1
|
Breault É, Desgagné M, Neve JD, Côté J, Barlow TMA, Ballet S, Sarret P. Multitarget ligands that comprise opioid/nonopioid pharmacophores for pain management: Current state of the science. Pharmacol Res 2024; 209:107408. [PMID: 39307212 DOI: 10.1016/j.phrs.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction. In addition, the development of opioid-use disorders, such as opioid diversion, misuse, and abuse, has led to the current opioid crisis, with dramatic increases in addiction, overdoses, and ultimately deaths. As pain is a complex, multidimensional experience involving a variety of pathways and mediators, dual or multitarget ligands that can bind to more than one receptor and exert complementary analgesic effects, represent a promising avenue for pain relief. Indeed, unlike monomodal therapeutic approaches, the modulation of several endogenous nociceptive systems can often result in an additive or even synergistic effect, thereby improving the analgesic-to-side-effect ratio. Here, we provide a comprehensive overview of research efforts towards the development of dual- or multi-targeting opioid/nonopioid hybrid ligands for effective and safer pain management. We reflect on the underpinning discovery rationale by discussing the design, medicinal chemistry, and in vivo pharmacological effects of multitarget antinociceptive compounds.
Collapse
Affiliation(s)
- Émile Breault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Jérôme Côté
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
2
|
Witoszka K, Matalińska J, Misicka A, Lipiński PFJ. Moving out of CF 3 -Land: Synthesis, Receptor Affinity, and in silico Studies of NK1 Receptor Ligands Containing a Pentafluorosulfanyl (SF 5 ) Group. ChemMedChem 2023; 18:e202300315. [PMID: 37821725 DOI: 10.1002/cmdc.202300315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
The NK1 receptor (NK1R) is a molecular target for both approved and experimental drugs intended for a variety of conditions, including emesis, pain, and cancers. While contemplating modifications to the typical NK1R pharmacophore, we wondered whether the CF3 groups common for many NK1R ligands, could be replaced with some other moiety. Our attention was drawn by the SF5 group, and so we designed, synthesized, and tested ten novel SF5 -containing compounds for NK1R affinity. All analogues exhibit detectable NK1R binding, with the best of them, compound 5 a, (3-bromo-5-(pentafluoro-λ6 -sulfanyl)benzyl acetyl-L-tryptophanate) binding only slightly worse (IC50 =34.3 nM) than the approved NK1R-targeting drug, aprepitant (IC50 =27.7 nM). Molecular docking provided structural explanation of SAR. According to our analysis, the SF5 group in our compounds occupies a position similar to that of one of the CF3 groups of aprepitant as found in the crystal structure. Additionally, we checked whether the docking scoring function or energies derived from Fragment Molecular Orbital quantum chemical calculations may be helpful in explaining and predicting the experimental receptor affinities for our analogues. Both these methods produce moderately good results. Overall, this is the first demonstration of the utility of the SF5 group in the design of NK1R ligands.
Collapse
Affiliation(s)
- Katarzyna Witoszka
- Department of Neuropeptides, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Joanna Matalińska
- Department of Neuropeptides, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Aleksandra Misicka
- Department of Neuropeptides, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| |
Collapse
|
3
|
Zhang M, Xu B, Li N, Liu H, Shi X, Zhang Q, Shi Y, Xu K, Xiao J, Chen D, Zhu H, Sun Y, Zhang T, Zhang R, Fang Q. Synthesis and Biological Characterization of Cyclic Disulfide-Containing Peptide Analogs of the Multifunctional Opioid/Neuropeptide FF Receptor Agonists That Produce Long-Lasting and Nontolerant Antinociception. J Med Chem 2020; 63:15709-15725. [PMID: 33271020 DOI: 10.1021/acs.jmedchem.0c01367] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In a previously described chimeric peptide, we reported that the multifunctional opioid/neuropeptide FF (NPFF) receptor agonist 0 (BN-9) produced antinociception for 1.5 h after supraspinal administration. Herein, four cyclic disulfide analogs containing l- and/or d-type cysteine at positions 2 and 5 were synthesized. The cyclized analogs and their linear counterparts behaved as multifunctional agonists at both opioid and NPFF receptors in vitro and produced potent analgesia without tolerance development. In comparison to 0, cyclized peptide 6 exhibited sevenfold more potent μ-opioid receptor agonistic activity in vitro. Interestingly, the cyclized analog 6 possessed an improved stability in the brain and an increased blood-brain barrier permeability compared to the parent peptide 0 and produced more potent analgesia after supraspinal or subcutaneous administration with improved duration of action of 4 h. In addition, antinociceptive tolerance of analog 6 was greatly reduced after subcutaneous injection compared to fentanyl, as was the rewarding effect, withdrawal reaction, and gastrointestinal inhibition.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xuerui Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Yulong Sun
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, PR China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| |
Collapse
|
4
|
Matalińska J, Lipiński PFJ, Kosson P, Kosińska K, Misicka A. In Vivo, In Vitro and In Silico Studies of the Hybrid Compound AA3266, an Opioid Agonist/NK1R Antagonist with Selective Cytotoxicity. Int J Mol Sci 2020; 21:E7738. [PMID: 33086743 PMCID: PMC7588979 DOI: 10.3390/ijms21207738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022] Open
Abstract
AA3266 is a hybrid compound consisting of opioid receptor agonist and neurokinin-1 receptor (NK1R) antagonist pharmacophores. It was designed with the desire to have an analgesic molecule with improved properties and auxiliary anticancer activity. Previously, the compound was found to exhibit high affinity for μ- and δ-opioid receptors, while moderate binding to NK1R. In the presented contribution, we report on a deeper investigation of this hybrid. In vivo, we have established that AA3266 has potent antinociceptive activity in acute pain model, comparable to that of morphine. Desirably, with prolonged administration, our hybrid induces less tolerance than morphine does. AA3266, contrary to morphine, does not cause development of constipation, which is one of the main undesirable effects of opioid use. In vitro, we have confirmed relatively strong cytotoxic activity on a few selected cancer cell lines, similar to or greater than that of a reference NK1R antagonist, aprepitant. Importantly, our compound affects normal cells to smaller extent what makes our compound more selective against cancer cells. In silico methods, including molecular docking, molecular dynamics simulations and fragment molecular orbital calculations, have been used to investigate the interactions of AA3266 with MOR and NK1R. Insights from these will guide structural optimization of opioid/antitachykinin hybrid compounds.
Collapse
Affiliation(s)
- Joanna Matalińska
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (K.K.); (A.M.)
| | - Piotr F. J. Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (K.K.); (A.M.)
| | - Piotr Kosson
- Toxicology Research Laboratory, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Katarzyna Kosińska
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (K.K.); (A.M.)
| | - Aleksandra Misicka
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (K.K.); (A.M.)
| |
Collapse
|
5
|
Zhang R, Xu B, Zhang Q, Chen D, Zhang M, Zhao G, Xu K, Xiao J, Zhu H, Niu J, Li N, Fang Q. Spinal administration of the multi-functional opioid/neuropeptide FF agonist BN-9 produced potent antinociception without development of tolerance and opioid-induced hyperalgesia. Eur J Pharmacol 2020; 880:173169. [PMID: 32416184 DOI: 10.1016/j.ejphar.2020.173169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Chronic opioids treatment is impeded by the development of analgesic tolerance and opioid-induced hyperalgesia. Recent studies have shown that multi-functional opioid compounds produce analgesic activities with limited side effects. We developed a novel multi-functional peptide targeting opioid and neuropeptide FF receptors named BN-9, which produced potent and non-tolerance forming antinociceptive effect after supraspinal and systemic administrations. In the present study, the analgesic properties and potential side effects of intrathecal BN-9 were investigated in a range of preclinical rodent models. In complete Freund's adjuvant-induced inflammatory pain model, intrathecal BN-9 dose-dependently produced analgesic effect via opioid receptors, and the spinal antinociceptive effect was augmented by the neuropeptide FF receptor antagonist RF9. In contrast, in plantar incision-induced postoperative pain model, BN-9 exhibited potent anti-allodynic effect via opioid receptors and, at least partially, neuropeptide FF receptors. In mouse models of acetic acid-induced visceral pain and formalin pain, BN-9-induced spinal antinociception was mainly mediated by opioid receptors, independent of neuropeptide FF receptors. Furthermore, at the spinal level, chronic treatments with BN-9 did not lead to analgesic tolerance and cross-tolerance to morphine. Moreover, opioid-induced hyperalgesia was observed after repeated administration of morphine, but not BN-9. Taken together, our present study suggests that intrathecal BN-9 produces potent and non-tolerance forming antinociception, and does not cause opioid-induced hyperalgesia. Thus, BN-9 might serve as a promising lead compound in the development of multi-functional opioid analgesics with minimized side effects.
Collapse
Affiliation(s)
- Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Guanghai Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
6
|
Matalińska J, Lipiński PFJ, Kotlarz A, Kosson P, Muchowska A, Dyniewicz J. Evaluation of Receptor Affinity, Analgesic Activity and Cytotoxicity of a Hybrid Peptide, AWL3020. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10051-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractIn the present contribution we report design, synthesis and evaluation of receptor affinity, analgesic activity and cytotoxicity of a hybrid peptide, AWL3020. The peptide includes two pharmacophores, one of δ-opioid receptor (δOR) agonists and one of neurokinin-1 receptor (NK1R) antagonists. The design was motivated by the desire to obtain a compound with strong analgesic action and potential additional antiproliferative action. The compound displays high δOR affinity (IC50 = 29.5 nM). On the other hand, it has only poor affinity for the NK1R (IC50 = 70.28 μM). The substance shows good analgesic action which is however weaker than that of morphine. Regarding the effect on proliferation, the compound exhibits no pro-proliferative action in the assayed range. In higher concentrations, it has also cytotoxic activity. This effect is however not selective. The strongest effect of AWL3020 was found for melanoma MeW164 cell line (EC50 = 46.27 μM in reduction of cell numbers after a few days of incubation; EC50 = 37.78 μM in MTT assay).
Collapse
|
7
|
Schank JR. Neurokinin receptors in drug and alcohol addiction. Brain Res 2020; 1734:146729. [PMID: 32067964 DOI: 10.1016/j.brainres.2020.146729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 10/25/2022]
Abstract
The neurokinins are a class of peptide signaling molecules that mediate a range of central and peripheral functions including pain processing, gastrointestinal function, stress responses, and anxiety. Recent data have linked these neuropeptides with drug-related behaviors. Specifically, substance P (SP) and neurokinin B (NKB), have been shown to influence responses to alcohol, cocaine, and/or opiate drugs. SP and NKB preferentially bind to the neurokinin-1 receptor (NK1R) and neurokinin-3 receptor (NK3R), respectively, but do have some affinity for all classes of neurokinin receptor at high concentrations. NK1R activity has been shown to influence reward and reinforcement for opiate drugs, stimulatory and neurochemical responses to cocaine, and escalated and stress-induced alcohol seeking. In reinstatement models of relapse-like behavior, NK1R antagonism attenuates stress-induced reinstatement for all classes of drugs tested to date. The NK3R also influences alcohol intake and behavioral/neurochemical responses to cocaine, but less research has been performed in regard to this particular receptor in preclinical models of addiction. Clinically, agents targeting these receptors have shown some promise, but have produced mixed results. Here, the preclinical findings for the NK1R and NK3R are reviewed, and discussion is provided to interpret clinical findings. Additionally, important factors to consider in regards to future clinical work are suggested.
Collapse
Affiliation(s)
- Jesse R Schank
- University of Georgia, Department of Physiology and Pharmacology, 501 DW Brooks Drive, Athens, GA 30602, USA.
| |
Collapse
|
8
|
Hruby VJ. Multivalent peptide and peptidomimetic ligands for the treatment of pain without toxicities and addiction. Peptides 2019; 116:63-67. [PMID: 31014958 DOI: 10.1016/j.peptides.2019.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
The current opioid crisis has created a tragic problem in medicine and society. Pain is the most ubiquitous and costly disease in society and yet all of our "treatments" have toxicities, especially for prolonged use. However, there are several alternatives that have been discovered in the past fifteen years that have been demonstrated in animals to have none of the toxicities of current drugs. Many of the compounds are multivalent and have novel biological activity profiles. Unfortunately, none of these have been in clinical trials in humans, perhaps because they were discovered in academic laboratories. A review of these novel chemicals are given in this paper.
Collapse
MESH Headings
- Analgesics, Opioid/therapeutic use
- Animals
- Humans
- Ligands
- Opioid Peptides/chemistry
- Opioid Peptides/therapeutic use
- Pain/drug therapy
- Pain/pathology
- Pain Management
- Peptides/adverse effects
- Peptides/therapeutic use
- Peptidomimetics/adverse effects
- Peptidomimetics/therapeutic use
- Receptors, Opioid/chemistry
- Receptors, Opioid/therapeutic use
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
Collapse
Affiliation(s)
- Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
9
|
Discovery of two novel branched peptidomimetics containing endomorphin-2 and RF9 pharmacophores: Synthesis and neuropharmacological evaluation. Bioorg Med Chem 2019; 27:630-643. [DOI: 10.1016/j.bmc.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/25/2018] [Accepted: 01/03/2019] [Indexed: 11/23/2022]
|
10
|
Abstract
Hybrid compounds (also known as chimeras, designed multiple ligands, bivalent compounds) are chemical units where two active components, usually possessing affinity and selectivity for distinct molecular targets, are combined as a single chemical entity. The rationale for using a chimeric approach is well documented as such novel drugs are characterized by their enhanced enzymatic stability and biological activity. This allows their use at lower concentrations, increasing their safety profile, particularly when considering undesirable side effects. In the group of synthetic bivalent compounds, drugs combining pharmacophores having affinities toward opioid and neurokinin-1 receptors have been extensively studied as potential analgesic drugs. Indeed, substance P is known as a major endogenous modulator of nociception both in the peripheral and central nervous systems. Hence, synthetic peptide fragments showing either agonism or antagonism at neurokinin 1 receptor were both assigned with analgesic properties. However, even though preclinical studies designated neurokinin-1 receptor antagonists as promising analgesics, early clinical studies revealed a lack of efficacy in human. Nevertheless, their molecular combination with enkephalin/endomorphin fragments has been considered as a valuable approach to design putatively promising ligands for the treatment of pain. This paper is aimed at summarizing a 20-year journey to the development of potent analgesic hybrid compounds involving an opioid pharmacophore and devoid of unwanted side effects. Additionally, the legitimacy of considering neurokinin-1 receptor ligands in the design of chimeric drugs is discussed.
Collapse
|
11
|
Li N, Han ZL, Xu B, Zhang MN, Zhang T, Shi XR, Zhao WD, Guo YY, Zhang QQ, Fang Q. Systemic administration of the bifunctional opioid/neuropeptide FF receptors agonist BN-9 produced peripheral antinociception in preclinical mouse models of pain. Eur J Pharmacol 2018; 837:53-63. [DOI: 10.1016/j.ejphar.2018.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 01/10/2023]
|
12
|
Sandweiss AJ, McIntosh MI, Moutal A, Davidson-Knapp R, Hu J, Giri AK, Yamamoto T, Hruby VJ, Khanna R, Largent-Milnes TM, Vanderah TW. Genetic and pharmacological antagonism of NK 1 receptor prevents opiate abuse potential. Mol Psychiatry 2018; 23:1745-1755. [PMID: 28485408 PMCID: PMC5680162 DOI: 10.1038/mp.2017.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/03/2017] [Accepted: 03/16/2017] [Indexed: 11/29/2022]
Abstract
Development of an efficacious, non-addicting analgesic has been challenging. Discovery of novel mechanisms underlying addiction may present a solution. Here we target the neurokinin system, which is involved in both pain and addiction. Morphine exerts its rewarding actions, at least in part, by inhibiting GABAergic input onto substance P (SP) neurons in the ventral tegmental area (VTA), subsequently increasing SP release onto dopaminergic neurons. Genome editing of the neurokinin 1 receptor (NK1R) in the VTA renders morphine non-rewarding. Complementing our genetic approach, we demonstrate utility of a bivalent pharmacophore with dual activity as a μ/δ opioid agonist and NK1R antagonist in inhibiting nociception in an animal model of acute pain while lacking any positive reinforcement. These data indicate that dual targeting of the dopaminergic reward circuitry and pain pathways with a multifunctional opioid agonist-NK1R antagonist may be an efficacious strategy in developing future analgesics that lack abuse potential.
Collapse
MESH Headings
- Acute Pain/drug therapy
- Acute Pain/metabolism
- Analgesics/pharmacology
- Animals
- CRISPR-Cas Systems
- Disease Models, Animal
- Dopamine/metabolism
- Escherichia coli
- Gene Knockdown Techniques
- Male
- Mice, Inbred ICR
- Morphine/pharmacology
- Neurokinin-1 Receptor Antagonists/pharmacology
- Nociceptive Pain/drug therapy
- Nociceptive Pain/metabolism
- Opioid-Related Disorders/genetics
- Opioid-Related Disorders/metabolism
- Opioid-Related Disorders/prevention & control
- Rats, Sprague-Dawley
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Reward
- Substance P/metabolism
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- A J Sandweiss
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - M I McIntosh
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - A Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - R Davidson-Knapp
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - J Hu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - A K Giri
- Department of Chemistry, University of Arizona, Tucson, AZ, USA
| | - T Yamamoto
- Department of Chemistry, University of Arizona, Tucson, AZ, USA
| | - V J Hruby
- Department of Chemistry, University of Arizona, Tucson, AZ, USA
| | - R Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - T M Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - T W Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Opioid use and abuse has led to a worldwide opioid epidemic. And while opioids are clinically useful when appropriately indicated, they are associated with a wide range of dangerous side effects and whether they are effective at treating or eliminating chronic pain is controversial. There has long been a need for the development of nonopioid alternative treatments for patients that live in pain, and until recently, only a few effective treatments were available. Today, there are a wide range of nonopioid treatments available including NSAIDs, acetaminophen, corticosteroids, nerve blocks, SSRIs, neurostimulators, and anticonvulsants. However, these treatments are still not entirely effective at treating pain, which has sparked a new exploration of novel nonopioid pharmacotherapies. RECENT FINDINGS This manuscript will outline the most recent trends in novel nonopioid pharmacotherapy development including tramadol/dexketoprofen, TrkA inhibitors, tapentadol, opioid agonists, Nektar 181, TRV 130, ßarrestin2, bisphosphonates, antibodies, sodium channel blockers, NMDA antagonists, TRP receptors, transdermal vitamin D, AAK1 kinase inhibition, calcitonin gene-related peptide (CGRP), TRPV4 antagonists, cholecystokinin, delta opioid receptor, neurokinin, and gene therapy. The pharmacotherapies discussed in this manuscript outline promising opioid alternatives which can change the future of chronic pain treatment.
Collapse
|
14
|
Dulin JD, Coyne PJ, Bohm NM, Adler M. Fosaprepitant for the Management of Refractory Pain in a Patient with Cancer-Related Dermatomyositis. J Palliat Med 2017; 20:1415-1419. [DOI: 10.1089/jpm.2017.0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jennifer D. Dulin
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Patrick J. Coyne
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Nicole M. Bohm
- Department of Clinical Pharmacy and Outcomes Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Mary Adler
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
15
|
Starnowska J, Costante R, Guillemyn K, Popiolek-Barczyk K, Chung NN, Lemieux C, Keresztes A, Van Duppen J, Mollica A, Streicher J, Vanden Broeck J, Schiller PW, Tourwé D, Mika J, Ballet S, Przewlocka B. Analgesic Properties of Opioid/NK1 Multitarget Ligands with Distinct in Vitro Profiles in Naive and Chronic Constriction Injury Mice. ACS Chem Neurosci 2017; 8:2315-2324. [PMID: 28699350 DOI: 10.1021/acschemneuro.7b00226] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The lower efficacy of opioids in neuropathic pain may be due to the increased activity of pronociceptive systems such as substance P. We present evidence to support this hypothesis in this work from the spinal cord in a neuropathic pain model in mice. Biochemical analysis confirmed the elevated mRNA and protein level of pronociceptive substance P, the major endogenous ligand of the neurokinin-1 (NK1) receptor, in the lumbar spinal cord of chronic constriction injury (CCI)-mice. To improve opioid efficacy in neuropathic pain, novel compounds containing opioid agonist and neurokinin 1 (NK1) receptor antagonist pharmacophores were designed. Structure-activity studies were performed on opioid agonist/NK1 receptor antagonist hybrid peptides by modification of the C-terminal amide substituents. All compounds were evaluated for their affinity and in vitro activity at the mu opioid (MOP) and delta opioid (DOP) receptors, and for their affinity and antagonist activity at the NK1 receptor. On the basis of their in vitro profiles, the analgesic properties of two new bifunctional hybrids were evaluated in naive and CCI-mice, representing models for acute and neuropathic pain, respectively. The compounds were administered to the spinal cord by lumbar puncture. In naive mice, the single pharmacophore opioid parent compounds provided better analgesic results, as compared to the hybrids (max 70% MPE), raising the acute pain threshold close to 100% MPE. On the other hand, the opioid parents gave poor analgesic effects under neuropathic pain conditions, while the best hybrid delivered robust (close to 100% MPE) and long lasting alleviation of both tactile and thermal hypersensitivity. The results presented emphasize the potential of opioid/NK1 hybrids in view of analgesia under nerve injury conditions.
Collapse
Affiliation(s)
- Joanna Starnowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 31-343 Krakow, Poland
| | - Roberto Costante
- Research
Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Karel Guillemyn
- Research
Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Katarzyna Popiolek-Barczyk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 31-343 Krakow, Poland
| | - Nga N. Chung
- Department
of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, QC H2W
1R7, Canada
| | - Carole Lemieux
- Department
of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, QC H2W
1R7, Canada
| | - Attila Keresztes
- Department
of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Joost Van Duppen
- Animal
Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Adriano Mollica
- Department
of Pharmacy, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - John Streicher
- Department
of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Jozef Vanden Broeck
- Animal
Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Peter W. Schiller
- Department
of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, QC H2W
1R7, Canada
| | - Dirk Tourwé
- Research
Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 31-343 Krakow, Poland
| | - Steven Ballet
- Research
Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Barbara Przewlocka
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 31-343 Krakow, Poland
| |
Collapse
|
16
|
Zhang R, Xu B, Zhang MN, Zhang T, Wang ZL, Zhao G, Zhao GH, Li N, Fang Q, Wang R. Peripheral and central sites of action for anti-allodynic activity induced by the bifunctional opioid/NPFF receptors agonist BN-9 in inflammatory pain model. Eur J Pharmacol 2017; 813:122-129. [DOI: 10.1016/j.ejphar.2017.07.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
17
|
Olson KM, Lei W, Keresztes A, LaVigne J, Streicher JM. Novel Molecular Strategies and Targets for Opioid Drug Discovery for the Treatment of Chronic Pain. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:97-110. [PMID: 28356897 PMCID: PMC5369049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Opioid drugs like morphine and fentanyl are the gold standard for treating moderate to severe acute and chronic pain. However, opioid drug use can be limited by serious side effects, including constipation, tolerance, respiratory suppression, and addiction. For more than 100 years, we have tried to develop opioids that decrease or eliminate these liabilities, with little success. Recent advances in understanding opioid receptor signal transduction have suggested new possibilities to activate the opioid receptors to cause analgesia, while reducing or eliminating unwanted side effects. These new approaches include designing functionally selective ligands, which activate desired signaling cascades while avoiding signaling cascades that are thought to provoke side effects. It may also be possible to directly modulate downstream signaling through the use of selective activators and inhibitors. Separate from downstream signal transduction, it has also been found that when the opioid system is stimulated, various negative feedback systems are upregulated to compensate, which can drive side effects. This has led to the development of multi-functional molecules that simultaneously activate the opioid receptor while blocking various negative feedback receptor systems including cholecystokinin and neurokinin-1. Other novel approaches include targeting heterodimers of the opioid and other receptor systems which may drive side effects, and making endogenous opioid peptides druggable, which may also reduce opioid mediated side effects. Taken together, these advances in our molecular understanding provide a path forward to break the barrier in producing an opioid with reduced or eliminated side effects, especially addiction, which may provide relief for millions of patients.
Collapse
Affiliation(s)
- Keith M. Olson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ,Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ
| | - Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ
| | - Attila Keresztes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ
| | - Justin LaVigne
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ,To whom all correspondence should be addressed: John M. Streicher, Ph.D., University of Arizona, College of Medicine, Department of Pharmacology, Life Sciences North 563, Box 245050, 1501 N. Campbell Ave., Tucson, AZ 85724, 520-626-7495,
| |
Collapse
|
18
|
Dyniewicz J, Lipiński PFJ, Kosson P, Leśniak A, Bochyńska-Czyż M, Muchowska A, Tourwé D, Ballet S, Misicka A, Lipkowski AW. Hydrazone Linker as a Useful Tool for Preparing Chimeric Peptide/Nonpeptide Bifunctional Compounds. ACS Med Chem Lett 2017; 8:73-77. [PMID: 28105278 DOI: 10.1021/acsmedchemlett.6b00381] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/01/2016] [Indexed: 01/14/2023] Open
Abstract
The area of multitarget compounds, joining two pharmacophores within one molecule, is a vivid field of research in medicinal chemistry. Not only pharmacophoric elements are essential for the design and activity of such compounds, but the type and length of linkers used to connect them are also crucial. In the present contribution, we describe compound 1 in which a typical opioid peptide sequence is combined with a fragment characteristic for neurokinin-1 receptor (NK1R) antagonists through a hydrazone bridge. The compound has a high affinity for μ- and δ-opioid receptors (IC50= 12.7 and 74.0 nM, respectively) and a weak affinity for the NK1R. Molecular modeling and structural considerations explain the observed activities. In in vivo test, intrathecal and intravenous administrations of 1 exhibited a strong analgesic effect, which indicates potential BBB penetration. This letter brings an exemplary application of the hydrazone linker for fast, facile, and successful preparation of chimeric compounds.
Collapse
Affiliation(s)
- Jolanta Dyniewicz
- Department
of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Piotr F. J. Lipiński
- Department
of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Piotr Kosson
- Department
of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Anna Leśniak
- Department
of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Marta Bochyńska-Czyż
- Department
of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Adriana Muchowska
- Department
of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Dirk Tourwé
- Research
Group of Organic Chemistry, Departments of Chemistry and Bio-engineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven Ballet
- Research
Group of Organic Chemistry, Departments of Chemistry and Bio-engineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Aleksandra Misicka
- Department
of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Andrzej W. Lipkowski
- Department
of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| |
Collapse
|
19
|
Hall SM, LeBaron L, Ramos-Colon C, Qu C, Xie JY, Porreca F, Lai J, Lee YS, Hruby VJ. Discovery of Stable Non-opioid Dynorphin A Analogues Interacting at the Bradykinin Receptors for the Treatment of Neuropathic Pain. ACS Chem Neurosci 2016; 7:1746-1752. [PMID: 27619237 DOI: 10.1021/acschemneuro.6b00258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dynorphin A (Dyn A) is a unique endogenous ligand that possesses well-known neuroinhibitory effects via opioid receptors with a preference for the kappa receptor but also neuroexcitatory effects, which cause hyperalgesia. We have shown that the neuroexcitatory effects are mediated through bradykinin (BK) receptors and that intrathecal (i.th.) administration of our lead ligand 1, [des-Arg7]-Dyn A-(4-11), which shows good binding affinity (IC50 = 150 nM) at the BK receptors, blocks Dyn A-induced hyperalgesia in naïve animals and reverses thermal and tactile hypersensitivities in a dose-dependent manner in nerve-injured animals. However, 1 has a serious drawback as a potential drug candidate for the treatment of neuropathic pain because of its susceptibility to enzymatic degradation. In an effort to increase its stability, we modified ligand 1 using non-natural amino acids and found that analogues substituted at or near the N-terminus with a d-isomer retain binding at the receptor and provide a large increase in stability. In particular when Leu5 was modified, with either the d-isomer or N-methylation, there was a large increase in stability (t1/2 = 0.7-160 h in rat plasma) observed. From these studies, we have developed a very stable Dyn A analogue 16, [d-Leu5,des-Arg7]-Dyn A-(4-11), that binds to BK receptors (IC50 = 130 nM) in the same range as ligand 1 and shows good antihyperalgesic effects in both naïve rats and L5/L6 spinal nerve ligation rats.
Collapse
Affiliation(s)
- Sara M. Hall
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Lindsay LeBaron
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Cyf Ramos-Colon
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Chaoling Qu
- Department
of Pharmacology, University of Arizona, Tucson, Arizona 85719, United States
| | - Jennifer Yanhua Xie
- Department
of Pharmacology, University of Arizona, Tucson, Arizona 85719, United States
| | - Frank Porreca
- Department
of Pharmacology, University of Arizona, Tucson, Arizona 85719, United States
| | - Josephine Lai
- Department
of Pharmacology, University of Arizona, Tucson, Arizona 85719, United States
| | - Yeon Sun Lee
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Victor J. Hruby
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
20
|
Wang ZL, Pan JX, Song JJ, Tang HH, Yu HP, Li XH, Li N, Zhang T, Zhang R, Zhang MN, Xu B, Fang Q, Wang R. Structure-Based Optimization of Multifunctional Agonists for Opioid and Neuropeptide FF Receptors with Potent Nontolerance Forming Analgesic Activities. J Med Chem 2016; 59:10198-10208. [PMID: 27798836 DOI: 10.1021/acs.jmedchem.6b01181] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zi-Long Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Jia-Xin Pan
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Jing-Jing Song
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Hong-Hai Tang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Hong-Ping Yu
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Xu-Hui Li
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Ting Zhang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Rui Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| |
Collapse
|
21
|
Wang ZL, Li N, Wang P, Tang HH, Han ZL, Song JJ, Li XH, Yu HP, Zhang T, Zhang R, Xu B, Zhang MN, Fang Q, Wang R. Pharmacological characterization of EN-9, a novel chimeric peptide of endomorphin-2 and neuropeptide FF that produces potent antinociceptive activity and limited tolerance. Neuropharmacology 2016; 108:364-72. [DOI: 10.1016/j.neuropharm.2016.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 01/19/2023]
|
22
|
Prasoon P, Gupta S, Kumar R, Gautam M, Kaler S, Ray SB. Role of fosaprepitant, a neurokinin Type 1 receptor antagonist, in morphine-induced antinociception in rats. Indian J Pharmacol 2016; 48:394-398. [PMID: 27756950 PMCID: PMC4980927 DOI: 10.4103/0253-7613.186198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 06/08/2016] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Opioids such as morphine form the cornerstone in the treatment of moderate to severe pain. However, opioids also produce serious side effects such as tolerance. Fosaprepitant is a substance P (SP) receptor antagonist, which is used for treating chemotherapy-induced nausea and vomiting. SP is an important neuropeptide mediating transmission of pain at the spinal level. Thus, it was hypothesized that combining morphine with fosaprepitant would increase the antinociceptive effect of morphine. The objectives were to evaluate the effect of fosaprepitant on morphine-induced antinociception in rats and to investigate its mechanism of action. METHODS Sprague-Dawley rats were injected with morphine (10 mg/kg twice daily) and/or fosaprepitant (30 mg/kg once daily) for 7 days. Pain threshold was assessed by the hot plate test. Expression of SP and calcitonin gene-related peptide (CGRP) in the spinal cords of these rats was evaluated by immunohistochemistry. RESULTS Morphine administration resulted in an antinociceptive effect compared to the control group (day 1 and to a lesser extent on day 4). The decreased antinociception despite continued morphine treatment indicated development of tolerance. Co-administration of fosaprepitant attenuated tolerance to morphine (days 1 and 3) and increased the antinociceptive effect compared to control group (days 1-4). Expression of SP was increased in the morphine + fosaprepitant group. CONCLUSIONS The results show that fosaprepitant attenuates the development of tolerance to morphine and thereby, increases the antinociceptive effect. This is likely linked to decreased release of SP from presynaptic terminals.
Collapse
Affiliation(s)
- Pranav Prasoon
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shivani Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Mayank Gautam
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Saroj Kaler
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Basu Ray
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
23
|
Kruegel AC, Gassaway MM, Kapoor A, Váradi A, Majumdar S, Filizola M, Javitch JA, Sames D. Synthetic and Receptor Signaling Explorations of the Mitragyna Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators. J Am Chem Soc 2016; 138:6754-64. [PMID: 27192616 DOI: 10.1021/jacs.6b00360] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mu-opioid receptor agonists represent mainstays of pain management. However, the therapeutic use of these agents is associated with serious side effects, including potentially lethal respiratory depression. Accordingly, there is a longstanding interest in the development of new opioid analgesics with improved therapeutic profiles. The alkaloids of the Southeast Asian plant Mitragyna speciosa, represented by the prototypical member mitragynine, are an unusual class of opioid receptor modulators with distinct pharmacological properties. Here we describe the first receptor-level functional characterization of mitragynine and related natural alkaloids at the human mu-, kappa-, and delta-opioid receptors. These results show that mitragynine and the oxidized analogue 7-hydroxymitragynine, are partial agonists of the human mu-opioid receptor and competitive antagonists at the kappa- and delta-opioid receptors. We also show that mitragynine and 7-hydroxymitragynine are G-protein-biased agonists of the mu-opioid receptor, which do not recruit β-arrestin following receptor activation. Therefore, the Mitragyna alkaloid scaffold represents a novel framework for the development of functionally biased opioid modulators, which may exhibit improved therapeutic profiles. Also presented is an enantioselective total synthesis of both (-)-mitragynine and its unnatural enantiomer, (+)-mitragynine, employing a proline-catalyzed Mannich-Michael reaction sequence as the key transformation. Pharmacological evaluation of (+)-mitragynine revealed its much weaker opioid activity. Likewise, the intermediates and chemical transformations developed in the total synthesis allowed the elucidation of previously unexplored structure-activity relationships (SAR) within the Mitragyna scaffold. Molecular docking studies, in combination with the observed chemical SAR, suggest that Mitragyna alkaloids adopt a binding pose at the mu-opioid receptor that is distinct from that of classical opioids.
Collapse
Affiliation(s)
| | | | - Abhijeet Kapoor
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - András Váradi
- Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Susruta Majumdar
- Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Marta Filizola
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jonathan A Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute , New York, New York 10032, United States
| | | |
Collapse
|
24
|
Li N, Han ZL, Wang ZL, Xing YH, Sun YL, Li XH, Song JJ, Zhang T, Zhang R, Zhang MN, Xu B, Fang Q, Wang R. BN-9, a chimeric peptide with mixed opioid and neuropeptide FF receptor agonistic properties, produces nontolerance-forming antinociception in mice. Br J Pharmacol 2016; 173:1864-80. [PMID: 27018797 DOI: 10.1111/bph.13489] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Neuropeptide FF (NPFF) behaves as an endogenous opioid-modulating peptide. In the present study, the opioid and NPFF pharmacophore-containing chimeric peptide BN-9 was synthesized and pharmacologically characterized. EXPERIMENTAL APPROACH Agonist activities of BN-9 at opioid and NPFF receptors were characterized in in vitro cAMP assays. Antinociceptive activities of BN-9 were evaluated in the mouse tail-flick and formalin tests. Furthermore, its side effects were investigated in rotarod, antinociceptive tolerance, reward and gastrointestinal transit tests. KEY RESULTS BN-9 acted as a novel multifunctional agonist at μ, δ, κ, NPFF1 and NPFF2 receptors in cAMP assays. In the tail-flick test, BN-9 produced dose-related antinociception and was approximately equipotent to morphine; this antinociception was blocked by μ and κ receptor antagonists, but not by the δ receptor antagonist. In the formalin test, supraspinal administration of BN-9 produced significant analgesia. Notably, repeated administration of BN-9 produced analgesia without loss of potency over 8 days. In contrast, repeated i.c.v. co-administration of BN-9 with the NPFF receptor antagonist RF9 produced significant antinociceptive tolerance. Furthermore, i.c.v. BN-9 induced conditioned place preference. When given by the same routes, BN-9 had a more than eightfold higher ED50 value for gastrointestinal transit inhibition compared with the ED50 values for antinociception. CONCLUSIONS AND IMPLICATIONS BN-9 produced a robust, nontolerance-forming analgesia with limited inhibition of gastrointestinal transit. As BN-9 is able to activate both opioid and NPFF systems, this provides an interesting approach for the development of novel analgesics with minimal side effects.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zheng-Lan Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zi-Long Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yan-Hong Xing
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Long Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xu-Hui Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing-Jing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Lisowska B, Siewruk K, Lisowski A. Substance P and Acute Pain in Patients Undergoing Orthopedic Surgery. PLoS One 2016; 11:e0146400. [PMID: 26731421 PMCID: PMC4701134 DOI: 10.1371/journal.pone.0146400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/16/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE There is a limited information about the role of Substance P (SP) in acute pain nociception following surgical stimulation in patients with a chronic inflammatory state not to mention the link between this neuropeptide level changes and intensity of pain. The goal of the research was to find the correlation between SP level changes and acute pain intensity in patients with rheumatoid arthritis undergoing elective orthopedic surgery. MATERIAL AND METHODS Patients with rheumatoid arthritis (RA) were enrolled in the study. The correlation between acute pain intensity and concentration of SP in serum as well as in drainage fluid from postoperative wound was assessed in patients with RA who underwent Total Knee Replacement (TKA) under spinal anesthesia. RESULTS In patients with RA a correlation between intensity of acute pain and serum SP was found postoperatively, whereas there was no correlation between intensity of acute pain and concentration of SP in drainage fluid. CONCLUSIONS 1. The correlation between acute pain intensity and SP serum concentration was found postoperatively in patients with RA. 2. The correlation between acute pain intensity and SP concentration in drainage fluid was not found postoperatively in patients with RA.
Collapse
Affiliation(s)
- Barbara Lisowska
- Department of Anaesthesiology, Medical Centre for Postgraduate Education Clinical Hospital Adam Gruca, CMKP Otwock, Poland
| | - Katarzyna Siewruk
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- * E-mail:
| | - Aleksander Lisowski
- Faculty of Production Engineering, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
26
|
Xiao J, Zeng S, Wang X, Babazada H, Li Z, Liu R, Yu W. Neurokinin 1 and opioid receptors: relationships and interactions in nervous system. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2016; 1:11-21. [PMID: 28409174 PMCID: PMC5388438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Opioid receptors and neurokinin 1 receptor (NK1R) are found highly expressed in the central nervous system. The co-localization of these two kinds of receptors suggests that they might interact with each other in both the transmission and modulation of the pain signal. In this review, we explore the relationships between opioid receptors and NK1R. Substance P (SP) plays a modulatory role in the pain transmission by activating the NK1R. Opioid receptor activation can inhibit SP release. NK1R is found participating in the mechanisms of the side effects of the opioids, including opioid analgesic tolerance, hyperalgesia, anxiety behaviors of morphine reward and opioids related respiratory depression. A series of compounds such as NK1R antagonists and ligands works on both mu/delta opioid receptor (MOR/DOR) and NK1R were synthesized as novel analgesics that enhance the clinical pain management efficacy and reduce the dosage and side effects. The current status of these novel ligands and the limitations are discussed in this review. Although the working mechanisms of these ligands remained unclear, they could be used as research tool for developing novel analgesic drugs in the future.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania
| | - Si Zeng
- Department of Anesthesiology, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Electronic Science and Technology University
| | - Xiangrui Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University
| | - Hasan Babazada
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania
| | | | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University
| |
Collapse
|
27
|
Betti C, Starnowska J, Mika J, Dyniewicz J, Frankiewicz L, Novoa A, Bochynska M, Keresztes A, Kosson P, Makuch W, Van Duppen J, Chung NN, Vanden Broeck J, Lipkowski AW, Schiller PW, Janssens F, Ceusters M, Sommen F, Meert T, Przewlocka B, Tourwé D, Ballet S. Dual Alleviation of Acute and Neuropathic Pain by Fused Opioid Agonist-Neurokinin 1 Antagonist Peptidomimetics. ACS Med Chem Lett 2015; 6:1209-14. [PMID: 26713106 DOI: 10.1021/acsmedchemlett.5b00359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/31/2015] [Indexed: 02/08/2023] Open
Abstract
Herein, the synthesis and biological evaluation of dual opioid agonists-neurokinin 1 receptor (NK1R) antagonists is described. In these multitarget ligands, the two pharmacophores do not overlap, and this allowed maintaining high NK1R affinity and antagonist potency in compounds 12 and 13. Although the fusion of the two ligands resulted in slightly diminished opioid agonism at the μ- and δ-opioid receptors (MOR and DOR, respectively), as compared to the opioid parent peptide, balanced MOR/DOR activities were obtained. Compared to morphine, compounds 12 and 13 produced more potent antinociceptive effects in both acute (tail-flick) and neuropathic pain models (von Frey and cold plate). Similarly to morphine, analgesic tolerance developed after repetitive administration of these compounds. To our delight, compound 12 did not produce cross-tolerance with morphine and high antihyperalgesic and antiallodynic effects could be reinstated after chronic administration of each of the two compounds.
Collapse
Affiliation(s)
- Cecilia Betti
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joanna Starnowska
- Institute
of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Mika
- Institute
of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Jolanta Dyniewicz
- Neuropeptide
Laboratory, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Frankiewicz
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alexandre Novoa
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marta Bochynska
- Neuropeptide
Laboratory, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Attila Keresztes
- Department
of Pharmacology, University of Arizona, Tucson, Arizona 85721, United States
| | - Piotr Kosson
- Neuropeptide
Laboratory, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Wioletta Makuch
- Institute
of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joost Van Duppen
- Animal
Physiology and Neurobiology Department, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Nga. N. Chung
- Department
of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, Canada
| | - Jozef Vanden Broeck
- Animal
Physiology and Neurobiology Department, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Andrzej W. Lipkowski
- Neuropeptide
Laboratory, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Peter W. Schiller
- Department
of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, Canada
| | - Frans Janssens
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marc Ceusters
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - François Sommen
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Theo Meert
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Dirk Tourwé
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
28
|
Giri AK, Apostol CR, Wang Y, Forte BL, Largent-Milnes TM, Davis P, Rankin D, Molnar G, Olson KM, Porreca F, Vanderah TW, Hruby VJ. Discovery of Novel Multifunctional Ligands with μ/δ Opioid Agonist/Neurokinin-1 (NK1) Antagonist Activities for the Treatment of Pain. J Med Chem 2015; 58:8573-83. [PMID: 26465170 DOI: 10.1021/acs.jmedchem.5b01170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multifunctional ligands with agonist bioactivities at μ/δ opioid receptors (MOR/DOR) and antagonist bioactivity at the neurokinin-1 receptor (NK1R) have been designed and synthesized. These peptide-based ligands are anticipated to produce better biological profiles (e.g., higher analgesic effect with significantly less adverse side effects) compared to those of existing drugs and to deliver better synergistic effects than coadministration of a mixture of multiple drugs. A systematic structure-activity relationship (SAR) study has been conducted to find multifunctional ligands with desired activities at three receptors. It has been found that introduction of Dmt (2,6-dimethyl-tyrosine) at the first position and NMePhe at the fourth position (ligand 3: H-Dmt-d-Ala-Gly-NMePhe-Pro-Leu-Trp-NH-Bn(3',5'-(CF3)2)) displays binding as well as functional selectivity for MOR over DOR while maintaining efficacy, potency, and antagonist activity at the NK1R. Dmt at the first position with Phe(4-F) at the fourth position (ligand 5: H-Dmt-d-Ala-Gly-Phe(4-F)-Pro-Leu-Trp-NH-Bn(3',5'-(CF3)2)) exhibits balanced binding affinities at MOR and DOR though it has higher agonist activity at DOR over MOR. This study has led to the discovery of several novel ligands including 3 and 5 with excellent in vitro biological activity profiles. Metabolic stability studies in rat plasma with ligands 3, 5, and 7 (H-Tyr-d-Ala-Gly-Phe(4-F)-Pro-Leu-Trp-NH-Bn(3',5'-(CF3)2)) showed that their stability depends on modifications at the first and fourth positions (3: T1/2 > 24 h; 5: T1/2 ≈ 6 h; 7: T1/2 > 2 h). Preliminary in vivo studies with these two ligands have shown promising antinociceptive activity.
Collapse
Affiliation(s)
- Aswini Kumar Giri
- Departments of Chemistry and Biochemistry, University of Arizona , 1306 E. University Boulevard, Tucson, Arizona 85721, United States
| | - Christopher R Apostol
- Departments of Chemistry and Biochemistry, University of Arizona , 1306 E. University Boulevard, Tucson, Arizona 85721, United States
| | - Yue Wang
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - Brittany L Forte
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - Tally M Largent-Milnes
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - Peg Davis
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - David Rankin
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - Gabriella Molnar
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | | | - Frank Porreca
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - Victor J Hruby
- Departments of Chemistry and Biochemistry, University of Arizona , 1306 E. University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
29
|
Sandweiss AJ, Vanderah TW. The pharmacology of neurokinin receptors in addiction: prospects for therapy. Subst Abuse Rehabil 2015; 6:93-102. [PMID: 26379454 PMCID: PMC4567173 DOI: 10.2147/sar.s70350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Addiction is a chronic disorder in which consumption of a substance or a habitual behavior becomes compulsive and often recurrent, despite adverse consequences. Substance p (SP) is an undecapeptide and was the first neuropeptide of the neurokinin family to be discovered. The subsequent decades of research after its discovery implicated SP and its neurokinin relatives as neurotransmitters involved in the modulation of the reward pathway. Here, we review the neurokinin literature, giving a brief historical perspective of neurokinin pharmacology, localization in various brain regions involved in addictive behaviors, and the functional aspects of neurokinin pharmacology in relation to reward in preclinical models of addiction that have shaped the rational drug design of neurokinin antagonists that could translate into human research. Finally, we will cover the clinical investigations using neurokinin antagonists and discuss their potential as a therapy for drug abuse.
Collapse
Affiliation(s)
- Alexander J Sandweiss
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Todd W Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
30
|
Nair P, Yamamoto T, Cowell S, Kulkarni V, Moye S, Navratilova E, Davis P, Ma SW, Vanderah TW, Lai J, Porreca F, Hruby VJ. Discovery of tripeptide-derived multifunctional ligands possessing delta/mu opioid receptor agonist and neurokinin 1 receptor antagonist activities. Bioorg Med Chem Lett 2015; 25:3716-20. [PMID: 26212775 PMCID: PMC4642890 DOI: 10.1016/j.bmcl.2015.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 11/21/2022]
Abstract
Several bifunctional peptides were synthesized and characterized based on the pentapeptide-derived ligand NP30 (1: Tyr-DAla-Gly-Phe-Gly-Trp-O-[3',5'-Bzl(CF3)2]). Modification and truncation of amino acid residues were performed, and the tripeptide-derived ligand NP66 (11: Dmt-DAla-Trp-NH-[3',5'-(CF3)2-Bzl]) was obtained based on the overlapping pharmacophore concept. The Trp(3) residue of ligand 11 works as a message residue for both opioid and NK1 activities. The significance lies in the observation that the approach of appropriate truncation of peptide sequence could lead to a tripeptide-derived chimeric ligand with effective binding and functional activities for both mu and delta opioid and NK1 receptors with agonist activities at mu and delta opioid and antagonist activity at NK1 receptors, respectively.
Collapse
Affiliation(s)
- Padma Nair
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Takashi Yamamoto
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Scott Cowell
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Vinod Kulkarni
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Sharif Moye
- Department of Pharmacology, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ 85724, USA
| | - Edita Navratilova
- Department of Pharmacology, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ 85724, USA
| | - Peg Davis
- Department of Pharmacology, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ 85724, USA
| | - Shou-Wu Ma
- Department of Pharmacology, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ 85724, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ 85724, USA
| | - Josephine Lai
- Department of Pharmacology, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ 85724, USA
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA.
| |
Collapse
|
31
|
Guillemyn K, Kleczkowska P, Lesniak A, Dyniewicz J, Van der Poorten O, Van den Eynde I, Keresztes A, Varga E, Lai J, Porreca F, Chung NN, Lemieux C, Mika J, Rojewska E, Makuch W, Van Duppen J, Przewlocka B, Vanden Broeck J, Lipkowski AW, Schiller PW, Tourwé D, Ballet S. Synthesis and biological evaluation of compact, conformationally constrained bifunctional opioid agonist - neurokinin-1 antagonist peptidomimetics. Eur J Med Chem 2014; 92:64-77. [PMID: 25544687 DOI: 10.1016/j.ejmech.2014.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/26/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
A reported mixed opioid agonist - neurokinin 1 receptor (NK1R) antagonist 4 (Dmt-D-Arg-Aba-Gly-(3',5'-(CF3)2)NMe-benzyl) was modified to identify important features in both pharmacophores. The new dual ligands were tested in vitro and subsequently two compounds (lead structure 4 and one of the new analogues 22, Dmt-D-Arg-Aba-β-Ala-NMe-Bn) were selected for in vivo behavioural assays, which were conducted in acute (tail-flick) and neuropathic pain models (cold plate and von Frey) in rats. Compared to the parent opioid compound 33 (without NK1R pharmacophore), hybrid 22 was more active in the neuropathic pain models. Attenuation of neuropathic pain emerged from NK1R antagonism as demonstrated by the pure NK1R antagonist 6. Surprisingly, despite a lower in vitro activity at NK1R in comparison with 4, compound 22 was more active in the neuropathic pain models. Although potent analgesic effects were observed for 4 and 22, upon chronic administration, both manifested a tolerance profile similar to that of morphine and cross tolerance with morphine in a neuropathic pain model in rat.
Collapse
Affiliation(s)
- Karel Guillemyn
- Laboratory of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Patrycia Kleczkowska
- Neuropeptide Laboratory, Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, PL 02-106, Warsaw, Poland; Department of Pharmacodynamics, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland.
| | - Anna Lesniak
- Neuropeptide Laboratory, Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, PL 02-106, Warsaw, Poland.
| | - Jolanta Dyniewicz
- Neuropeptide Laboratory, Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, PL 02-106, Warsaw, Poland.
| | - Olivier Van der Poorten
- Laboratory of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Isabelle Van den Eynde
- Laboratory of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Attila Keresztes
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave, Tucson AZ, 85724-5050, USA.
| | - Eva Varga
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave, Tucson AZ, 85724-5050, USA.
| | - Josephine Lai
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave, Tucson AZ, 85724-5050, USA.
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave, Tucson AZ, 85724-5050, USA.
| | - Nga N Chung
- Department of Chemical Biology and Peptide Research, Clinical Research Institute, 110 Avenue Des Pins Ouest, Montreal, QC, H2W1R7, Canada.
| | - Carole Lemieux
- Department of Chemical Biology and Peptide Research, Clinical Research Institute, 110 Avenue Des Pins Ouest, Montreal, QC, H2W1R7, Canada.
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343, Kraków, Poland.
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343, Kraków, Poland.
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343, Kraków, Poland.
| | - Joost Van Duppen
- Animal Physiology and Neurobiology Department, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium.
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343, Kraków, Poland.
| | - Jozef Vanden Broeck
- Animal Physiology and Neurobiology Department, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium.
| | - Andrzej W Lipkowski
- Neuropeptide Laboratory, Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, PL 02-106, Warsaw, Poland.
| | - Peter W Schiller
- Department of Chemical Biology and Peptide Research, Clinical Research Institute, 110 Avenue Des Pins Ouest, Montreal, QC, H2W1R7, Canada.
| | - Dirk Tourwé
- Laboratory of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Steven Ballet
- Laboratory of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
32
|
Mollica A, Costante R, Novellino E, Stefanucci A, Pieretti S, Zador F, Samavati R, Borsodi A, Benyhe S, Vetter I, Lewis RJ. Design, Synthesis and Biological Evaluation of Two Opioid Agonist and Cav2.2 Blocker Multitarget Ligands. Chem Biol Drug Des 2014; 86:156-62. [DOI: 10.1111/cbdd.12479] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/26/2014] [Accepted: 11/07/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Adriano Mollica
- Dipartimento di Farmacia; Università di Chieti-Pescara “G. d'Annunzio”; Via dei Vestini 31 66100 Chieti Italy
| | - Roberto Costante
- Dipartimento di Farmacia; Università di Chieti-Pescara “G. d'Annunzio”; Via dei Vestini 31 66100 Chieti Italy
| | - Ettore Novellino
- Dipartimento di Farmacia; Università di Napoli “Federico II”; Via D. Montesano, 49 80131 Naples Italy
| | - Azzurra Stefanucci
- Dipartimento di Chimica, Sapienza; Università di Roma; P.le A. Moro 5 00187 Rome Italy
| | - Stefano Pieretti
- Department of Therapeutic Research and Medicine Evaluation; Istituto Superiore di Sanità; V.le Regina Elena 299 00161 Rome Italy
| | - Ferenc Zador
- Institute of Biochemistry; Biological Research Centre; Hungarian Academy of Sciences; 6726 Szeged Hungary
| | - Reza Samavati
- Institute of Biochemistry; Biological Research Centre; Hungarian Academy of Sciences; 6726 Szeged Hungary
| | - Anna Borsodi
- Institute of Biochemistry; Biological Research Centre; Hungarian Academy of Sciences; 6726 Szeged Hungary
| | - Sándor Benyhe
- Institute of Biochemistry; Biological Research Centre; Hungarian Academy of Sciences; 6726 Szeged Hungary
| | - Irina Vetter
- Institute for Molecular Bioscience; The University of Queensland; Brisbane St Lucia Qld 4072 Australia
| | - Richard J. Lewis
- Institute for Molecular Bioscience; The University of Queensland; Brisbane St Lucia Qld 4072 Australia
| |
Collapse
|
33
|
Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 2014; 20:1422-49. [PMID: 23789948 DOI: 10.2174/13816128113199990463] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
The blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCSF) barriers are critical determinants of CNS homeostasis. Additionally, the BBB and BCSF barriers are formidable obstacles to effective CNS drug delivery. These brain barrier sites express putative influx and efflux transporters that precisely control permeation of circulating solutes including drugs. The study of transporters has enabled a shift away from "brute force" approaches to delivering drugs by physically circumventing brain barriers towards chemical approaches that can target specific compounds of the BBB and/or BCSF barrier. However, our understanding of transporters at the BBB and BCSF barriers has primarily focused on understanding efflux transporters that efficiently prevent drugs from attaining therapeutic concentrations in the CNS. Recently, through the characterization of multiple endogenously expressed uptake transporters, this paradigm has shifted to the study of brain transporter targets that can facilitate drug delivery (i.e., influx transporters). Additionally, signaling pathways and trafficking mechanisms have been identified for several endogenous BBB/BCSF transporters, thereby offering even more opportunities to understand how transporters can be exploited for optimization of CNS drug delivery. This review presents an overview of the BBB and BCSF barrier as well as the many families of transporters functionally expressed at these barrier sites. Furthermore, we present an overview of various strategies that have been designed and utilized to deliver therapeutic agents to the brain with a particular emphasis on those approaches that directly target endogenous BBB/BCSF barrier transporters.
Collapse
Affiliation(s)
| | | | | | | | - Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050.
| |
Collapse
|
34
|
Grenald SA, Largent-Milnes TM, Vanderah TW. Animal models for opioid addiction drug discovery. Expert Opin Drug Discov 2014; 9:1345-54. [PMID: 25307021 DOI: 10.1517/17460441.2014.966076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Since ancient times, the opium poppy has been used in a variety of settings, including pain management. Natural and synthetic derivatives of opium are commonly used in medicine today and include drugs, such as morphine, codeine, hydromorphone and oxycodone. Although excellent at inhibiting pain, these narcotics often produce a state of euphoria leading to misuse and abuse by the general population, particularly in young adults. The misuse of prescription opiates has continually increased over the past 10 years despite associated negative outcomes, resulting in opiate psychological dependence, withdrawal and relapse. AREAS COVERED This paper briefly refers to the history of opiate use and the modern challenges associated with chronic exposure. The authors present the prevalence of addiction and misuse of prescription opiates and discuss some of the opiate-associated effects. This includes activation of reward circuitry and compensatory receptor mechanisms. Finally, the authors provide a review on neuroadaptive changes that manifest during opiate dependence, withdrawal and relapse in animal models. EXPERT OPINION In spite of the various methods available to treat opiate addiction, there is still a huge unmet need for its management, including the creative design of novel, non-addictive pain medications. The authors believe that multifunctional compounds or combinations of compounds that inhibit pain pathways, whereas not activating the reward pathways, will begin to subdue the opiate addiction endemic.
Collapse
Affiliation(s)
- Shaness A Grenald
- University of Arizona, Department of Pharmacology , Tucson, AZ 85724-5050 , USA +1 520 626 7801 ; +1 520 626 2204 ;
| | | | | |
Collapse
|
35
|
P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:25-44. [PMID: 25307213 DOI: 10.1016/bs.apha.2014.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The primary function of the blood-brain barrier (BBB)/neurovascular unit is to protect the central nervous system (CNS) from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter, we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain-induced changes in P-gp trafficking are associated with changes in P-gp's association with caveolin-1, a key scaffolding/trafficking protein that colocalizes with P-gp at the luminal membrane of brain microvessels. Changes in colocalization with the phosphorylated and nonphosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization, and activation of P-gp "pools" between microvascular endothelial cell subcellular compartments. Since redox-sensitive processes may be involved in signaling disassembly of higher-order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface, providing improved CNS drug delivery. The advantage of therapeutic drug "relocalization" of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription.
Collapse
|
36
|
Lee YS, Muthu D, Hall SM, Ramos-Colon C, Rankin D, Hu J, Sandweiss AJ, De Felice M, Xie JY, Vanderah T, Porreca F, Lai J, Hruby VJ. Discovery of amphipathic dynorphin A analogues to inhibit the neuroexcitatory effects of dynorphin A through bradykinin receptors in the spinal cord. J Am Chem Soc 2014; 136:6608-16. [PMID: 24742335 PMCID: PMC4021566 DOI: 10.1021/ja501677q] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Indexed: 11/28/2022]
Abstract
We hypothesized that under chronic pain conditions, up-regulated dynorphin A (Dyn A) interacts with bradykinin receptors (BRs) in the spinal cord to promote hyperalgesia through an excitatory effect, which is opposite to the well-known inhibitory effect of opioid receptors. Considering the structural dissimilarity between Dyn A and endogenous BR ligands, bradykinin (BK) and kallidin (KD), this interaction could not be predicted, but it allowed us to discover a potential neuroexcitatory target. Well-known BR ligands, BK, [des-Arg(10), Leu(9)]-kallidin (DALKD), and HOE140 showed different binding profiles at rat brain BRs than that previously reported. These results suggest that neuronal BRs in the rat central nervous system (CNS) may be pharmacologically distinct from those previously defined in non-neuronal tissues. Systematic structure-activity relationship (SAR) study at the rat brain BRs was performed, and as a result, a new key structural feature of Dyn A for BR recognition was identified: amphipathicity. NMR studies of two lead ligands, Dyn A-(4-11) 7 and [des-Arg(7)]-Dyn A-(4-11) 14, which showed the same high binding affinity, confirmed that the Arg residue in position 7, which is known to be crucial for Dyn A's biological activity, is not necessary, and that a type I β-turn structure at the C-terminal part of both ligands plays an important role in retaining good binding affinities at the BRs. Our lead ligand 14 blocked Dyn A-(2-13) 10-induced hyperalgesic effects and motor impairment in in vivo assays using naïve rats. In a model of peripheral neuropathy, intrathecal (i.th.) administration of ligand 14 reversed thermal hyperalgesia and mechanical hypersensitivity in a dose-dependent manner in nerve-injured rats. Thus, ligand 14 may inhibit abnormal pain states by blocking the neuroexcitatory effects of enhanced levels of Dyn A, which are likely to be mediated by BRs in the spinal cord.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Chemistry and Biochemistry and Department of
Pharmacology, The University of Arizona, Tucson, Arizona 85721, United States
| | - Dhanasekaran Muthu
- Department of Chemistry and Biochemistry and Department of
Pharmacology, The University of Arizona, Tucson, Arizona 85721, United States
| | - Sara M. Hall
- Department of Chemistry and Biochemistry and Department of
Pharmacology, The University of Arizona, Tucson, Arizona 85721, United States
| | - Cyf Ramos-Colon
- Department of Chemistry and Biochemistry and Department of
Pharmacology, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Rankin
- Department of Chemistry and Biochemistry and Department of
Pharmacology, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jackie Hu
- Department of Chemistry and Biochemistry and Department of
Pharmacology, The University of Arizona, Tucson, Arizona 85721, United States
| | - Alexander J. Sandweiss
- Department of Chemistry and Biochemistry and Department of
Pharmacology, The University of Arizona, Tucson, Arizona 85721, United States
| | - Milena De Felice
- Department of Chemistry and Biochemistry and Department of
Pharmacology, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jennifer Yanhua Xie
- Department of Chemistry and Biochemistry and Department of
Pharmacology, The University of Arizona, Tucson, Arizona 85721, United States
| | - Todd
W. Vanderah
- Department of Chemistry and Biochemistry and Department of
Pharmacology, The University of Arizona, Tucson, Arizona 85721, United States
| | - Frank Porreca
- Department of Chemistry and Biochemistry and Department of
Pharmacology, The University of Arizona, Tucson, Arizona 85721, United States
| | - Josephine Lai
- Department of Chemistry and Biochemistry and Department of
Pharmacology, The University of Arizona, Tucson, Arizona 85721, United States
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry and Department of
Pharmacology, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
37
|
Giri AK, Hruby VJ. Investigational peptide and peptidomimetic μ and δ opioid receptor agonists in the relief of pain. Expert Opin Investig Drugs 2014; 23:227-41. [PMID: 24329035 PMCID: PMC4282681 DOI: 10.1517/13543784.2014.856879] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Current methods for treating prolonged and neuropathic pain are inadequate and lead to toxicities that greatly diminish quality of life. Therefore, new approaches to the treatment of pain states are needed to address these problems. AREAS COVERED The review primarily reviews approaches that have been taken in the peer-reviewed literature of multivalent ligands that interact with both μ and δ opioid receptors as agonists, and in some cases, also with pharmacophores for antagonist ligands that interact with other receptors as antagonists to block pain. EXPERT OPINION Although there are a number of drugs currently on the market for the treatment of pain; none of them are 100% successful. In the authors' opinion, it is clear that new directions and modalities are needed to better address the treatment of prolonged and neuropathic pain; one drug or class clearly is not the answer for all pain therapy. Undoubtedly, there are many different phenotypes of prolonged and neuropathic pain and this should be one avenue to further develop appropriate therapies.
Collapse
Affiliation(s)
- Aswini Kumar Giri
- University of Arizona, Department of Chemistry and Biochemistry , 1306 East University Boulevard, PO Box 210041, Tucson, AZ 85721 , USA
| | | |
Collapse
|
38
|
Largent-Milnes TM, Brookshire SW, Skinner DP, Hanlon KE, Giuvelis D, Yamamoto T, Davis P, Campos CR, Nair P, Deekonda S, Bilsky EJ, Porreca F, Hruby VJ, Vanderah TW. Building a better analgesic: multifunctional compounds that address injury-induced pathology to enhance analgesic efficacy while eliminating unwanted side effects. J Pharmacol Exp Ther 2013; 347:7-19. [PMID: 23860305 PMCID: PMC3781412 DOI: 10.1124/jpet.113.205245] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/08/2013] [Indexed: 12/27/2022] Open
Abstract
The most highly abused prescription drugs are opioids used for the treatment of pain. Physician-reported drug-seeking behavior has resulted in a significant health concern among doctors trying to adequately treat pain while limiting the misuse or diversion of pain medications. In addition to abuse liability, opioid use is associated with unwanted side effects that complicate pain management, including opioid-induced emesis and constipation. This has resulted in restricting long-term doses of opioids and inadequate treatment of both acute and chronic debilitating pain, demonstrating a compelling need for novel analgesics. Recent reports indicate that adaptations in endogenous substance P/neurokinin-1 receptor (NK1) are induced by chronic pain and sustained opioid exposure, and these changes may contribute to processes responsible for opioid abuse liability, emesis, and analgesic tolerance. Here, we describe a multifunctional mu-/delta-opioid agonist/NK1 antagonist compound [Tyr-d-Ala-Gly-Phe-Met-Pro-Leu-Trp-NH-Bn(CF3)2 (TY027)] that has a preclinical profile of excellent antinociceptive efficacy, low abuse liability, and no opioid-related emesis or constipation. In rodent models of acute and neuropathic pain, TY027 demonstrates analgesic efficacy following central or systemic administration with a plasma half-life of more than 4 hours and central nervous system penetration. These data demonstrate that an innovative opioid designed to contest the pathology created by chronic pain and sustained opioids results in antinociceptive efficacy in rodent models, with significantly fewer side effects than morphine. Such rationally designed, multitargeted compounds are a promising therapeutic approach in treating patients who suffer from acute and chronic pain.
Collapse
Affiliation(s)
- T M Largent-Milnes
- Department of Pharmacology (T.M.L.-M., S.W.B., D.P.S., K.E.H., P.D., C.R.C., F.P., T.W.V.), and Department of Chemistry (T.Y., P.N, S.D., V.J.H.), University of Arizona, Tucson, Arizona; and Center for Excellence in Neuroscience, University of New England, Biddeford, Maine (K.E.H., D.G., E.J.B., F.P., T.W.V.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Podolsky AT, Sandweiss A, Hu J, Bilsky EJ, Cain JP, Kumirov VK, Lee YS, Hruby VJ, Vardanyan RS, Vanderah TW. Novel fentanyl-based dual μ/δ-opioid agonists for the treatment of acute and chronic pain. Life Sci 2013; 93:1010-6. [PMID: 24084045 DOI: 10.1016/j.lfs.2013.09.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 08/26/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022]
Abstract
UNLABELLED Approximately one third of the adult U.S. population suffers from some type of on-going, chronic pain annually, and many more will have some type of acute pain associated with trauma or surgery. First-line therapies for moderate to severe pain include prescriptions for common mu opioid receptor agonists such as morphine and its various derivatives. The epidemic use, misuse and diversion of prescription opioids have highlighted just one of the adverse effects of mu opioid analgesics. Alternative approaches include novel opioids that target delta or kappa opioid receptors, or compounds that interact with two or more of the opioid receptors. AIMS Here we report the pharmacology of a newly synthesized bifunctional opioid agonist (RV-Jim-C3) derived from combined structures of fentanyl and enkephalin in rodents. RV-Jim-C3 has high affinity binding to both mu and delta opioid receptors. MAIN METHODS Mice and rats were used to test RV-Jim-C3 in a tailflick test with and without opioid selective antagonist for antinociception. RV-Jim-C3 was tested for anti-inflammatory and antihypersensitivity effects in a model of formalin-induced flinching and spinal nerve ligation. To rule out motor impairment, rotarod was tested in rats. KEY FINDINGS RV-Jim-C3 demonstrates potent-efficacious activity in several in vivo pain models including inflammatory pain, antihyperalgesia and antiallodynic with no significant motor impairment. SIGNIFICANCE This is the first report of a fentanyl-based structure with delta and mu opioid receptor activity that exhibits outstanding antinociceptive efficacy in neuropathic pain, reducing the propensity of unwanted side effects driven by current therapies that are unifunctional mu opioid agonists.
Collapse
MESH Headings
- Acute Pain/drug therapy
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Chronic Pain/drug therapy
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical/methods
- Enkephalins/chemistry
- Enkephalins/pharmacology
- Fentanyl/analogs & derivatives
- Fentanyl/chemistry
- Fentanyl/pharmacology
- Male
- Mice
- Mice, Inbred ICR
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Alexander T Podolsky
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hruby VJ, Cai M. Design of peptide and peptidomimetic ligands with novel pharmacological activity profiles. Annu Rev Pharmacol Toxicol 2013; 53:557-80. [PMID: 23294313 DOI: 10.1146/annurev-pharmtox-010510-100456] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide hormones and neurotransmitters are of central importance in most aspects of intercellular communication and are involved in virtually all degenerative diseases. In this review, we discuss physicochemical approaches to the design of novel peptide and peptidomimetic agonists, antagonists, inverse agonists, and related compounds that have unique biological activity profiles, reduced toxic side effects, and, if desired, the ability to cross the blood-brain barrier. Designing ligands for specific biological and medical needs is emphasized, as is the close collaboration of chemists and biologists to maximize the chances for success. Special emphasis is placed on the use of conformational (ϕ-ψ space) and topographical (χ space) considerations in design.
Collapse
Affiliation(s)
- Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
41
|
Truncation of the peptide sequence in bifunctional ligands with mu and delta opioid receptor agonist and neurokinin 1 receptor antagonist activities. Bioorg Med Chem Lett 2013; 23:4975-8. [PMID: 23899615 DOI: 10.1016/j.bmcl.2013.06.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 11/22/2022]
Abstract
The optimization and truncation of our lead peptide-derived ligand TY005 possessing eight amino-acid residues was performed. Among the synthesized derivatives, NP30 (Tyr(1)-DAla(2)-Gly(3)-Phe(4)-Gly(5)-Trp(6)-O-[3',5'-Bzl(CF3)2]) showed balanced and potent opioid agonist as well as substance P antagonist activities in isolated tissue-based assays, together with significant antinociceptive and antiallodynic activities in vivo.
Collapse
|
42
|
Hruby VJ. Adventures in peptides and science with students! The joys of research. Biopolymers 2013; 100:127-31. [PMID: 23616095 PMCID: PMC3967710 DOI: 10.1002/bip.22179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 11/11/2022]
Abstract
Working with students at the undergraduate, graduate and postdoctoral levels has brought me great joy and satisfaction. Each student is a unique human being, so each provides an important opportunity for learning, creativity and accomplishment in research and scholarship. In this reflection, several examples of this scientific process are discussed in the context of solving scientific problems which led to novel and critical scientific insights.
Collapse
Affiliation(s)
- Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721
| |
Collapse
|
43
|
Tumati S, Largent-Milnes TM, Keresztes AI, Yamamoto T, Vanderah TW, Roeske WR, Hruby VJ, Varga EV. Tachykinin NK1 receptor antagonist co-administration attenuates opioid withdrawal-mediated spinal microglia and astrocyte activation. Eur J Pharmacol 2012; 684:64-70. [DOI: 10.1016/j.ejphar.2012.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Aldrich JV, McLaughlin JP. Opioid Peptides: Potential for Drug Development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e1-e70. [PMID: 23316256 DOI: 10.1016/j.ddtec.2011.07.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Opioid receptors are important targets for the treatment of pain and potentially for other disease states (e.g. mood disorders and drug abuse) as well. Significant recent advances have been made in identifying opioid peptide analogs that exhibit promising in vivo activity for treatment of these maladies. This review focuses on the development and evaluation of opioid peptide analogs demonstrating activity after systemic administration, and recent clinical evaluations of opioid peptides for possible therapeutic use.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045
| | | |
Collapse
|
45
|
Guillemyn K, Kleczkowska P, Novoa A, Vandormael B, Van den Eynde I, Kosson P, Asim MF, Schiller PW, Spetea M, Lipkowski AW, Tourwé D, Ballet S. In vivo antinociception of potent mu opioid agonist tetrapeptide analogues and comparison with a compact opioid agonist-neurokinin 1 receptor antagonist chimera. Mol Brain 2012; 5:4. [PMID: 22289619 PMCID: PMC3284447 DOI: 10.1186/1756-6606-5-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/30/2012] [Indexed: 11/15/2022] Open
Abstract
Background An important limiting factor in the development of centrally acting pharmaceuticals is the blood-brain barrier (BBB). Transport of therapeutic peptides through this highly protective physiological barrier remains a challenge for peptide drug delivery into the central nervous system (CNS). Because the most common strategy to treat moderate to severe pain consists of the activation of opioid receptors in the brain, the development of active opioid peptide analogues as potential analgesics requires compounds with a high resistance to enzymatic degradation and an ability to cross the BBB. Results Herein we report that tetrapeptide analogues of the type H-Dmt1-Xxx2-Yyy3-Gly4-NH2 are transported into the brain after intravenous and subcutaneous administration and are able to activate the μ- and δ opioid receptors more efficiently and over longer periods of time than morphine. Using the hot water tail flick test as the animal model for antinociception, a comparison in potency is presented between a side chain conformationally constrained analogue containing the benzazepine ring (BVD03, Yyy3: Aba), and a "ring opened" analogue (BVD02, Yyy3: Phe). The results show that in addition to the increased lipophilicity through amide bond N-methylation, the conformational constraint introduced at the level of the Phe3 side chain causes a prolonged antinociception. Further replacement of NMe-D-Ala2 by D-Arg2 in the tetrapeptide sequence led to an improved potency as demonstrated by a higher and maintained antinociception for AN81 (Xxx2: D-Arg) vs. BVD03 (Xxx2: NMe-D-Ala). A daily injection of the studied opioid ligands over a time period of 5 days did however result in a substantial decrease in antinociception on the fifth day of the experiment. The compact opioid agonist - NK1 antagonist hybrid SBCHM01 could not circumvent opioid induced tolerance. Conclusions We demonstrated that the introduction of a conformational constraint has an important impact on opioid receptor activation and subsequent antinociception in vivo. Further amino acid substitution allowed to identify AN81 as an opioid ligand able to access the CNS and induce antinociception at very low doses (0.1 mg/kg) over a time period up to 7 hours. However, tolerance became apparent after repetitive i.v. administration of the investigated tetrapeptides. This side effect was also observed with the dual opioid agonist-NK1 receptor antagonist SBCHM01.
Collapse
Affiliation(s)
- Karel Guillemyn
- Department of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
47
|
Vardanyan R, Kumirov VK, Nichol GS, Davis P, Liktor-Busa E, Rankin D, Varga E, Vanderah T, Porreca F, Lai J, Hruby VJ. Synthesis and biological evaluation of new opioid agonist and neurokinin-1 antagonist bivalent ligands. Bioorg Med Chem 2011; 19:6135-42. [PMID: 21925887 PMCID: PMC4137774 DOI: 10.1016/j.bmc.2011.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Newly designed bivalent ligands-opioid agonist/NK1-antagonists have been synthesized. The synthesis of new starting materials-carboxy-derivatives of Fentanyl (1a-1c) was developed. These products have been transformed to 'isoimidium perchlorates' (2a-c). The new isoimidium perchlorates have been successfully implemented in nucleophilic addition reactions, with l-tryptophan 3,5-bis(trifluoromethyl)benzyl ester to give the target compounds-amides (3a-c). Perchlorates (2a-c) successfully undergo reactions with other nucleophiles such as alcohols, amines or hydrazines. The obtained compound 3b exhibited μ-opioid agonist activity and NK1-antagonist activity and may serve as a useful lead compound for the further design of a new series of opioid agonist/NK1-antagonist compounds.
Collapse
Affiliation(s)
- Ruben Vardanyan
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85719, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ronaldson PT, Davis TP. Targeting blood-brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery. Ther Deliv 2011; 2:1015-41. [PMID: 22468221 PMCID: PMC3313594 DOI: 10.4155/tde.11.67] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) is the most significant obstacle to effective CNS drug delivery. It possesses structural and biochemical features (i.e., tight-junction protein complexes and, influx and efflux transporters) that restrict xenobiotic permeation. Pathophysiological stressors (i.e., peripheral inflammatory pain) can alter BBB tight junctions and transporters, which leads to drug-permeation changes. This is especially critical for opioids, which require precise CNS concentrations to be safe and effective analgesics. Recent studies have identified molecular targets (i.e., endogenous transporters and intracellular signaling systems) that can be exploited for optimization of CNS drug delivery. This article summarizes current knowledge in this area and emphasizes those targets that present the greatest opportunity for controlling drug permeation and/or drug transport across the BBB in an effort to achieve optimal CNS opioid delivery.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 N Campbell Avenue, PO Box 245050, Tucso, AZ, USA.
| | | |
Collapse
|
49
|
Current world literature. Curr Opin Support Palliat Care 2011; 5:174-83. [PMID: 21521986 DOI: 10.1097/spc.0b013e3283473351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Ballet S, Feytens D, Buysse K, Chung NN, Lemieux C, Tumati S, Keresztes A, Van Duppen J, Lai J, Varga E, Porreca F, Schiller PW, Vanden Broeck J, Tourwé D. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist. J Med Chem 2011; 54:2467-76. [PMID: 21413804 PMCID: PMC3096782 DOI: 10.1021/jm1016285] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3',5'-(CF(3))(2)-Bn], 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], and 23 [Ac-Tic-NMe-3',5'-(CF(3))(2)-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], which combines the N terminus of the established Dmt(1)-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH(2)) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, that is, Dmt-D-Arg-Aba-Gly-NH(2) (36), also proved to be an extremely potent and balanced μ and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity.
Collapse
Affiliation(s)
- Steven Ballet
- Department of Organic Chemistry, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|