1
|
Sajkowska JJ, Tsang CH, Kozielewicz P. Application of FRET- and BRET-based live-cell biosensors in deorphanization and ligand discovery studies on orphan G protein-coupled receptors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100174. [PMID: 39084335 DOI: 10.1016/j.slasd.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Bioluminescence- and fluorescence-based resonance energy transfer assays have gained considerable attention in pharmacological research as high-throughput scalable tools applicable to drug discovery. To this end, G protein-coupled receptors represent the biggest target class for marketed drugs, and among them, orphan G protein-coupled receptors have the biggest untapped therapeutic potential. In this review, the cases where biophysical methods, BRET and FRET, were employed for deorphanization and ligand discovery studies on orphan G protein-coupled receptors are listed and discussed.
Collapse
Affiliation(s)
- Joanna J Sajkowska
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Choi Har Tsang
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden
| | - Paweł Kozielewicz
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
2
|
Stone TW, Darlington LG, Badawy AAB, Williams RO. The Complex World of Kynurenic Acid: Reflections on Biological Issues and Therapeutic Strategy. Int J Mol Sci 2024; 25:9040. [PMID: 39201726 PMCID: PMC11354734 DOI: 10.3390/ijms25169040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
It has been unequivocally established that kynurenic acid has a number of actions in a variety of cells and tissues, raising, in principle, the possibility of targeting its generation, metabolism or sites of action to manipulate those effects to a beneficial therapeutic end. However, many basic aspects of the biology of kynurenic acid remain unclear, potentially leading to some confusion and misinterpretations of data. They include questions of the source, generation, targets, enzyme expression, endogenous concentrations and sites of action. This essay is intended to raise and discuss many of these aspects as a source of reference for more balanced discussion. Those issues are followed by examples of situations in which modulating and correcting kynurenic acid production or activity could bring significant therapeutic benefit, including neurological and psychiatric conditions, inflammatory diseases and cell protection. More information is required to obtain a clear overall view of the pharmacological environment relevant to kynurenic acid, especially with respect to the active concentrations of kynurenine metabolites in vivo and changed levels in disease. The data and ideas presented here should permit a greater confidence in appreciating the sites of action and interaction of kynurenic acid under different local conditions and pathologies, enhancing our understanding of kynurenic acid itself and the many clinical conditions in which manipulating its pharmacology could be of clinical value.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| | - L. Gail Darlington
- Worthing Hospital, University Hospitals Sussex NHS Foundation Trust, Worthing BN11 2DH, UK
| | - Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
3
|
Takkar S, Sharma G, Kaushal JB, Abdullah KM, Batra SK, Siddiqui JA. From orphan to oncogene: The role of GPR35 in cancer and immune modulation. Cytokine Growth Factor Rev 2024; 77:56-66. [PMID: 38514303 DOI: 10.1016/j.cytogfr.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
G protein-coupled receptors (GPCRs) are well-studied and the most traceable cell surface receptors for drug discovery. One of the intriguing members of this family is G protein-coupled receptors 35 (GPR35), which belongs to the class A rhodopsin-like family of GPCRs identified over two decades ago. GPR35 presents interesting features such as ubiquitous expression and distinct isoforms. Moreover, functional and genome-wide association studies on its widespread expression have linked GPR35 with pathophysiological disease progression. Various pieces of evidence have been accumulated regarding the independent or endogenous ligand-dependent role of GPR35 in cancer progression and metastasis. In the current scenario, the relationship of this versatile receptor and its putative endogenous ligands for the activation of oncogenic signal transduction pathways at the cellular level is an active area of research. These intriguing features offered by GPR35 make it an oncological target, justifying its uniqueness at the physiological and pathophysiological levels concerning other GPCRs. For pharmacologically targeting receptor-induced signaling, few potential competitive antagonists have been discovered that offer high selectivity at a human level. In addition to its fascinating features, targeting GPR35 at rodent and human orthologue levels is distinct, thus contributing to the sub-species selectivity. Strategies to modulate these issues will help us understand and truly target GPR35 at the therapeutic level. In this article, we have provided prospects on each topic mentioned above and suggestions to overcome the challenges. This review discusses the molecular mechanism and signal transduction pathways activated by endogenous ligands or spontaneous auto-activation of GPR35 that contributes towards disease progression. Furthermore, we have highlighted the GPR35 structure, ubiquitous expression, its role in immunomodulation, and at the pathophysiological level, especially in cancer, indicating its status as a versatile receptor. Subsequently, we discussed the various proposed ligands and their mechanism of interaction with GPR35. Additionally, we have summarized the GPR35 antagonist that provides insights into the opportunities for therapeutically targeting this receptor.
Collapse
Affiliation(s)
- Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
4
|
Oka M, Akaki S, Ohno O, Terasaki M, Hamaoka-Tamura Y, Saito M, Kato S, Inoue A, Aoki J, Matsuno K, Furuta K, Tanaka S. Suppression of Mast Cell Activation by GPR35: GPR35 Is a Primary Target of Disodium Cromoglycate. J Pharmacol Exp Ther 2024; 389:76-86. [PMID: 38290974 DOI: 10.1124/jpet.123.002024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Mast cell stabilizers, including disodium cromoglycate (DSCG), were found to have potential as the agonists of an orphan G protein-coupled receptor, GPR35, although it remains to be determined whether GPR35 is expressed in mast cells and involved in suppression of mast cell degranulation. Our purpose in this study is to verify the expression of GPR35 in mast cells and to clarify how GPR35 modulates the degranulation. We explored the roles of GPR35 using an expression system, a mast cell line constitutively expressing rat GPR35, peritoneal mast cells, and bone marrow-derived cultured mast cells. Immediate allergic responses were assessed using the IgE-mediated passive cutaneous anaphylaxis (PCA) model. Various known GPR35 agonists, including DSCG and newly designed compounds, suppressed IgE-mediated degranulation. GPR35 was expressed in mature mast cells but not in immature bone marrow-derived cultured mast cells and the rat mast cell line. Degranulation induced by antigens was significantly downmodulated in the mast cell line stably expressing GPR35. A GPR35 agonist, zaprinast, induced a transient activation of RhoA and a transient decrease in the amount of filamentous actin. GPR35 agonists suppressed the PCA responses in the wild-type mice but not in the GPR35-/- mice. These findings suggest that GPR35 should prevent mast cells from undergoing degranulation induced by IgE-mediated antigen stimulation and be the primary target of mast cell stabilizers. SIGNIFICANCE STATEMENT: The agonists of an orphan G protein-coupled receptor, GPR35, including disodium cromoglycate, were found to suppress degranulation of rat and mouse mature mast cells, and their antiallergic effects were abrogated in the GPR35-/- mice, indicating that the primary target of mast cell stabilizers should be GPR35.
Collapse
Affiliation(s)
- Masumi Oka
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Sohta Akaki
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Osamu Ohno
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Maho Terasaki
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Yuho Hamaoka-Tamura
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Michiko Saito
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Shinichi Kato
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Asuka Inoue
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Junken Aoki
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Kenji Matsuno
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Kazuyuki Furuta
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Satoshi Tanaka
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| |
Collapse
|
5
|
Yang X, Zhang W, Wang L, Zhao Y, Wei W. Metabolite-sensing GPCRs in rheumatoid arthritis. Trends Pharmacol Sci 2024; 45:118-133. [PMID: 38182481 DOI: 10.1016/j.tips.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024]
Abstract
Persistent inflammation in damaged joints results in metabolic dysregulation of the synovial microenvironment, causing pathogenic alteration of cell activity in rheumatoid arthritis (RA). Recently, the role of metabolite and metabolite-sensing G protein-coupled receptors (GPCRs) in the RA-related inflammatory immune response (IIR) has become a focus of research attention. These GPCRs participate in the progression of RA by modulating immune cell activation, migration, and inflammatory responses. Here, we discuss recent evidence implicating metabolic dysregulation in RA pathogenesis, focusing on the connection between RA-related IIR and GPCR signals originating from the synovial joint and gut. Furthermore, we discuss future directions for targeting metabolite-sensing GPCRs for therapeutic benefit, emphasizing the importance of identifying endogenous ligands and investigating the various transduction mechanisms involved.
Collapse
Affiliation(s)
- Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wankang Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Luping Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
6
|
Wu Y, Zhang P, Fan H, Zhang C, Yu P, Liang X, Chen Y. GPR35 acts a dual role and therapeutic target in inflammation. Front Immunol 2023; 14:1254446. [PMID: 38035084 PMCID: PMC10687457 DOI: 10.3389/fimmu.2023.1254446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
GPR35 is a G protein-coupled receptor with notable involvement in modulating inflammatory responses. Although the precise role of GPR35 in inflammation is not yet fully understood, studies have suggested that it may have both pro- and anti-inflammatory effects depending on the specific cellular environment. Some studies have shown that GPR35 activation can stimulate the production of pro-inflammatory cytokines and facilitate the movement of immune cells towards inflammatory tissues or infected areas. Conversely, other investigations have suggested that GPR35 may possess anti-inflammatory properties in the gastrointestinal tract, liver and certain other tissues by curbing the generation of inflammatory mediators and endorsing the differentiation of regulatory T cells. The intricate role of GPR35 in inflammation underscores the requirement for more in-depth research to thoroughly comprehend its functional mechanisms and its potential significance as a therapeutic target for inflammatory diseases. The purpose of this review is to concurrently investigate the pro-inflammatory and anti-inflammatory roles of GPR35, thus illuminating both facets of this complex issue.
Collapse
Affiliation(s)
- Yetian Wu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Pei Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Hongjie Fan
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Caiying Zhang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Pengfei Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
7
|
De Giovanni M, Chen H, Li X, Cyster JG. GPR35 and mediators from platelets and mast cells in neutrophil migration and inflammation. Immunol Rev 2023; 317:187-202. [PMID: 36928841 PMCID: PMC10504419 DOI: 10.1111/imr.13194] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Neutrophil recruitment from circulation to sites of inflammation is guided by multiple chemoattractant cues emanating from tissue cells, immune cells, and platelets. Here, we focus on the function of one G-protein coupled receptor, GPR35, in neutrophil recruitment. GPR35 has been challenging to study due the description of multiple ligands and G-protein couplings. Recently, we found that GPR35-expressing hematopoietic cells respond to the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). We discuss distinct response profiles of GPR35 to 5-HIAA compared to other ligands. To place the functions of 5-HIAA in context, we summarize the actions of serotonin in vascular biology and leukocyte recruitment. Important sources of serotonin and 5-HIAA are platelets and mast cells. We discuss the dynamics of cell migration into inflamed tissues and how multiple platelet and mast cell-derived mediators, including 5-HIAA, cooperate to promote neutrophil recruitment. Additional actions of GPR35 in tissue physiology are reviewed. Finally, we discuss how clinically approved drugs that modulate serotonin uptake and metabolism may influence 5-HIAA-GPR35 function, and we speculate about broader influences of the GPR35 ligand-receptor system in immunity and disease.
Collapse
Affiliation(s)
- Marco De Giovanni
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hongwen Chen
- Departments of Molecular Genetics and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Departments of Molecular Genetics and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Im DS. Recent advances in GPR35 pharmacology; 5-HIAA serotonin metabolite becomes a ligand. Arch Pharm Res 2023:10.1007/s12272-023-01449-y. [PMID: 37227682 DOI: 10.1007/s12272-023-01449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
GPR35, an orphan receptor, has been waiting for its ligand since its cloning in 1998. Many endogenous and exogenous molecules have been suggested to act as agonists of GPR35 including kynurenic acid, zaprinast, lysophosphatidic acid, and CXCL17. However, complex and controversial responses to ligands among species have become a huge hurdle in the development of therapeutics in addition to the orphan state. Recently, a serotonin metabolite, 5-hydroxyindoleacetic acid (5-HIAA), is reported to be a high potency ligand for GPR35 by investigating the increased expression of GPR35 in neutrophils. In addition, a transgenic knock-in mouse line is developed, in which GPR35 was replaced with a human ortholog, making it possible not only to overcome the different selectivity of agonists among species but also to conduct therapeutic experiments on human GPR35 in mouse models. In the present article, I review the recent advances and prospective therapeutic directions in GPR35 research. Especially, I'd like to draw attention of readers to the finding of 5-HIAA as a ligand of GPR35 and lead to apply the 5-HIAA and human GPR35 knock-in mice to their research fields in a variety of pathophysiological conditions.
Collapse
Affiliation(s)
- Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences and Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02446, Republic of Korea.
- Laboratory of Pharmacology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
9
|
Giblin SP, Pease JE. What defines a chemokine? - The curious case of CXCL17. Cytokine 2023; 168:156224. [PMID: 37210967 DOI: 10.1016/j.cyto.2023.156224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023]
Abstract
Chemotactic cytokines (chemokines) are a group of around 40 small proteins which share a similar protein fold and are well known for their ability to direct the migration of leukocytes to a variety of tissue locations. CXCL17 was the last member of the chemokine family to be assigned and was admitted to the family based on theoretical modelling of the CXCL17 structure and chemotactic activity for monocytes and dendritic cells. Of Interest, CXCL17 expression appears to be restricted to mucosal tissues such as the tongue, stomach and lung, suggestive of specific roles at these locations. A putative CXCL17 receptor, GPR35 was reportedly identified and mice deficient in CXCL17 were generated and characterised. More recently, however, some apparent contradictions regarding aspects of CXCL17 biology have been raised by ourselves and others. Notably, GPR35 appears to be a receptor for the serotonin metabolite 5-hydroxyindoleacetic acid rather than for CXCL17 and modelling of CXCL17 using a variety of platforms fails to identify a chemokine-like fold. In this article, we summarize the discovery of CXCL17 and discuss key papers describing the subsequent characterisation of this protein. Ultimately, we pose the question, 'What defines a chemokine?' (185 words).
Collapse
Affiliation(s)
- Sean Patrick Giblin
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - James Edward Pease
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
10
|
Milligan G. GPR35: from enigma to therapeutic target. Trends Pharmacol Sci 2023; 44:263-273. [PMID: 37002007 DOI: 10.1016/j.tips.2023.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 04/16/2023]
Abstract
The orphan G-protein-coupled receptor 35 (GPR35), although poorly characterised, is attracting considerable interest as a therapeutic target. Marked differences in pharmacology between human and rodent orthologues of the receptor and a dearth of antagonists with affinity for mouse and rat GPR35 have previously restricted the use of preclinical disease models. The development of improved ligands, novel transgenic knock-in mouse lines, and detailed analysis of the disease relevance of single-nucleotide polymorphisms (SNPs) have greatly enhanced understanding of the key roles of GPR35 and have stimulated efforts towards disease-targeted proof-of-concept studies. In this opinion article, new information on the biology of the receptor is considered, whilst insight into how GPR35 is currently being assessed for therapeutic utility - in areas ranging from inflammatory bowel diseases to nonalcoholic steatohepatitis and various cancers - is also provided.
Collapse
Affiliation(s)
- Graeme Milligan
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
11
|
Otkur W, Wang J, Hou T, Liu F, Yang R, Li Y, Xiang K, Pei S, Qi H, Lin H, Zhou H, Zhang X, Piao HL, Liang X. Aminosalicylates target GPR35, partly contributing to the prevention of DSS-induced colitis. Eur J Pharmacol 2023; 949:175719. [PMID: 37054942 DOI: 10.1016/j.ejphar.2023.175719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
GPR35, a class A G-protein-coupled receptor, is considered an orphan receptor; the endogenous ligand and precise physiological function of GPR35 remain obscure. GPR35 is expressed relatively highly in the gastrointestinal tract and immune cells. It plays a role in colorectal diseases like inflammatory bowel diseases (IBDs) and colon cancer. More recently, the development of GPR35 targeting anti-IBD drugs is in solid request. Nevertheless, the development process is in stagnation due to the lack of a highly potent GPR35 agonist that is also active comparably in both human and mouse orthologs. Therefore, we proposed to find compounds for GPR35 agonist development, especially for the human ortholog of GPR35. As an efficient way to pick up a safe and effective GPR35 targeting anti-IBD drug, we screened Food and Drug Administration (FDA)-approved 1850 drugs using a two-step DMR assay. Interestingly, we found aminosalicylates, first-line medicine for IBDs whose precise target remains unknown, exhibited activity on both human and mouse GPR35. Among these, pro-drug olsalazine showed the most potency on GPR35 agonism, inducing ERK phosphorylation and β-arrestin2 translocation. In dextran sodium sulfate (DSS)-induced colitis, the protective effect on disease progression and inhibitory effect on TNFα mRNA expression, NF-κB and JAK-STAT3 pathway of olsalazine are compromised in GPR35 knock-out mice. The present study identified a target for first-line medicine aminosalicylates, highlighted that uncleaved pro-drug olsalazine is effective, and provided a new concept for the design of aminosalicylic GPR35 targeting anti-IBD drug.
Collapse
Affiliation(s)
- Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Fan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Renyu Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Yirong Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Kaijing Xiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Shaojun Pei
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Hanchen Lin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Xiuli Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, People's Republic of China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China.
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China.
| |
Collapse
|
12
|
Otkur W, Liu X, Chen H, Li S, Ling T, Lin H, Yang R, Xia T, Qi H, Piao HL. GPR35 antagonist CID-2745687 attenuates anchorage-independent cell growth by inhibiting YAP/TAZ activity in colorectal cancer cells. Front Pharmacol 2023; 14:1126119. [PMID: 37113762 PMCID: PMC10126512 DOI: 10.3389/fphar.2023.1126119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Background and purpose: GPR35, a member of the orphan G-protein-coupled receptor, was recently implicated in colorectal cancer (CRC). However, whether targeting GPR35 by antagonists can inhibit its pro-cancer role has yet to be answered. Experimental approach: We applied antagonist CID-2745687 (CID) in established GPR35 overexpressing and knock-down CRC cell lines to understand its anti-cell proliferation property and the underlying mechanism. Key results: Although GPR35 did not promote cell proliferation in 2D conditions, it promoted anchorage-independent growth in soft-agar, which was reduced by GPR35 knock-down and CID treatment. Furthermore, YAP/TAZ target genes were expressed relatively higher in GPR35 overexpressed cells and lower in GPR35 knock-down cells. YAP/TAZ activity is required for anchorage-independent growth of CRC cells. By detecting YAP/TAZ target genes, performing TEAD4 luciferase reporter assay, and examining YAP phosphorylation and TAZ protein expression level, we found YAP/TAZ activity is positively correlated to GPR35 expression level, which CID disrupted in GPR35 overexpressed cells, but not in GPR35 knock-down cells. Intriguingly, GPR35 agonists did not promote YAP/TAZ activity but ameliorated CID's inhibitory effect; GPR35-promoted YAP/TAZ activity was only partly attenuated by ROCK1/2 inhibitor. Conclusion and implications: GPR35 promoted YAP/TAZ activity partly through Rho-GTPase with its agonist-independent constitutive activity, and CID exhibited its inhibitory effect. GPR35 antagonists are promising anti-cancer agents that target hyperactivation and overexpression of YAP/TAZ in CRC.
Collapse
|
13
|
Insights into divalent cation regulation and G 13-coupling of orphan receptor GPR35. Cell Discov 2022; 8:135. [PMID: 36543774 PMCID: PMC9772185 DOI: 10.1038/s41421-022-00499-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
Endogenous ions play important roles in the function and pharmacology of G protein-coupled receptors (GPCRs) with limited atomic evidence. In addition, compared with G protein subtypes Gs, Gi/o, and Gq/11, insufficient structural evidence is accessible to understand the coupling mechanism of G12/13 protein by GPCRs. Orphan receptor GPR35, which is predominantly expressed in the gastrointestinal tract and is closely related to inflammatory bowel diseases (IBDs), stands out as a prototypical receptor for investigating ionic modulation and G13 coupling. Here we report a cryo-electron microscopy structure of G13-coupled GPR35 bound to an anti-allergic drug, lodoxamide. This structure reveals a novel divalent cation coordination site and a unique ionic regulatory mode of GPR35 and also presents a highly positively charged binding pocket and the complementary electrostatic ligand recognition mode, which explain the promiscuity of acidic ligand binding by GPR35. Structural comparison of the GPR35-G13 complex with other G protein subtypes-coupled GPCRs reveals a notable movement of the C-terminus of α5 helix of the Gα13 subunit towards the receptor core and the least outward displacement of the cytoplasmic end of GPR35 TM6. A featured 'methionine pocket' contributes to the G13 coupling by GPR35. Together, our findings provide a structural basis for divalent cation modulation, ligand recognition, and subsequent G13 protein coupling of GPR35 and offer a new opportunity for designing GPR35-targeted drugs for the treatment of IBDs.
Collapse
|
14
|
Wyant GA, Yu W, Doulamis IIP, Nomoto RS, Saeed MY, Duignan T, McCully JD, Kaelin WG. Mitochondrial remodeling and ischemic protection by G protein-coupled receptor 35 agonists. Science 2022; 377:621-629. [PMID: 35926043 DOI: 10.1126/science.abm1638] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Kynurenic acid (KynA) is tissue protective in cardiac, cerebral, renal, and retinal ischemia models, but the mechanism is unknown. KynA can bind to multiple receptors, including the aryl hydrocarbon receptor, the a7 nicotinic acetylcholine receptor (a7nAChR), multiple ionotropic glutamate receptors, and the orphan G protein-coupled receptor GPR35. Here, we show that GPR35 activation was necessary and sufficient for ischemic protection by KynA. When bound by KynA, GPR35 activated Gi- and G12/13-coupled signaling and trafficked to the outer mitochondria membrane, where it bound, apparantly indirectly, to ATP synthase inhibitory factor subunit 1 (ATPIF1). Activated GPR35, in an ATPIF1-dependent and pertussis toxin-sensitive manner, induced ATP synthase dimerization, which prevented ATP loss upon ischemia. These findings provide a rationale for the development of specific GPR35 agonists for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Gregory A Wyant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Wenyu Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - IIias P Doulamis
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Rio S Nomoto
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Mossab Y Saeed
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Thomas Duignan
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - James D McCully
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
15
|
Schihada H, Klompstra TM, Humphrys LJ, Cervenka I, Dadvar S, Kolb P, Ruas JL, Schulte G. Isoforms of GPR35 have distinct extracellular N-termini that allosterically modify receptor-transducer coupling and mediate intracellular pathway bias. J Biol Chem 2022; 298:102328. [PMID: 35933013 PMCID: PMC9450150 DOI: 10.1016/j.jbc.2022.102328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Within the intestine, the human G protein–coupled receptor (GPCR) GPR35 is involved in oncogenic signaling, bacterial infections, and inflammatory bowel disease. GPR35 is known to be expressed as two distinct isoforms that differ only in the length of their extracellular N-termini by 31 amino acids, but detailed insights into their functional differences are lacking. Through gene expression analysis in immune and gastrointestinal cells, we show that these isoforms emerge from distinct promoter usage and alternative splicing. Additionally, we employed optical assays in living cells to thoroughly profile both GPR35 isoforms for constitutive and ligand-induced activation and signaling of 10 different heterotrimeric G proteins, ligand-induced arrestin recruitment, and receptor internalization. Our results reveal that the extended N-terminus of the long isoform limits G protein activation yet elevates receptor–β-arrestin interaction. To better understand the structural basis for this bias, we examined structural models of GPR35 and conducted experiments with mutants of both isoforms. We found that a proposed disulfide bridge between the N-terminus and extracellular loop 3, present in both isoforms, is crucial for constitutive G13 activation, while an additional cysteine contributed by the extended N-terminus of the long GPR35 isoform limits the extent of agonist-induced receptor–β-arrestin2 interaction. The pharmacological profiles and mechanistic insights of our study provide clues for the future design of isoform-specific GPR35 ligands that selectively modulate GPR35–transducer interactions and allow for mechanism-based therapies against, for example, inflammatory bowel disease or bacterial infections of the gastrointestinal system.
Collapse
Affiliation(s)
- Hannes Schihada
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany.
| | - Thomas M Klompstra
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Igor Cervenka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Shamim Dadvar
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
De Giovanni M, Tam H, Valet C, Xu Y, Looney MR, Cyster JG. GPR35 promotes neutrophil recruitment in response to serotonin metabolite 5-HIAA. Cell 2022; 185:815-830.e19. [PMID: 35148838 PMCID: PMC9037118 DOI: 10.1016/j.cell.2022.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/02/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023]
Abstract
Rapid neutrophil recruitment to sites of inflammation is crucial for innate immune responses. Here, we reveal that the G-protein-coupled receptor GPR35 is upregulated in activated neutrophils, and it promotes their migration. GPR35-deficient neutrophils are less recruited from blood vessels into inflamed tissue, and the mice are less efficient in clearing peritoneal bacteria. Using a bioassay, we find that serum and activated platelet supernatant stimulate GPR35, and we identify the platelet-derived serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) as a GPR35 ligand. GPR35 function in neutrophil recruitment is strongly dependent on platelets, with the receptor promoting transmigration across platelet-coated endothelium. Mast cells also attract GPR35+ cells via 5-HIAA. Mice deficient in 5-HIAA show a loss of GPR35-mediated neutrophil recruitment to inflamed tissue. These findings identify 5-HIAA as a GPR35 ligand and neutrophil chemoattractant and establish a role for platelet- and mast cell-produced 5-HIAA in cell recruitment to the sites of inflammation and bacterial clearance.
Collapse
Affiliation(s)
- Marco De Giovanni
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Hanson Tam
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Colin Valet
- Departments of Medicine and Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ying Xu
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark R Looney
- Departments of Medicine and Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
17
|
Wang Y, Gai S, Zhang W, Huang X, Ma S, Huo Y, Wu Y, Tu H, Pin JP, Rondard P, Xu C, Liu J. The GABA B receptor mediates neuroprotection by coupling to G 13. Sci Signal 2021; 14:eaaz4112. [PMID: 34665640 DOI: 10.1126/scisignal.aaz4112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yunyun Wang
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Siyu Gai
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Wenhua Zhang
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Xuetao Huang
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Shumin Ma
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yujia Huo
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yichen Wu
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Haijun Tu
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Chanjuan Xu
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jianfeng Liu
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| |
Collapse
|
18
|
Boleij A, Fathi P, Dalton W, Park B, Wu X, Huso D, Allen J, Besharati S, Anders RA, Housseau F, Mackenzie AE, Jenkins L, Milligan G, Wu S, Sears CL. G-protein coupled receptor 35 (GPR35) regulates the colonic epithelial cell response to enterotoxigenic Bacteroides fragilis. Commun Biol 2021; 4:585. [PMID: 33990686 PMCID: PMC8121840 DOI: 10.1038/s42003-021-02014-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/18/2021] [Indexed: 02/03/2023] Open
Abstract
G protein-coupled receptor (GPR)35 is highly expressed in the gastro-intestinal tract, predominantly in colon epithelial cells (CEC), and has been associated with inflammatory bowel diseases (IBD), suggesting a role in gastrointestinal inflammation. The enterotoxigenic Bacteroides fragilis (ETBF) toxin (BFT) is an important virulence factor causing gut inflammation in humans and animal models. We identified that BFT signals through GPR35. Blocking GPR35 function in CECs using the GPR35 antagonist ML145, in conjunction with shRNA knock-down and CRISPRcas-mediated knock-out, resulted in reduced CEC-response to BFT as measured by E-cadherin cleavage, beta-arrestin recruitment and IL-8 secretion. Importantly, GPR35 is required for the rapid onset of ETBF-induced colitis in mouse models. GPR35-deficient mice showed reduced death and disease severity compared to wild-type C57Bl6 mice. Our data support a role for GPR35 in the CEC and mucosal response to BFT and underscore the importance of this molecule for sensing ETBF in the colon.
Collapse
Affiliation(s)
- Annemarie Boleij
- Johns Hopkins University, Department of Medicine, Division of Infectious Diseases, Baltimore, MD, USA.
- Radboud University Medical Center (Radboudumc), Department of Pathology, Radboud Institute for Molecular Life sciences (RIMLS), Nijmegen, The Netherlands.
| | - Payam Fathi
- Johns Hopkins University, Department of Medicine, Division of Infectious Diseases, Baltimore, MD, USA
| | - William Dalton
- Johns Hopkins University, Department of Oncology Center-Hematologic Malignancies, Baltimore, MD, USA
| | - Ben Park
- Johns Hopkins University, Department of Oncology Center-Hematologic Malignancies, Baltimore, MD, USA
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology and Oncology, Nashville, Tenessee, USA
| | - Xinqun Wu
- Johns Hopkins University, Department of Medicine, Division of Infectious Diseases, Baltimore, MD, USA
| | - David Huso
- Johns Hopkins University, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Jawara Allen
- Johns Hopkins University, Department of Medicine, Division of Infectious Diseases, Baltimore, MD, USA
| | - Sepideh Besharati
- Johns Hopkins University, Department of Pathobiology, Baltimore, MD, USA
| | - Robert A Anders
- Johns Hopkins University, Department of Pathobiology, Baltimore, MD, USA
| | - Franck Housseau
- Johns Hopkins University, Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Amanda E Mackenzie
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Laura Jenkins
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Shaoguang Wu
- Johns Hopkins University, Department of Medicine, Division of Infectious Diseases, Baltimore, MD, USA
| | - Cynthia L Sears
- Johns Hopkins University, Department of Medicine, Division of Infectious Diseases, Baltimore, MD, USA
| |
Collapse
|
19
|
Marti-Solano M, Crilly SE, Malinverni D, Munk C, Harris M, Pearce A, Quon T, Mackenzie AE, Wang X, Peng J, Tobin AB, Ladds G, Milligan G, Gloriam DE, Puthenveedu MA, Babu MM. Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature 2020; 587:650-656. [PMID: 33149304 PMCID: PMC7611127 DOI: 10.1038/s41586-020-2888-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are membrane proteins that modulate physiology across human tissues in response to extracellular signals. GPCR-mediated signalling can differ because of changes in the sequence1,2 or expression3 of the receptors, leading to signalling bias when comparing diverse physiological systems4. An underexplored source of such bias is the generation of functionally diverse GPCR isoforms with different patterns of expression across different tissues. Here we integrate data from human tissue-level transcriptomes, GPCR sequences and structures, proteomics, single-cell transcriptomics, population-wide genetic association studies and pharmacological experiments. We show how a single GPCR gene can diversify into several isoforms with distinct signalling properties, and how unique isoform combinations expressed in different tissues can generate distinct signalling states. Depending on their structural changes and expression patterns, some of the detected isoforms may influence cellular responses to drugs and represent new targets for developing drugs with improved tissue selectivity. Our findings highlight the need to move from a canonical to a context-specific view of GPCR signalling that considers how combinatorial expression of isoforms in a particular cell type, tissue or organism collectively influences receptor signalling and drug responses.
Collapse
Affiliation(s)
| | - Stephanie E Crilly
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Duccio Malinverni
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christian Munk
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Abigail Pearce
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Tezz Quon
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Amanda E Mackenzie
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, TN, USA
- Departments of Structural Biology and Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Manojkumar A Puthenveedu
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK.
- Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
20
|
Sharmin O, Abir AH, Potol A, Alam M, Banik J, Rahman AFMT, Tarannum N, Wadud R, Habib ZF, Rahman M. Activation of GPR35 protects against cerebral ischemia by recruiting monocyte-derived macrophages. Sci Rep 2020; 10:9400. [PMID: 32523084 PMCID: PMC7287103 DOI: 10.1038/s41598-020-66417-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Pamoic acid is a potent ligand for G protein Coupled Receptor 35 (GPR35) and exhibits antinociceptive property. GPR35 activation leads to increased energy utilization and the expression of anti-inflammatory genes. However, its role in brain disorders, especially in stroke, remains unexplored. Here we show in a mouse model of stroke that GPR35 activation by pamoic acid is neuroprotective. Pharmacological inhibition of GPR35 reveals that pamoic acid reduces infarcts size in a GPR35 dependent manner. The flowcytometric analysis shows the expression of GPR35 on the infiltrating monocytes/macrophages and neutrophils in the ischemic brain. Pamoic acid treatment results in a preferential increment of noninflammatory Ly-6CLo monocytes/macrophages in the ischemic brain along with the reduced neutrophil counts. The neuroprotective effect of GPR35 activation depends on protein kinase B (Akt) and p38 MAPK. Together we conclude that GPR35 activation by pamoic acid reprograms Ly-6CLo monocytes/macrophages to relay a neuroprotective signal into the ischemic brain.
Collapse
Affiliation(s)
- Ozayra Sharmin
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Bashundhra R/A, Dhaka, 1229, Bangladesh
| | - Ariful Haque Abir
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Bashundhra R/A, Dhaka, 1229, Bangladesh
| | - Abdullah Potol
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Bashundhra R/A, Dhaka, 1229, Bangladesh.,Faculty of Medicine, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Mahabub Alam
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Bashundhra R/A, Dhaka, 1229, Bangladesh
| | - Jewel Banik
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Bashundhra R/A, Dhaka, 1229, Bangladesh.,Deptartment of Neurobiology & Developmental Sciences, College of Medicine, UAMS, 4301W. Markham St., Little Rock, AR, 72205, USA
| | - A F M Towheedur Rahman
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Bashundhra R/A, Dhaka, 1229, Bangladesh.,Milwaukee Institute of Drug Discovery, Department of chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Nuzhat Tarannum
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Bashundhra R/A, Dhaka, 1229, Bangladesh
| | - Rasiqh Wadud
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Bashundhra R/A, Dhaka, 1229, Bangladesh.,Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Zaki Farhad Habib
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Bashundhra R/A, Dhaka, 1229, Bangladesh.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Mahbubur Rahman
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Bashundhra R/A, Dhaka, 1229, Bangladesh.
| |
Collapse
|
21
|
Zheng X, Hu M, Zang X, Fan Q, Liu Y, Che Y, Guan X, Hou Y, Wang G, Hao H. Kynurenic acid/GPR35 axis restricts NLRP3 inflammasome activation and exacerbates colitis in mice with social stress. Brain Behav Immun 2019; 79:244-255. [PMID: 30790702 DOI: 10.1016/j.bbi.2019.02.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
Psychological stress is well known to increase colitis susceptibility and promote relapse. Metabolic changes are commonly observed under psychological stress, but little is known how this relates to the progression of colitis. Here we show that kynurenic acid (KA) is an endogenous driver of social stress-exacerbated colitis via regulating the magnitude of NLRP3 inflammasome. Chronic social defeat stress (CSDS) in mice induced colonic accumulation of KA, and mice receiving KA during CSDS had defects in colonic NLRP3 inflammasome activation. Mechanistically, KA activated GPR35 signaling to induce autophagy-dependent degradation of NLRP3 in macrophages, thereby suppressing IL-1β production. Socially defeated mice with KA treatment displayed enhanced vulnerability to subsequent dextran sulphate sodium (DSS)-induced colonic injury and inflammatory disturbance, and this effect was reversed by autophagic inhibition that blocked the NLRP3-suppressive effect of KA. Thus, our research describes a mechanism by which KA/GPR35 signaling represses adaptive NLRP3 inflammasome activation to increase colitis susceptibility and suggests a potential metabolic target for the intervention of stress-related colonic disorder.
Collapse
Affiliation(s)
- Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Miaomiao Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaojie Zang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qiling Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yali Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuan Che
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaojing Guan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Mackenzie AE, Quon T, Lin LC, Hauser AS, Jenkins L, Inoue A, Tobin AB, Gloriam DE, Hudson BD, Milligan G. Receptor selectivity between the G proteins Gα 12 and Gα 13 is defined by a single leucine-to-isoleucine variation. FASEB J 2019; 33:5005-5017. [PMID: 30601679 PMCID: PMC6436656 DOI: 10.1096/fj.201801956r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite recent advances in structural definition of GPCR-G protein complexes, the basis of receptor selectivity between G proteins remains unclear. The Gα12 and Gα13 subtypes together form the least studied group of heterotrimeric G proteins. G protein-coupled receptor 35 (GPR35) has been suggested to couple efficiently to Gα13 but weakly to Gα12. Using combinations of cells genome-edited to not express G proteins and bioluminescence resonance energy transfer-based sensors, we confirmed marked selectivity of GPR35 for Gα13. Incorporating Gα12/Gα13 chimeras and individual residue swap mutations into these sensors defined that selectivity between Gα13 and Gα12 was imbued largely by a single leucine-to-isoleucine variation at position G.H5.23. Indeed, leucine could not be substituted by other amino acids in Gα13 without almost complete loss of GPR35 coupling. The critical importance of leucine at G.H5.23 for GPR35-G protein interaction was further demonstrated by introduction of this leucine into Gαq, resulting in the gain of coupling to GPR35. These studies demonstrate that Gα13 is markedly the most effective G protein for interaction with GPR35 and that selection between Gα13 and Gα12 is dictated largely by a single conservative amino acid variation.-Mackenzie, A. E., Quon, T., Lin, L.-C., Hauser, A. S., Jenkins, L., Inoue, A., Tobin, A. B., Gloriam, D. E., Hudson, B. D., Milligan, G. Receptor selectivity between the G proteins Gα12 and Gα13 is defined by a single leucine-to-isoleucine variation.
Collapse
Affiliation(s)
- Amanda E Mackenzie
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tezz Quon
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Li-Chiung Lin
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; and
| | - Laura Jenkins
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; and
| | - Brian D Hudson
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
23
|
Schneditz G, Elias JE, Pagano E, Zaeem Cader M, Saveljeva S, Long K, Mukhopadhyay S, Arasteh M, Lawley TD, Dougan G, Bassett A, Karlsen TH, Kaser A, Kaneider NC. GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump. Sci Signal 2019; 12:12/562/eaau9048. [PMID: 30600262 DOI: 10.1126/scisignal.aau9048] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport and Src signaling activity in a ligand-independent manner. Deletion of Gpr35 increased baseline Ca2+ to maximal levels and reduced Src activation and overall metabolic activity in macrophages and intestinal epithelial cells (IECs). In contrast, a common T108M polymorphism in GPR35 was hypermorphic and had the opposite effects to Gpr35 deletion on Src activation and metabolic activity. The T108M polymorphism is associated with ulcerative colitis and primary sclerosing cholangitis, inflammatory diseases with a high cancer risk. GPR35 promoted homeostatic IEC turnover, whereas Gpr35 deletion or inhibition by a selective pepducin prevented inflammation-associated and spontaneous intestinal tumorigenesis in mice. Thus, GPR35 acts as a central signaling and metabolic pacesetter, which reveals an unexpected role of Na/K-ATPase in macrophage and IEC biology.
Collapse
Affiliation(s)
- Georg Schneditz
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.,Norwegian PSC Research Center, Department of Transplantation Medicine and Institute of Clinical Medicine, Oslo University Hospital and University of Oslo, 0027 Oslo, Norway
| | - Joshua E Elias
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ester Pagano
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.,Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - M Zaeem Cader
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Svetlana Saveljeva
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Kathleen Long
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Subhankar Mukhopadhyay
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | | | | | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | | | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine and Institute of Clinical Medicine, Oslo University Hospital and University of Oslo, 0027 Oslo, Norway
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nicole C Kaneider
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
24
|
Protective effect of lodoxamide on hepatic steatosis through GPR35. Cell Signal 2019; 53:190-200. [DOI: 10.1016/j.cellsig.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|
25
|
Divorty N, Milligan G, Graham D, Nicklin SA. The Orphan Receptor GPR35 Contributes to Angiotensin II-Induced Hypertension and Cardiac Dysfunction in Mice. Am J Hypertens 2018; 31:1049-1058. [PMID: 29860395 PMCID: PMC6077831 DOI: 10.1093/ajh/hpy073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/23/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The orphan receptor G protein–coupled receptor 35 (GPR35) has been associated with a range of diseases, including cancer, inflammatory bowel disease, diabetes, hypertension, and heart failure. To assess the potential for GPR35 as a therapeutic target in cardiovascular disease, this study investigated the cardiovascular phenotype of a GPR35 knockout mouse under both basal conditions and following pathophysiological stimulation. METHODS Blood pressure was monitored in male wild-type and GPR35 knockout mice over 7–14 days using implantable telemetry. Cardiac function and dimensions were assessed using echocardiography, and cardiomyocyte morphology evaluated histologically. Two weeks of angiotensin II (Ang II) infusion was used to investigate the effects of GPR35 deficiency under pathophysiological conditions. Gpr35 messenger RNA expression in cardiovascular tissues was assessed using quantitative polymerase chain reaction. RESULTS There were no significant differences in blood pressure, cardiac function, or cardiomyocyte morphology in GPR35 knockout mice compared with wild-type mice. Following Ang II infusion, GPR35 knockout mice were protected from significant increases in systolic, diastolic, and mean arterial blood pressure or impaired left ventricular systolic function, in contrast to wild-type mice. There were no significant differences in Gpr35 messenger RNA expression in heart, kidney, and aorta following Ang II infusion in wild-type mice. CONCLUSIONS Although GPR35 does not appear to influence basal cardiovascular regulation, these findings demonstrate that it plays an important pathological role in the development of Ang II–induced hypertension and impaired cardiac function. This suggests that GPR35 is a potential novel drug target for therapeutic intervention in hypertension.
Collapse
Affiliation(s)
- Nina Divorty
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
26
|
Binti Mohd Amir NAS, Mackenzie AE, Jenkins L, Boustani K, Hillier MC, Tsuchiya T, Milligan G, Pease JE. Evidence for the Existence of a CXCL17 Receptor Distinct from GPR35. THE JOURNAL OF IMMUNOLOGY 2018; 201:714-724. [PMID: 29875152 PMCID: PMC6036231 DOI: 10.4049/jimmunol.1700884] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 04/29/2018] [Indexed: 11/19/2022]
Abstract
The chemokine CXCL17 is associated with the innate response in mucosal tissues but is poorly characterized. Similarly, the G protein–coupled receptor GPR35, expressed by monocytes and mast cells, has been implicated in the immune response, although its precise role is ill-defined. A recent manuscript reported that GPR35 was able to signal in response to CXCL17, which we set out to confirm in this study. GPR35 was readily expressed using transfection systems but failed to signal in response to CXCL17 in assays of β-arrestin recruitment, inositol phosphate production, calcium flux, and receptor endocytosis. Similarly, in chemotaxis assays, GPR35 did not confirm sensitivity to a range of CXCL17 concentrations above that observed in the parental cell line. We subsequently employed a real time chemotaxis assay (TAXIScan) to investigate the migratory responses of human monocytes and the monocytic cell line THP-1 to a gradient of CXCL17. Freshly isolated human monocytes displayed no obvious migration to CXCL17. Resting THP-1 cells showed a trend toward directional migration along a CXCL17 gradient, which was significantly enhanced by overnight incubation with PGE2. However, pretreatment of PGE2-treated THP-1 cells with the well-characterized GPR35 antagonist ML145 did not significantly impair their migratory responses to CXCL17 gradient. CXCL17 was susceptible to cleavage with chymase, although this had little effect its ability to recruit THP-1 cells. We therefore conclude that GPR35 is unlikely to be a bona fide receptor for CXCL17 and that THP-1 cells express an as yet unidentified receptor for CXCL17.
Collapse
Affiliation(s)
- Nurul A S Binti Mohd Amir
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom.,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Amanda E Mackenzie
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; and
| | - Laura Jenkins
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; and
| | - Karim Boustani
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marston C Hillier
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tomoko Tsuchiya
- Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; and
| | - James E Pease
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom; .,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| |
Collapse
|
27
|
Hu HH, Deng H, Ling S, Sun H, Kenakin T, Liang X, Fang Y. Chemical genomic analysis of GPR35 signaling. Integr Biol (Camb) 2018; 9:451-463. [PMID: 28425521 DOI: 10.1039/c7ib00005g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GPR35, a family A orphan G protein-coupled receptor, has been implicated in inflammatory, neurological, and cardiovascular diseases. However, not much is known about the signaling and functions of GPR35. We performed a label-free kinome short hairpin RNA screen and identified a putative signaling network of GPR35 in HT-29 cells, some of which was validated using gene expression, biochemical and cellular assays. The results showed that GPR35 induced hypoxia-inducible factor 1α, and was involved in synaptic transmission, sensory perception, the immune system, and morphogenetic processes. Collectively, our data suggest that GPR35 may play an important role in response to hypoxic stress and be a potential target for the treatment of inflammatory, cardiovascular, and neurological disorders.
Collapse
Affiliation(s)
- Heidi Haibei Hu
- Biochemical Technologies, Corning R&D Corporation, Corning Incorporated, Corning, NY 14831, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
The G protein-coupled receptors deorphanization landscape. Biochem Pharmacol 2018; 153:62-74. [PMID: 29454621 DOI: 10.1016/j.bcp.2018.02.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are usually highlighted as being both the largest family of membrane proteins and the most productive source of drug targets. However, most of the GPCRs are understudied and hence cannot be used immediately for innovative therapeutic strategies. Besides, there are still around 100 orphan receptors, with no described endogenous ligand and no clearly defined function. The race to discover new ligands for these elusive receptors seems to be less intense than before. Here, we present an update of the various strategies employed to assign a function to these receptors and to discover new ligands. We focus on the recent advances in the identification of endogenous ligands with a detailed description of newly deorphanized receptors. Replication being a key parameter in these endeavors, we also discuss the latest controversies about problematic ligand-receptor pairings. In this context, we propose several recommendations in order to strengthen the reporting of new ligand-receptor pairs.
Collapse
|
29
|
Park S, Lee S, Nam S, Im D. GPR35 mediates lodoxamide-induced migration inhibitory response but not CXCL17-induced migration stimulatory response in THP-1 cells; is GPR35 a receptor for CXCL17? Br J Pharmacol 2018; 175:154-161. [PMID: 29068046 PMCID: PMC5740256 DOI: 10.1111/bph.14082] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/29/2017] [Accepted: 10/07/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE GPR35 has long been considered an orphan GPCR, because no endogenous ligand of GPR35 has been discovered. CXCL17 (a chemokine) has been reported to be an endogenous ligand of GPR35, and it has even been suggested that it be called CXCR8. However, at present there is no supporting evidence that CXCL17 does interact with GPR35. EXPERIMENTAL APPROACH We applied two assay systems to explore the relationship between CXCL17 and GPR35. An AP-TGF-α shedding assay in GPR35 over-expressing HEK293 cells was used as a gain-of-function assay. GPR35 knock-down by siRNA transfection was performed in endogenously GPR35-expressing THP-1 cells. KEY RESULTS In the AP-TGF-α shedding assay, lodoxamide, a well-known synthetic GPR35 agonist, was confirmed to be the most potent agonist among other reported agonists. However, neither human nor mouse CXCL17 had an effect on GPR35. Consistent with previous findings, G proteins Gαi/o and Gα12/13 were found to couple with GPR35. Furthermore, lodoxamide-induced activation of GPR35 was concentration-dependently inhibited by CID2745687 (a selective GPR35 antagonist). In endogenously GPR35-expressing THP-1 cells, lodoxamide concentration-dependently inhibited migration and this inhibitory effect was blocked by CID2745687 treatment or GPR35 siRNA transfection. However, even though CXCL17 stimulated the migration of THP-1 cells, which is consistent with a previous report, this stimulatory effect of CXCL17 was not blocked by CID2745687 or GPR35 siRNA. CONCLUSIONS AND IMPLICATIONS The present findings suggest that GPR35 functions as a migration inhibitory receptor, but CXCL17-stimulated migration of THP-1 cells is not dependent on GPR35.
Collapse
Affiliation(s)
- Soo‐Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of PharmacyPusan National UniversityBusanKorea
| | - Seung‐Jin Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of PharmacyPusan National UniversityBusanKorea
| | - So‐Yeon Nam
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of PharmacyPusan National UniversityBusanKorea
| | - Dong‐Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of PharmacyPusan National UniversityBusanKorea
| |
Collapse
|
30
|
Milligan G. G protein-coupled receptors not currently in the spotlight: free fatty acid receptor 2 and GPR35. Br J Pharmacol 2017; 175:2543-2553. [PMID: 28940377 PMCID: PMC6003633 DOI: 10.1111/bph.14042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
It is widely appreciated that G protein‐coupled receptors have been the most successfully exploited class of targets for the development of small molecule medicines. Despite this, to date, less than 15% of the non‐olfactory G protein‐coupled receptors in the human genome are the targets of a clinically used medicine. In many cases, this is likely to reflect a lack of understanding of the basic underpinning biology of many G protein‐coupled receptors that are not currently in the spotlight, as well as a paucity of pharmacological tool compounds and appropriate animal models to test in vivo function of such G protein‐coupled receptors in both normal physiology and in the context of disease. ‘Open Innovation’ arrangements, in which pharmaceutical companies and public–private partnerships provide wider access to tool compounds identified from ligand screening programmes, alongside enhanced medicinal chemistry support to convert such screening ‘hits’ into useful ‘tool’ compounds will provide important routes to improved understanding. However, in parallel, novel approaches to define and fully appreciate the selectivity and mode of action of such tool compounds, as well as better understanding of potential species orthologue variability in the pharmacology and/or signalling profile of a wide range of currently poorly understood and understudied G protein‐coupled receptors, will be vital to fully exploit the therapeutic potential of this large target class. I consider these themes using as exemplars two G protein‐coupled receptors, free fatty acid receptor 2 and GPR35.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
31
|
Interactions between the Kynurenine and the Endocannabinoid System with Special Emphasis on Migraine. Int J Mol Sci 2017; 18:ijms18081617. [PMID: 28758944 PMCID: PMC5578009 DOI: 10.3390/ijms18081617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Both the kynurenine and the endocannabinoid systems are involved in several neurological disorders, such as migraine and there are increasing number of reports demonstrating that there are interactions of two systems. Although their cooperation has not yet been implicated in migraine, there are reports suggesting this possibility. Additionally, the individual role of the endocannabinoid and kynurenine system in migraine is reviewed here first, focusing on endocannabinoids, kynurenine metabolites, in particular kynurenic acid. Finally, the function of NMDA and cannabinoid receptors in the trigeminal system-which has a crucial role in the pathomechanisms of migraine-will also be discussed. The interaction of the endocannabinoid and kynurenine system has been demonstrated to be therapeutically relevant in a number of pathological conditions, such as cannabis addiction, psychosis, schizophrenia and epilepsy. Accordingly, the cross-talk of these two systems may imply potential mechanisms related to migraine, and may offer new approaches to manage the treatment of this neurological disorder.
Collapse
|
32
|
Mackenzie AE, Milligan G. The emerging pharmacology and function of GPR35 in the nervous system. Neuropharmacology 2017; 113:661-671. [DOI: 10.1016/j.neuropharm.2015.07.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
|
33
|
McCallum JE, Mackenzie AE, Divorty N, Clarke C, Delles C, Milligan G, Nicklin SA. G-Protein-Coupled Receptor 35 Mediates Human Saphenous Vein Vascular Smooth Muscle Cell Migration and Endothelial Cell Proliferation. J Vasc Res 2016; 52:383-95. [PMID: 27064272 PMCID: PMC4959467 DOI: 10.1159/000444754] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/14/2016] [Indexed: 12/14/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) migration and proliferation is central to neointima formation in vein graft failure following coronary artery bypass. However, there are currently no pharmacological interventions that prevent vein graft failure through intimal occlusion. It is hence a therapeutic target. Here, we investigated the contribution of GPR35 to human VSMC and endothelial cell (EC) migration, using a scratch-wound assay, and also the contribution to proliferation, using MTS and BrdU assays, in in vitro models using recently characterized human GPR35 ortholog-selective small-molecule agonists and antagonists. Real-time PCR studies showed GPR35 to be robustly expressed in human VSMCs and ECs. Stimulation of GPR35, with either the human-selective agonist pamoic acid or the reference agonist zaprinast, promoted VSMC migration in the scratch-wound assay. These effects were blocked by coincubation with either of the human GPR35-specific antagonists, CID-2745687 or ML-145. These GPR35-mediated effects were produced by inducing alterations in the actin cytoskeleton via the Rho A/Rho kinase signaling axis. Additionally, the agonist ligands stimulated a proliferative response in ECs. These studies highlight the potential that small molecules that stimulate or block GPR35 activity can modulate vascular proliferation and migration. These data propose GPR35 as a translational therapeutic target in vascular remodeling.
Collapse
Affiliation(s)
- Jennifer E McCallum
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
O'Farrell K, Harkin A. Stress-related regulation of the kynurenine pathway: Relevance to neuropsychiatric and degenerative disorders. Neuropharmacology 2015; 112:307-323. [PMID: 26690895 DOI: 10.1016/j.neuropharm.2015.12.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 02/08/2023]
Abstract
The kynurenine pathway (KP), which is activated in times of stress and infection has been implicated in the pathophysiology of neurodegenerative and psychiatric disorders. Activation of this tryptophan metabolising pathway results in the production of neuroactive metabolites which have the potential to interfere with normal neuronal functioning which may contribute to altered neuronal transmission and the emergence of symptoms of these brain disorders. This review investigates the involvement of the KP in a range of neurological disorders, examining recent in vitro, in vivo and clinical discoveries highlights evidence to indicate that the KP is a potential therapeutic target in both neurodegenerative and stress-related neuropsychiatric disorders. Furthermore, this review identifies gaps in our knowledge with regard to this field which are yet to be examined to lead to a more comprehensive understanding of the role of KP activation in brain health and disease. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'.
Collapse
Affiliation(s)
- Katherine O'Farrell
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; Neuroimmunology Research Group, Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| |
Collapse
|
35
|
Roth BL, Kroeze WK. Integrated Approaches for Genome-wide Interrogation of the Druggable Non-olfactory G Protein-coupled Receptor Superfamily. J Biol Chem 2015; 290:19471-7. [PMID: 26100629 DOI: 10.1074/jbc.r115.654764] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are frequent and fruitful targets for drug discovery and development, as well as being off-targets for the side effects of a variety of medications. Much of the druggable non-olfactory human GPCR-ome remains under-interrogated, and we present here various approaches that we and others have used to shine light into these previously dark corners of the human genome.
Collapse
Affiliation(s)
- Bryan L Roth
- From the Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina 27514
| | - Wesley K Kroeze
- From the Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina 27514
| |
Collapse
|
36
|
Shore DM, Reggio PH. The therapeutic potential of orphan GPCRs, GPR35 and GPR55. Front Pharmacol 2015; 6:69. [PMID: 25926795 PMCID: PMC4397721 DOI: 10.3389/fphar.2015.00069] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/15/2015] [Indexed: 12/19/2022] Open
Abstract
The G protein-coupled receptor (GPCR) superfamily of integral proteins is the largest family of signal transducers, comprised of ∼1000 members. Considering their prevalence and functional importance, it’s not surprising that ∼60% of drugs target GPCRs. Regardless, there exists a subset of the GPCR superfamily that is largely uncharacterized and poorly understood; specifically, more than 140 GPCRs have unknown endogenous ligands—the so-called orphan GPCRs. Orphan GPCRs offer tremendous promise, as they may provide novel therapeutic targets that may be more selective than currently known receptors, resulting in the potential reduction in side effects. In addition, they may provide access to signal transduction pathways currently unknown, allowing for new strategies in drug design. Regardless, orphan GPCRs are an important area of inquiry, as they represent a large gap in our understanding of signal transduction at the cellular level. Here, we focus on the therapeutic potential of two recently deorphanized GPCRs: GPR35/CXCR8 and GPR55. First, GPR35/CXCR8 has been observed in numerous tissues/organ systems, including the gastrointestinal tract, liver, immune system, central nervous system, and cardiovascular system. Not surprisingly, GPR35/CXCR8 has been implicated in numerous pathologies involving these tissues/systems. While several endogenous ligands have been identified, GPR35/CXCR8 has recently been observed to bind the chemokine CXCL17. Second, GPR55 has been observed to be expressed in the central nervous system, adrenal glands, gastrointestinal tract, lung, liver, uterus, bladder, kidney, and bone, as well as, other tissues/organ systems. Likewise, it is not surprising that GPR55 has been implicated in pathologies involving these tissues/systems. GPR55 was initially deorphanized as a cannabinoid receptor and this receptor does bind many cannabinoid compounds. However, the GPR55 endogenous ligand has been found to be a non-cannabinoid, lysophophatidylinositol (LPI) and subsequent high throughput assays have identified other GPR55 ligands that are not cannabinoids and do not bind to either the cannabinoid CB1 and CB2 receptors. Here, we review reports that suggest that GPR35/CXCR8 and GPR55 may be promising therapeutic targets, with diverse physiological roles.
Collapse
Affiliation(s)
- Derek M Shore
- Center for Drug Discovery, Department of Chemistry and Biochemistry, University of North Carolina Greensboro Greensboro, NC, USA
| | - Patricia H Reggio
- Center for Drug Discovery, Department of Chemistry and Biochemistry, University of North Carolina Greensboro Greensboro, NC, USA
| |
Collapse
|
37
|
Divorty N, Mackenzie AE, Nicklin SA, Milligan G. G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease. Front Pharmacol 2015; 6:41. [PMID: 25805994 PMCID: PMC4354270 DOI: 10.3389/fphar.2015.00041] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/13/2015] [Indexed: 01/13/2023] Open
Abstract
G protein-coupled receptor 35 (GPR35) is an orphan receptor, discovered in 1998, that has garnered interest as a potential therapeutic target through its association with a range of diseases. However, a lack of pharmacological tools and the absence of convincingly defined endogenous ligands have hampered the understanding of function necessary to exploit it therapeutically. Although several endogenous molecules can activate GPR35 none has yet been confirmed as the key endogenous ligand due to reasons that include lack of biological specificity, non-physiologically relevant potency and species ortholog selectivity. Recent advances have identified several highly potent synthetic agonists and antagonists, as well as agonists with equivalent potency at rodent and human orthologs, which will be useful as tool compounds. Homology modeling and mutagenesis studies have provided insight into the mode of ligand binding and possible reasons for the species selectivity of some ligands. Advances have also been made in determining the role of the receptor in disease. In the past, genome-wide association studies have associated GPR35 with diseases such as inflammatory bowel disease, type 2 diabetes, and coronary artery disease. More recent functional studies have implicated it in processes as diverse as heart failure and hypoxia, inflammation, pain transduction and synaptic transmission. In this review, we summarize the progress made in understanding the molecular pharmacology, downstream signaling and physiological function of GPR35, and discuss its emerging potential applications as a therapeutic target.
Collapse
Affiliation(s)
- Nina Divorty
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK ; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK
| | - Amanda E Mackenzie
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK
| | - Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK
| |
Collapse
|
38
|
Alkondon M, Pereira EFR, Todd SW, Randall WR, Lane MV, Albuquerque EX. Functional G-protein-coupled receptor 35 is expressed by neurons in the CA1 field of the hippocampus. Biochem Pharmacol 2014; 93:506-18. [PMID: 25542997 DOI: 10.1016/j.bcp.2014.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/17/2022]
Abstract
The G-protein-coupled receptor 35 (GPR35) was de-orphanized after the discovery that kynurenic acid (KYNA), an endogenous tryptophan metabolite, acts as an agonist of this receptor. Abundant evidence supports that GPR35 exists primarily in peripheral tissues. Here, we tested the hypothesis that GPR35 exists in the hippocampus and influences the neuronal activity. Fluorescence immunohistochemical staining using an antibody anti-NeuN (a neuronal marker), an antibody anti-GFAP (a glial marker), and an antibody anti-GPR35 revealed that neurons in the stratum oriens, stratum pyramidale, and stratum radiatum of the CA1 field of the hippocampus express GPR35. To determine the presence of functional GPR35 in the neurocircuitry, we tested the effects of various GPR35 agonists on the frequency of spontaneous action potentials recorded as fast current transients (CTs) from stratum radiatum interneurons (SRIs) under cell-attached configuration in rat hippocampal slices. Bath application of the GPR35 agonists zaprinast (1-10 μM), dicumarol (50-100 μM), pamoic acid (500-1000 μM), and amlexanox (3 μM) produced a concentration- and time-dependent reduction in the frequency of CTs. Superfusion of the hippocampal slices with the GPR35 antagonist ML145 (1 μM) increased the frequency of CTs and reduced the inhibitory effect of zaprinast. Bath application of phosphodiesterase 5 inhibitor sildenafil (1 or 5 μM) was ineffective, whereas a subsequent application of zaprinast was effective in reducing the CT frequency. The present results demonstrate for the first time that functional GPR35s are expressed by CA1 neurons and suggest that these receptors can be molecular targets for controlling neuronal activity in the hippocampus.
Collapse
Affiliation(s)
- Manickavasagom Alkondon
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 10 S. Pine Street, Suite 900, Baltimore, MD 21201, USA
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 10 S. Pine Street, Suite 900, Baltimore, MD 21201, USA
| | - Spencer W Todd
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 10 S. Pine Street, Suite 900, Baltimore, MD 21201, USA
| | - William R Randall
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Malcolm V Lane
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 10 S. Pine Street, Suite 900, Baltimore, MD 21201, USA
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 10 S. Pine Street, Suite 900, Baltimore, MD 21201, USA.
| |
Collapse
|
39
|
Liang T, Yan C, Yang L, Hu M, Ban S, Li Q. 3D-QSAR studies of 8-substituted chromen-4-one-2-carboxylic acid derivatives as potent agonists for the orphan G protein-coupled receptor 35. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1287-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Im DS. Intercellular Lipid Mediators and GPCR Drug Discovery. Biomol Ther (Seoul) 2014; 21:411-22. [PMID: 24404331 PMCID: PMC3879912 DOI: 10.4062/biomolther.2013.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023] Open
Abstract
G-protein-coupled receptors (GPCR) are the largest superfamily of receptors responsible for signaling between cells and tissues, and because they play important physiological roles in homeostasis, they are major drug targets. New technologies have been developed for the identification of new ligands, new GPCR functions, and for drug discovery purposes. In particular, intercellular lipid mediators, such as, lysophosphatidic acid and sphingosine 1-phosphate have attracted much attention for drug discovery and this has resulted in the development of fingolimod (FTY-720) and AM095. The discovery of new intercellular lipid mediators and their GPCRs are discussed from the perspective of drug development. Lipid GPCRs for lysophospholipids, including lysophosphatidylserine, lysophosphatidylinositol, lysophosphatidylcholine, free fatty acids, fatty acid derivatives, and other lipid mediators are reviewed.
Collapse
Affiliation(s)
- Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
41
|
Zhao P, Lane TR, Gao HGL, Hurst DP, Kotsikorou E, Le L, Brailoiu E, Reggio PH, Abood ME. Crucial positively charged residues for ligand activation of the GPR35 receptor. J Biol Chem 2013; 289:3625-38. [PMID: 24347166 DOI: 10.1074/jbc.m113.508382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
GPR35 is a G protein-coupled receptor expressed in the immune, gastrointestinal, and nervous systems in gastric carcinomas and is implicated in heart failure and pain perception. We investigated residues in GPR35 responsible for ligand activation and the receptor structure in the active state. GPR35 contains numerous positively charged amino acids that face into the binding pocket that cluster in two distinct receptor regions, TMH3-4-5-6 and TMH1-2-7. Computer modeling implicated TMH3-4-5-6 for activation by the GPR35 agonists zaprinast and pamoic acid. Mutation results for the TMH1-2-7 region of GPR35 showed no change in ligand efficacies at the K1.32A, R2.65A, R7.33A, and K7.40A mutants. However, mutation of arginine residues in the TMH3-4-5-6 region (R4.60, R6.58, R3.36, R(164), and R(167) in the EC2 loop) had effects on signaling for one or both agonists tested. R4.60A resulted in a total ablation of agonist-induced activation in both the β-arrestin trafficking and ERK1/2 activation assays. R6.58A increased the potency of zaprinast 30-fold in the pERK assay. The R(167)A mutant decreased the potency of pamoic acid in the β-arrestin trafficking assay. The R(164)A and R(164)L mutants decreased potencies of both agonists. Similar trends for R6.58A and R(167)A were observed in calcium responses. Computer modeling showed that the R6.58A mutant has additional interactions with zaprinast. R3.36A did not express on the cell surface but was trapped in the cytoplasm. The lack of surface expression of R3.36A was rescued by a GPR35 antagonist, CID2745687. These results clearly show that R4.60, R(164), R(167), and R6.58 play crucial roles in the agonist initiated activation of GPR35.
Collapse
|
42
|
Berlinguer-Palmini R, Masi A, Narducci R, Cavone L, Maratea D, Cozzi A, Sili M, Moroni F, Mannaioni G. GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS One 2013; 8:e82180. [PMID: 24312407 PMCID: PMC3843712 DOI: 10.1371/journal.pone.0082180] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/22/2013] [Indexed: 12/19/2022] Open
Abstract
Limited information is available on the brain expression and role of GPR35, a Gi/o coupled receptor activated by kynurenic acid (KYNA). In mouse cultured astrocytes, we detected GPR35 transcript using RT-PCR and we found that KYNA (0.1 to 100 µM) decreased forskolin (FRSK)-induced cAMP production (p<0.05). Both CID2745687 (3 µM, CID), a recently described GPR35 antagonist, and GPR35 gene silencing significantly prevented the action of KYNA on FRSK-induced cAMP production. In these cultures, we then evaluated whether GPR35 activation was able to modulate intracellular Ca2+ concentration ([Ca2+]i ) and [Ca2+]i fluxes. We found that both KYNA and zaprinast, a phosphodiesterase (PDE) inhibitor and GPR35 agonist, did not modify either basal or peaks of [Ca2+]i induced by challenging the cells with ATP (30 µM). However, the [Ca2+]i plateau phase following peak was significantly attenuated by these compounds in a store-operated Ca2+ channel (SOC)-independent manner. The activation of GPR35 by KYNA and zaprinast was also studied at the CA3-CA1 synapse in the rat hippocampus. Evoked excitatory post synaptic currents (eEPSCs) were recorded from CA1 pyramidal neurons in acute brain slices. The action of KYNA on GPR35 was pharmacologically isolated by using NMDA and α7 nicotinic receptor blockers and resulted in a significant reduction of eEPSC amplitude. This effect was prevented in the presence of CID. Moreover, zaprinast reduced eEPSC amplitude in a PDE5- and cGMP-independent mechanism, thus suggesting that glutamatergic transmission in this area is modulated by GPR35. In conclusion, GPR35 is expressed in cultured astrocytes and its activation modulates cAMP production and [Ca2+]i. GPR35 activation may contribute to KYNA effects on the previously reported decrease of brain extracellular glutamate levels and reduction of excitatory transmission.
Collapse
Affiliation(s)
- Rolando Berlinguer-Palmini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Roberto Narducci
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Leonardo Cavone
- Department of Health Science, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Dario Maratea
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Andrea Cozzi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Maria Sili
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Flavio Moroni
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
43
|
MacKenzie AE, Caltabiano G, Kent TC, Jenkins L, McCallum JE, Hudson BD, Nicklin SA, Fawcett L, Markwick R, Charlton SJ, Milligan G. The antiallergic mast cell stabilizers lodoxamide and bufrolin as the first high and equipotent agonists of human and rat GPR35. Mol Pharmacol 2013; 85:91-104. [PMID: 24113750 DOI: 10.1124/mol.113.089482] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lack of high potency agonists has restricted analysis of the G protein-coupled receptor GPR35. Moreover, marked variation in potency and/or affinity of current ligands between human and rodent orthologs of GPR35 has limited their productive use in rodent models of physiology. Based on the reported modest potency of the antiasthma and antiallergic ligands cromolyn disodium and nedocromil sodium, we identified the related compounds lodoxamide and bufrolin as high potency agonists of human GPR35. Unlike previously identified high potency agonists that are highly selective for human GPR35, both lodoxamide and bufrolin displayed equivalent potency at rat GPR35. Further synthetic antiallergic ligands, either sharing features of the standard surrogate agonist zaprinast, or with lodoxamide and bufrolin, were also shown to display agonism at either human or rat GPR35. Because both lodoxamide and bufrolin are symmetric di-acids, their potential mode of binding was explored via mutagenesis based on swapping between the rat and human ortholog nonconserved arginine residues within proximity of a key conserved arginine at position 3.36. Computational modeling and ligand docking predicted the contributions of different arginine residues, other than at 3.36, in human GPR35 for these two ligands and were consistent with selective loss of potency of either bufrolin or lodoxamide at distinct arginine mutants. The computational models also suggested that bufrolin and lodoxamide would display reduced potency at a low-frequency human GPR35 single nucleotide polymorphism. This prediction was confirmed experimentally.
Collapse
Affiliation(s)
- Amanda E MacKenzie
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (A.E.M., G.C., L.J., J.E.M., B.D.H., G.M.) and Institute of Cardiovascular and Medical Sciences, (J.E.M., S.A.N.), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain (G.C.); and Novartis Institutes for Biomedical Research, Horsham, United Kingdom (T.C.K., L.F., R.M., S.J.C.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ronkainen VP, Tuomainen T, Huusko J, Laidinen S, Malinen M, Palvimo JJ, Ylä-Herttuala S, Vuolteenaho O, Tavi P. Hypoxia-inducible factor 1-induced G protein-coupled receptor 35 expression is an early marker of progressive cardiac remodelling. Cardiovasc Res 2013; 101:69-77. [PMID: 24095869 DOI: 10.1093/cvr/cvt226] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS G protein-coupled receptor 35 (GPR35) has been characterized to be one of the genes that are up-regulated in human heart failure. Since mechanisms controlling GPR35 expression are not known, we investigated the regulation of GPR35 gene and protein expression in cardiac myocytes and in the mouse models of cardiac failure. METHODS AND RESULTS In cardiac myocytes, GPR35 gene expression was found to be exceptionally sensitive to hypoxia and induced by hypoxia-inducible factor-1 (HIF-1) activation. HIF-1-dependent regulation was established by genetic (HIF-1/VP16, Inhibitory Per/Arnt/Sim domain protein) and chemical [desferrioxamine (DFO)] modulation of the HIF-1 pathway and further confirmed by mutation analysis of the GPR35 promoter and by demonstrating direct binding of endogenous HIF-1 to the gene promoter. Hypoxia increased the number and density of GPR35 receptors on the cardiomyocyte cell membranes. Chemical GPR35 agonist Zaprinast caused GPR35 activation and receptor internalization in cardiac myocytes. In addition, overexpressed GPR35 disrupted actin cytoskeleton arrangement and caused morphological changes in cultured cardiomyocytes. GPR35 gene and protein expressions were also induced in mouse models of cardiac failure; the acute phase of myocardial infarction and during the compensatory and decompensatory phase of pressure-load induced cardiac hypertrophy. CONCLUSIONS Cardiac expression of GPR35 is regulated by hypoxia through activation of HIF-1. The expression of GPR35 in mouse models of cardiac infarction and pressure load suggests that GPR35 could be used as an early marker of progressive cardiac failure.
Collapse
Affiliation(s)
- Veli-Pekka Ronkainen
- Department of Physiology, Institute of Biomedicine and Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Thimm D, Funke M, Meyer A, Müller CE. 6-Bromo-8-(4-[3H]methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic Acid: A Powerful Tool for Studying Orphan G Protein-Coupled Receptor GPR35. J Med Chem 2013; 56:7084-99. [DOI: 10.1021/jm4009373] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dominik Thimm
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical
Chemistry I, University of Bonn, An der
Immenburg 4, D-53121 Bonn, Germany
| | - Mario Funke
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical
Chemistry I, University of Bonn, An der
Immenburg 4, D-53121 Bonn, Germany
| | - Anne Meyer
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical
Chemistry I, University of Bonn, An der
Immenburg 4, D-53121 Bonn, Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical
Chemistry I, University of Bonn, An der
Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
46
|
Funke M, Thimm D, Schiedel AC, Müller CE. 8-Benzamidochromen-4-one-2-carboxylic acids: potent and selective agonists for the orphan G protein-coupled receptor GPR35. J Med Chem 2013; 56:5182-97. [PMID: 23713606 DOI: 10.1021/jm400587g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
8-Amido-chromen-4-one-2-carboxylic acid derivatives were identified as novel agonists at the G protein-coupled orphan receptor GPR35. They were characterized by a β-arrestin recruitment assay and optimized to obtain agonists with nanomolar potency for the human GPR35. The compounds were found to exhibit high selectivity versus the related GPR55. The most potent agonists were 6-bromo-8-(4-methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic acid (85, EC50 12.1 nM) and 6-bromo-8-(2-chloro-4-methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic acid (90, EC50 11.1 nM), both of which were >1700-fold selective versus GPR55. Most compounds were considerably less potent at rat and mouse than at human GPR35. 6-Bromo-8-(2-methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic acid (87) was the only derivative that activated GPR35 of all three species at similar, low micromolar concentration. Compounds 85 and 90 are the most potent agonists at the human GPR35 known to date and might thus serve as powerful pharmacological tools to further elucidate the receptor's (patho)physiological role and its potential as a future drug target.
Collapse
Affiliation(s)
- Mario Funke
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | | | | | | |
Collapse
|
47
|
Neetoo-Isseljee Z, MacKenzie AE, Southern C, Jerman J, McIver EG, Harries N, Taylor DL, Milligan G. High-throughput identification and characterization of novel, species-selective GPR35 agonists. J Pharmacol Exp Ther 2012; 344:568-78. [PMID: 23262279 DOI: 10.1124/jpet.112.201798] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Drugs targeting the orphan receptor GPR35 have potential therapeutic application in a number of disease areas, including inflammation, metabolic disorders, nociception, and cardiovascular disease. Currently available surrogate GPR35 agonists identified from pharmacologically relevant compound libraries have limited utility due to the likelihood of off-target effects in vitro and in vivo and the variable potency that such ligands exhibit across species. We sought to identify and characterize novel GPR35 agonists to facilitate studies aimed at defining the physiologic role of GPR35. PathHunter β-arrestin recruitment technology was validated as a human GPR35 screening assay, and a high-throughput screen of 100,000 diverse low molecular weight compounds was conducted. Confirmed GPR35 agonists from five distinct chemotypes were selected for detailed characterization using both β-arrestin recruitment and G protein-dependent assays and each of the human, mouse, and rat GPR35 orthologs. These studies identified 4-{(Z)-[(2Z)-2-(2-fluorobenzylidene)-4-oxo-1,3-thiazolidin-5-ylidene]methyl}benzoic acid (compound 1) as the highest potency full agonist of human GPR35 yet described. As with certain other GPR35 agonists, compound 1 was markedly selective for human GPR35, but displayed elements of signal bias between β-arrestin-2 and G protein-dependent assays. Compound 1 also displayed competitive behavior when assessed against the human GPR35 antagonist, ML-145 (2-hydroxy-4-[4-(5Z)-5-[(E)-2-methyl-3-phenylprop-2-enylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]butanoylamino]benzoic acid). Of the other chemotypes studied, compounds 2 and 3 were selective for the human receptor, but compounds 4 and 5 demonstrated similar activity at human, rat, and mouse GPR35 orthologs. Further characterization of these compounds and related analogs is likely to facilitate a better understanding of GPR35 in health and disease.
Collapse
Affiliation(s)
- Zaynab Neetoo-Isseljee
- Medical Research Council Technology Centre for Therapeutics Discovery, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Jenkins L, Harries N, Lappin JE, MacKenzie AE, Neetoo-Isseljee Z, Southern C, McIver EG, Nicklin SA, Taylor DL, Milligan G. Antagonists of GPR35 display high species ortholog selectivity and varying modes of action. J Pharmacol Exp Ther 2012; 343:683-95. [PMID: 22967846 DOI: 10.1124/jpet.112.198945] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Variation in pharmacology and function of ligands at species orthologs can be a confounding feature in understanding the biology and role of poorly characterized receptors. Substantial selectivity in potency of a number of GPR35 agonists has previously been demonstrated between human and rat orthologs of this G protein-coupled receptor. Via a bioluminescence resonance energy transfer-based assay of induced interactions between GPR35 and β-arrestin-2, addition of the mouse ortholog to such studies indicated that, as for the rat ortholog, murine GPR35 displayed very low potency for pamoate, whereas potency for the reference GPR35 agonist zaprinast was intermediate between the rat and human orthologs. This pattern was replicated in receptor internalization and G protein activation assays. The effectiveness and mode of action of two recently reported GPR35 antagonists, methyl-5-[(tert-butylcarbamothioylhydrazinylidene)methyl]-1-(2,4-difluorophenyl)pyrazole-4-carboxylate (CID-2745687) and 2-hydroxy-4-[4-(5Z)-5-[(E)-2-methyl-3-phenylprop-2-enylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]butanoylamino)benzoic acid (ML-145), were investigated. Both CID-2745687 and ML-145 competitively inhibited the effects at human GPR35 of cromolyn disodium and zaprinast, two agonists that share an overlapping binding site. By contrast, although ML-145 also competitively antagonized the effects of pamoate, CID-2745687 acted in a noncompetitive fashion. Neither ML-145 nor CID-2745687 was able to effectively antagonize the agonist effects of either zaprinast or cromolyn disodium at either rodent ortholog of GPR35. These studies demonstrate that marked species selectivity of ligands at GPR35 is not restricted to agonists and considerable care is required to select appropriate ligands to explore the function of GPR35 in nonhuman cells and tissues.
Collapse
Affiliation(s)
- Laura Jenkins
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhao P, Abood ME. GPR55 and GPR35 and their relationship to cannabinoid and lysophospholipid receptors. Life Sci 2012; 92:453-7. [PMID: 22820167 DOI: 10.1016/j.lfs.2012.06.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 01/23/2023]
Abstract
This review presents a summary of what is known about the G-protein coupled receptors GPR35 and GPR55 and their potential characterization as lysophospholipid or cannabinoid receptors, respectively. Both GPR35 and GPR55 have been implicated as important targets in pain and cancer, and additional diseases as well. While kynurenic acid was suggested to be an endogenous ligand for GPR35, so was 2-arachidonoyl lysophosphatidic acid (LPA). Similarly, GPR55 has been suggested to be a cannabinoid receptor, but is quite clearly also a receptor for lysophosphatidylinositol. Interestingly, 2-arachidonyl glycerol (2-AG), an endogenous ligand for cannabinoid receptors, can be metabolized to 2-arachidonoyl LPA through the action of a monoacylglycerol kinase; the reverse reaction has also been demonstrated. Thus, it appears that mutual interconversion is possible between 2-arachidonoyl LPA and 2-AG within a cell, though the direction of the reaction may be site-dependent. The GPR55 natural ligand, 2-arachidonoyl LPI, can be degraded either to 2-AG by phospholipase C or to 2-arachidonoyl LPA by phospholipase D. Thus, GPR35, GPR55 and CB receptors are linked together through their natural ligand conversions. Additional agonists and antagonists have been identified for both GPR35 and GPR55, which will facilitate the future study of these receptors with respect to their physiological function. Potential therapeutic targets include pain, cancer, metabolic diseases and drug addiction.
Collapse
MESH Headings
- Animals
- Cannabinoids/pharmacology
- Cannabinoids/therapeutic use
- Gene Expression
- Humans
- Ligands
- Receptors, Cannabinoid/drug effects
- Receptors, Cannabinoid/genetics
- Receptors, Cannabinoid/physiology
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Receptors, Lysophospholipid/drug effects
- Receptors, Lysophospholipid/genetics
- Receptors, Lysophospholipid/physiology
Collapse
Affiliation(s)
- Pingwei Zhao
- Center for Substance Abuse Research and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
50
|
Yang Y, Fu A, Wu X, Reagan JD. GPR35 is a target of the loop diuretic drugs bumetanide and furosemide. Pharmacology 2012; 89:13-7. [PMID: 22236570 DOI: 10.1159/000335127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 11/15/2011] [Indexed: 11/19/2022]
Abstract
We report that the loop diuretic drugs bumetanide and furosemide used in the treatment of hypertension are GPR35 agonists. We utilized calcium flux, inositol phosphate accumulation, and dynamic redistribution assays to examine the pharmacology of these compounds on the human, mouse and rat GPR35. While potent on human GPR35, neither bumetanide nor furosemide were active against mouse or rat GPR35. Furthermore, the Na(+)-Cl(-) cotransporter inhibi- tors chlorothiazide and hydrochlorothiazide were inactive against GPR35 in all three species. We also demonstrate that GPR35 is expressed in human skin where it has been shown that loop diuretics inhibit histamine-induced flare and itch response. These findings suggest that GPR35 may play an important role in skin cell biology and be a potential target for the treatment of a variety of immune disorders.
Collapse
Affiliation(s)
- Yuhua Yang
- Department of Metabolic Disorders, Amgen San Francisco, South San Francisco, Calif. 94080, USA
| | | | | | | |
Collapse
|