1
|
Andersen HK, Vardakas DG, Lamothe JA, Perault TEA, Walsh KB, Laprairie RB. Comparing CB1 receptor GIRK channel responses to receptor internalization using a kinetic imaging assay. Sci Rep 2024; 14:18314. [PMID: 39112591 PMCID: PMC11306342 DOI: 10.1038/s41598-024-68451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The type 1 cannabinoid receptor (CB1R) mediates neurotransmitter release and synaptic plasticity in the central nervous system. Endogenous, plant-derived, synthetic cannabinoids bind to CB1R, initiating the inhibitory G-protein (Gi) and the β-arrestin signaling pathways. Within the Gi signaling pathway, CB1R activates G protein-gated, inwardly-rectifying potassium (GIRK) channels. The β-arrestin pathway reduces CB1R expression on the cell surface through receptor internalization. Because of their association with analgesia and drug tolerance, GIRK channels and receptor internalization are of interest to the development of pharmaceuticals. This research used immortalized mouse pituitary gland cells transduced with a pH-sensitive, fluorescently-tagged human CB1R (AtT20-SEPCB1) to measure GIRK channel activity and CB1R internalization. Cannabinoid-induced GIRK channel activity is measured by using a fluorescent membrane-potential sensitive dye. We developed a kinetic imaging assay that visualizes and measures CB1R internalization. All cannabinoids stimulated a GIRK channel response with a rank order potency of WIN55,212-2 > (±)CP55,940 > Δ9-THC > AEA. Efficacy was expressed relative to (±)CP55,940 with a rank order efficacy of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. All cannabinoids stimulated CB1R internalization with a rank order potency of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. Internalization efficacy was normalized to (±)CP55,940 with a rank order efficacy of WIN55,212-2 > AEA > (±)CP55,940 > Δ9-THC. (±)CP55,940 was significantly more potent and efficacious than AEA and Δ9-THC at stimulating a GIRK channel response; no significant differences between potency and efficacy were observed with CB1R internalization. No significant differences were found when comparing a cannabinoid's GIRK channel and CB1R internalization response. In conclusion, AtT20-SEPCB1 cells can be used to assess cannabinoid-induced CB1R internalization. While cannabinoids display differential Gi signaling when compared to each other, this did not extend to CB1R internalization.
Collapse
Affiliation(s)
- Haley K Andersen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Duncan G Vardakas
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Julie A Lamothe
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tannis E A Perault
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kenneth B Walsh
- Pharmacology, Physiology, and Neuroscience, School of Medicine Columbia, University of South Carolina, Columbia, SC, USA
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
2
|
Carrascosa AJ, García-Gutiérrez MS, Saldaña R, Manzanares J. Additive antinociceptive action of intrathecal anandamide reuptake inhibitor and morphine in the management of post-incisional pain in rats. Biomed Pharmacother 2024; 177:117054. [PMID: 38943991 DOI: 10.1016/j.biopha.2024.117054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024] Open
Abstract
Spinal opioids have mixed efficacy and their adverse effects force treatment cessation of postoperative pain. Consequently, there is an ongoing search for new therapeutic strategies. Here, we evaluated the analgesic efficacy of intrathecal UCM707, an anandamide reuptake inhibitor, and morphine combination. Firstly, we assessed the effects of morphine (1, 5 and 10 μg), UCM707 (75 μg) and its combination in the hot plate. Then, morphine + UCM707 at sub-effective doses was evaluated in a rat post-incisional pain model. In addition, μ-, CB1r-, CB2r- and TRPV1-antagonists were pre-administered before the combination. Activation of μ-opioid and CB1r, and Cnr1, Cnr2, Oprm1 and TRPV1 expressions were evaluated in the lumbar sacra and periaqueductal grey by [35 S]-GTPγS binding autoradiography and qPCR studies. In the hot plate, morphine (1 μg) and UCM707 (75 μg) induced a more robust analgesic effect than each drug alone. Morphine plus UCM707 did not modify μ-opioid nor CB1 receptor function in the PAG or LS. Cnr1 and TRPV1 expression increased in the lumbar sacra (LS). Morphine plus UCM707 significantly reduced post-incisional pain at 1 and 4 days after surgery. Cnr1, Cnr2 and TRPV1 expressions increased in the LS. Blockade of μ-opioid receptor reduced combination effects on days 1 and 4. CB1r- and CB2r-antagonism reduced morphine + UCM707 effects on days 1 and 4, respectively. CB1r and TRPV1-antagonism improved their antinociceptive effects on day 4. These results revealed a synergistic/additive analgesic effect of UCM707 and morphine combination controlling postincisional pain. CB1r, CB2r and TRPV1 contribute differently as central sensitization occurs.
Collapse
MESH Headings
- Animals
- Morphine/pharmacology
- Morphine/administration & dosage
- Male
- Pain, Postoperative/drug therapy
- Pain, Postoperative/metabolism
- Endocannabinoids/metabolism
- Injections, Spinal
- Rats
- Arachidonic Acids/pharmacology
- Arachidonic Acids/administration & dosage
- Polyunsaturated Alkamides/pharmacology
- Polyunsaturated Alkamides/administration & dosage
- Drug Synergism
- Analgesics/pharmacology
- Analgesics/administration & dosage
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Receptors, Opioid, mu/metabolism
- TRPV Cation Channels/metabolism
- Rats, Wistar
- Drug Therapy, Combination
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Antonio J Carrascosa
- Department of Anesthesiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María S García-Gutiérrez
- Instituto de Neurociencias, Campus de San Juan, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Raquel Saldaña
- Department of Anesthesiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Campus de San Juan, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
3
|
de Almeida DL, Mendes Ferreira RC, Fonseca FC, Dias Machado DP, Aguiar DD, Guimaraes FS, Duarte IDG, Romero TRL. Cannabidiol induces systemic analgesia through activation of the PI3Kγ/nNOS/NO/KATP signaling pathway in neuropathic mice. A KATP channel S-nitrosylation-dependent mechanism. Nitric Oxide 2024; 146:1-9. [PMID: 38428514 DOI: 10.1016/j.niox.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Cannabidiol (CBD) is the second most abundant pharmacologically active component present in Cannabis sp. Unlike Δ-9-tetrahydrocannabinol (THC), it has no psychotomimetic effects and has recently received significant interest from the scientific community due to its potential to treat anxiety and epilepsy. CBD has excellent anti-inflammatory potential and can be used to treat some types of inflammatory and neuropathic pain. In this context, the present study aimed to evaluate the analgesic mechanism of cannabidiol administered systemically for the treatment of neuropathic pain and determine the endogenous mechanisms involved with this analgesia. METHODS Neuropathic pain was induced by sciatic nerve constriction surgery, and the nociceptive threshold was measured using the paw compression test in mice. RESULTS CBD produced dose-dependent antinociception after intraperitoneal injection. Selective inhibition of PI3Kγ dose-dependently reversed CBD-induced antinociception. Selective inhibition of nNOS enzymes reversed the antinociception induced by CBD, while selective inhibition of iNOS and eNOS did not alter this antinociception. However, the inhibition of cGMP production by guanylyl cyclase did not alter CBD-mediated antinociception, but selective blockade of ATP-sensitive K+ channels dose-dependently reversed CBD-induced antinociception. Inhibition of S-nitrosylation dose-dependently and completely reversed CBD-mediated antinociception. CONCLUSION Cannabidiol has an antinociceptive effect when administered systemically and this effect is mediated by the activation of PI3Kγ as well as by nitric oxide and subsequent direct S-nitrosylation of KATP channels on peripheral nociceptors.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco Silveira Guimaraes
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil
| | | | | |
Collapse
|
4
|
de Souza AA, Dias Viegas FP, Gontijo VS, Vieira Domingues JS, Giusti-Paiva A, Vilela FC, da Silva GA, Amaral JG, Lopes NP, Viegas C. Antinociceptive Effect of Dillenia indica (Linn.) Mediated by Opioid and Cannabinoid Systems: Pharmacological and Chemical Studies. Chem Biodivers 2024; 21:e202301508. [PMID: 38092696 DOI: 10.1002/cbdv.202301508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024]
Abstract
Dillenia indica (Linn.) has been reported by several biological activities, including anti-inflammatory, antioxidant, antidiabetic, anti-hyperglycemic, antiproliferative, antimutagenic, anticholinesterase, and antimicrobial. In Brazilian traditional medicine, the fruits of D. indica have been used to treat general topical pain and inflammation, but with no scientific validation. Thus, aiming to study its chemical constitution and antinociceptive properties, the crude extract (CE) and fractions obtained from the fruits of D. indica were submitted to an in vivo pharmacological evaluation and a dereplication study by LC-MS/MS analysis, assisted by the Global Natural Product Social Molecular Networking (GNPS). The oral antinociceptive activity of the fruits of D. indica and the possible participation of the opioid and cannabinoid systems were demonstrated in the formalin-induced nociception model. The chemical dereplication study led us to identify several known chemical constituents, including flavonoids, such as caffeoylmalic acid, naringenin, quercetin, and kaempferol. According to literature data, our results are compatible with significant antinociceptive and anti-inflammatory activities. Therefore, the flavonoid constituents of the fruits of D. indica are probably responsible for its antioxidant, anti-inflammatory, and antinociceptive effects mediated by both opioid and cannabinoid systems, confirming its folk use in the treatment and relief of pain.
Collapse
Affiliation(s)
- Amanda Alvarenga de Souza
- PeQuiM- Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue, 2600, Alfenas/MG, 37130-000, Brazil
| | - Flávia Pereira Dias Viegas
- PeQuiM- Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue, 2600, Alfenas/MG, 37130-000, Brazil
| | - Vanessa Silva Gontijo
- PeQuiM- Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue, 2600, Alfenas/MG, 37130-000, Brazil
| | | | - Alexandre Giusti-Paiva
- Department of Physiological Sciences, Federal University of Alfenas, 37133-840, Alfenas, MG, Brazil
| | - Fabiana Cardoso Vilela
- Department of Physiological Sciences, Federal University of Alfenas, 37133-840, Alfenas, MG, Brazil
| | | | - Juliano Geraldo Amaral
- Nucleus of Research in Synthetic and Natural Products, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão, Preto-SP, 14040-903, Brazil
- Multidisciplinary Health Institute, Federal University of Bahia, 45029-094, Vitória da Conquista, BA, Brazil
| | - Norberto Peporine Lopes
- Nucleus of Research in Synthetic and Natural Products, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão, Preto-SP, 14040-903, Brazil
| | - Claudio Viegas
- PeQuiM- Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue, 2600, Alfenas/MG, 37130-000, Brazil
| |
Collapse
|
5
|
Soares-Santos RR, Machado DP, Romero TL, Duarte IDG. Nitric oxide and potassium channels but not opioid and cannabinoid receptors mediate tramadol-induced peripheral antinociception in rat model of paw pressure withdrawal. Can J Physiol Pharmacol 2024; 102:218-227. [PMID: 37976474 DOI: 10.1139/cjpp-2023-0314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Tramadol, an analgesic classified as an "atypical opioid", exhibits both opioid and non-opioid mechanisms of action. This study aimed to explore these mechanisms, specifically the opioid-, cannabinoid-, nitric oxide-, and potassium channel-based mechanisms, which contribute to the peripheral antinociception effect of tramadol, in an experimental rat model. The nociceptive threshold was determined using paw pressure withdrawal. To examine the mechanisms of action, several substances were administered intraplantarly: naloxone, a non-selective opioid antagonist (50 µg/paw); AM251 (80 µg/paw) and AM630 (100 µg/paw) as the selective antagonists for types 1 and 2 cannabinoid receptors, respectively; nitric oxide synthase inhibitors L-NOArg, L-NIO, L-NPA, and L-NIL (24 µg/paw); and the enzyme inhibitors of guanylatocyclase and phosphodiesterase of cGMP, ODQ, and zaprinast. Additionally, potassium channel blockers glibenclamide, tetraethylammonium, dequalinium, and paxillin were used. The results showed that opioid and cannabinoid receptor antagonists did not reverse tramadol's effects. L-NOarg, L-NIO, and L-NPA partially reversed antinociception, while ODQ completely reversed, and zaprinast enhanced tramadol's antinociception effect. Notably, glibenclamide blocked tramadol's antinociception in a dose-dependent manner. These findings suggest that tramadol's peripheral antinociception effect is likely mediated by the nitrergic pathway and sensitive ATP potassium channels, rather than the opioid and cannabinoid pathways.
Collapse
Affiliation(s)
- Raquel R Soares-Santos
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniel P Machado
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thiago L Romero
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Igor D G Duarte
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
6
|
Terral G, Harrell E, Lepousez G, Wards Y, Huang D, Dolique T, Casali G, Nissant A, Lledo PM, Ferreira G, Marsicano G, Roux L. Endogenous cannabinoids in the piriform cortex tune olfactory perception. Nat Commun 2024; 15:1230. [PMID: 38336844 PMCID: PMC10858223 DOI: 10.1038/s41467-024-45161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Sensory perception depends on interactions between external inputs transduced by peripheral sensory organs and internal network dynamics generated by central neuronal circuits. In the sensory cortex, desynchronized network states associate with high signal-to-noise ratio stimulus-evoked responses and heightened perception. Cannabinoid-type-1-receptors (CB1Rs) - which influence network coordination in the hippocampus - are present in anterior piriform cortex (aPC), a sensory paleocortex supporting olfactory perception. Yet, how CB1Rs shape aPC network activity and affect odor perception is unknown. Using pharmacological manipulations coupled with multi-electrode recordings or fiber photometry in the aPC of freely moving male mice, we show that systemic CB1R blockade as well as local drug infusion increases the amplitude of gamma oscillations in aPC, while simultaneously reducing the occurrence of synchronized population events involving aPC excitatory neurons. In animals exposed to odor sources, blockade of CB1Rs reduces correlation among aPC excitatory units and lowers behavioral olfactory detection thresholds. These results suggest that endogenous endocannabinoid signaling promotes synchronized population events and dampen gamma oscillations in the aPC which results in a reduced sensitivity to external sensory inputs.
Collapse
Affiliation(s)
- Geoffrey Terral
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Evan Harrell
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Gabriel Lepousez
- Perception and Memory Unit, CNRS, Joint Research Unit 3571, Université Paris Cité, Institut Pasteur, 75015, Paris, France
| | - Yohan Wards
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Dinghuang Huang
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Giulio Casali
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Antoine Nissant
- Perception and Memory Unit, CNRS, Joint Research Unit 3571, Université Paris Cité, Institut Pasteur, 75015, Paris, France
| | - Pierre-Marie Lledo
- Perception and Memory Unit, CNRS, Joint Research Unit 3571, Université Paris Cité, Institut Pasteur, 75015, Paris, France
| | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, F-33000, Bordeaux, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Lisa Roux
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
7
|
Matias ME, Radulski DR, Rodrigues da Silva T, Raymundi AM, Stern CAJ, Zampronio AR. Involvement of cannabinoid receptors and neuroinflammation in early sepsis: Implications for posttraumatic stress disorder. Int Immunopharmacol 2023; 123:110745. [PMID: 37541107 DOI: 10.1016/j.intimp.2023.110745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Sepsis is associated with several comorbidities in survivors, such as posttraumatic stress disorder (PTSD). This study investigated whether rats that survive sepsis develop the generalization of fear memory as a model of PTSD. Responses to interventions that target the endothelin-1 (ET-1)/cannabinoid system and glial activation in the initial stages of sepsis were evaluated. As a control, we evaluated hyperalgesia before fear conditioning. Sepsis was induced by cecal ligation and puncture (CLP) in Wistar rats. CLP-induced sepsis with one or three punctures resulted in fear generalization in the survivors 13 and 20 days after the CLP procedure, a process that was not associated with hyperalgesia. Septic animals were intracerebroventricularly treated with vehicle, the endothelin receptor A (ETA) antagonist BQ123, the cannabinoid CB1 and CB2 receptor antagonists AM251 and AM630, respectively, and the glial blocker minocycline 4 h after CLP. The blockade of either CB1 or ETA receptors increased the survival rate, but only the former reversed fear memory generalization. The endothelinergic system blockade is important for improving survival but not for fear memory. Treatment with the CB2 receptor antagonist or minocycline also reversed the generalization of fear memory but did not increase the survival rate that was associated with CLP. Minocycline treatment also reduced tumor necrosis factor-α levels in the hippocampus suggesting that neuroinflammation is important for the generalization of fear memory induced by CLP. The influence of CLP on the generalization of fear memory was not related to Arc protein expression, a regulator of synaptic plasticity, in the dorsal hippocampus.
Collapse
Affiliation(s)
| | | | | | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | |
Collapse
|
8
|
Adzic M, Lukic I, Mitic M, Glavonic E, Dragicevic N, Ivkovic S. Contribution of the opioid system to depression and to the therapeutic effects of classical antidepressants and ketamine. Life Sci 2023:121803. [PMID: 37245840 DOI: 10.1016/j.lfs.2023.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Major depressive disorder (MDD) afflicts approximately 5 % of the world population, and about 30-50 % of patients who receive classical antidepressant medications do not achieve complete remission (treatment resistant depressive patients). Emerging evidence suggests that targeting opioid receptors mu (MOP), kappa (KOP), delta (DOP), and the nociceptin/orphanin FQ receptor (NOP) may yield effective therapeutics for stress-related psychiatric disorders. As depression and pain exhibit significant overlap in their clinical manifestations and molecular mechanisms involved, it is not a surprise that opioids, historically used to alleviate pain, emerged as promising and effective therapeutic options in the treatment of depression. The opioid signaling is dysregulated in depression and numerous preclinical studies and clinical trials strongly suggest that opioid modulation can serve as either an adjuvant or even an alternative to classical monoaminergic antidepressants. Importantly, some classical antidepressants require the opioid receptor modulation to exert their antidepressant effects. Finally, ketamine, a well-known anesthetic whose extremely efficient antidepressant effects were recently discovered, was shown to mediate its antidepressant effects via the endogenous opioid system. Thus, although opioid system modulation is a promising therapeutical venue in the treatment of depression further research is warranted to fully understand the benefits and weaknesses of such approach.
Collapse
Affiliation(s)
- Miroslav Adzic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Iva Lukic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emilija Glavonic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nina Dragicevic
- Department of Pharmacy, Singidunum University, Belgrade, Serbia
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Jin D, Chen H, Huang Y, Chen SR, Pan HL. δ-Opioid receptors in primary sensory neurons tonically restrain nociceptive input in chronic pain but do not enhance morphine analgesic tolerance. Neuropharmacology 2022; 217:109202. [PMID: 35917874 DOI: 10.1016/j.neuropharm.2022.109202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
δ-Opioid receptors (DORs, encoded by the Oprd1 gene) are expressed throughout the peripheral and central nervous system, and DOR stimulation reduces nociception. Previous studies suggest that DORs promote the development of analgesic tolerance of μ-opioid receptor (MOR) agonists. It is uncertain whether DORs expressed in primary sensory neurons are involved in regulating chronic pain and MOR agonist-induced tolerance. In this study, we generated Oprd1 conditional knockout (Oprd1-cKO) mice by crossing Advillin-Cre mice with Oprd1-floxed mice. DOR expression in the dorsal root ganglion was diminished in Oprd1-cKO mice. Systemic or intrathecal injection of the DOR agonist SNC-80 produced analgesia in wild-type (WT), but not Oprd1-cKO, mice. In contrast, intracerebroventricular injection of SNC-80 produced a similar analgesic effect in WT and Oprd1-cKO mice. However, morphine-induced analgesia, hyperalgesia, or analgesic tolerance did not differ between WT and Oprd1-cKO mice. Compared with WT mice, Oprd1-cKO mice showed increased mechanical and heat hypersensitivity after nerve injury or tissue inflammation. Furthermore, blocking DORs with naltrindole increased nociceptive sensitivity induced by nerve injury or tissue inflammation in WT, but not Oprd1-cKO, mice. In addition, naltrindole potentiated glutamatergic input from primary afferents to spinal dorsal horn neurons increased by nerve injury or CFA in WT mice; this effect was absent in Oprd1-cKO mice. Our findings indicate that DORs in primary sensory neurons are critically involved in the analgesic effect of DOR agonists but not morphine-induced analgesic tolerance. Presynaptic DORs at primary afferent central terminals constitutively inhibit inflammatory and neuropathic pain by restraining glutamatergic input to spinal dorsal horn neurons.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Yu Y, Tsang QK, Jaramillo-Polanco J, Lomax AE, Vanner SJ, Reed DE. Cannabinoid 1 and mu-Opioid Receptor Agonists Synergistically Inhibit Abdominal Pain and Lack Side Effects in Mice. J Neurosci 2022; 42:6313-6324. [PMID: 35790401 PMCID: PMC9398536 DOI: 10.1523/jneurosci.0641-22.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
While effective in treating abdominal pain, opioids have significant side effects. Recent legalization of cannabis will likely promote use of cannabinoids as an adjunct or alternative to opioids, despite a lack of evidence. We aimed to investigate whether cannabinoids inhibit mouse colonic nociception, alone or in combination with opioids at low doses. Experiments were performed on C57BL/6 male and female mice. Visceral nociception was evaluated by measuring visceromotor responses (VMR), afferent nerve mechanosensitivity in flat-sheet colon preparations, and excitability of isolated DRG neurons. Blood oxygen saturation, locomotion, and defecation were measured to evaluate side effects. An agonist of cannabinoid 1 receptor (CB1R), arachidonyl-2'-chloroethylamide (ACEA), dose-dependently decreased VMR. ACEA and HU-210 (another CB1R agonist) also attenuated colonic afferent nerve mechanosensitivity. Additionally, HU-210 concentration-dependently decreased DRG neuron excitability, which was reversed by the CB1R antagonist AM-251. Conversely, cannabinoid 2 receptor (CB2R) agonists did not attenuate VMR, afferent nerve mechanosensitivity, or DRG neuron excitability. Combination of subanalgesic doses of CB1R and µ-opioid receptor agonists decreased VMR; importantly, this analgesic effect was preserved after 6 d of twice daily treatment. This combination also attenuated afferent nerve mechanosensitivity and DRG neuron excitability, which was inhibited by neuronal nitric oxide synthase and guanylate cyclase inhibitors. This combination avoided side effects (decreased oxygen saturation and colonic transit) caused by analgesic dose of morphine. Activation of CB1R, but not CB2R, decreased colonic nociception both alone and in synergy with µ-opioid receptor. Thus, CB1R agonists may enable opioid dose reduction and avoid opioid-related side effects.SIGNIFICANCE STATEMENT One of the most cited needs for patients with abdominal pain are safe and effective treatment options. The effectiveness of opioids in the management of abdominal pain is undermined by severe adverse side effects. Therefore, strategies to replace opioids or reduce the doses of opioids to suppress abdominal pain is needed. This study in mice demonstrates that cannabinoid 1 receptor (CB1R) agonists inhibit visceral sensation. Furthermore, a combination of subanalgesic doses of µ-opioid receptor agonist and CB1R agonist markedly reduce abdominal pain without causing the side effects of high-dose opioids. Thus, CB1R agonists, alone or in combination with low-dose opioids, may be a novel and safe treatment strategy for abdominal pain.
Collapse
Affiliation(s)
- Yang Yu
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Quentin K Tsang
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Josue Jaramillo-Polanco
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| |
Collapse
|
11
|
Cristina Mendes Ferreira R, Cristina de Sousa Fonseca F, Lamounier de Almeida D, Cristina Nogueira Freitas A, Peigneur S, Roberto Lima Romero T, Almeida Amaral F, Dimitri Gama Duarte I. Bradykinin induces peripheral antinociception in PGE 2-induced hyperalgesia in mice. Biochem Pharmacol 2022; 198:114965. [PMID: 35182520 DOI: 10.1016/j.bcp.2022.114965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Bradykinin (BK) is an endogenous peptide involved in vascular permeability and inflammation. It has opposite effects (inducing hyperalgesia or antinociception) when administered directly in the central nervous system. The aim of this study was to evaluate whether BK may also present this dual effect when injected peripherally in a PGE2-induced nociceptive pain model, as well as to investigate the possible mechanisms of action involved in this event in mice. METHODS Male Swiss and C57BL/6 knockout mice for B1 or B2 bradykinin receptors were submitted to a mechanical paw pressure test and hyperalgesia was induced by intraplantar prostaglandin E2 (2 µg/paw) injection. RESULTS Bradykinin (20, 40 and 80 ng/paw) produced dose-dependent peripheral antinociception against PGE2-induced hyperalgesia. This effect was antagonized by bradyzide (8, 16 and 32 μg/paw), naloxone (12.5, 25 and 50 μg/paw), nor-binaltorphimine (50, 100 and 200 μg/paw) and AM251 (20, 40 and 80 μg/paw). Bestatin (400 µg/paw), MAFP (0.5 µg/paw) and VDM11 (2.5 µg/paw) potentiated the antinociception of a lower 20 ng BK dose. The knockout of B1 or B2 bradykinin receptors partially abolished the antinociceptive action of BK (80 ng/paw), bremazocine (1 μg/paw) and anandamide (40 ng/paw) when compared with wild-type animals, which show complete antinociception with the same dose of each drug. CONCLUSION The present study is the first to demonstrate BK-induced antinociception in peripheral tissues against PGE2-induced nociception in mice and the involvement of κ-opioid and CB1 cannabinoid receptors in this effect.
Collapse
Affiliation(s)
| | | | - Douglas Lamounier de Almeida
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina Nogueira Freitas
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Steve Peigneur
- Department of Toxicology and Pharmacology, KU Leuven, Leuven, Belgium
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Almeida Amaral
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
12
|
Guzzo LS, Oliveira CC, Ferreira RCM, Machado DPD, Castor MGM, Perez AC, Piscitelli F, Marzo VD, Romero TRL, Duarte IDG. Kahweol, a natural diterpene from coffee, induces peripheral antinociception by endocannabinoid system activation. Braz J Med Biol Res 2021; 54:e11071. [PMID: 34730678 PMCID: PMC8555452 DOI: 10.1590/1414-431x2021e11071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Kahweol is a compound derived from coffee with reported antinociceptive effects. Based on the few reports that exist in the literature regarding the mechanisms involved in kahweol-induced peripheral antinociceptive action, this study proposed to investigate the contribution of the endocannabinoid system to the peripheral antinociception induced in rats by kahweol. Hyperalgesia was induced by intraplantar injection of prostaglandin E2(PGE2) and was measured with the paw pressure test. Kahweol and the drugs to test the cannabinoid system were administered locally into the right hind paw. The endocannabinoids were purified by open-bed chromatography on silica and measured by LC-MS. Kahweol (80 µg/paw) induced peripheral antinociception against PGE2-induced hyperalgesia. This effect was reversed by the intraplantar injection of the CB1 cannabinoid receptor antagonist AM251 (20, 40, and 80 μg/paw), but not by the CB2 cannabinoid receptor antagonist AM630 (100 μg/paw). Treatment with the endocannabinoid reuptake inhibitor VDM11 (2.5 μg/paw) intensified the peripheral antinociceptive effect induced by low-dose kahweol (40 μg/paw). The monoacylglycerol lipase (MAGL) inhibitor, JZL184 (4 μg/paw), and the dual MAGL/fatty acid amide hydrolase (FAAH) inhibitor, MAFP (0.5 μg/paw), potentiated the peripheral antinociceptive effect of low-dose kahweol. Furthermore, kahweol increased the levels of the endocannabinoid anandamide, but not of the other endocannabinoid 2-arachidonoylglycerol nor of anandamide-related N-acylethanolamines, in the plantar surface of the rat paw. Our results suggested that kahweol induced peripheral antinociception via anandamide release and activation of CB1 cannabinoid receptors and this compound could be used to develop new drugs for pain relief.
Collapse
Affiliation(s)
- L S Guzzo
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - C C Oliveira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - R C M Ferreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - D P D Machado
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - M G M Castor
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - A C Perez
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - F Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy
| | - V Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy
| | - T R L Romero
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - I D G Duarte
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
13
|
MacDonald IJ, Chen YH. The Endocannabinoid System Contributes to Electroacupuncture Analgesia. Front Neurosci 2021; 14:594219. [PMID: 33679287 PMCID: PMC7930225 DOI: 10.3389/fnins.2020.594219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
The extensive involvement of the endocannabinoid system (ECS) in vital physiological and cognitive processes of the human body has inspired many investigations into the role of the ECS and drugs, and therapies that target this system and its receptors. Activation of cannabinoid receptors 1 and 2 (CB1 and CB2) by cannabinoid treatments, including synthetic cannabinoids, alleviates behavioral responses to inflammatory and neuropathic pain. An increasing body of scientific evidence details how electroacupuncture (EA) treatments achieve effective analgesia and reduce inflammation by modulating cannabinoid signaling, without the adverse effects resulting from synthetic cannabinoid administration. CB1 receptors in the ventrolateral area of the periaqueductal gray are critically important for the mechanisms of the EA antinociceptive effect, while peripheral CB2 receptors are related to the anti-inflammatory effects of EA. This review explores the evidence detailing the endocannabinoid mechanisms involved in EA antinociception.
Collapse
Affiliation(s)
- Iona J MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
14
|
Brunt TM, Bossong MG. The neuropharmacology of cannabinoid receptor ligands in central signaling pathways. Eur J Neurosci 2020; 55:909-921. [PMID: 32974975 PMCID: PMC9291836 DOI: 10.1111/ejn.14982] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 12/26/2022]
Abstract
The endocannabinoid system is a complex neuronal system involved in a number of biological functions, like attention, anxiety, mood, memory, appetite, reward, and immune responses. It is at the centre of scientific interest, which is driven by therapeutic promise of certain cannabinoid ligands and the changing legalization of herbal cannabis in many countries. The endocannabinoid system is a modulatory system, with endocannabinoids as retrograde neurotransmitters rather than direct neurotransmitters. Neuropharmacology of cannabinoid ligands in the brain can therefore be understood in terms of their modulatory actions through other neurotransmitter systems. The CB1 receptor is chiefly responsible for effects of endocannabinoids and analogous ligands in the brain. An overview of the neuropharmacology of several cannabinoid receptor ligands, including endocannabinoids, herbal cannabis and synthetic cannabinoid receptor ligands is given in this review. Their mechanism of action at the endocannabinoid system is described, mainly in the brain. In addition, effects of cannabinoid ligands on other neurotransmitter systems will also be described, such as dopamine, serotonin, glutamate, noradrenaline, opioid, and GABA. In light of this, therapeutic potential and adverse effects of cannabinoid receptor ligands will also be discussed.
Collapse
Affiliation(s)
- Tibor M. Brunt
- Department of Psychiatry Amsterdam Institute for Addiction ResearchAmsterdam UMCUniversity of Amsterdam Amsterdam The Netherlands
| | - Matthijs G. Bossong
- Department of Psychiatry University Medical Center Utrecht Brain CenterUtrecht University Utrecht The Netherlands
| |
Collapse
|
15
|
PnAn13, an antinociceptive synthetic peptide inspired in the Phoneutria nigriventer toxin PnTx4(6-1) (δ-Ctenitoxin-Pn1a). Toxicon X 2020; 7:100045. [PMID: 32875290 PMCID: PMC7452081 DOI: 10.1016/j.toxcx.2020.100045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022] Open
Abstract
Animal venoms are an almost inexhaustible source for promising molecules with biological activity and the venom of Phoneutria nigriventer spider is a good example of this. Among several other toxins obtained from this venom, PnTx4(6–1), also called δ-Ctenitoxin-Pn1a, was isolated and initially described as an insect toxin that binds to the site 3 of sodium channels in cockroach nerve cord synaptosomes (Periplaneta americana) and slows down sodium current inactivation in isolated axons of this animal. This toxin did not cause any apparent toxicity to mice when intracerebroventricularly injected (30 μg). Subsequently, it was demonstrated that PnTx4(6–1) has an antinociceptive effect in three different pain models: inflammatory, induced by carrageenan; nociceptive, induced by prostaglandin E2 and neuropathic, induced by sciatic nerve constriction. Using diverse antagonists from receptors, it was shown that the cannabinoid system, via the CB1 receptor, and the opioid system, through the μ and δ receptors, are both involved in the antinociceptive effect of PnTx4(6–1). In the present work, it was synthesized a peptide, named PnAn13, based on the amino acid sequence of PnTx4(6–1) in order to try to reproduce or increase the analgesic effect of the toxin. As it was seen for the toxin, PnAn13 had antinociceptive activity, when intrathecally injected, and this effect involved the cannabinoid and opioid systems. In addition, when it was evaluated the peripheral effect of PnAn13, via intraplantar administration, this peptide was able to reverse the hyperalgesic threshold, evoked by prostaglandin E2. Therefore, using different pharmacological tools, it was shown the participation of cannabinoid and opioid systems in this effect. A synthetic peptide PnAn13, reproduced the antinociceptive effects of the PnTx4(6-1) (δ-Ctenitoxin-Pn1a) toxin. PnAn13 showed a clear analgesic effect in the nociceptive in vivo rat pain model, both centrally and peripherally. The antinociceptive effect of PnAn13 involves cannabinoid and opioid systems.
Collapse
|
16
|
Lv J, Huang C, Wang Z, Ou S. Adductor canal block combined with local infiltration analgesia versus isolated adductor canal block in reducing pain and opioid consumption after total knee arthroplasty: a systematic review and meta-analysis. J Int Med Res 2020; 48:300060520926075. [PMID: 32776794 PMCID: PMC7557703 DOI: 10.1177/0300060520926075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To evaluate the efficacy and safety of the addition of local infiltration analgesia (LIA) to adductor canal block (ACB) for pain control after primary total knee arthroplasty (TKA). Methods Two reviewers independently searched for potentially relevant published studies using electronic databases, including PubMed® (1966 to June 2019), Embase® (1974 to June 2019) and Web of Science (1990 to June 2019). The results were pooled using the random-effects model to produce standard mean differences for continuous outcome data and odds ratio for categorical outcome data. Results A total of three randomized controlled trials (RCTs) and three non-RCTs were included for data extraction and meta-analysis. There were significant differences between the two groups regarding the postoperative pain score on postoperative day (POD) 0 and POD 1. The cumulative opioid consumption in the ACB plus LIA groups was significantly lower than that in the ACB groups on POD 0 and POD 1. No significant differences were found in terms of postoperative range of motion or length of hospitalization. Conclusion ACB plus LIA significantly reduced the postoperative pain score on POD 0 and POD 1 compared with isolated ACB. In addition, ACB plus LIA was associated with a significant reduction in opioid consumption during the early postoperative period.
Collapse
Affiliation(s)
- Jianyong Lv
- Department of Anaesthesiology, Chengdu First People's Hospital, Chengdu, Sichuan Province, China
| | - Cuiyuan Huang
- Department of Anaesthesiology, Chengdu First People's Hospital, Chengdu, Sichuan Province, China
| | - Zuofeng Wang
- Department of Anaesthesiology, Chengdu First People's Hospital, Chengdu, Sichuan Province, China
| | - Shan Ou
- Department of Anaesthesiology, Chengdu First People's Hospital, Chengdu, Sichuan Province, China
| |
Collapse
|
17
|
Slivicki RA, Iyer V, Mali SS, Garai S, Thakur GA, Crystal JD, Hohmann AG. Positive Allosteric Modulation of CB 1 Cannabinoid Receptor Signaling Enhances Morphine Antinociception and Attenuates Morphine Tolerance Without Enhancing Morphine- Induced Dependence or Reward. Front Mol Neurosci 2020; 13:54. [PMID: 32410959 PMCID: PMC7199816 DOI: 10.3389/fnmol.2020.00054] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/17/2020] [Indexed: 01/09/2023] Open
Abstract
Opioid analgesics represent a critical treatment for chronic pain in the analgesic ladder of the World Health Organization. However, their use can result in a number of unwanted side-effects including incomplete efficacy, constipation, physical dependence, and overdose liability. Cannabinoids enhance the pain-relieving effects of opioids in preclinical studies and dampen unwanted side-effects resulting from excessive opioid intake. We recently reported that a CB1 positive allosteric modulator (PAM) exhibits antinociceptive efficacy in models of pathological pain and lacks the adverse side effects of direct CB1 receptor activation. In the present study, we evaluated whether a CB1 PAM would enhance morphine’s therapeutic efficacy in an animal model of chemotherapy-induced neuropathic pain and characterized its impact on unwanted side-effects associated with chronic opioid administration. In paclitaxel-treated mice, both the CB1 PAM GAT211 and the opioid analgesic morphine reduced paclitaxel-induced behavioral hypersensitivities to mechanical and cold stimulation in a dose-dependent manner. Isobolographic analysis revealed that combinations of GAT211 and morphine resulted in anti-allodynic synergism. In paclitaxel-treated mice, a sub-threshold dose of GAT211 prevented the development of tolerance to the anti-allodynic effects of morphine over 20 days of once daily dosing. However, GAT211 did not reliably alter somatic withdrawal signs (i.e., jumps, paw tremors) in morphine-dependent neuropathic mice challenged with naloxone. In otherwise naïve mice, GAT211 also prolonged antinociceptive efficacy of morphine in the tail-flick test and reduced the overall right-ward shift in the ED50 for morphine to produce antinociception in the tail-flick test, consistent with attenuation of morphine tolerance. Pretreatment with GAT211 did not alter somatic signs of μ opioid receptor dependence in mice rendered dependent upon morphine via subcutaneous implantation of a morphine pellet. Moreover, GAT211 did not reliably alter μ-opioid receptor-mediated reward as measured by conditioned place preference to morphine. Our results suggest that a CB1 PAM may be beneficial in enhancing and prolonging the therapeutic properties of opioids while potentially sparing unwanted side-effects (e.g., tolerance) that occur with repeated opioid treatment.
Collapse
Affiliation(s)
- Richard A Slivicki
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sonali S Mali
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sumanta Garai
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Ganesh A Thakur
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Jonathon D Crystal
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| |
Collapse
|
18
|
Cifani C, Avagliano C, Micioni Di Bonaventura E, Giusepponi ME, De Caro C, Cristiano C, La Rana G, Botticelli L, Romano A, Calignano A, Gaetani S, Micioni Di Bonaventura MV, Russo R. Modulation of Pain Sensitivity by Chronic Consumption of Highly Palatable Food Followed by Abstinence: Emerging Role of Fatty Acid Amide Hydrolase. Front Pharmacol 2020; 11:266. [PMID: 32231568 PMCID: PMC7086305 DOI: 10.3389/fphar.2020.00266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/24/2020] [Indexed: 01/03/2023] Open
Abstract
There is a strong relationship between palatable diet and pain sensitivity, and the cannabinoid and opioid systems might play an important role in this correlation. The palatable diet used in many animal models of obesity is the cafeteria (CAF) diet, based on human food with high sugar, salt, and fat content. In this study, we investigated whether long-term exposure to a CAF diet could modify pain sensitivity and explored the role of the cannabinergic system in this modification. Male Sprague–Dawley rats were divided into two groups: one fed with standard chow only (CO) and the other with extended access (EA) to a CAF diet. Hot plate and tail flick tests were used to evaluate pain sensitivity. At the end of a 40-day CAF exposure, EA rats showed a significant increase in the pain threshold compared to CO rats, finding probably due to up-regulation of CB1 and mu-opioid receptors. Instead, during abstinence from palatable foods, EA animals showed a significant increase in pain sensibility, which was ameliorated by repeated treatment with a fatty acid amide hydrolase inhibitor, PF-3845 (10 mg/kg, intraperitoneally), every other day for 28 days. Ex vivo analysis of the brains of these rats clearly showed that this effect was mediated by mu-opioid receptors, which were up-regulated following repeated treatment of PF-3845. Our data add to the knowledge about changes in pain perception in obese subjects, revealing a key role of CB1 and mu-opioid receptors and their possible pharmacological crosstalk and reinforcing the need to consider this modulation in planning effective pain management for obese patients.
Collapse
Affiliation(s)
- Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carmen Avagliano
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | | | | | - Carmen De Caro
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Giovanna La Rana
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy
| | - Antonio Calignano
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Roberto Russo
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
19
|
Peripheral antinociception induced by ketamine is mediated by the endogenous opioid system. Eur J Pharmacol 2019; 865:172808. [DOI: 10.1016/j.ejphar.2019.172808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022]
|
20
|
de Oliveira HU, Dos Santos RS, Malta IHS, Pinho JP, Almeida AFS, Sorgi CA, Peti APF, Xavier GS, Reis LMD, Faccioli LH, Cruz JDS, Ferreira E, Galdino G. Investigation of the Involvement of the Endocannabinoid System in TENS-Induced Antinociception. THE JOURNAL OF PAIN 2019; 21:820-835. [PMID: 31785404 DOI: 10.1016/j.jpain.2019.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/16/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023]
Abstract
Transcutaneous electrical nerve stimulation (TENS) promotes antinociception by activating the descending pain modulation pathway and consequently releasing endogenous analgesic substances. In addition, recent studies have shown that the endocannabinoid system controls pain. Thus, the present study investigated the involvement of the endocannabinoid system in TENS-induced antinociception of cancer pain using a cancer pain model induced by intraplantar (i.pl.) injections of Ehrlich tumor cells in male Swiss mice. Low- and high-frequency TENS was applied for 20 minutes to the mice's paws, and to investigate the involvement of the endocannabinoid system were used the N-(peperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pitazole-3-carboixamide (AM251), a cannabinoid CB1 receptor antagonist and (5Z,8Z,11Z,14Z)-5,8,11,14-eicosatetraenyl-methylester phosphonofluoridic acid (MAFP), an inhibitor of the endocannabinoid metabolizing enzyme fatty acid amide hydrolase, injected by via i.pl., intrathecal (i.t.), and intradorsolateral periaqueductal gray matter (i.dl.PAG). Furthermore, liquid chromatography-tandem mass spectrometry, western blot, and immunofluorescence assays were used to evaluate the endocannabinoid anandamide levels, cannabinoid CB1 receptor protein levels, and cannabinoid CB1 receptor immunoreactivity, respectively. Low- and high-frequency TENS reduced the mechanical allodynia induced by Ehrlich tumor cells and this effect was reversed by AM251 and potentiated by MAFP at the peripheral and central levels. In addition, TENS increased the endocannabinoid anandamide levels and the cannabinoid CB1 receptor protein levels and immunoreactivity in the paw, spinal cord, and dorsolateral periaqueductal gray matter. These results suggest that low- and high-frequency TENS is effective in controlling cancer pain, and the endocannabinoid system is involved in this effect at both the peripheral and central levels. PERSPECTIVE: TENS is a nonpharmacological strategy that may be used to control cancer pain. Identification of a new mechanism involved in its analgesic effect could lead to the development of clinical studies as well as an increase in its application, lessening the need for pharmacological treatments.
Collapse
Affiliation(s)
| | | | | | - José Phellipe Pinho
- Department of Physiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Carlos Arterio Sorgi
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo Brazil
| | - Ana Paula Ferranti Peti
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo Brazil
| | | | | | - Lúcia Helena Faccioli
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo Brazil
| | - Jader Dos Santos Cruz
- Department of Physiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Enio Ferreira
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Giovane Galdino
- Sciences of Motricity Institute, Federal University of Alfenas, Alfenas, Brazil.
| |
Collapse
|
21
|
The association between endogenous opioid function and morphine responsiveness: a moderating role for endocannabinoids. Pain 2019; 160:676-687. [PMID: 30562268 DOI: 10.1097/j.pain.0000000000001447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We sought to replicate previous findings that low endogenous opioid (EO) function predicts greater morphine analgesia and extended these findings by examining whether circulating endocannabinoids and related lipids moderate EO-related predictive effects. Individuals with chronic low-back pain (n = 46) provided blood samples for endocannabinoid analyses, then underwent separate identical laboratory sessions under 3 drug conditions: saline placebo, intravenous (i.v.) naloxone (opioid antagonist; 12-mg total), and i.v. morphine (0.09-mg/kg total). During each session, participants rated low-back pain intensity, evoked heat pain intensity, and nonpain subjective effects 4 times in sequence after incremental drug dosing. Mean morphine effects (morphine-placebo difference) and opioid blockade effects (naloxone-placebo difference; to index EO function) for each primary outcome (low-back pain intensity, evoked heat pain intensity, and nonpain subjective effects) were derived by averaging across the 4 incremental doses. The association between EO function and morphine-induced back pain relief was significantly moderated by endocannabinoids [2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)]. Lower EO function predicted greater morphine analgesia only for those with relatively lower endocannabinoids. Endocannabinoids also significantly moderated EO effects on morphine-related changes in visual analog scale-evoked pain intensity (2-AG), drug liking (AEA and 2-AG), and desire to take again (AEA and 2-AG). In the absence of significant interactions, lower EO function predicted significantly greater morphine analgesia (as in past work) and euphoria. Results indicate that EO effects on analgesic and subjective responses to opioid medications are greatest when endocannabinoid levels are low. These findings may help guide development of mechanism-based predictors for personalized pain medicine algorithms.
Collapse
|
22
|
Wu T, Wang M, Wu W, Luo Q, Jiang L, Tao H, Deng M. Spider venom peptides as potential drug candidates due to their anticancer and antinociceptive activities. J Venom Anim Toxins Incl Trop Dis 2019; 25:e146318. [PMID: 31210759 PMCID: PMC6551028 DOI: 10.1590/1678-9199-jvatitd-14-63-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Spider venoms are known to contain proteins and polypeptides that perform various
functions including antimicrobial, neurotoxic, analgesic, cytotoxic, necrotic,
and hemagglutinic activities. Currently, several classes of natural molecules
from spider venoms are potential sources of chemotherapeutics against tumor
cells. Some of the spider peptide toxins produce lethal effects on tumor cells
by regulating the cell cycle, activating caspase pathway or inactivating
mitochondria. Some of them also target the various types of ion channels
(including voltage-gated calcium channels, voltage-gated sodium channels, and
acid-sensing ion channels) among other pain-related targets. Herein we review
the structure and pharmacology of spider-venom peptides that are being used as
leads for the development of therapeutics against the pathophysiological
conditions including cancer and pain.
Collapse
Affiliation(s)
- Ting Wu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Meng Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Qianxuan Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
23
|
Blanton HL, Brelsfoard J, DeTurk N, Pruitt K, Narasimhan M, Morgan DJ, Guindon J. Cannabinoids: Current and Future Options to Treat Chronic and Chemotherapy-Induced Neuropathic Pain. Drugs 2019; 79:969-995. [PMID: 31127530 PMCID: PMC8310464 DOI: 10.1007/s40265-019-01132-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Increases in cancer diagnosis have tremendous negative impacts on patients and their families, and major societal and economic costs. The beneficial effect of chemotherapeutic agents on tumor suppression comes with major unwanted side effects such as weight and hair loss, nausea and vomiting, and neuropathic pain. Chemotherapy-induced peripheral neuropathy (CIPN), which can include both painful and non-painful symptoms, can persist 6 months or longer after the patient's last chemotherapeutic treatment. These peripheral sensory and motor deficits are poorly treated by our current analgesics with limited effectiveness. Therefore, the development of novel treatment strategies is an important preclinical research focus and an urgent need for patients. Approaches to prevent CIPN have yielded disappointing results since these compounds may interfere with the anti-tumor properties of chemotherapeutic agents. Nevertheless, the first (serotonin noradrenaline reuptake inhibitors [SNRIs], anticonvulsants, tricyclic antidepressants) and second (5% lidocaine patches, 8% capsaicin patches and weak opioids such as tramadol) lines of treatment for CIPN have shown some efficacy. The clinical challenge of CIPN management in cancer patients and the need to target novel therapies with long-term efficacy in alleviating CIPN are an ongoing focus of research. The endogenous cannabinoid system has shown great promise and efficacy in alleviating CIPN in preclinical and clinical studies. In this review, we will discuss the mechanisms through which the platinum, taxane, and vinca alkaloid classes of chemotherapeutics may produce CIPN and the potential therapeutic effect of drugs targeting the endocannabinoid system in preclinical and clinical studies, in addition to cannabinoid compounds diffuse mechanisms of action in alleviation of CIPN.
Collapse
Affiliation(s)
- Henry L Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jennifer Brelsfoard
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Nathan DeTurk
- Department of Anesthesiology and Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, Lubbock, TX, 79430, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Daniel J Morgan
- Department of Anesthesiology and Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
24
|
Cohen K, Weizman A, Weinstein A. Modulatory effects of cannabinoids on brain neurotransmission. Eur J Neurosci 2019; 50:2322-2345. [DOI: 10.1111/ejn.14407] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Koby Cohen
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| | | | - Aviv Weinstein
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| |
Collapse
|
25
|
Rice D, Nijs J, Kosek E, Wideman T, Hasenbring MI, Koltyn K, Graven-Nielsen T, Polli A. Exercise-Induced Hypoalgesia in Pain-Free and Chronic Pain Populations: State of the Art and Future Directions. THE JOURNAL OF PAIN 2019; 20:1249-1266. [PMID: 30904519 DOI: 10.1016/j.jpain.2019.03.005] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/24/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
Exercise is considered an important component of effective chronic pain management and it is well-established that long-term exercise training provides pain relief. In healthy, pain-free populations, a single bout of aerobic or resistance exercise typically leads to exercise-induced hypoalgesia (EIH), a generalized reduction in pain and pain sensitivity that occurs during exercise and for some time afterward. In contrast, EIH is more variable in chronic pain populations and is more frequently impaired; with pain and pain sensitivity decreasing, remaining unchanged or, in some cases, even increasing in response to exercise. Pain exacerbation with exercise may be a major barrier to adherence, precipitating a cycle of physical inactivity that can lead to long-term worsening of both pain and disability. To optimize the therapeutic benefits of exercise, it is important to understand how EIH works, why it may be impaired in some people with chronic pain, and how this should be addressed in clinical practice. In this article, we provide an overview of EIH across different chronic pain conditions. We discuss possible biological mechanisms of EIH and the potential influence of sex and psychosocial factors, both in pain-free adults and, where possible, in individuals with chronic pain. The clinical implications of impaired EIH are discussed and recommendations are made for future research, including further exploration of individual differences in EIH, the relationship between exercise dose and EIH, the efficacy of combined treatments and the use of alternative measures to quantify EIH. PERSPECTIVE: This article provides a contemporary review of the acute effects of exercise on pain and pain sensitivity, including in people with chronic pain conditions. Existing findings are critically reviewed, clinical implications are discussed, and recommendations are offered for future research.
Collapse
Affiliation(s)
- David Rice
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand; Waitemata Pain Services, Department of Anaesthesiology and Perioperative Medicine, Waitemata District Health Board, Auckland, New Zealand.
| | - Jo Nijs
- Pain in Motion International Research Group(#); Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Spine Center, Löwenströmska Hospital, Upplands Väsby, Sweden
| | - Timothy Wideman
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| | - Monika I Hasenbring
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr-University of Bochum, Bochum, Germany
| | - Kelli Koltyn
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Andrea Polli
- Pain in Motion International Research Group(#); Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium; Research Foundation - Flanders (FWO), Brussels, Belgium
| |
Collapse
|
26
|
Pacheco DDF, Romero TRL, Duarte IDG. Ketamine induces central antinociception mediated by endogenous cannabinoids and activation of CB 1 receptors. Neurosci Lett 2019; 699:140-144. [PMID: 30716423 DOI: 10.1016/j.neulet.2019.01.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 02/01/2023]
Abstract
The participation of endocannabinoids in central and peripheral antinociception induced by several compounds has been shown by our group. In this study, we investigated the effect of endocannabinoids on the central antinociception induced by ketamine. The nociceptive threshold for thermal stimulation was measured using the tail-flick test in Swiss mice. The drugs were administered intracerebroventricularly. Probabilities less than 5% (p < 0.05) were considered to be statistically significant (Two-way ANOVA/Bonferroni's test). The CB1-selective cannabinoid receptor antagonist AM251 (2 and 4 μg) completely reversed the central antinociception induced by ketamine (4 μg) in a dose-dependent manner. In contrast, the CB2-selective cannabinoid receptor antagonist AM630 (2 and 4 μg) did not antagonize this effect. Additionally, the administration of the anandamide amidase inhibitor MAFP (0.2 μg) and anandamide uptake inhibitor VDM11 (4 μg) significantly enhanced the antinociception induced by a low dose of ketamine (2 μg). It was concluded that central antinociception induced by ketamine involves the activation of CB1 cannabinoid receptors. Mobilization of cannabinoids might be required for the activation of those receptors, since inhibitors of the endogenous cannabinoids potentiate the effect of Ketamine.
Collapse
Affiliation(s)
- Daniela da Fonseca Pacheco
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270.100, Belo Horizonte, Brazil.
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270.100, Belo Horizonte, Brazil.
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270.100, Belo Horizonte, Brazil.
| |
Collapse
|
27
|
Crombie KM, Brellenthin AG, Hillard CJ, Koltyn KF. Endocannabinoid and Opioid System Interactions in Exercise-Induced Hypoalgesia. PAIN MEDICINE 2019; 19:118-123. [PMID: 28387833 DOI: 10.1093/pm/pnx058] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective The purpose of this study was to examine the interaction between the endogenous opioid and endocannabinoid (eCB) systems in a pain modulatory process known as exercise-induced hypoalgesia (EIH). Design Randomized controlled trial. Setting Clinical research unit in a hospital. Subjects Fifty-eight healthy men and women (mean age = 21 ± 3 years) participated in this study. Methods Participants were administered (randomized, double-blind, counterbalanced procedure) an opioid antagonist (i.e., naltrexone) and a placebo prior to performing pain testing and isometric exercise. Results Results indicated that 2-arachidonoylglycerol (2-AG) and 2-oleoylglycerol (2-OG) increased significantly (P < 0.05) following exercise in both placebo and naltrexone conditions. In comparison, N-arachidonylethanolamine (AEA) and oleoylethanolamine (OEA) increased significantly (P < 0.05) following exercise in the placebo condition but not the naltrexone condition. There were no significant (P > 0.05) differences in palmitolethanolamine (PEA) between the placebo and naltrexone conditions. Conclusions As reductions in pain (i.e., EIH) were observed following both conditions, these results suggest that the opioid system may not be the primary system involved in exercise-induced hypoalgesia and that 2-AG and 2-OG could contribute to nonopioid exercise-induced hypoalgesia. Moreover, as exercise-induced increases in AEA and OEA were blocked by naltrexone pretreatment, this suggests that the opioid system may be involved in the increase of AEA and OEA following exercise.
Collapse
Affiliation(s)
- Kevin M Crombie
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Cecilia J Hillard
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kelli F Koltyn
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
28
|
Kaczocha M, Azim S, Nicholson J, Rebecchi MJ, Lu Y, Feng T, Romeiser JL, Reinsel R, Rizwan S, Shodhan S, Volkow ND, Benveniste H. Intrathecal morphine administration reduces postoperative pain and peripheral endocannabinoid levels in total knee arthroplasty patients: a randomized clinical trial. BMC Anesthesiol 2018; 18:27. [PMID: 29486720 PMCID: PMC6389072 DOI: 10.1186/s12871-018-0489-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/08/2018] [Indexed: 11/24/2022] Open
Abstract
Background The primary goal of this study was to determine whether administration of intrathecal morphine reduces postoperative pain. The secondary goal was to determine the effect of intrathecal morphine upon circulating levels of the weakly analgesic endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and the related lipids palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). Methods Forty two total knee arthroplasty (TKA) patients were enrolled in a prospective, double-blinded, randomized study. The intervention consisted of intrathecal morphine (200 μg) or placebo administered at the time of the spinal anesthesia. Postoperative pain was measured during the first 4 h after surgery while serum levels of AEA, 2-AG, PEA, OEA, and cortisol were measured at baseline and 4 h after surgery. Results Administration of intrathecal morphine reduced postoperative pain 4 h after TKA surgery compared to placebo (p = 0.005) and reduced postoperative systemic opioid consumption (p = 0.001). At baseline, intrathecal morphine led to a significant reduction in AEA, 2-AG, and OEA levels but did not affect PEA or cortisol levels. In patients administered intrathecal placebo, 2-AG levels were elevated 4 h after surgery; whereas patients receiving intrathecal morphine showed reductions in AEA, PEA, and OEA when compared to placebo. At 4 h after TKA surgery cortisol levels were significantly elevated in the placebo group and reduced in those receiving morphine. Conclusions These results indicate that intrathecal morphine reduces postoperative pain in TKA patients. Furthermore, activation of central opioid receptors negatively modulates the endocannabinoid tone, suggesting that potent analgesics may reduce the stimulus for production of peripheral endocannabinoids. This study is the first to document the existence of rapid communication between the central opioid and peripheral endocannabinoid systems in humans. Trial registration This trial was registered retrospectively. Trial registry: NCT02620631. Study to Examine Pain Relief With Supplemental Intrathecal Morphine in TKA Patients, NCT02620631, 12/03/2015.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA.
| | - Syed Azim
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - James Nicholson
- Department of Orthopaedics, Stony Brook University, Stony Brook, New York, USA
| | - Mario J Rebecchi
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Yong Lu
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Tian Feng
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - Jamie L Romeiser
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Ruth Reinsel
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Sabeen Rizwan
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Shivam Shodhan
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | | |
Collapse
|
29
|
Ferreira RCM, Castor MGM, Piscitelli F, Di Marzo V, Duarte IDG, Romero TRL. The Involvement of the Endocannabinoid System in the Peripheral Antinociceptive Action of Ketamine. THE JOURNAL OF PAIN 2017; 19:487-495. [PMID: 29247851 DOI: 10.1016/j.jpain.2017.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 08/11/2017] [Accepted: 12/03/2017] [Indexed: 10/18/2022]
Abstract
Ketamine has been widely used as an analgesic and produces dissociative anesthetic effects. The antinociceptive effects of ketamine have been studied, but the involvement of endocannabinoids in these effects has not yet been investigated. In this study, we evaluated the involvement of the endocannabinoid system in the peripheral antinociceptive effects induced by ketamine. All drugs were administered via the intraplantar route. To induce hyperalgesia, rat paws were injected with prostaglandin E2 (2 µg per paw). The nociceptive threshold for mechanical stimulation was measured in the right hind paw of Wistar rats using the Randall-Selitto test. The tissue levels of anandamide (AEA), 2-arachidonoylglycerol, palmitoylethanolamide, and oleoylethanolamide were measured using liquid chromatography coupled to single quadrupole mass spectrometry. The administration of the cannabinoid receptor type 1 (CB1) antagonist, N(piperidine-1yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl 1 pyrazolcarboxamide (20, 40, and 80 µg per paw), but not the cannabinoid receptor type 2 antagonist, 6-iodo-2-methyl-1-(2-morpholinoethyl)-1H-indol-3-yl) (4-methoxyphenyl) methanone (100 µg per paw), antagonized the ketamine-induced peripheral antinociception in a dose-dependent manner. Additionally, the administration of the endocannabinoid metabolizing enzyme inhibitor (.5 µg per paw) or an AEA reuptake inhibitor, (5Z,8Z,11Z,14Z)N(4Hydroxy2methylphenyl)5,8,11,14 eicosatetraenamide (2.5 µg per paw) significantly enhanced low-dose ketamine-induced peripheral antinociception. AEA paw levels were increased only after ketamine administration to prostaglandin E2-injected paws. These data suggest that ketamine, in the presence of a nociceptive stimulus, induces a selective release of AEA levels and subsequent CB1 cannabinoid activation at the peripheral level. PERSPECTIVE This study suggests that ketamine antinociception depends at least in part on AEA release and CB1 cannabinoid receptor activation in inflammatory conditions. This study could potentially help clinicians in the use of ketamine as a peripheral analgesic for inflammatory pain.
Collapse
Affiliation(s)
- Renata C M Ferreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina G M Castor
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Igor D G Duarte
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago R L Romero
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
30
|
da Fonseca Pacheco D, Freitas ACN, Pimenta AMC, Duarte IDG, de Lima ME. A spider derived peptide, PnPP-19, induces central antinociception mediated by opioid and cannabinoid systems. J Venom Anim Toxins Incl Trop Dis 2016; 22:34. [PMID: 28031732 PMCID: PMC5175391 DOI: 10.1186/s40409-016-0091-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Some peptides purified from the venom of the spider Phoneutria nigriventer have been identified as potential sources of drugs for pain treatment. In this study, we characterized the antinociceptive effect of the peptide PnPP-19 on the central nervous system and investigated the possible involvement of opioid and cannabinoid systems in its action mechanism. Methods Nociceptive threshold to thermal stimulation was measured according to the tail-flick test in Swiss mice. All drugs were administered by the intracerebroventricular route. Results PnPP-19 induced central antinociception in mice in the doses of 0.5 and 1 μg. The non-selective opioid receptor antagonist naloxone (2.5 and 5 μg), μ-opioid receptor antagonist clocinnamox (2 and 4 μg), δ-opioid receptor antagonist naltrindole (6 and 12 μg) and CB1 receptor antagonist AM251 (2 and 4 μg) partially inhibited the antinociceptive effect of PnPP-19 (1 μg). Additionally, the anandamide amidase inhibitor MAFP (0.2 μg), the anandamide uptake inhibitor VDM11 (4 μg) and the aminopeptidase inhibitor bestatin (20 μg) significantly enhanced the antinociception induced by a low dose of PnPP-19 (0.5 μg). In contrast, the κ-opioid receptor antagonist nor-binaltorphimine (10 μg and 20 μg) and the CB2 receptor antagonist AM630 (2 and 4 μg) do not appear to be involved in this effect. Conclusions PnPP-19-induced central antinociception involves the activation of CB1 cannabinoid, μ- and δ-opioid receptors. Mobilization of endogenous opioids and cannabinoids might be required for the activation of those receptors, since inhibitors of endogenous substances potentiate the effect of PnPP-19. Our results contribute to elucidating the action of the peptide PnPP-19 in the antinociceptive pathway.
Collapse
Affiliation(s)
- Daniela da Fonseca Pacheco
- Departmento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Ana Cristina Nogueira Freitas
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG CEP 31.270.901 Brazil
| | - Adriano Monteiro C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG CEP 31.270.901 Brazil
| | - Igor Dimitri Gama Duarte
- Departmento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG CEP 31.270.901 Brazil
| |
Collapse
|
31
|
Auh QS, Chun YH, Melemedjian OK, Zhang Y, Ro JY. Peripheral interactions between cannabinoid and opioid receptor agonists in a model of inflammatory mechanical hyperalgesia. Brain Res Bull 2016; 125:211-7. [PMID: 27450703 DOI: 10.1016/j.brainresbull.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 01/28/2023]
Abstract
Activation of opioid and cannabinoid receptors expressed in nociceptors induces effective antihyperalgesia. In this study, we examined whether combinations of opioid and cannabinoid receptor agonists directed at the injured site would enhance therapeutic effectiveness. Behavioral pharmacology experiments were performed to compare the effects of DAMGO, a selective agonist for μ-opioid receptor (MOR), ACPA, a specific agonist for CB1, and combinations of DAMGO and ACPA in attenuating complete Freund's adjuvant (CFA)-induced mechanical hyperalgesia in the rat hindpaw. DAMGO (1μg-1mg) or ACPA (1μg-2mg) was administered into the inflamed paw when mechanical hyperalgesia was fully developed. When administered individually, DAMGO and ACPA dose-dependently reversed the mechanical hyperalgesia. DAMGO displayed a lower ED50 value (57.4±2.49μg) than ACPA (111.6±2.18μg), but ACPA produced longer lasting antihyperalgesic effects. Combinations of DAMGO and ACPA also dose-dependently attenuated mechanical hyperalgesia, but the antihyperalgesic effects were partial and transient even at high doses. Using isobolographic analysis, we determined that combined treatment with DAMGO and ACPA produced antagonistic effects with the observed ED50 of 128.4±2.28μg. Our findings showed that MOR and CB1 agonists directed at the inflamed site effectively attenuate mechanical hyperalgesia when administered individually, but exert opposing effects when administered together. The antagonistic interactions between the two classes of drugs at the inflamed site suggest distinct mechanisms unique to peripheral nociceptors or inflamed tissue, and therefore require further studies to investigate whether the therapeutic utility of the combined drug treatments in chronic pain conditions can be optimized.
Collapse
Affiliation(s)
- Q-Schick Auh
- Kyung Hee University, School of Dentistry, Department of Oral Medicine, 1 Hoegi Dong, Dongdaemun Gu, Seoul, Republic of Korea
| | - Yang Hyun Chun
- Kyung Hee University, School of Dentistry, Department of Oral Medicine, 1 Hoegi Dong, Dongdaemun Gu, Seoul, Republic of Korea
| | - Ohannes K Melemedjian
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore St., Baltimore, MD 21201, USA
| | - Youping Zhang
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore St., Baltimore, MD 21201, USA
| | - Jin Y Ro
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore St., Baltimore, MD 21201, USA; Kyung Hee University, School of Dentistry, Department of Oral Medicine, 1 Hoegi Dong, Dongdaemun Gu, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Freitas ACN, Pacheco DF, Machado MFM, Carmona AK, Duarte IDG, de Lima ME. PnPP-19, a spider toxin peptide, induces peripheral antinociception through opioid and cannabinoid receptors and inhibition of neutral endopeptidase. Br J Pharmacol 2016; 173:1491-501. [PMID: 26947933 DOI: 10.1111/bph.13448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The synthetic peptide PnPP-19 has been studied as a new drug candidate to treat erectile dysfunction. However, PnTx2-6, the spider toxin from which the peptide was designed, induces hyperalgesia. Therefore, we intended to investigate the role of PnPP-19 in the nociceptive pathway. EXPERIMENTAL APPROACH Nociceptive thresholds were measured by paw pressure test. PnPP-19 was administered intraplantarly alone or with selective cannabinoid or opioid receptor antagonists. The hydrolysis of PnPP-19 by neutral endopeptidase (NEP) (EC 3.4.24.11), an enzyme that cleaves enkephalin, was monitored by HPLC and the cleavage sites were deduced by LC-MS. Inhibition by PnPP-19 and Leu-enkephalin of NEP enzyme activity was determined spectrofluorimetrically. KEY RESULTS PnPP-19 (5, 10 and 20 μg per paw) induced peripheral antinociception in rats. Specific antagonists of μ opioid receptors (clocinnamox), δ opioid receptors (naltrindole) and CB1 receptors (AM251) partly inhibited the antinociceptive effect of PnPP-19. Inhibition of fatty acid amide hydrolase by MAFP or of anandamide uptake by VDM11 enhanced PnPP-19-induced antinociception. NEP cleaved PnPP-19 only after a long incubation, and Ki values of 35.6 ± 1.4 and 14.6 ± 0.44 μmol·L(-1) were determined for PnPP-19 and Leu-enkephalin respectively as inhibitors of NEP activity. CONCLUSIONS AND IMPLICATIONS Antinociception induced by PnPP-19 appears to involve the inhibition of NEP and activation of CB1, μ and δ opioid receptors. Our data provide a greater understanding of the antinociceptive effects of PnPP-19. This peptide could be useful as a new antinociceptive drug candidate.
Collapse
Affiliation(s)
- A C N Freitas
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - D F Pacheco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - M F M Machado
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - A K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - I D G Duarte
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - M E de Lima
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
33
|
Dopamine-dependent CB1 receptor dysfunction at corticostriatal synapses in homozygous PINK1 knockout mice. Neuropharmacology 2016; 101:460-70. [DOI: 10.1016/j.neuropharm.2015.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/07/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022]
|
34
|
Peppin JF, Raffa RB. Delta opioid agonists: a concise update on potential therapeutic applications. J Clin Pharm Ther 2015; 40:155-66. [PMID: 25726896 DOI: 10.1111/jcpt.12244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/24/2014] [Indexed: 01/23/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE The endogenous opioid system co-evolved with chemical defences, or at times symbiotic relationships, between plants and other autotrophs and heterotrophic predators - thus, it is not surprising that endogenous opioid ligands and exogenous mimetic ligands produce diverse physiological effects. Among the endogenous opioid peptides (endomorphins, enkephalins, dynorphins and nociception/orphanin FQ) derived from the precursors encoded by four genes (PNOC, PENK, PDYN and POMC) are the pentapeptides Met-enkephalin (Tyr-Gly-Gly-Phe-Met) and Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu). The physiological effects of the enkephalins are mediated via 7-transmembrane G protein-coupled receptors, including delta opioid receptor (DOR). We present a concise update on the status of progress and opportunities of this approach. METHODS A literature search of the PUBMED database and a combination of keywords including delta opioid receptor, analgesia, mood and individual compounds identified therein, from industry and other source, and from www.clinicaltrials.com. RESULTS AND DISCUSSION DOR agonist and antagonist ligands have been developed with ever increasing affinity and selectivity for DOR over other opioid receptor subtypes and studied for therapeutic utility, primarily for pain relief, but also for other clinical endpoints. WHAT IS NEW AND CONCLUSION Selective DOR agonists have been designed with a large increase in therapeutic window for a variety of potential CNS applications including pain, depression, and learning and memory among others.
Collapse
Affiliation(s)
- J F Peppin
- Center for Bioethics, Pain Management and Medicine, University City, MO, USA; Mallinckrodt Pharmaceuticals, Hazelwood, MO, USA
| | | |
Collapse
|
35
|
Zádor F, Wollemann M. Receptome: Interactions between three pain-related receptors or the "Triumvirate" of cannabinoid, opioid and TRPV1 receptors. Pharmacol Res 2015; 102:254-63. [PMID: 26520391 DOI: 10.1016/j.phrs.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022]
Abstract
A growing amount of data demonstrates the interactions between cannabinoid, opioid and the transient receptor potential (TRP) vanilloid type 1 (TRPV1) receptors. These interactions can be bidirectional, inhibitory or excitatory, acute or chronic in their nature, and arise both at the molecular level (structurally and functionally) and in physiological processes, such as pain modulation or perception. The interactions of these three pain-related receptors may also reserve important and new therapeutic applications for the treatment of chronic pain or inflammation. In this review, we summarize the main findings on the interactions between the cannabinoid, opioid and the TRPV1 receptor regarding to pain modulation.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Maria Wollemann
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| |
Collapse
|
36
|
Sadhasivam S, Zhang X, Chidambaran V, Mavi J, Pilipenko V, Mersha TB, Meller J, Kaufman KM, Martin LJ, McAuliffe J. Novel associations between FAAH genetic variants and postoperative central opioid-related adverse effects. THE PHARMACOGENOMICS JOURNAL 2015; 15:436-42. [PMID: 25558980 PMCID: PMC4492912 DOI: 10.1038/tpj.2014.79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/15/2014] [Accepted: 11/07/2014] [Indexed: 01/01/2023]
Abstract
Opioid effects are potentiated by cannabinoid agonists including anandamide, an endocannabinoid. Inter-individual variability in responses to opioids is a major clinical problem. Multiple deaths and anoxic brain injuries occur every year because of opioid-induced respiratory depression (RD) in surgical patients and drug abusers of opioids and cannabinoids. This study aimed to determine specific associations between genetic variants of fatty acid amide hydrolase (FAAH) and postoperative central opioid adverse effects in children undergoing tonsillectomy. This is a prospective genotype-blinded observational study in which 259 healthy children between 6 and 15 years of age who received standard perioperative care with a standard anesthetic and an intraoperative dose of morphine were enrolled. Associations between frequent polymorphisms of FAAH and central postoperative opioid adverse effects including, RD, postoperative nausea and vomiting (PONV) and prolonged stay in Post Anesthesia Recovery Room (postoperative anesthesia care unit, PACU) due to RD and PONV were analyzed. Five specific FAAH single nucleotide polymorphisms (SNPs) had significant associations with more than twofold increased risk for refractory PONV (adjusted P<0.0018), and nominal associations (P<0.05) with RD and prolonged PACU stay in white children undergoing tonsillectomy. The FAAH SNP, rs324420, is a missense mutation with altered FAAH function and it is linked with other FAAH SNPs associated with PONV and RD in our cohort; association between PONV and rs324420 was confirmed in our extended cohort with additional 66 white children. Specific FAAH polymorphisms are associated with refractory PONV, opioid-related RD, and prolonged PACU stay due to opioid adverse effects in white children undergoing tonsillectomy.
Collapse
Affiliation(s)
- Senthilkumar Sadhasivam
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Xue Zhang
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jagroop Mavi
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Valentina Pilipenko
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Tesfaye B. Mersha
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jaroslaw Meller
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Bioinformatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth M. Kaufman
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Cincinnati VA Medical Center, Cincinnati, OH, USA
| | - Lisa J. Martin
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - John McAuliffe
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
37
|
Influence of muscarinic receptor modulators on interacerebroventricular injection of arachydonylcyclopropylamide induced antinociception in mice. Physiol Behav 2015; 138:273-8. [DOI: 10.1016/j.physbeh.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 05/29/2014] [Accepted: 10/09/2014] [Indexed: 11/15/2022]
|
38
|
Pacheco DDF, Romero TRL, Duarte IDG. Central antinociception induced by ketamine is mediated by endogenous opioids and μ- and δ-opioid receptors. Brain Res 2014; 1562:69-75. [PMID: 24675031 DOI: 10.1016/j.brainres.2014.03.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 11/27/2022]
Abstract
It is generally believed that NMDA receptor antagonism accounts for most of the anesthetic and analgesic effects of ketamine, however, it interacts at multiple sites in the central nervous system, including NMDA and non-NMDA glutamate receptors, nicotinic and muscarinic cholinergic receptors, and adrenergic and opioid receptors. Interestingly, it was shown that at supraspinal sites, ketamine interacts with the μ-opioid system and causes supraspinal antinociception. In this study, we investigated the involvement of endogenous opioids in ketamine-induced central antinociception. The nociceptive threshold for thermal stimulation was measured in Swiss mice using the tail-flick test. The drugs were administered via the intracerebroventricular route. Our results demonstrated that the opioid receptor antagonist naloxone, the μ-opioid receptor antagonist clocinnamox and the δ-opioid receptor antagonist naltrindole, but not the κ-opioid receptor antagonist nor-binaltorphimine, antagonized ketamine-induced central antinociception in a dose-dependent manner. Additionally, the administration of the aminopeptidase inhibitor bestatin significantly enhanced low-dose ketamine-induced central antinociception. These data provide evidence for the involvement of endogenous opioids and μ- and δ-opioid receptors in ketamine-induced central antinociception. In contrast, κ-opioid receptors not appear to be involved in this effect.
Collapse
Affiliation(s)
- Daniela da Fonseca Pacheco
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, CEP 31.270.100, Belo Horizonte, Brazil
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, CEP 31.270.100, Belo Horizonte, Brazil
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, CEP 31.270.100, Belo Horizonte, Brazil.
| |
Collapse
|
39
|
Desroches J, Bouchard JF, Gendron L, Beaulieu P. Involvement of cannabinoid receptors in peripheral and spinal morphine analgesia. Neuroscience 2014; 261:23-42. [DOI: 10.1016/j.neuroscience.2013.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/27/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
|
40
|
Romero TRL, Pacheco DDF, Duarte IDG. Probable involvement of Ca2+-activated Cl− channels (CaCCs) in the activation of CB1 cannabinoid receptors. Life Sci 2013; 92:815-20. [DOI: 10.1016/j.lfs.2012.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 08/30/2012] [Accepted: 10/11/2012] [Indexed: 11/29/2022]
|
41
|
Involvement of the opioid and cannabinoid systems in pain control: new insights from knockout studies. Eur J Pharmacol 2013; 716:142-57. [PMID: 23523475 DOI: 10.1016/j.ejphar.2013.01.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 12/20/2022]
Abstract
The endogenous opioid and cannabinoid systems are involved in the physiological inhibitory control of pain and are of particular interest for the development of therapeutic approaches for pain management. The involvement of these endogenous systems in pain control has been studied from decades by the use of compounds with different affinities for each cannabinoid and opioid receptor or for the different enzymes involved in endocannabinoid and endogenous opioid metabolism. However, the selectivity of these pharmacological tools in vivo has represented an important limitation for these studies. The generation of genetically modified mice with selective mutations in specific components of the endocannabinoid and endogenous opioid system has provided important advances in the identification of the specific contribution of each component of these endogenous systems in the perception of noxious stimuli and the development of pathological pain states. Different lines of constitutive and conditional knockout mice deficient in specific cannabinoid and opioid receptors, specific precursors of the endogenous opioid peptides and the main enzymes involved in endocannabinoid and endogenous opioid degradation are now available. These knockout mice have also been used to evaluate the contribution of each component of the endocannabinoid and opioid system in the antinociceptive effects of cannabinoid and opioid agonists, including those currently used to treat pain in humans. This review summarizes the main advances provided in the last 15 years by the use of these genetic tools in the knowledge of the physiological control of pain and the pharmacology of cannabinoid and opioid compounds for pain management.
Collapse
|
42
|
Laprairie RB, Kelly MEM, Denovan-Wright EM. The dynamic nature of type 1 cannabinoid receptor (CB(1) ) gene transcription. Br J Pharmacol 2012; 167:1583-95. [PMID: 22924606 PMCID: PMC3525862 DOI: 10.1111/j.1476-5381.2012.02175.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED The type 1 cannabinoid receptor (CB(1) ) is an integral component of the endocannabinoid system that modulates several functions in the CNS and periphery. The majority of our knowledge of the endocannabinoid system involves ligand-receptor binding, mechanisms of signal transduction, and protein-protein interactions. In contrast, comparatively little is known about regulation of CB(1) gene expression. The levels and anatomical distribution of CB(1) mRNA and protein are developmental stage-specific and are dysregulated in several pathological conditions. Moreover, exposure to a variety of drugs, including cannabinoids themselves, alters CB(1) gene expression and mRNA levels. As such, alterations in CB(1) gene expression are likely to affect the optimal response to cannabinoid-based therapies, which are being developed to treat a growing number of conditions. Here, we will examine the regulation of CB(1) mRNA levels and the therapeutic potential inherent in manipulating expression of this gene. LINKED ARTICLES This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8.
Collapse
Affiliation(s)
- R B Laprairie
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
43
|
Naltrexone does not attenuate the effects of intravenous Δ9-tetrahydrocannabinol in healthy humans. Int J Neuropsychopharmacol 2012; 15:1251-64. [PMID: 22243563 DOI: 10.1017/s1461145711001830] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although a wealth of preclinical evidence indicates an interplay between the μ-opioid (MOR) and cannabinoid 1 receptor (CB1R) systems, the precise nature of the cross modulation in humans is unclear. The objective of this study was to evaluate the effects of pretreatment with the MOR antagonist, naltrexone, on the subjective, behavioural and cognitive effects of the CB1R agonist, Δ9-tetrahydrocannabinol (THC), in healthy human subjects. Healthy human subjects, screened carefully for any medical or psychiatric illness, were administered either placebo or active naltrexone (25 mg) orally on each test day, followed 45 min later by placebo and 165 min later by active i.v. THC (0.025 mg/kg) in a randomized, fixed-order, double-blind manner. Subjective, behavioural and cognitive effects were assessed before and at several points after each drug administration. THC produced expected effects, including euphoria, anxiety, transient perceptual alterations, transient psychotomimetic effects and cognitive impairments. However, naltrexone did not produce any effects alone, nor did it attenuate any of THC's effects. Thus, in healthy human subjects who use cannabis intermittently, MOR antagonism does not modulate the common acute subjective, behavioural and cognitive effects of THC.
Collapse
|
44
|
Silva LCR, Romero TRL, Guzzo LS, Duarte IDG. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs. Braz J Med Biol Res 2012; 45:1240-3. [PMID: 22983178 PMCID: PMC3854224 DOI: 10.1590/s0100-879x2012007500153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 08/03/2012] [Indexed: 02/02/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group). Hyperalgesia was induced by a subcutaneous intraplantar (ipl) injection of prostaglandin E2 (PGE2, 2 μg/paw) in the rat's hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE2, which induced hyperalgesia (mean = 83.3 ± 4.505 g). AM-251 (80 μg/paw) and AM-630 (100 μg/paw) were used as CB1 and CB2 cannabinoid receptor antagonists, respectively. Ipl injection of 40 μg dipyrone (mean = 5.825 ± 2.842 g), 20 μg diclofenac (mean = 4.825 ± 3.850 g) and 40 μg indomethacin (mean = 6.650 ± 3.611 g) elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB1 cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g), diclofenac (mean = 2.50 ± 0.8337 g) and indomethacin (mean = 6.650 ± 4.069 g) or CB2 cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g), diclofenac (mean = 6.675 ± 1.368 g) and indomethacin (mean = 2.85 ± 5.01 g). Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of the NSAIDs dipyrone, diclofenac and indomethacin.
Collapse
Affiliation(s)
- L C R Silva
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | |
Collapse
|
45
|
Seely KA, Brents LK, Franks LN, Rajasekaran M, Zimmerman SM, Fantegrossi WE, Prather PL. AM-251 and rimonabant act as direct antagonists at mu-opioid receptors: implications for opioid/cannabinoid interaction studies. Neuropharmacology 2012; 63:905-15. [PMID: 22771770 DOI: 10.1016/j.neuropharm.2012.06.046] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 06/04/2012] [Accepted: 06/22/2012] [Indexed: 11/16/2022]
Abstract
Mu-opioid and CB1-cannabinoid agonists produce analgesia; however, adverse effects limit use of drugs in both classes. Additive or synergistic effects resulting from concurrent administration of low doses of mu- and CB1-agonists may produce analgesia with fewer side effects. Synergism potentially results from interaction between mu-opioid receptors (MORs) and CB1 receptors (CB1Rs). AM-251 and rimonabant are CB1R antagonist/inverse agonists employed to validate opioid-cannabinoid interactions, presumed to act selectively at CB1Rs. Therefore, the potential for direct action of these antagonists at MORs is rarely considered. This study determined if AM-251 and/or rimonabant directly bind and modulate the function of MORs. Surprisingly, AM-251 and rimonabant, but not a third CB1R inverse agonist AM-281, bind with mid-nanomolar affinity to human MORs with a rank order of affinity (K(i)) of AM-251 (251 nM) > rimonabant (652 nM) > AM281 (2135 nM). AM-251 and rimonabant, but not AM-281, also competitively antagonize morphine induced G-protein activation in CHO-hMOR cell homogenates (K(b) = 719 or 1310 nM, respectively). AM-251 and rimonabant block morphine inhibition of cAMP production, while only AM-251 elicits cAMP rebound in CHO-hMOR cells chronically exposed to morphine. AM-251 and rimonabant (10 mg/kg) attenuate morphine analgesia, whereas the same dose of AM-281 produces little effect. Therefore, in addition to high CB1R affinity, AM-251 and rimonabant bind to MORs with mid-nanomolar affinity and at higher doses may affect morphine analgesia via direct antagonism at MORs. Such CB1-independent of these antagonists effects may contribute to reported inconsistencies when CB1/MOR interactions are examined via pharmacological methods in CB1-knockout versus wild-type mice.
Collapse
Affiliation(s)
- Kathryn A Seely
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Miller LL, Picker MJ, Umberger MD, Schmidt KT, Dykstra LA. Effects of alterations in cannabinoid signaling, alone and in combination with morphine, on pain-elicited and pain-suppressed behavior in mice. J Pharmacol Exp Ther 2012; 342:177-87. [PMID: 22514333 DOI: 10.1124/jpet.112.191478] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inhibitors of fatty acid amide hydrolase (FAAH) and anandamide (AEA) uptake, which limit the degradation of endogenous cannabinoids, have received interest as potential therapeutics for pain. There is also evidence that endogenous cannabinoids mediate the antinociceptive effects of opioids. Assays of pain-elicited and pain-suppressed behavior have been used to differentiate the effects of drugs that specifically alter nociception from drugs that alter nociception caused by nonspecific effects such as catalepsy or a general suppression of activity. Using such procedures, this study examines the effects of the direct cannabinoid type 1 (CB1) agonist (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940), the FAAH inhibitor cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester (URB597), and the AEA uptake inhibitor N-(4-hydroxyphenyl) arachidonylamide (AM404). Additional experiments examined these compounds in combination with morphine. CP55940 produced antinociception in assays of pain-elicited, but not pain-suppressed, behavior and disrupted responding in an assay of schedule-controlled behavior. URB597 and AM404 produced antinociception in assays of pain-elicited and pain-suppressed behavior in which acetic acid was the noxious stimulus, but had no effect on the hotplate and schedule-controlled responding. CP55940 in combination with morphine resulted in effects greater than those of morphine alone in assays of pain-elicited and scheduled-controlled behavior but not pain-suppressed behavior. URB597 in combination with morphine resulted in enhanced morphine effects in assays of pain-elicited and pain-suppressed behavior in which diluted acetic acid was the noxious stimulus, but did not alter morphine's effects on the hotplate or schedule-controlled responding. These studies suggest that, compared with direct CB1 agonists, manipulations of endogenous cannabinoid signaling have enhanced clinical potential; however, their effects depend on the type of noxious stimulus.
Collapse
Affiliation(s)
- Laurence L Miller
- Department of Psychology, University of North Carolina, Chapel Hill, North Carolina, USA.
| | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Stuart Maudsley
- Intramural Research Program/National Institute on Aging/National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
48
|
Effects of neuropeptide FF system on CB₁ and CB₂ receptors mediated antinociception in mice. Neuropharmacology 2011; 62:855-64. [PMID: 21945715 DOI: 10.1016/j.neuropharm.2011.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/04/2011] [Accepted: 09/13/2011] [Indexed: 11/22/2022]
Abstract
It has been demonstrated that opioid and cannabinoid receptor systems can produce similar signal transduction and behavioural effects. Neuropeptide FF (NPFF) belongs to an opioid-modulating peptide family. NPFF has been reported to play important roles in control of pain and analgesia through interactions with the opioid system. We were interested in whether the central and peripheral antinociception of cannabinoids could be influenced by supraspinal NPFF system. The present study examined the effects of NPFF and related peptides on the antinociceptive activities induced by the non-selective cannabinoid receptors agonist WIN55,212-2, given by supraspinal and intraplantar routes. In mice, the central and peripheral antinociception of WIN55,212-2 are mediated by cannabinoid CB(1) and CB(2) receptors, respectively. Interestingly, central administration of NPFF significantly reduced central and peripheral analgesia of cannabinoids in dose-dependent manners. In contrast, dNPA and NPVF (i.c.v.), two highly selective agonists for NPFF(2) and NPFF(1) receptors, dose-dependently augmented the antinociception caused by intracerebroventricular and intraplantar injection of WIN55,212-2. Additionally, pretreatment with the NPFF receptors selective antagonist RF9 (i.c.v.) markedly reduced the cannabinoid-modulating activities of NPFF and related peptides in nociceptive assays. These data provide the first evidence for a functional interaction between NPFF and cannabinoid systems, indicating that activation of central NPFF receptors interferes with cannabinoid-mediated central and peripheral antinociception. Intriguingly, the present work may pave the way for a new strategy of using combination treatment of cannabinoid and NPFF agonists for pain management. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
|
49
|
Miller LL, Picker MJ, Schmidt KT, Dykstra LA. Effects of morphine on pain-elicited and pain-suppressed behavior in CB1 knockout and wildtype mice. Psychopharmacology (Berl) 2011; 215:455-65. [PMID: 21373789 PMCID: PMC3160632 DOI: 10.1007/s00213-011-2232-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 02/13/2011] [Indexed: 12/21/2022]
Abstract
RATIONALE Pharmacological manipulations of the type 1 cannabinoid receptor (CB1) suggest a role for CB1 in morphine-induced antinociception, but studies utilizing CB1 knockout (KO) mice do not support this conclusion. Since studies using CB1 KO mice to study morphine's antinociceptive effects have only examined thermal nociception, this study examines these interactions in models that employ a chemical stimulus. OBJECTIVES To determine whether the findings obtained with thermal pain models extend to other models, the effects of morphine on acetic acid-induced writhing were examined in CB1 KO and wildtype (WT) mice. Behaviors that decrease in response to acid injection, feeding and wheel running, were also examined, and investigations were carried out in the thermal hotplate assay. The CB1 antagonist SR141716A was also examined in these assays. RESULTS Morphine completely blocked acid-induced writhing (1.0-10.0 mg/kg) and increased response latencies in the hotplate (10.0-32.0 mg/kg) in both genotypes. Morphine (3.2 mg/kg) significantly attenuated the suppression of wheel running but did not completely prevent this effect in either genotype. Morphine did not alter pain-suppressed feeding. In each of these assays, morphine's effects were not altered in CB1 KO mice compared with WT mice; however, SR141716A attenuated morphine's effects in C57BL/6 mice. CONCLUSIONS The effects of morphine do not differ in CB1 KO and WT mice in preclinical pain models using thermal and chemical stimuli. Since SR141716A did attenuate the effects of morphine, it is possible that CB1 KO mice undergo developmental changes that mask the role of CB1 receptors in morphine's antinociceptive effects.
Collapse
Affiliation(s)
- Laurence L Miller
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
50
|
Rezayof A, Sardari M, Zarrindast MR, Nayer-Nouri T. Functional interaction between morphine and central amygdala cannabinoid CB1 receptors in the acquisition and expression of conditioned place preference. Behav Brain Res 2011; 220:1-8. [PMID: 21262265 DOI: 10.1016/j.bbr.2011.01.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 11/17/2022]
Abstract
The present study was done to determine whether cannabinoid CB1 receptors of the central amygdala (CeA) are implicated in morphine-induced place preference. Using a 3-day schedule of conditioning, it was found that subcutaneous (s.c.) administration of morphine (2, 4 and 6 mg/kg) caused a significant dose-dependent conditioned place preference (CPP) in male Wistar rats. Intra-CeA microinjection of the cannabinoid CB1 receptor agonist arachidonylcyclopropylamide (ACPA; 0.5, 2.5 and 5 ng/rat) dose-dependently potentiated the morphine (2mg/kg)-induced CPP. Furthermore, the administration of ACPA (5 ng/rat, intra-CeA) alone induced a significant CPP. It should be considered that the higher dose of ACPA (5 ng/rat, intra-CeA) in combination with morphine decreased locomotor activity on the testing phase. On the other hand, intra-CeA microinjection of the cannabinoid CB1 receptor antagonist AM251 (120 ng/rat) alone induced a significant conditioned place aversion (CPA). Moreover, intra-CeA microinjection of AM251 (90 and 120 ng/rat) inhibited the morphine-induced place preference with a significant interaction. Intra-CeA microinjection of AM251 reversed the effect of ACPA on morphine response. Interestingly, microinjection of ACPA (2.5 and 5 ng/rat) or AM251 (60-120 ng/rat) into the CeA increased or decreased the expression of morphine (6 mg/kg)-induced place preference respectively. These observations provide evidence that cannabinoid CB1 receptors of the CeA are involved in mediating reward and these receptors are also implicated in the acquisition and expression of morphine-induced CPP.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | | | | |
Collapse
|