cationic currents in monocyte-derived human macrophages and permeabilizes the plasma membrane to polyatomic cationic dyes. We find that antagonists of PLA2 and Cl- channels abolish P2X7 receptor-mediated current facilitation, membrane permeabilization, blebbing, phospholipid scrambling, inflammasome activation, and IL-1β release. Our data demonstrate significant differences in the actions of ATP in murine and human macrophages and suggest that PLA2 and Cl- channels mediate innate immunity downstream of P2X7 receptors in human macrophages.
Collapse
Affiliation(s)
- Laura Janks
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Randy S Sprague
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Terrance M Egan
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
31
|
P2X4R promotes airway remodeling by acting on the phenotype switching of bronchial smooth muscle cells in rats. Purinergic Signal 2018; 14:433-442. [PMID: 30387030 DOI: 10.1007/s11302-018-9625-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
The P2X4 receptor (P2X4R) contributes to airway inflammation and airway remodeling in mice with allergic asthma. However, the molecular mechanism by which P2X4R affects the airway remodeling in allergic asthma remains largely unknown. We established an allergic asthma model by ovalbumin (OVA) inhalation in BALB/c mice. Compared with the mice in the control group, the expression of proliferating cell nuclear antigen (PCNA) increased and that of alpha-smooth muscle actin (α-SMA) decreased in the OVA-challenged mice. 5-BDBD, a P2X4R antagonist, alleviated the OVA-induced changes. To clarify the role of P2X4R in the phenotype switching of the bronchial smooth muscle, bronchial smooth muscle contractility and p38MAPK expression were investigated. Platelet-derived growth factor-BB (PDGF-BB) was used to activate the proliferation of primary-cultured rat bronchial smooth muscle cells (BSMCs). P2X4R, p38MAPK, and phenotype markers were evaluated using Western blotting or immunofluorescence. PDGF-BB administration increased the P2X4R and phospho-p38MAPK expression in BSMCs, and the increased phospho-p38MAPK expression was downregulated by silencing of the P2X4R mRNA. PDGF-BB stimulated the proliferation and synthetic phenotype of BSMCs, which was aggravated by a P2X4R agonist and alleviated by a P2X4R antagonist or silencing the P2X4R mRNA. The decreased contractile phenotype induced by PDGF-BB was alleviated by a P2X4R antagonist or by silencing the P2X4R mRNA. SB203580, p38MAPK inhibitor, inhibited the PDGF-BB-induced increasing of synthetic phenotype and the proliferation of BSMCs. These findings indicate that P2X4R acts directly on the phenotype switching of BSMCs. Inhibiting P2X4R can promote the contractile differentiation of BSMCs via p38MAPK signaling. Thus, the effect of P2X4R on airway remodeling indicates that this receptor could be a target for future drug candidates.
Collapse
|
32
|
Di Virgilio F, Giuliani AL, Vultaggio-Poma V, Falzoni S, Sarti AC. Non-nucleotide Agonists Triggering P2X7 Receptor Activation and Pore Formation. Front Pharmacol 2018; 9:39. [PMID: 29449813 PMCID: PMC5799242 DOI: 10.3389/fphar.2018.00039] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
The P2X7 receptor (P2X7R) is a ligand-gated plasma membrane ion channel belonging to the P2X receptor subfamily activated by extracellular nucleotides. General consensus holds that the physiological (and maybe the only) agonist is ATP. However, scattered evidence generated over the last several years suggests that ATP might not be the only agonist, especially at inflammatory sites. Solid data show that NAD+ covalently modifies the P2X7R of mouse T lymphocytes, thus lowering the ATP threshold for activation. Other structurally unrelated agents have been reported to activate the P2X7R via a poorly understood mechanism of action: (a) the antibiotic polymyxin B, possibly a positive allosteric P2X7R modulator, (b) the bactericidal peptide LL-37, (c) the amyloidogenic β peptide, and (d) serum amyloid A. Some agents, such as Alu-RNA, have been suggested to activate the P2X7R acting on the intracellular N- or C-terminal domains. Mode of P2X7R activation by these non-nucleotide ligands is as yet unknown; however, these observations raise the intriguing question of how these different non-nucleotide ligands may co-operate with ATP at inflammatory or tumor sites. New information obtained from the cloning and characterization of the P2X7R from exotic mammalian species (e.g., giant panda) and data from recent patch-clamp studies are strongly accelerating our understanding of P2X7R mode of operation, and may provide hints to the mechanism of activation of P2X7R by non-nucleotide ligands.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Anna L Giuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Valentina Vultaggio-Poma
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alba C Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
33
|
Chen Z, He L, Li L, Chen L. The P2X7 purinergic receptor: An emerging therapeutic target in cardiovascular diseases. Clin Chim Acta 2018; 479:196-207. [PMID: 29366837 DOI: 10.1016/j.cca.2018.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 10/24/2022]
Abstract
The P2X7 purinergic receptor, a calcium permeable cationic channel, is activated by extracellular ATP. Most studies show that P2X7 receptor plays an important role in the nervous system diseases, immune response, osteoporosis and cancer. Mounting evidence indicates that P2X7 receptor is also associated with cardiovascular disease. For example, the P2X7 receptor activated by ATP can attenuate myocardial ischemia-reperfusion injury. By contrast, inhibition of P2X7 receptor decreases arrhythmia after myocardial infarction, prolongs cardiac survival after a long term heart transplant, alleviates the dilated cardiomyopathy and the autoimmune myocarditis process. The P2X7 receptor also mitigates vascular diseases including atherosclerosis, hypertension, thrombosis and diabetic retinopathy. This review focuses on the latest research on the role and therapeutic potential of P2X7 receptor in cardiovascular diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lu He
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
34
|
Gao ZG, Jacobson KA. Purinergic Signaling in Mast Cell Degranulation and Asthma. Front Pharmacol 2017; 8:947. [PMID: 29311944 PMCID: PMC5744008 DOI: 10.3389/fphar.2017.00947] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
Mast cells are responsible for the majority of allergic conditions. It was originally thought that almost all allergic events were mediated directly only via the high-affinity immunoglobulin E receptors. However, recent evidence showed that many other receptors, such as G protein-coupled receptors and ligand-gated ion channels, are also directly involved in mast cell degranulation, the release of inflammatory mediators such as histamine, serine proteases, leukotrienes, heparin, and serotonin. These mediators are responsible for the symptoms in allergic conditions such as allergic asthma. In recent years, it has been realized that purinergic signaling, induced via the activation of G protein-coupled adenosine receptors and P2Y nucleotide receptors, as well as by ATP-gated P2X receptors, plays a significant role in mast cell degranulation. Both adenosine and ATP can induce degranulation and bronchoconstriction on their own and synergistically with allergens. All three classes of receptors, adenosine, P2X and P2Y are involved in tracheal mucus secretion. This review will summarize the currently available knowledge on the role of purinergic signaling in mast cell degranulation and its most relevant disease, asthma.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
35
|
Wajdner HE, Farrington J, Barnard C, Peachell PT, Schnackenberg CG, Marino JP, Xu X, Affleck K, Begg M, Seward EP. Orai and TRPC channel characterization in Fc εRI-mediated calcium signaling and mediator secretion in human mast cells. Physiol Rep 2017; 5:5/5/e13166. [PMID: 28292887 PMCID: PMC5350174 DOI: 10.14814/phy2.13166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/23/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Inappropriate activation of mast cells via the FcεRI receptor leads to the release of inflammatory mediators and symptoms of allergic disease. Calcium influx is a critical regulator of mast cell signaling and is required for exocytosis of preformed mediators and for synthesis of eicosanoids, cytokines and chemokines. Studies in rodent and human mast cells have identified Orai calcium channels as key contributors to FcεRI-initiated mediator release. However, until now the role of TRPC calcium channels in FcεRI-mediated human mast cell signaling has not been published. Here, we show evidence for the expression of Orai 1,2, and 3 and TRPC1 and 6 in primary human lung mast cells and the LAD2 human mast cell line but, we only find evidence of functional contribution of Orai and not TRPC channels to FcεRI-mediated calcium entry. Calcium imaging experiments, utilizing an Orai selective antagonist (Synta66) showed the contribution of Orai to FcεRI-mediated signaling in human mast cells. Although, the use of a TRPC3/6 selective antagonist and agonist (GSK-3503A and GSK-2934A, respectively) did not reveal evidence for TRPC6 contribution to FcεRI-mediated calcium signaling in human mast cells. Similarly, inactivation of STIM1-regulated TRPC1 in human mast cells (as tested by transfecting cells with STIM1-KK684-685EE - TRPC1 gating mutant) failed to alter FcεRI-mediated calcium signaling in LAD2 human mast cells. Mediator release assays confirm that FcεRI-mediated calcium influx through Orai is necessary for histamine and TNFα release but is differentially involved in the generation of cytokines and eicosanoids.
Collapse
Affiliation(s)
- Hannah E Wajdner
- Department of Biomedical Science, University of Sheffield Western Bank, Sheffield, UK
| | - Jasmine Farrington
- Department of Biomedical Science, University of Sheffield Western Bank, Sheffield, UK
| | - Claire Barnard
- Department of Biomedical Science, University of Sheffield Western Bank, Sheffield, UK
| | - Peter T Peachell
- Academic Unit of Respiratory Medicine, University of Sheffield The Royal Hallamshire Hospital, Sheffield, UK
| | | | - Joseph P Marino
- Metabolic Pathways and Cardiovascular Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Xiaoping Xu
- Metabolic Pathways and Cardiovascular Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Karen Affleck
- Respiratory Therapy Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Malcolm Begg
- Respiratory Therapy Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Elizabeth P Seward
- Department of Biomedical Science, University of Sheffield Western Bank, Sheffield, UK
| |
Collapse
|
36
|
Layhadi JA, Fountain SJ. P2X4 Receptor-Dependent Ca 2+ Influx in Model Human Monocytes and Macrophages. Int J Mol Sci 2017; 18:ijms18112261. [PMID: 29077063 PMCID: PMC5713231 DOI: 10.3390/ijms18112261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023] Open
Abstract
Monocytes and macrophages express a repertoire of cell surface P2 receptors for adenosine 5′-triphosphate (ATP) a damage-associated molecular pattern molecule (DAMP), which are capable of raising cytoplasmic calcium when activated. This is achieved either through direct permeation (ionotropic P2X receptors) or by mobilizing intracellular calcium stores (metabotropic P2Y receptors). Here, a side-by-side comparison to investigate the contribution of P2X4 receptor activation in ATP-evoked calcium responses in model human monocytes and macrophages was performed. The expression of P2X1, P2X4, P2X5 and P2X7 was confirmed by qRT-PCR and immunocytochemistry in both model monocyte and macrophage. ATP evoked a concentration-dependent increase in intracellular calcium in both THP-1 monocyte and macrophages. The sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thasigargin (Tg) responses to the maximal ATP concentration (100 μM) in THP-1 monocytes, and responses in macrophage were significantly attenuated. Tg-resistant ATP-evoked calcium responses in the model macrophage were dependent on extracellular calcium, suggesting a requirement for calcium influx. Ivermectin (IVM) potentiated the magnitude of Tg-resistant component and slowed the decay of response in the model macrophage. The Tg-resistant component was attenuated by P2X4 antagonists 5-BDBD and PSB-12062 but not by the P2X1 antagonist Ro0437626 or the P2X7 antagonist A438079. shRNA-mediated P2X4 knockdown resulted in a significant reduction in Tg-resistant ATP-evoked calcium response as well as reduced sensitivities towards P2X4-specific pharmacological tools, IVM and PSB-12062. Inhibition of endocytosis with dynasore significantly reduced the magnitude of Tg-resistant component but substantially slowed decay response. Inhibition of calcium-dependent exocytosis with vacuolin-1 had no effect on the Tg-resistant component. These pharmacological data suggest that P2X4 receptor activation contributed significantly towards the ionotropic calcium response evoked by ATP of the model human macrophage.
Collapse
Affiliation(s)
- Janice A Layhadi
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Samuel J Fountain
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
37
|
Ventre E, Rozières A, Lenief V, Albert F, Rossio P, Laoubi L, Dombrowicz D, Staels B, Ulmann L, Julia V, Vial E, Jomard A, Hacini-Rachinel F, Nicolas JF, Vocanson M. Topical ivermectin improves allergic skin inflammation. Allergy 2017; 72:1212-1221. [PMID: 28052336 DOI: 10.1111/all.13118] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Ivermectin (IVM) is widely used in both human and veterinary medicine to treat parasitic infections. Recent reports have suggested that IVM could also have anti-inflammatory properties. METHODS Here, we investigated the activity of IVM in a murine model of atopic dermatitis (AD) induced by repeated exposure to the allergen Dermatophagoides farinae, and in standard cellular immunological assays. RESULTS Our results show that topical IVM improved allergic skin inflammation by reducing the priming and activation of allergen-specific T cells, as well as the production of inflammatory cytokines. While IVM had no major impact on the functions of dendritic cells in vivo and in vitro, IVM impaired T-cell activation, proliferation, and cytokine production following polyclonal and antigen-specific stimulation. CONCLUSION Altogether, our results show that IVM is endowed with topical anti-inflammatory properties that could have important applications for the treatment of T-cell-mediated skin inflammatory diseases.
Collapse
Affiliation(s)
- E. Ventre
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| | - A. Rozières
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| | - V. Lenief
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| | - F. Albert
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| | - P. Rossio
- Nestlé Skin Health R&D; Sophia-Antipolis; Biot France
| | - L. Laoubi
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| | - D. Dombrowicz
- Université de Lille; INSERM; CHU de Lille; European Genomic Institute of Diabetes; Institut Pasteur de Lille; U1011-récepteurs nucléaires maladies cardiovasculaires et diabète; Lille France
| | - B. Staels
- Université de Lille; INSERM; CHU de Lille; European Genomic Institute of Diabetes; Institut Pasteur de Lille; U1011-récepteurs nucléaires maladies cardiovasculaires et diabète; Lille France
| | - L. Ulmann
- Institut de Génomique Fonctionnelle; CNRS; INSERM; Université de Montpellier; Montpellier France
| | - V. Julia
- Nestlé Skin Health R&D; Sophia-Antipolis; Biot France
| | - E. Vial
- Nestlé Skin Health R&D; Sophia-Antipolis; Biot France
| | - A. Jomard
- Nestlé Skin Health R&D; Sophia-Antipolis; Biot France
| | | | - J.-F. Nicolas
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| | - M. Vocanson
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| |
Collapse
|
38
|
LL-37-induced human mast cell activation through G protein-coupled receptor MrgX2. Int Immunopharmacol 2017; 49:6-12. [PMID: 28549244 DOI: 10.1016/j.intimp.2017.05.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 12/30/2022]
Abstract
Human LL-37 is an important class of cationic antimicrobial peptide (CAP) that is known to stimulate mast cell activation. While many studies have been conducted on LL-37, to date little is known about the functional receptors for LL-37-induced human mast cell activation, in particular in terms of the release of de novo synthesized mediators. Thus, the aim of the present study is to identify the functional receptors for LL-37-induced human mast cell activation in terms of the degranulation and release of de novo synthesized mediators and investigate the downstream signalling pathways involved in mast cell activation. Overall, our study importantly demonstrates that LL-37-induced human mast cell degranulation and release of de novo synthesized mediators function primarily through the activation of MrgX2. We furthermore show that LL-37-induced human mast cell line LAD2 cells are involved in the degranulation and release of IL-8, and that FPRL1 and P2X7 have only a partial effect on IL-8 release, and no effect on mast cell degranulation triggered by LL-37. Instead, we find that silencing the expression of MrgX2 in human mast cell significantly inhibits the LL-37-induced degranulation and release of IL-8. Overall, this effect is associated with the activation of the Gi protein, PLC/PKC/Calcium/NFAT, PI3K/Akt and MAPKs signalling pathways.
Collapse
|
39
|
Yoshida K, Ito M, Matsuoka I. Divergent regulatory roles of extracellular ATP in the degranulation response of mouse bone marrow-derived mast cells. Int Immunopharmacol 2016; 43:99-107. [PMID: 27988461 DOI: 10.1016/j.intimp.2016.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/25/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) play a critical role in allergic inflammation. Although purinergic signalling is implicated in the regulation of various immune responses, its role in MC function is not fully understood. In this study, we investigated the regulatory role of purinergic signalling in MC degranulation, using mouse bone marrow-derived mast cells (BMMCs). Notably, BMMCs expressed various functional P2 adenosine triphosphate (ATP) receptors, including ionotropic P2X4 and P2X7, involved in the regulation of BMMC degranulation. Thus, P2X7 receptor activation induced a marked degranulation from BMMCs directly. Although P2X4 receptor activation did not independently induce degranulation, it significantly potentiated the degranulation triggered by antigen-induced, high-affinity IgE receptor (FcεRI) stimulation. In addition, ATP synergistically augmented degranulation induced by adenosine A3 receptor activation. Moreover, BMMCs highly expressed ecto-nucleotidase CD39, but not ecto-5'-nucleotidase (CD73), and were therefore unable to directly convert ATP to adenosine. However, in the presence of CD73-expressing cells, ATP-mediated BMMC stimulation caused a marked degranulation in a CD73- and adenosine-dependent manner. These results demonstrate that purinergic signalling plays an important role in MC degranulation through at least three distinct mechanisms: (1) higher ATP concentrations directly induce degranulation via P2X7 receptor activation, (2) lower ATP concentrations augment FcεRI-mediated degranulation via P2X4 receptor activation, and (3) in an ecto-nucleotidase-enrich environment, ATP and the converted product adenosine induce a synergistic degranulation by P1 and P2 receptor co-activation.
Collapse
Affiliation(s)
- Kazuki Yoshida
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Masaaki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan.
| |
Collapse
|
40
|
Manzoor S, Akhtar U, Naseem S, Khalid M, Mazhar M, Parvaiz F, Khaliq S. Ionotropic Purinergic Receptors P2X4 and P2X7: Proviral or Antiviral? An Insight into P2X Receptor Signaling and Hepatitis C Virus Infection. Viral Immunol 2016; 29:401-8. [PMID: 27526181 DOI: 10.1089/vim.2016.0008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purinergic P2X receptors are plasma membrane bound, ATP-gated ion channels that are expressed on wide range of cells and respond to varying ATP concentrations in extracellular environment. Upon activation they increase membrane permeability for Ca(2+) ions and trigger a cascade of signaling complexes. During the course of hepatitis C virus (HCV) infection, ATP is released from the infected hepatocyte, which binds with Purinergic receptors (P2X) on peripheral blood mononuclear cells (PBMCs) and initiate downstream signaling pathways by disturbing the ionic balance of the cell. The present study investigates quantitative expression of P2X7 and P2X4 along with selected host genes PEPCK, transforming growth factor β (TGF-β), MAPK, Rho, and Akt in PBMCs of chronic HCV infection patients. PBMCs were isolated from collected blood samples of study subjects. Transcript analysis of P2X7, P2X4, and targeted downstream genes was done using quantitative real-time polymerase chain reaction. Relative expression analysis was performed by unpaired Student's t test on GraphPad Prism version 5. We found a notable increase of threefolds and 1.8-folds in the expression of P2X7 and P2X4 receptors in treatment naïve category while the expression of PEPCK, TGF-β, MAPK, AKT, and Rho A increased by 2.8, 1.9, 2.2, 2.2, and 1.8-folds, respectively. In sustained virological response patients, P2X7 significantly increased up to 3.5-folds while the expression of P2X4 receptor was increased up to twofold. In third category, treatment nonresponder, the expression of P2X7, P2X4 receptors, and targeted markers remained un-altered. This study deals with two major aspects of P2X4 and P2X7 receptors in PBMCs of chronic HCV individuals. One is their role in providing antiviral immunity to host against HCV; second aspect is the role of P2X receptors in inducing HCV pathogenesis via AKT, TGF-β, Rho A, PEPCK, and MAPK expression.
Collapse
Affiliation(s)
- Sobia Manzoor
- 1 Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology (NUST) , Islamabad, Pakistan
| | - Umair Akhtar
- 1 Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology (NUST) , Islamabad, Pakistan
| | - Sidrah Naseem
- 1 Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology (NUST) , Islamabad, Pakistan
| | - Madiha Khalid
- 1 Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology (NUST) , Islamabad, Pakistan
| | - Misha Mazhar
- 1 Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology (NUST) , Islamabad, Pakistan
| | - Fahed Parvaiz
- 2 Department of Bio-Sciences, COMSATS Institute of Information Technology , Islamabad, Pakistan
| | - Saba Khaliq
- 3 University of Health Sciences , Lahore, Pakistan
| |
Collapse
|
41
|
Abstract
Cellular stress or apoptosis triggers the release of ATP, ADP and other nucleotides into the extracellular space. Extracellular nucleotides function as autocrine and paracrine signalling molecules by activating cell-surface P2 purinergic receptors that elicit pro-inflammatory immune responses. Over time, extracellular nucleotides are metabolized to adenosine, leading to reduced P2 signalling and increased signalling through anti-inflammatory adenosine (P1 purinergic) receptors. Here, we review how local purinergic signalling changes over time during tissue responses to injury or disease, and we discuss the potential of targeting purinergic signalling pathways for the immunotherapeutic treatment of ischaemia, organ transplantation, autoimmunity or cancer.
Collapse
Affiliation(s)
- Caglar Cekic
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey
| | - Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| |
Collapse
|
42
|
Wareham KJ, Seward EP. P2X7 receptors induce degranulation in human mast cells. Purinergic Signal 2016; 12:235-46. [PMID: 26910735 PMCID: PMC4854833 DOI: 10.1007/s11302-016-9497-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/24/2016] [Indexed: 02/06/2023] Open
Abstract
Mast cells play important roles in host defence against pathogens, as well as being a key effector cell in diseases with an allergic basis such as asthma and an increasing list of other chronic inflammatory conditions. Mast cells initiate immune responses through the release of newly synthesised eicosanoids and the secretion of pre-formed mediators such as histamine which they store in specialised granules. Calcium plays a key role in regulating both the synthesis and secretion of mast-cell-derived mediators, with influx across the membrane, in particular, being necessary for degranulation. This raises the possibility that calcium influx through P2X receptors may lead to antigen-independent secretion of histamine and other granule-derived mediators from human mast cells. Here we show that activation of P2X7 receptors with both ATP and BzATP induces robust calcium rises in human mast cells and triggers their degranulation; both effects are blocked by the P2X7 antagonist AZ11645373, or the removal of calcium from the extracellular medium. Activation of P2X1 receptors with αβmeATP also induces calcium influx in human mast cells, which is significantly reduced by both PPADS and NF 449. P2X1 receptor activation, however, does not trigger degranulation. The results indicate that P2X7 receptors may play a significant role in contributing to the unwanted activation of mast cells in chronic inflammatory conditions where extracellular ATP levels are elevated.
Collapse
|
43
|
Wright A, Mahaut-Smith M, Symon F, Sylvius N, Ran S, Bafadhel M, Muessel M, Bradding P, Wardlaw A, Vial C. Impaired P2X1 Receptor-Mediated Adhesion in Eosinophils from Asthmatic Patients. THE JOURNAL OF IMMUNOLOGY 2016; 196:4877-84. [PMID: 27183585 DOI: 10.4049/jimmunol.1501585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
Eosinophils play an important role in the pathogenesis of asthma and can be activated by extracellular nucleotides released following cell damage or inflammation. For example, increased ATP concentrations were reported in bronchoalveolar lavage fluids of asthmatic patients. Although eosinophils are known to express several subtypes of P2 receptors for extracellular nucleotides, their function and contribution to asthma remain unclear. In this article, we show that transcripts for P2X1, P2X4, and P2X5 receptors were expressed in healthy and asthmatic eosinophils. The P2X receptor agonist α,β-methylene ATP (α,β-meATP; 10 μM) evoked rapidly activating and desensitizing inward currents (peak 18 ± 3 pA/pF at -60 mV) in healthy eosinophils, typical of P2X1 homomeric receptors, which were abolished by the selective P2X1 antagonist NF449 (1 μM) (3 ± 2 pA/pF). α,β-meATP-evoked currents were smaller in eosinophils from asthmatic patients (8 ± 2 versus 27 ± 5 pA/pF for healthy) but were enhanced following treatment with a high concentration of the nucleotidase apyrase (17 ± 5 pA/pF for 10 IU/ml and 11 ± 3 pA/pF for 0.32 IU/ml), indicating that the channels are partially desensitized by extracellular nucleotides. α,β-meATP (10 μM) increased the expression of CD11b activated form in eosinophils from healthy, but not asthmatic, donors (143 ± 21% and 108 ± 11% of control response, respectively). Furthermore, α,β-meATP increased healthy (18 ± 2% compared with control 10 ± 1%) but not asthmatic (13 ± 1% versus 10 ± 0% for control) eosinophil adhesion. Healthy human eosinophils express functional P2X1 receptors whose activation leads to eosinophil αMβ2 integrin-dependent adhesion. P2X1 responses are constitutively reduced in asthmatic compared with healthy eosinophils, probably as the result of an increase in extracellular nucleotide concentration.
Collapse
Affiliation(s)
- Adam Wright
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom
| | - Martyn Mahaut-Smith
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Fiona Symon
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Nicolas Sylvius
- Core Biotechnology Services, University of Leicester, Leicester LE1 9HN, United Kingdom; and
| | - Shaun Ran
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Mona Bafadhel
- Respiratory Medicine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Michelle Muessel
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Peter Bradding
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Andrew Wardlaw
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Catherine Vial
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom;
| |
Collapse
|
44
|
Burnstock G. P2X ion channel receptors and inflammation. Purinergic Signal 2016; 12:59-67. [PMID: 26739702 DOI: 10.1007/s11302-015-9493-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation limits tissue damage in response to pathogens or injury and promotes repair. There are two stages of inflammation, initiation and resolution. P2X receptors are gaining attention in relation to immunology and inflammation. The P2X7 receptor in particular appears to be an essential immunomodulatory receptor, although P2X1 and P2X4 receptors also appear to be involved. ATP released from damaged or infected cells causes inflammation by release of inflammatory cytokines via P2X7 receptors and acts as a danger signal by occupying upregulated P2X receptors on immune cells to increase immune responses. The purinergic involvement in inflammation is being explored for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK. .,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
45
|
Chen H, Xia Q, Feng X, Cao F, Yu H, Song Y, Ni X. Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice. Mol Med Rep 2015; 13:697-704. [PMID: 26648454 PMCID: PMC4686060 DOI: 10.3892/mmr.2015.4622] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 10/29/2015] [Indexed: 11/29/2022] Open
Abstract
P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP-P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X4R in asthma remains to be elucidated. This aim of the present study was to investigate the effects of P2X4R in a murine experimental asthma model. The asthmatic model was established by the inhalation of ovalbumin (OVA) in BALB/c mice. The mice were treated with P2X4R-specific agonists and antagonists to investigate the role of this receptor in vivo. Pathological changes in the bronchi and lung tissues were examined using hematoxylin and eosin staining, Masson's trichrome staining and Alcian blue staining. The inflammatory cells in the bronchoalveolar lavage fluid were counted, and the expression levels of P2X4R, α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) were detected using western blotting. In the OVA-challenged mice, inflammation, infiltration, collagen deposition, mucus production, and the expression levels of P2X4R and PCNA were all increased; however, the expression of α-SMA was decreased, compared with the mice in the control group. Whereas treatment with the P2X4R agonist, ATP, enhanced the allergic reaction, treatment with the P2X4R antagonist, 5-BDBD, attenuated the allergic reaction. The results suggested that ATP-P2X4R signaling may not only contribute to airway inflammation, but it may also contribute to airway remodeling in allergic asthma in mice.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Pathology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Qingqing Xia
- Department of Anatomy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Xiaoqian Feng
- Department of Pathology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Fangyuan Cao
- Department of Pathology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Hang Yu
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Yinli Song
- Department of Pathology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Xiuqin Ni
- Department of Anatomy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
46
|
Rhein antagonizes P2X7 receptor in rat peritoneal macrophages. Sci Rep 2015; 5:14012. [PMID: 26354875 PMCID: PMC4564849 DOI: 10.1038/srep14012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/27/2015] [Indexed: 01/13/2023] Open
Abstract
P2X7 receptor plays important roles in inflammation and immunity, and thereby it serves as a potential therapeutic target for inflammatory diseases. Rhein, an anthraquinone derivative, exhibits significant anti-inflammatory and immunosuppressive activities in therapy. However, the underlying mechanisms are largely unclear. Here, we aimed to investigate the effects of rhein on P2X7 receptor-mediated responses in vitro. In HEK293 cells expressing rat P2X7 receptor, we first found that rhein concentration-dependently blocked ATP-induced cytosolic calcium concentration ([Ca(2+)]c) elevation and pore formation of the plasma membrane, two hallmarks of the P2X7 receptor activation. These two inhibitory effects of rhein were also observed in rat peritoneal macrophages. Furthermore, rhein counteracted macrophage phagocytosis attenuation and suppressed reactive oxygen species (ROS) production triggered by ATP/BzATP. Meanwhile, rhein reduced ATP/BzATP-induced IL-1β release in lipopolysaccharide-activated macrophages. Prolonged application of ATP caused macrophage apoptosis, while the presence of rhein suppressed this cell cytotoxicity. Such ATP/BzATP-induced cellular reactions were also inhibited by a well-known rat P2X7 receptor antagonist, brilliant blue G, in a similar way to rhein. Together, our results demonstrate that rhein inhibit ATP/BzATP-induced [Ca(2+)]c increase, pore formation, ROS production, phagocytosis attenuation, IL-1β release and cell apoptosis by antagonizing the P2X7 receptor in rat peritoneal macrophages.
Collapse
|
47
|
|
48
|
Abstract
Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, California 95616
| | - Edward Y. Skolnik
- Division of Nephrology, New York University School of Medicine, New York, NY 10016
- Department of Molecular Pathogenesis, New York University School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
49
|
Burnstock G, Boeynaems JM. Purinergic signalling and immune cells. Purinergic Signal 2014; 10:529-64. [PMID: 25352330 PMCID: PMC4272370 DOI: 10.1007/s11302-014-9427-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022] Open
Abstract
This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
50
|
Turner CM, Arulkumaran N, Singer M, Unwin RJ, Tam FWK. Is the inflammasome a potential therapeutic target in renal disease? BMC Nephrol 2014; 15:21. [PMID: 24450291 PMCID: PMC3918225 DOI: 10.1186/1471-2369-15-21] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/07/2014] [Indexed: 02/08/2023] Open
Abstract
The inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and pathogen-associated molecular patterns (DAMPS and PAMPS respectively). The best-characterized inflammasome is the NLRP3 inflammasome. On assembly of the NLRP3 inflammasome, post-translational processing and secretion of pro-inflammatory cytokines IL-1β and IL-18 occurs; in addition, cell death may be mediated via caspase-1. Intrinsic renal cells express components of the inflammasome pathway. This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. Several primary renal diseases and systemic diseases affecting the kidney are associated with NLRP3 inflammasome/IL-1β/IL-18 axis activation. Most of the disorders studied have been acute inflammatory diseases. The disease spectrum includes ureteric obstruction, ischaemia reperfusion injury, glomerulonephritis, sepsis, hypoxia, glycerol-induced renal failure, and crystal nephropathy. In addition to mediating renal disease, the IL-1/ IL-18 axis may also be responsible for development of CKD itself and its related complications, including vascular calcification and sepsis. Experimental models using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway have shown decreased severity of disease. As such, the inflammasome is an attractive potential therapeutic target in a variety of renal diseases.
Collapse
Affiliation(s)
| | - Nishkantha Arulkumaran
- Imperial College Kidney and Transplant Institute, Hammersmith Hospital, Imperial College London, London, UK.
| | | | | | | |
Collapse
|