1
|
Kaya B, Smith H, Chen Y, Azad MG, M Russell T, Richardson V, Bernhardt PV, Dharmasivam M, Richardson DR. Targeting lysosomes by design: novel N-acridine thiosemicarbazones that enable direct detection of intracellular drug localization and overcome P-glycoprotein (Pgp)-mediated resistance. Chem Sci 2024:d4sc04339a. [PMID: 39165729 PMCID: PMC11331336 DOI: 10.1039/d4sc04339a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Innovative N-acridine thiosemicarbazones (NATs) were designed along with their iron(iii), copper(ii), and zinc(ii) complexes. Lysosomal targeting was promoted by specifically incorporating the lysosomotropic Pgp substrate, acridine, into the thiosemicarbazone scaffold to maintain the tridentate N, N, S-donor system. The acridine moiety enables a significant advance in thiosemicarbazone design, since: (1) it enables tracking of the drugs by confocal microscopy using its inherent fluorescence; (2) it is lysosomotropic enabling lysosomal targeting; and (3) as acridine is a P-glycoprotein (Pgp) substrate, it facilitates lysosomal targeting, resulting in the drug overcoming Pgp-mediated resistance. These new N-acridine analogues are novel, and this is the first time that acridine has been specifically added to the thiosemicarbazone framework to achieve the three important properties above. These new agents displayed markedly greater anti-proliferative activity against resistant Pgp-expressing cells than very low Pgp-expressing cells. The anti-proliferative activity of NATs against multiple Pgp-positive cancer cell-types (colon, lung, and cervical carcinoma) was abrogated by the third generation Pgp inhibitor, Elacridar, and also Pgp siRNA that down-regulated Pgp. Confocal microscopy demonstrated that low Pgp in KB31 (-Pgp) cells resulted in acridine's proclivity for DNA intercalation promoting NAT nuclear-targeting. In contrast, high Pgp in KBV1 (+Pgp) cells led to NAT lysosomal sequestration, preventing its nuclear localisation. High Pgp expression in KBV1 (+Pgp) cells resulted in co-localization of NATs with the lysosomal marker, LysoTracker™, that was significantly (p < 0.001) greater than the positive control, the di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) Zn(ii) complex, [Zn(DpC)2]. Incorporation of acridine into the thiosemicarbazone scaffold led to Pgp-mediated transport into lysosomes to overcome Pgp-resistance.
Collapse
Affiliation(s)
- Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Henry Smith
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Yanbing Chen
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
| | - Tiffany M Russell
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine Nagoya 466-8550 Japan
| |
Collapse
|
2
|
Yang G, Ding C, Yang X, Jiang J, He S, Shao Y, Zhang E, Fan X, Zhou X, Huang L, Xinyu Zhang C, Sun J, Wang Y, Zang L, Zheng M, Ma J. NDRG1 enhances the sensitivity to Cetuximab by promoting Stat1 ubiquitylation in colorectal cancer. J Adv Res 2024:S2090-1232(24)00319-9. [PMID: 39128702 DOI: 10.1016/j.jare.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/16/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
INTRODUCTION Cetuximab (CTX) is an effective targeted drug for the treatment of metastatic colorectal cancer, but it is effective only in patients with wild-type KRAS genes. Even in this subset of patients, the sensitivity of CTX in patients with right hemi-colon cancer is much lower than that in patients with left hemi-colon cancer. This significantly limits its clinical application. Therefore, further elucidation of the underlying molecular mechanisms is needed. N-myc downstream-regulated gene 1 (NDRG1) plays an important role in solid tumor invasion and metastasis, but whether it can influence CTX sensitivity has not been thoroughly investigated. OBJECTIVE Our study aimed to identify a novel mechanism by which NDRG1 affects CTX sensitivity. METHODS Through mass spectrometry analysis of our previously constructed CTX-resistant RKO and HCT116 cells, we found that the signal transducer and activator of transcription-1 (Stat1) might be a potential target of NDRG1. By knocking out NDRG1 or/and Stat1 genes, we then applied the loss-of-function experiments to explore the regulatory relationship between NDRG1 and Stat1 and their roles in the cell cycle, epithelial-mesenchymal transition (EMT), and the sensitivity to CTX in these two colorectal cancer (CRC) cells. Finally, we used the nude-mouse transplanted tumor model and human CRC samples to verify the expression of NDRG1 and Stat1 and their impact on CTX sensitivity in vivo. RESULTS Stat1 was upregulated in CTX-resistant cells, whereas NDRG1 was downregulated. Mechanically, NDRG1 was inversely correlated with Stat1 expression. It suppressed CRC cell proliferation, migration, and invasion, and promoted apoptosis and epithelial-mesenchymal transition (EMT) by inhibiting Stat1. In addition, NDRG1 directly interacted with Stat1 and promoted Smurf1-induced Stat1 ubiquitination. Importantly, this novel NDRG1-dependent regulatory loop also enhanced CTX sensitivity both in vitro and in vivo. CONCLUSION Our study revealed that NDRG1 enhanced the sensitivity to Cetuximab by inhibiting Stat1 expression and promoting its ubiquitination in colorectal cancer, elucidating NDRG1 might be a potential therapeutic target for refractory CTX-resistant CRC tumors. But its clinical value still needs to be validated in a larger sample size as well as a different genetic background.
Collapse
Affiliation(s)
- Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Jiang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyuan He
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enkui Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cindy Xinyu Zhang
- Faculty of Science, University of Alberta, 1-560 Enterprise Square,10230 Jasper Avenue, Edmonton, Canada
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Gynecology and Obstetrics, Inner Mongolia Medical UniversityAffiliated Hospital, 1 Tongdao North Street, Hohhot, China.
| | - Lu Zang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Gholam Azad M, Hussaini M, Russell TM, Richardson V, Kaya B, Dharmasivam M, Richardson DR. Multi-modal mechanisms of the metastasis suppressor, NDRG1: Inhibition of WNT/β-catenin signaling by stabilization of protein kinase Cα. J Biol Chem 2024; 300:107417. [PMID: 38815861 PMCID: PMC11261793 DOI: 10.1016/j.jbc.2024.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
The metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), inhibits pro-oncogenic signaling in pancreatic cancer (PC). This investigation dissected a novel mechanism induced by NDRG1 on WNT/β-catenin signaling in multiple PC cell types. NDRG1 overexpression decreased β-catenin and downregulated glycogen synthase kinase-3β (GSK-3β) protein levels and its activation. However, β-catenin phosphorylation at Ser33, Ser37, and Thr41 are classically induced by GSK-3β was significantly increased after NDRG1 overexpression, suggesting a GSK-3β-independent mechanism. Intriguingly, NDRG1 overexpression upregulated protein kinase Cα (PKCα), with PKCα silencing preventing β-catenin phosphorylation at Ser33, Ser37, and Thr41, and decreasing β-catenin expression. Further, NDRG1 and PKCα were demonstrated to associate, with PKCα stabilization occurring after NDRG1 overexpression. PKCα half-life increased from 1.5 ± 0.8 h (3) in control cells to 11.0 ± 2.5 h (3) after NDRG1 overexpression. Thus, NDRG1 overexpression leads to the association of NDRG1 with PKCα and PKCα stabilization, resulting in β-catenin phosphorylation at Ser33, Ser37, and Thr41. The association between PKCα, NDRG1, and β-catenin was identified, with the formation of a potential metabolon that promotes the latter β-catenin phosphorylation. This anti-oncogenic activity of NDRG1 was multi-modal, with the above mechanism accompanied by the downregulation of the nucleo-cytoplasmic shuttling protein, p21-activated kinase 4 (PAK4), which is involved in β-catenin nuclear translocation, inhibition of AKT phosphorylation (Ser473), and decreased β-catenin phosphorylation at Ser552 that suppresses its transcriptional activity. These mechanisms of NDRG1 activity are important to dissect to understand the marked anti-cancer efficacy of NDRG1-inducing thiosemicarbazones that upregulate PKCα and inhibit WNT signaling.
Collapse
Affiliation(s)
- Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Mohammed Hussaini
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Tiffany M Russell
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Brisbane, Queensland, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
4
|
Mayayo-Peralta I, Debets DO, Prekovic S, Schuurman K, Beerthuijzen S, Almekinders M, Sanders J, Moelans CB, Saleiro S, Wesseling J, van Diest PJ, Henrique R, Jerónimo C, Altelaar M, Zwart W. Proteomics on malignant pleural effusions reveals ERα loss in metastatic breast cancer associates with SGK1-NDRG1 deregulation. Mol Oncol 2024; 18:156-169. [PMID: 37854018 PMCID: PMC10766196 DOI: 10.1002/1878-0261.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
Breast cancer (BCa) is a highly heterogeneous disease, with hormone receptor status being a key factor in patient prognostication and treatment decision-making. The majority of primary tumours are positive for oestrogen receptor alpha (ERα), which plays a key role in tumorigenesis and disease progression, and represents the major target for treatment of BCa. However, around one-third of patients with ERα-positive BCa relapse and progress into the metastatic stage, with 20% of metastatic cases characterised by loss of ERα expression after endocrine treatment, known as ERα-conversion. It remains unclear whether ERα-converted cancers are biologically similar to bona fide ERα-negative disease and which signalling cascades compensate for ERα loss and drive tumour progression. To better understand the biological changes that occur in metastatic BCa upon ERα loss, we performed (phospho)proteomics analysis of 47 malignant pleural effusions derived from 37 BCa patients, comparing ERα-positive, ERα-converted and ERα-negative cases. Our data revealed that the loss of ERα-dependency in this metastatic site leads to only a partial switch to an ERα-negative molecular phenotype, with preservation of a luminal-like proteomic landscape. Furthermore, we found evidence for decreased activity of several key kinases, including serum/glucocorticoid regulated kinase 1 (SGK1), in ERα-converted metastases. Loss of SGK1 substrate phosphorylation may compensate for the loss of ERα-dependency in advanced disease and exposes a potential therapeutic vulnerability that may be exploited in treating these patients.
Collapse
Affiliation(s)
- Isabel Mayayo-Peralta
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Donna O Debets
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, The Netherlands
| | - Stefan Prekovic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Suzanne Beerthuijzen
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mathilde Almekinders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Sandra Saleiro
- Lung Cancer Clinics, Portuguese Oncology Institute of Porto, Portugal
| | - Jelle Wesseling
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of the Portuguese Oncology Institute-Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of the Portuguese Oncology Institute-Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| |
Collapse
|
5
|
Wijesinghe TP, Kaya B, Gonzálvez MA, Harmer JR, Gholam Azad M, Bernhardt PV, Dharmasivam M, Richardson DR. Steric Blockade of Oxy-Myoglobin Oxidation by Thiosemicarbazones: Structure-Activity Relationships of the Novel PPP4pT Series. J Med Chem 2023; 66:15453-15476. [PMID: 37922410 DOI: 10.1021/acs.jmedchem.3c01612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The di-2-pyridylketone thiosemicarbazones demonstrated marked anticancer efficacy, prompting progression of DpC to clinical trials. However, DpC induced deleterious oxy-myoglobin oxidation, stifling development. To address this, novel substituted phenyl thiosemicarbazone (PPP4pT) analogues and their Fe(III), Cu(II), and Zn(II) complexes were prepared. The PPP4pT analogues demonstrated potent antiproliferative activity (IC50: 0.009-0.066 μM), with the 1:1 Cu:L complexes showing the greatest efficacy. Substitutions leading to decreased redox potential of the PPP4pT:Cu(II) complexes were associated with higher antiproliferative activity, while increasing potential correlated with increased redox activity. Surprisingly, there was no correlation between redox activity and antiproliferative efficacy. The PPP4pT:Fe(III) complexes attenuated oxy-myoglobin oxidation significantly more than the clinically trialed thiosemicarbazones, Triapine, COTI-2, and DpC, or earlier thiosemicarbazone series. Incorporation of phenyl- and styryl-substituents led to steric blockade, preventing approach of the PPP4pT:Fe(III) complexes to the heme plane and its oxidation. The 1:1 Cu(II):PPP4pT complexes were inert to transmetalation and did not induce oxy-myoglobin oxidation.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
6
|
Yang Y, Li M, Chen G, Liu S, Guo H, Dong X, Wang K, Geng H, Jiang J, Li X. Dissecting copper biology and cancer treatment: ‘Activating Cuproptosis or suppressing Cuproplasia’. Coord Chem Rev 2023; 495:215395. [DOI: 10.1016/j.ccr.2023.215395] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
7
|
Li W, Li S, Zhang Z, Xu G, Man X, Yang F, Liang H. Developing a Multitargeted Anticancer Palladium(II) Agent Based on the His-242 Residue in the IIA Subdomain of Human Serum Albumin. J Med Chem 2023. [PMID: 37321208 DOI: 10.1021/acs.jmedchem.3c00248] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To obtain next-generation metal drugs that can overcome the deficiencies of platinum (Pt) drugs and treat cancer more effectively, we proposed to develop a multitargeted palladium (Pd) agent to the tumor microenvironment (TME) based on the specific residue(s) of human serum albumin (HSA). To this end, we optimized a series of Pd(II) 2-benzoylpyridine thiosemicarbazone compounds to obtain a Pd agent (5b) with significant cytotoxicity. The HSA-5b complex structure revealed that 5b bound to the hydrophobic cavity in the HSA IIA subdomain and then His-242 replaced a leaving group (Cl) of 5b, coordinating with the Pd center. The in vivo results showed that the 5b/HSA-5b complex had significant capacity of inhibiting tumor growth, and HSA optimized the therapeutic behavior of 5b. In addition, we confirmed that the 5b/HSA-5b complex inhibited tumor growth through multiple actions on different components of TME: killing cancer cells, inhibiting tumor angiogenesis, and activating T cells.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| |
Collapse
|
8
|
Montalbano S, Bisceglie F, Pelosi G, Lazzaretti M, Buschini A. Modulation of Transcription Profile Induced by Antiproliferative Thiosemicarbazone Metal Complexes in U937 Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15051325. [PMID: 37242567 DOI: 10.3390/pharmaceutics15051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Since the discovery of cisplatin, the search for metal-based compounds with therapeutic potential has been a challenge for the scientific community. In this landscape, thiosemicarbazones and their metal derivatives represent a good starting point for the development of anticancer agents with high selectivity and low toxicity. Here, we focused on the action mechanism of three metal thiosemicarbazones [Ni(tcitr)2], [Pt(tcitr)2], and [Cu(tcitr)2], derived from citronellal. The complexes were already synthesized, characterized, and screened for their antiproliferative activity against different cancer cells and for genotoxic/mutagenic potential. In this work, we deepened the understanding of their molecular action mechanism using an in vitro model of a leukemia cell line (U937) and an approach of transcriptional expression profile analysis. U937 cells showed a significant sensitivity to the tested molecules. To better understand DNA damage induced by our complexes, the modulation of a panel of genes involved in the DNA damage response pathway was evaluated. We analyzed whether our compounds affected cell cycle progression to determine a possible correlation between proliferation inhibition and cell cycle arrest. Our results demonstrate that metal complexes target different cellular processes and could be promising candidates in the design of antiproliferative thiosemicarbazones, although their overall molecular mechanism is still to be understood.
Collapse
Affiliation(s)
- Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Mirca Lazzaretti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
9
|
Dharmasivam M, Kaya B, Wijesinghe T, Gholam Azad M, Gonzálvez MA, Hussaini M, Chekmarev J, Bernhardt PV, Richardson DR. Designing Tailored Thiosemicarbazones with Bespoke Properties: The Styrene Moiety Imparts Potent Activity, Inhibits Heme Center Oxidation, and Results in a Novel "Stealth Zinc(II) Complex". J Med Chem 2023; 66:1426-1453. [PMID: 36649565 DOI: 10.1021/acs.jmedchem.2c01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A novel, potent, and selective antitumor agent, namely (E)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one 4,4-dimethyl-3-thiosemicarbazone (PPP44mT), and its analogues were synthesized and characterized and displayed strikingly distinctive properties. This activity was mediated by the inclusion of a styrene moiety, which through steric and electrochemical mechanisms prevented deleterious oxy-myoglobin or oxy-hemoglobin oxidation relative to other potent thiosemicarbazones, i.e., di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) or di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Structure-activity relationship analysis demonstrated specific tuning of PPP44mT electrochemistry further inhibited oxy-myoglobin or oxy-hemoglobin oxidation. Both PPP44mT and its Cu(II) complexes showed conspicuous almost immediate cytotoxicity against SK-N-MC tumor cells (within 3 h). In contrast, [Zn(PPP44mT)2] demonstrated a pronounced delay in activity, taking 48 h before marked antiproliferative efficacy was apparent. As such, [Zn(PPP44mT)2] was designated as a "stealth Zn(II) complex" that overcomes the near immediate cytotoxicity of PPP44mT or its copper complexes. Upon examination of the suppression of oncogenic signaling, [Zn(PPP44mT)2] was superior at inhibiting cyclin D1 expression compared to DpC or Dp44mT.
Collapse
Affiliation(s)
- Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia.,Department of Chemistry, Istanbul University-Cerrahpasa, Avcilar, 34320Istanbul, Turkey
| | - Tharushi Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane4072, Australia
| | - Mohammad Hussaini
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Jason Chekmarev
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane4072, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| |
Collapse
|
10
|
NDRG1 in Cancer: A Suppressor, Promoter, or Both? Cancers (Basel) 2022; 14:cancers14235739. [PMID: 36497221 PMCID: PMC9737586 DOI: 10.3390/cancers14235739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
N-myc downregulated gene-1 (NDRG1) has been variably reported as a metastasis suppressor, a biomarker of poor outcome, and a facilitator of disease progression in a range of different cancers. NDRG1 is poorly understood in cancer due to its context-dependent and pleiotropic functions. Within breast cancer, NDRG1 is reported to be either a facilitator of, or an inhibitor of tumour progression and metastasis. The wide array of roles played by NDRG1 are dependent on post-translational modifications and subcellular localization, as well as the cellular context, for example, cancer type. We present an update on NDRG1, and its association with hallmarks of cancer such as hypoxia, its interaction with oncogenic proteins such as p53 as well its role in oncogenic and metastasis pathways in breast and other cancers. We further comment on its functional implications as a metastasis suppressor and promoter, its clinical relevance, and discuss its therapeutic targetability in different cancers.
Collapse
|
11
|
Richardson DR, Azad MG, Afroz R, Richardson V, Dharmasivam M. Thiosemicarbazones reprogram pancreatic cancer bidirectional oncogenic signaling between cancer cells and stellate cells to suppress desmoplasia. Future Med Chem 2022; 14:1005-1017. [PMID: 35670251 DOI: 10.4155/fmc-2022-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Standard treatments have shown dismal activity against pancreatic cancer (PC), due in part to the development of a dense stroma (desmoplasia). This perspective discusses the development of the di-2-pyridylketone thiosemicarbazones that overcomes bidirectional oncogenic signaling between PC cells and pancreatic stellate cells (PSCs), which is critical for desmoplasia development. This activity is induced by the up-regulation of the metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which inhibits oncogenic signaling via HGF, IGF-1 and Sonic Hedgehog pathway. More recent studies have deciphered additional pathways including those mediated by Wnt and tenascin C that are secreted by PSCs to activate β-catenin and YAP/TAZ signaling in PC cells. Suppression of bidirectional signaling between cell types presents a unique therapeutic opportunity.
Collapse
Affiliation(s)
- D R Richardson
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
- Department of Pathology & Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - M Gholam Azad
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| | - R Afroz
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| | - V Richardson
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| | - M Dharmasivam
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| |
Collapse
|
12
|
Lee Y, Oh C, Kim J, Park MS, Bae WK, Yoo KH, Hong S. Bioinspired nonheme iron complex that triggers mitochondrial apoptotic signalling pathway specifically for colorectal cancer cells. Chem Sci 2022; 13:737-747. [PMID: 35173938 PMCID: PMC8768841 DOI: 10.1039/d1sc05094j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
The activation of dioxygen is the keystone of all forms of aerobic life. Many biological functions rely on the redox versatility of metal ions to perform reductive activation-mediated processes entailing dioxygen and its partially reduced species including superoxide, hydrogen peroxide, and hydroxyl radicals, also known as reactive oxygen species (ROS). In biomimetic chemistry, a number of synthetic approaches have sought to design, synthesize and characterize reactive intermediates such as the metal-superoxo, -peroxo, and -oxo species, which are commonly found as key intermediates in the enzymatic catalytic cycle. However, the use of these designed complexes and their corresponding intermediates as potential candidates for cancer therapeutics has scarcely been endeavored. In this context, a series of biomimetic first-row transition metal complexes bearing a picolylamine-based water-soluble ligand, [M(HN3O2)]2+ (M = Mn2+, Fe2+, Co2+, Cu2+; HN3O2 = 2-(2-(bis(pyridin-2-ylmethyl)amino)ethoxy)ethanol) were synthesized and characterized by various spectroscopic methods including X-ray crystallography and their dioxygen and ROS activation reactivity were evaluated in situ and in vitro. It turned out that among these metal complexes, the iron complex, [Fe(HN3O2)(H2O)]2+, was capable of activating dioxygen and hydrogen peroxide and produced the ROS species (e.g., hydroxyl radical). Upon the incubation of these complexes with different cancer cells, such as cervical, breast, and colorectal cancer cells (MDA-MB-231, AU565, SK-BR-3, HeLa S3, HT-29, and HCT116 cells), only the iron complex triggered cellular apoptosis specifically for colorectal cancer cells; the other metal complexes show negligible anti-proliferative activity. More importantly, the biomimetic complexes were harmless to normal cells and produced less ROS therein. The use of immunocytochemistry combined with western blot analysis strongly supported that apoptosis occurred via the intrinsic mitochondrial pathway; in the intracellular network, [Fe(HN3O2)(H2O)]2+ resulted in (i) the activation and/or production of ROS species, (ii) the induction of intracellular impaired redox balance, and (iii) the promotion of the mitochondrial apoptotic signaling pathway in colorectal cancer cells. The results have implications for developing novel biomimetic complexes in cancer treatments and for designing potent candidates with cancer-specific antitumor activity. A water-soluble iron complex that produces hydroxyl radical species triggers colorectal cancer cell death via the mitochondrial apoptotic pathway.![]()
Collapse
Affiliation(s)
- Yool Lee
- Department of Chemistry, Sookmyung Women's University Seoul 04310 Korea
| | - Chaeun Oh
- Department of Biological Sciences, Sookmyung Women's University Seoul 04310 Korea
| | - Jin Kim
- Department of Chemistry, Sunchon National University Suncheon 57922 Korea
| | - Myong-Suk Park
- Division of Hemato-Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital Hwasun Republic of Korea
| | - Woo Kyun Bae
- Division of Hemato-Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital Hwasun Republic of Korea .,Combinatorial Tumor Immunotherapy MRC Center, Chonnam National University Medical School Hwasun Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University Seoul 04310 Korea
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women's University Seoul 04310 Korea
| |
Collapse
|
13
|
Selyutina OY, Kononova PA, Koshman VE, Shelepova EA, Azad MG, Afroz R, Dharmasivam M, Bernhardt PV, Polyakov NE, Richardson DR. Ascorbate-and iron-driven redox activity of Dp44mT and emodin facilitates peroxidation of micelles and bicelles. Biochim Biophys Acta Gen Subj 2021; 1866:130078. [PMID: 34974127 DOI: 10.1016/j.bbagen.2021.130078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. METHODS Herein, we compared the effect of Fe complexes of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate. RESULTS In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin. CONCLUSIONS AND GENERAL SIGNIFICANCE Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.
Collapse
Affiliation(s)
- O Yu Selyutina
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, Kutateladze St., 18, 630128 Novosibirsk, Russia.
| | - P A Kononova
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - V E Koshman
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - E A Shelepova
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - M Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - R Afroz
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - M Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - P V Bernhardt
- Department of Chemistry, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - N E Polyakov
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, Kutateladze St., 18, 630128 Novosibirsk, Russia
| | - D R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
14
|
Wijesinghe TP, Dharmasivam M, Dai CC, Richardson DR. Innovative therapies for neuroblastoma: The surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc. Pharmacol Res 2021; 173:105889. [PMID: 34536548 DOI: 10.1016/j.phrs.2021.105889] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022]
Abstract
Iron is an indispensable requirement for essential biological processes in cancer cells. Due to the greater proliferation of neoplastic cells, their demand for iron is considerably higher relative to normal cells, making them highly susceptible to iron depletion. Understanding this sensitive relationship led to research exploring the effect of iron chelation therapy for cancer treatment. The classical iron-binding ligand, desferrioxamine (DFO), has demonstrated effective anti-proliferative activity against many cancer-types, particularly neuroblastoma tumors, and has the surprising activity of down-regulating the potent oncogene, N-myc, which is a major oncogenic driver in neuroblastoma. Even more significant is the ability of DFO to simultaneously up-regulate the potent metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which plays a plethora of roles in suppressing a variety of oncogenic signaling pathways. However, DFO suffers the disadvantage of demonstrating poor membrane permeability and short plasma half-life, requiring administration by prolonged subcutaneous or intravenous infusions. Considering this, the specifically designed di-2-pyridylketone thiosemicarbazone (DpT) series of metal-binding ligands was developed in our laboratory. The lead agent from the first generation DpT series, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), showed exceptional anti-cancer properties compared to DFO. However, it exhibited cardiotoxicity in mouse models at higher dosages. Therefore, a second generation of agents was developed with the lead compound being di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) that progressed to Phase I clinical trials. Importantly, DpC showed better anti-proliferative activity than Dp44mT and no cardiotoxicity, demonstrating effective anti-cancer activity against neuroblastoma tumors in vivo.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Charles C Dai
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
15
|
Hałdys K, Goldeman W, Anger-Góra N, Rossowska J, Latajka R. Monosubstituted Acetophenone Thiosemicarbazones as Potent Inhibitors of Tyrosinase: Synthesis, Inhibitory Studies, and Molecular Docking. Pharmaceuticals (Basel) 2021; 14:ph14010074. [PMID: 33477655 PMCID: PMC7831505 DOI: 10.3390/ph14010074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
A set of 12 monosubstituted acetophenone thiosemicarbazone derivatives (TSCs) were synthesized and their inhibitory properties toward tyrosinase activity were tested. Moreover, their ability to inhibit melanogenesis in the B16F10 murine melanoma cell line was studied. In order to investigate the nature of interactions between the enzyme and the inhibitors, molecular docking to the active site was performed. TSCs 5, 6, 8, and 9 revealed a half maximal inhibitory concentration (IC50) below 1 µM. Compound 6 turned out to be the most potent tyrosinase inhibitor. All investigated compounds showed reversible inhibition of competitive or mixed type. The para-substituted TSCs had higher affinity for the enzyme as compared to their ortho- and meta-analogues. All investigated compounds inhibited melanin production in B16F10 cells at the micromolar level. Molecular docking showed that the sulfur atom of the thiourea moiety penetrates the active site and interacts with copper ions. The above outcomes might be helpful in the design of new tyrosinase inhibitors in the food and cosmetic industries.
Collapse
Affiliation(s)
- Katarzyna Hałdys
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (K.H.); (R.L.)
| | - Waldemar Goldeman
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Natalia Anger-Góra
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, 53-114 Wrocław, Poland; (N.A.-G.); (J.R.)
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, 53-114 Wrocław, Poland; (N.A.-G.); (J.R.)
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (K.H.); (R.L.)
| |
Collapse
|
16
|
Enyedy ÉA, May NV, Pape VFS, Heffeter P, Szakács G, Keppler BK, Kowol CR. Complex formation and cytotoxicity of Triapine derivatives: a comparative solution study on the effect of the chalcogen atom and NH-methylation. Dalton Trans 2020; 49:16887-16902. [PMID: 33185224 DOI: 10.1039/d0dt03465g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
α-N-Heterocyclic thiosemicarbazones are an important class of investigational anticancer drugs. The most prominent representative is 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (Triapine), which has shown promising results in clinical trials and is currently evaluated in phase III. In this study, we investigated the influence of a chalcogen atom exchange from S (Triapine) to O (O-Triapine) and Se (Se-Triapine) and the methylation of the hydrazonic NH moiety (Me-Triapine) on their complexation with Fe(ii), Fe(iii) and Cu(ii) ions and their cytotoxicity. The main aim of this study was to characterize and compare the most feasible chemical forms in solution, their stability and redox properties, as well as to reveal the relationships of the solution speciation and kinetic data with cytotoxic activity. The complex equilibria and redox properties of the complexes were characterized by the combined use of pH-potentiometry, UV-visible spectrophotometry, electron paramagnetic resonance spectroscopy, and cyclic voltammetry. These revealed that Se-Triapine forms Cu(ii) complexes with higher, and O-Triapine with lower stability as compared with Triapine. Me-Triapine, which is not able to coordinate via the typical (N,N,S-) donor set, nevertheless coordinates to Cu(ii) with unexpected high stability. The Cu(ii) complexes of Se-Triapine and Me-Triapine can be relatively slowly reduced by glutathione at pH 7.4 (but not by ascorbate), similarly to Cu(ii)-Triapine. In contrast, the Cu(ii)-O-Triapine complex can be reduced by both reducing agents in rapid redox reactions. Se-Triapine and Triapine form high stability complexes with both Fe(ii) and Fe(iii) ions, while O-Triapine has a much stronger preference towards Fe(iii) and Me-Triapine towards Fe(ii). This difference in the iron preference of the ligands seems to have a strong impact on their cytotoxic effects, which was measured in a human uterine sarcoma cell line (MES-SA) and its multidrug-resistant subline (MES-SA/Dx5). The Cu(ii) complexes of these calcogensemicarbazones are moderately toxic, and the highest level of ROS generation was found for the Cu(ii) complex of O-Triapine, which is the most reducible.
Collapse
Affiliation(s)
- Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| | | | | | | | | | | | | |
Collapse
|
17
|
Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int J Mol Sci 2020; 21:E9259. [PMID: 33291628 PMCID: PMC7730516 DOI: 10.3390/ijms21239259] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Copper is one of the most abundant basic transition metals in the human body. It takes part in oxygen metabolism, collagen synthesis, and skin pigmentation, maintaining the integrity of blood vessels, as well as in iron homeostasis, antioxidant defense, and neurotransmitter synthesis. It may also be involved in cell signaling and may participate in modulation of membrane receptor-ligand interactions, control of kinase and related phosphatase functions, as well as many cellular pathways. Its role is also important in controlling gene expression in the nucleus. In the nervous system in particular, copper is involved in myelination, and by modulating synaptic activity as well as excitotoxic cell death and signaling cascades induced by neurotrophic factors, copper is important for various neuronal functions. Current data suggest that both excess copper levels and copper deficiency can be harmful, and careful homeostatic control is important. This knowledge opens up an important new area for potential therapeutic interventions based on copper supplementation or removal in neurodegenerative diseases including Wilson's disease (WD), Menkes disease (MD), Alzheimer's disease (AD), Parkinson's disease (PD), and others. However, much remains to be discovered, in particular, how to regulate copper homeostasis to prevent neurodegeneration, when to chelate copper, and when to supplement it.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Beata Tarnacka
- Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Rehabilitation Clinic, Medical University of Warsaw, Spartańska 1 Street, 02-637 Warsaw, Poland;
| | - Anna Flaga
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland;
| |
Collapse
|
18
|
Park KC, Dharmasivam M, Richardson DR. The Role of Extracellular Proteases in Tumor Progression and the Development of Innovative Metal Ion Chelators that Inhibit their Activity. Int J Mol Sci 2020; 21:E6805. [PMID: 32948029 PMCID: PMC7555822 DOI: 10.3390/ijms21186805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The crucial role of extracellular proteases in cancer progression is well-known, especially in relation to the promotion of cell invasion through extracellular matrix remodeling. This also occurs by the ability of extracellular proteases to induce the shedding of transmembrane proteins at the plasma membrane surface or within extracellular vesicles. This process results in the regulation of key signaling pathways by the modulation of kinases, e.g., the epidermal growth factor receptor (EGFR). Considering their regulatory roles in cancer, therapeutics targeting various extracellular proteases have been discovered. These include the metal-binding agents di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which increase c-MET degradation by multiple mechanisms. Both the direct and indirect inhibition of protease expression and activity can be achieved through metal ion depletion. Considering direct mechanisms, chelators can bind zinc(II) that plays a catalytic role in enzyme activity. In terms of indirect mechanisms, Dp44mT and DpC potently suppress the expression of the kallikrein-related peptidase-a prostate-specific antigen-in prostate cancer cells. The mechanism of this activity involves promotion of the degradation of the androgen receptor. Additional suppressive mechanisms of Dp44mT and DpC on matrix metalloproteases (MMPs) relate to their ability to up-regulate the metastasis suppressors N-myc downstream regulated gene-1 (NDRG1) and NDRG2, which down-regulate MMPs that are crucial for cancer cell invasion.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
| | - Mahendiran Dharmasivam
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
19
|
Abstract
Iron chelators have long been a target of interest as anticancer agents. Iron is an important cellular resource involved in cell replication, metabolism and growth. Iron metabolism is modulated in cancer cells reflecting their increased replicative demands. Originally, iron chelators were first developed for use in iron overload disorders, however, their potential as anticancer agents has been gaining increasing interest. This is due, in part, to the downstream effects of iron depletion such as the inhibition of proliferation through ribonucleotide reductase activity. Additionally, some chelators form redox active metal complexes with iron resulting in the production of reactive oxygen species and oxidative stress. Newer synthetic iron chelators such as Deferasirox, Triapine and di-2-pyridylketone-4,4,-dimethyl-3-thiosemicrbazone (Dp44mt) have improved pharmacokinetic properties over the older chelator Deferoxamine. This review examines and discusses the various iron chelators that have been trialled for cancer therapy including both preclinical and clinical studies. The successes and shortcomings of each of the chelators and their use in combination therapies are highlighted and future potential in the cancer therapy world is considered.
Collapse
|
20
|
Shakya B, Yadav PN. Thiosemicarbazones as Potent Anticancer Agents and their Modes of Action. Mini Rev Med Chem 2020; 20:638-661. [DOI: 10.2174/1389557519666191029130310] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/17/2019] [Accepted: 10/03/2019] [Indexed: 11/22/2022]
Abstract
:Thiosemicarbazones (TSCs) are a class of Schiff bases usually obtained by the condensation of thiosemicarbazide with a suitable aldehyde or ketone. TSCs have been the focus of chemists and biologists due to their wide range of pharmacological effects. One of the promising areas in which these excellent metal chelators are being developed is their use against cancer. TSCs have a wide clinical antitumor spectrum with efficacy in various tumor types such as leukemia, pancreatic cancer, breast cancer, non-small cell lung cancer, cervical cancer, prostate cancer and bladder cancer. To obtain better activity, different series of TSCs have been developed by modifying the heteroaromatic system in their molecules. These compounds possessed significant antineoplastic activity when the carbonyl attachment of the side chain was located at a position α to the ring nitrogen atom, whereas attachment of the side chain β or γ to the heterocyclic N atom resulted in inactive antitumor agents. In addition, replacement of the heterocyclic ring N with C also resulted in a biologically inactive compound suggesting that a conjugated N,N,S-tridentate donor set is essential for the biological activities of thiosemicarbazones. Several possible mechanisms have been implemented for the anticancer activity of thiosemicarbazones.
Collapse
Affiliation(s)
- Bhushan Shakya
- Amrit Campus, Tribhuvan University, Thamel, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
21
|
Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ. Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Front Oncol 2020; 10:476. [PMID: 32328462 PMCID: PMC7160331 DOI: 10.3389/fonc.2020.00476] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient that plays a complex role in cancer biology. Iron metabolism must be tightly controlled within cells. Whilst fundamental to many cellular processes and required for cell survival, excess labile iron is toxic to cells. Increased iron metabolism is associated with malignant transformation, cancer progression, drug resistance and immune evasion. Depleting intracellular iron stores, either with the use of iron chelating agents or mimicking endogenous regulation mechanisms, such as microRNAs, present attractive therapeutic opportunities, some of which are currently under clinical investigation. Alternatively, iron overload can result in a form of regulated cell death, ferroptosis, which can be activated in cancer cells presenting an alternative anti-cancer strategy. This review focuses on alterations in iron metabolism that enable cancer cells to meet metabolic demands required during different stages of tumorigenesis in relation to metastasis and immune response. The strength of current evidence is considered, gaps in knowledge are highlighted and controversies relating to the role of iron and therapeutic targeting potential are discussed. The key question we address within this review is whether iron modulation represents a useful approach for treating metastatic disease and whether it could be employed in combination with existing targeted drugs and immune-based therapies to enhance their efficacy.
Collapse
Affiliation(s)
- Rikki A. M. Brown
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Kirsty L. Richardson
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Tasnuva D. Kabir
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Debbie Trinder
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Ruth Ganss
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Peter J. Leedman
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
22
|
Xing C, Fang Y, Jiang L, Zhang Y, Li M. Diorganotin(IV) complexes derived from N-terminal methylation of Triapine: synthesis, characterization and antibacterial activity evaluation. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Halogenated aromatic thiosemicarbazones as potent inhibitors of tyrosinase and melanogenesis. Bioorg Chem 2020; 94:103419. [DOI: 10.1016/j.bioorg.2019.103419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
|
24
|
A Concise Review on the Frequency, Major Risk Factors and Surveillance of Hepatocellular Carcinoma (HCC) in β-Thalassemias: Past, Present and Future Perspectives and the ICET-A Experience. Mediterr J Hematol Infect Dis 2020; 12:e2020006. [PMID: 31934316 PMCID: PMC6951357 DOI: 10.4084/mjhid.2020.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Due to the recent alarming increase in the incidence of hepatocellular carcinoma (HCC) in thalassemias, the present report reviews briefly the frequency, the major risk factors, and the surveillance of HCC in β-thalassemias. Over the past 33 years, 153 cases of HCC were reported in patients with thalassemia, mainly in Italy and Greece. Among HCV-infected patients, additional factors promoting the development of HCC included: advanced age, male sex, chronic hepatitis B (CHB) co-infection, and iron overload. For early diagnosis of HCC, sequential ultrasound screening is recommended especially for thalassemia patients with chronic hepatitis C (CHC), which coincides with (one or more) additional risk factors for HCC. Here we report also the preliminary data from thalassemic patients, above the age of 30 years, followed in 13 ICET-A centers. The total number of enrolled patients was 1,327 (males: 624 and 703 females). The prevalence of HCC in thalassemia major patients [characterized by transfusion-dependency (TDT)] and thalassemia intermedia [characterized by nontransfusion dependency (NTDT)] was 1.66 % and 1.96 %, respectively. The lowest age at diagnosis of HCC was 36 years for TDT and 47 years for NTDT patients. We hope that this review can be used to develop more refined and prospective analyses of HCC magnitude and risk in patients with thalassemia and to define specific international guidelines to support clinicians for early diagnosis and treatment of HCC in thalassemic patients.
Collapse
|
25
|
Ertas M, Sahin Z, Bulbul EF, Bender C, Biltekin SN, Berk B, Yurttas L, Nalbur AM, Celik H, Demirayak Ş. Potent ribonucleotide reductase inhibitors: Thiazole-containing thiosemicarbazone derivatives. Arch Pharm (Weinheim) 2019; 352:e1900033. [PMID: 31475759 DOI: 10.1002/ardp.201900033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
The antioxidant, antimalarial, antibacterial, and antitumor activities of thiosemicarbazones have made this class of compounds important for medicinal chemists. In addition, thiosemicarbazones are among the most potent and well-known ribonucleotide reductase inhibitors. In this study, 24 new thiosemicarbazone derivatives were synthesized, and the structures and purity of the compounds were determined by IR, 1 H NMR, 13 C NMR, mass spectroscopy, and elemental analysis. The IC50 values of these 24 compounds were determined with an assay for ribonucleotide reductase inhibition. Compounds 19, 20, and 24 inhibited ribonucleotide reductase enzyme activity at a higher level than metisazone as standard. The cytotoxic effects of these compounds were measured on the MCF7 (human breast adenocarcinoma) and HEK293 (human embryonic kidney) cell lines. Similarly, compounds 19, 20, and 24 had a selective effect on the MCF7 and HEK293 cell lines, killing more cancer cells than cisplatin as standard. The compounds (especially 19, 20, and 24 as the most active ones) were then subjected to docking experiments to identify the probable interactions between the ligands and the enzyme active site. The complex formation was shown qualitatively. The ADME (absorption, distribution, metabolism, and excretion) properties of the compounds were analyzed using in-silico techniques.
Collapse
Affiliation(s)
- Merve Ertas
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Zafer Sahin
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Emre F Bulbul
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Ceysu Bender
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Sevde N Biltekin
- Department of Pharmaceutical Microbiology, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Barkin Berk
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Leyla Yurttas
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Aysu M Nalbur
- Department of Analytical Chemistry, School of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Hayati Celik
- Department of Analytical Chemistry, School of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Şeref Demirayak
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
26
|
Merlot AM, Kalinowski DS, Kovacevic Z, Jansson PJ, Sahni S, Huang MLH, Lane DJ, Lok H, Richardson DR. Exploiting Cancer Metal Metabolism using Anti-Cancer Metal- Binding Agents. Curr Med Chem 2019; 26:302-322. [DOI: 10.2174/0929867324666170705120809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023]
Abstract
Metals are vital cellular elements necessary for multiple indispensable biological processes of living organisms, including energy transduction and cell proliferation. Interestingly, alterations in metal levels and also changes in the expression of proteins involved in metal metabolism have been demonstrated in a variety of cancers. Considering this and the important role of metals for cell growth, the development of drugs that sequester metals has become an attractive target for the development of novel anti-cancer agents. Interest in this field has surged with the design and development of new generations of chelators of the thiosemicarbazone class. These ligands have shown potent anticancer and anti-metastatic activity in vitro and in vivo. Due to their efficacy and safe toxicological assessment, some of these agents have recently entered multi-center clinical trials as therapeutics for advanced and resistant tumors. This review highlights the role and changes in homeostasis of metals in cancer and emphasizes the pre-clinical development and clinical assessment of metal ion-binding agents, namely, thiosemicarbazones, as antitumor agents.
Collapse
Affiliation(s)
- Angelica M. Merlot
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Danuta S. Kalinowski
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Patric J. Jansson
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Michael L.-H. Huang
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Darius J.R. Lane
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Hiu Lok
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| |
Collapse
|
27
|
Zhang WZ, Butler JJ, Cloonan SM. Smoking-induced iron dysregulation in the lung. Free Radic Biol Med 2019; 133:238-247. [PMID: 30075191 PMCID: PMC6355389 DOI: 10.1016/j.freeradbiomed.2018.07.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Iron is one of the most abundant transition elements and is indispensable for almost all organisms. While the ability of iron to participate in redox chemistry is an essential requirement for participation in a range of vital enzymatic reactions, this same feature of iron also makes it dangerous in the generation of hydroxyl radicals and superoxide anions. Given the high local oxygen tensions in the lung, the regulation of iron acquisition, utilization, and storage therefore becomes vitally important, perhaps more so than in any other biological system. Iron plays a critical role in the biology of essentially every cell type in the lung, and in particular, changes in iron levels have important ramifications on immune function and the local lung microenvironment. There is substantial evidence that cigarette smoke causes iron dysregulation, with the implication that iron may be the link between smoking and smoking-related lung diseases. A better understanding of the connection between cigarette smoke, iron, and respiratory diseases will help to elucidate pathogenic mechanisms and aid in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- William Z Zhang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY 10021, USA
| | - James J Butler
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
28
|
Hałdys K, Latajka R. Thiosemicarbazones with tyrosinase inhibitory activity. MEDCHEMCOMM 2019; 10:378-389. [PMID: 31015905 DOI: 10.1039/c9md00005d] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/01/2019] [Indexed: 01/20/2023]
Abstract
Tyrosinase plays an essential role in melanogenesis. Excess production of melanin can be a reason for hyperpigmentation skin disorders in mammals and enzymatic browning in plant-derived foods. Catalyzing the rate-limiting step of melanin synthesis, tyrosinase has become the most studied target for melanogenesis inhibition. Over the past ten years, a number of synthetic thiosemicarbazone derivatives have been reported to possess strong tyrosinase inhibitory properties with IC50 values below 1 μM, placing them among the most potent tyrosinase inhibitors. This review gives an overview of tyrosinase activity and describes tyrosinase-inhibiting thiosemicarbazones in terms of their structure-activity relationships, kinetics of enzyme inhibition and mechanism of action. Results of the studies of thiosemicarbazones as tyrosinase inhibitors from over 20 research articles have been analyzed, compared and summarized in the present paper. Using thiosemicarbazones as tyrosinase inhibitors is a promising approach in developing anti-melanogenetic agents for skin-whitening cosmetics and anti-browning agents for food.
Collapse
Affiliation(s)
- Katarzyna Hałdys
- Wrocław University of Science and Technology , Department of Bioorganic Chemistry , Wybrzeże Wyspiańskiego 27 , 50-370 , Wrocław , Poland .
| | - Rafał Latajka
- Wrocław University of Science and Technology , Department of Bioorganic Chemistry , Wybrzeże Wyspiańskiego 27 , 50-370 , Wrocław , Poland .
| |
Collapse
|
29
|
Ohui K, Afanasenko E, Bacher F, Ting RLX, Zafar A, Blanco-Cabra N, Torrents E, Dömötör O, May NV, Darvasiova D, Enyedy ÉA, Popović-Bijelić A, Reynisson J, Rapta P, Babak MV, Pastorin G, Arion VB. New Water-Soluble Copper(II) Complexes with Morpholine-Thiosemicarbazone Hybrids: Insights into the Anticancer and Antibacterial Mode of Action. J Med Chem 2018; 62:512-530. [PMID: 30507173 PMCID: PMC6348444 DOI: 10.1021/acs.jmedchem.8b01031] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Six
morpholine-(iso)thiosemicarbazone hybrids HL1–HL6 and
their Cu(II) complexes with good-to-moderate solubility and
stability in water were synthesized and characterized. Cu(II) complexes [Cu(L1–6)Cl] (1–6) formed weak dimeric associates in the solid state,
which did not remain intact in solution as evidenced by ESI-MS. The
lead proligands and Cu(II) complexes displayed higher antiproliferative
activity in cancer cells than triapine. In addition, complexes 2–5 were found to specifically inhibit the growth of
Gram-positive bacteria Staphylococcus aureus with MIC50 values at 2–5 μg/mL. Insights
into the processes controlling intracellular accumulation and mechanism
of action were investigated for 2 and 5,
including the role of ribonucleotide reductase (RNR) inhibition, endoplasmic
reticulum stress induction, and regulation of other cancer signaling
pathways. Their ability to moderately inhibit R2 RNR protein in the
presence of dithiothreitol is likely related to Fe chelating properties
of the proligands liberated upon reduction.
Collapse
Affiliation(s)
- Kateryna Ohui
- Institute of Inorganic Chemistry , University of Vienna , Währinger Strasse 42 , A-1090 Vienna , Austria
| | - Eleonora Afanasenko
- Institute of Inorganic Chemistry , University of Vienna , Währinger Strasse 42 , A-1090 Vienna , Austria
| | - Felix Bacher
- Institute of Inorganic Chemistry , University of Vienna , Währinger Strasse 42 , A-1090 Vienna , Austria
| | - Rachel Lim Xue Ting
- Department of Pharmacy , National University of Singapore , 3 Science Drive 2 , Singapore 117543 , Singapore
| | - Ayesha Zafar
- School of Chemical Sciences , University of Auckland , Auckland 1010 , New Zealand
| | - Núria Blanco-Cabra
- Bacterial Infections: Antimicrobial Therapies, Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Barcelona 08036 , Spain
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies, Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Barcelona 08036 , Spain
| | - Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry , University of Szeged , Dóm tér 7. , H-6720 Szeged , Hungary
| | - Nóra V May
- Research Centre of Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok körútja 2. , H-1117 Budapest , Hungary
| | - Denisa Darvasiova
- Institute of Physical Chemistry and Chemical Physics , Slovak Technical University of Technology , Radlinského 9 , 81237 Bratislava , Slovak Republic
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry , University of Szeged , Dóm tér 7. , H-6720 Szeged , Hungary
| | - Ana Popović-Bijelić
- Faculty of Physical Chemistry , University of Belgrade , 11158 Belgrade , Serbia
| | - Jóhannes Reynisson
- School of Chemical Sciences , University of Auckland , Auckland 1010 , New Zealand
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics , Slovak Technical University of Technology , Radlinského 9 , 81237 Bratislava , Slovak Republic
| | - Maria V Babak
- Department of Chemistry , National University of Singapore , 3 Science Drive 2 , 117543 , Singapore.,Drug Development Unit , National University of Singapore , 28 Medical Drive , 117546 , Singapore
| | - Giorgia Pastorin
- Department of Pharmacy , National University of Singapore , 3 Science Drive 2 , Singapore 117543 , Singapore
| | - Vladimir B Arion
- Institute of Inorganic Chemistry , University of Vienna , Währinger Strasse 42 , A-1090 Vienna , Austria
| |
Collapse
|
30
|
Inhibitory properties of aromatic thiosemicarbazones on mushroom tyrosinase: Synthesis, kinetic studies, molecular docking and effectiveness in melanogenesis inhibition. Bioorg Chem 2018; 81:577-586. [DOI: 10.1016/j.bioorg.2018.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
|
31
|
Qi J, Yao Q, Tian L, Wang Y. Piperidylthiosemicarbazones Cu(II) complexes with a high anticancer activity by catalyzing hydrogen peroxide to degrade DNA and promote apoptosis. Eur J Med Chem 2018; 158:853-862. [DOI: 10.1016/j.ejmech.2018.09.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/01/2018] [Accepted: 09/12/2018] [Indexed: 11/15/2022]
|
32
|
Yang Y, Xu Y, Su A, Yang D, Zhang X. Effects of Deferoxamine on Leukemia In Vitro and Its Related Mechanism. Med Sci Monit 2018; 24:6735-6741. [PMID: 30246777 PMCID: PMC6180944 DOI: 10.12659/msm.910325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background This study aimed to investigate the effect of deferoxamine (DFO) on leukemia in vitro, and to explore the underlying molecular mechanism. Material/Methods K562 leukemia cells were treated with various concentrations of DFO (10, 50, and 100 μmol/l) with or without 10 μmol/l ferric chloride for 12 h. Then, total cellular iron was detected. CCK-8 kit and flow cytometry were used for cell viability and apoptosis detection. In addition, expression of apoptosis-related genes was determined by Western blotting and qRT-PCR, respectively. Results The results suggested that DFO significantly inhibited K562 cell viability and induced cell apoptosis in a dose-dependent manner. We also found that the protein and mRNA levels of Bax, p53, and Fas dose-dependently increased in DFO-treated K562 cells, while the level of Bcl-2 markedly decreased in a dose-dependent manner. Moreover, the findings showed that ferric chloride eliminated these effects on K562 cells caused by DFO treatment. Conclusions Our results indicate that DFO plays a protective role in leukemia via inhibiting leukemia cell viability and inducing cell apoptosis by the regulation of apoptosis-related genes expression.
Collapse
Affiliation(s)
- Yujing Yang
- Department of Hematology, Nanjing First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yanli Xu
- Department of Hematology, Nanjing First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ailing Su
- Department of Hematology, Nanjing First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Dan Yang
- Department of Hematology, Nanjing First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xuezhong Zhang
- Department of Hematology, Nanjing First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
33
|
Kang YJ, Kuo CF, Majd S. Nanoparticle-based delivery of an anti-proliferative metal chelator to tumor cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:309-312. [PMID: 29059872 DOI: 10.1109/embc.2017.8036824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper describes the preparation and characterization of polymeric nanoparticles loaded with a potent anti-tumor metal chelator, Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) for delivery to cancer cells. Metal chelators have been increasingly studied for their anti-cancer properties that rely on the high demand of neoplastic cells for iron. Dp44mT has previously shown great antiproliferative characteristics in several cancers including breast cancer and melanoma. To further expand the application of this highly cytotoxic agent for cancer treatment and to enable its specific delivery to malignant cells, here we apply nano-scale particles (NPs) of biodegradable poly(lactic-co-glycolide) (PLGA) for encapsulation of Dp44mT and evaluate its effectiveness in vitro. The results demonstrated that Dp44mT was efficiently encapsulated in PLGA particles. Resulting NPs were uniform in size and shape and had good colloidal stability. Moreover, Dp44mT encapsulation in PLGA enhanced the water solubility of this agent. Lastly, the present formulation showed high level of cytotoxicity in glioma cells. Together, these results show the potential of PLGA NPs as a nano-carrier for Dp44mT with no apparent impact on the anti-tumor activity of this compound.
Collapse
|
34
|
Fang Y, Li J, Han PP, Han QX, Li MX. Less toxic zinc(ii), diorganotin(iv), gallium(iii) and cadmium(ii) complexes derived from 2-benzoylpyridine N, N-dimethylthiosemicarbazone: synthesis, crystal structures, cytotoxicity and investigations of mechanisms of action. Toxicol Res (Camb) 2018; 7:987-993. [PMID: 30310676 DOI: 10.1039/c8tx00127h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/27/2018] [Indexed: 11/21/2022] Open
Abstract
Four metal complexes based on 2-benzoylpyridine N,N-dimethylthiosemicarbazone (Bp44mT) were designed. Free ligand and zinc(ii), diorganotin(iv), gallium(iii) and cadmium(ii) complexes all demonstrated pronounced activity, which was indicated using the growth inhibition test in vitro. Interestingly, most of the compounds were found to be selective against hepatocellular carcinoma (HepG2) cells but had little effect on normal hepatocyte (QSG7701) cells. In particular, Zn(Bp44mT)2 (1) exhibited toxicity on QSG7701 cells which approximately 12-fold lower than that on HepG2 cells. The studies of mechanisms of action indicated that 1 induced reactive oxygen species (ROS) generation in a dose-dependent manner via the mitochondria transduction pathway. Protein analyses showed that 1 significantly promoted p21 and p53 gene expression, causing caspase-3 activation.
Collapse
Affiliation(s)
- Yan Fang
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| | - Jie Li
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| | - Pei-Pei Han
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| | - Qiu-Xia Han
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| | - Ming-Xue Li
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| |
Collapse
|
35
|
Guricová M, Pižl M, Smékal Z, Nádherný L, Čejka J, Eigner V, Hoskovcová I. Template synthesis and structure of Co(II), Ni(II), and Cu(II) complexes with pyridoxilydenetaurinate Schiff base ligand. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Rejmund M, Mrozek-Wilczkiewicz A, Malarz K, Pyrkosz-Bulska M, Gajcy K, Sajewicz M, Musiol R, Polanski J. Piperazinyl fragment improves anticancer activity of Triapine. PLoS One 2018; 13:e0188767. [PMID: 29652894 PMCID: PMC5898707 DOI: 10.1371/journal.pone.0188767] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
A new class of TSCs containing piperazine (piperazinylogs) of Triapine, was designed to fulfill the di-substitution pattern at the TSCs N4 position, which is a crucial prerequisite for the high activity of the previously obtained TSC compounds–DpC and Dp44mT. We tested the important physicochemical characteristics of the novel compounds L1-L12. The studied ligands are neutral at physiological pH, which allows them to permeate cell membranes and bind cellular Fe pools more readily than less lipid-soluble ligands, e.g. DFO. The selectivity and anti-cancer activity of the novel TSCs were examined in a variety of cancer cell types. In general, the novel compounds demonstrated the greatest promise as anti-cancer agents with both a potent and selective anti-proliferative activity. We investigated the mechanism of action more deeply, and revealed that studied compounds inhibit the cell cycle (G1/S phase). Additionally we detected apoptosis, which is dependent on cell line’s specific genetic profile. Accordingly, structure-activity relationship studies suggest that the combination of the piperazine ring with Triapine allows potent and selective anticancer chelators that warrant further in vivo examination to be identified. Significantly, this study proved the importance of the di-substitution pattern of the amine N4 function.
Collapse
Affiliation(s)
- Marta Rejmund
- Institute of Chemistry, University of Silesia, Katowice, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics, University of Silesia, Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzów, Poland
| | - Katarzyna Malarz
- Institute of Chemistry, University of Silesia, Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzów, Poland
| | | | - Kamila Gajcy
- Institute of Chemistry, University of Silesia, Katowice, Poland
| | | | - Robert Musiol
- Institute of Chemistry, University of Silesia, Katowice, Poland
| | - Jaroslaw Polanski
- Institute of Chemistry, University of Silesia, Katowice, Poland
- * E-mail:
| |
Collapse
|
37
|
Xu YX, Zeng ML, Yu D, Ren J, Li F, Zheng A, Wang YP, Chen C, Tao ZZ. In vitro assessment of the role of DpC in the treatment of head and neck squamous cell carcinoma. Oncol Lett 2018; 15:7999-8004. [PMID: 29740495 DOI: 10.3892/ol.2018.8279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the antitumor efficacy of di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) and di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) on head and neck squamous cell carcinoma (HNSCC) cells. The proliferation and apoptosis of HNSCC cells treated with the iron chelators DpC and Dp44mT were detected. The mechanism of DpC-induced apoptosis on HNSCC cells was investigated. The human HNSCC cell lines FaDu, Cal-27 and SCC-9 were cultured in vitro and exposed to gradient concentrations of DpC and Dp44mT. A Cell Counting Kit-8 assay was used to detect the viability of FaDu, Cal-27, SCC-9 cells. Double staining with annexin V and propidium iodide was performed for the detection of the proportion of apoptotic FaDu, Cal-27 and SCC-9 cells following treatment. The nuclear damage to Cal-27 cells that were treated with DpC was detected by Hoechst staining. Finally, western blot analysis was used to detect the expression of proteins associated with the DNA damage pathway in Cal-27 cells that were treated with DpC. The CCK-8 assay showed that treatment with DpC and Dp44mT was able to markedly inhibit the viability of FaDu, Cal-27 and SCC-9 cells in a concentration-dependent manner. In comparison to Dp44mT, treatment with DpC exhibited a more effective inhibitory effect on the viability of HNSCC cells. The proportion of apoptotic cells detected by flow cytometry increased in a dose-dependent manner in all cell lines following DpC and Dp44mT treatment, with the proportion of apoptotic HNSCC cells induced by DpC treatment being significantly higher compared with Dp44mT (P<0.05). The results of Hoechst staining revealed that the nuclei of Cal-27 cells exhibited morphological changes in response to DpC treatment, including karyopyknosis and nuclear fragmentation. The expression of DNA damage-associated proteins, including phosphorylated (p)-serine-protein kinase ATM, p-serine/threonine-protein kinase Chk1 (p-Chk-1), p-serine/threonine-protein kinase ATR (p-ATR), p-Chk-2, poly (ADP-ribose) polymerase, p-histone H2AX, breast cancer type 1 susceptibility protein, p-tumor protein P53, increased with increasing concentration of DpC in Cal-27 cells. Treatment with DpC and Dp44mT markedly inhibited cell viability and increased the apoptotic rates in human HNSCC cells in a concentration-dependent manner. DpC exhibited a stronger antitumor effect compared with Dp44mT, potentially inducing the apoptosis of HNSCC cells via the upregulation of DNA damage repair-associated proteins.
Collapse
Affiliation(s)
- Ye-Xing Xu
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Man-Li Zeng
- Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Di Yu
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Ren
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fen Li
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Anyuan Zheng
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yong-Ping Wang
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chen Chen
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ze-Zhang Tao
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China.,Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
38
|
Karlsson H, Fryknäs M, Strese S, Gullbo J, Westman G, Bremberg U, Sjöblom T, Pandzic T, Larsson R, Nygren P. Mechanistic characterization of a copper containing thiosemicarbazone with potent antitumor activity. Oncotarget 2018; 8:30217-30234. [PMID: 28415818 PMCID: PMC5444738 DOI: 10.18632/oncotarget.16324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/08/2017] [Indexed: 01/05/2023] Open
Abstract
Background The thiosemicarbazone CD 02750 (VLX50) was recently reported as a hit compound in a phenotype-based drug screen in primary cultures of patient tumor cells. We synthesized a copper complex of VLX50, denoted VLX60, and characterized its antitumor and mechanistic properties. Materials and Methods The cytotoxic effects and mechanistic properties of VLX60 were investigated in monolayer cultures of multiple human cell lines, in tumor cells from patients, in a 3-D spheroid cell culture system and in vivo and were compared with those of VLX50. Results VLX60 showed ≥ 3-fold higher cytotoxic activity than VLX50 in 2-D cultures and, in contrast to VLX50, retained its activity in the presence of additional iron. VLX60 was effective against non-proliferative spheroids and against tumor xenografts in vivo in a murine model. In contrast to VLX50, gene expression analysis demonstrated that genes associated with oxidative stress were considerably enriched in cells exposed to VLX60 as was induction of reactive oxygen. VLX60 compromised the ubiquitin-proteasome system and was more active in BRAF mutated versus BRAF wild-type colon cancer cells. Conclusions The cytotoxic effects of the copper thiosemicarbazone VLX60 differ from those of VLX50 and shows interesting features as a potential antitumor drug, notably against BRAF mutated colorectal cancer.
Collapse
Affiliation(s)
| | - Mårten Fryknäs
- Department of Medical Sciences, Uppsala University, Sweden
| | - Sara Strese
- Department of Medical Sciences, Uppsala University, Sweden
| | - Joachim Gullbo
- Department of Medical Sciences, Uppsala University, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ulf Bremberg
- Department of Medicinal Chemistry, Uppsala University, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Uppsala University, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| |
Collapse
|
39
|
Pati ML, Niso M, Spitzer D, Berardi F, Contino M, Riganti C, Hawkins WG, Abate C. Multifunctional thiosemicarbazones and deconstructed analogues as a strategy to study the involvement of metal chelation, Sigma-2 (σ 2) receptor and P-gp protein in the cytotoxic action: In vitro and in vivo activity in pancreatic tumors. Eur J Med Chem 2018; 144:359-371. [PMID: 29287249 PMCID: PMC5801006 DOI: 10.1016/j.ejmech.2017.12.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/17/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
The aggressiveness of pancreatic cancer urgently requires more efficient treatment options. Because the sigma-2 (σ2) receptor was recently proposed as a promising target for pancreatic cancer therapy, we explored our previously developed multifunctional thiosemicarbazones, designed to synergistically impair cell energy levels, by targeting σ2 and P-gp proteins and chelating Iron. A deconstruction approach was herein applied by removing one function at a time from the potent multifunctional thiosemicarbazones 1 and 2, to investigate the contribution to cytotoxicity of each target involved. The results from in vitro (panel of pancreatic tumor cells) and in vivo experiments (C57BL/6 bearing KP02 tumor), suggest that while the multifunctional activity was not required for the antitumor activity of these thiosemicarbazones, σ2-targeting appeared to allow alternative tumor cell death mechanisms, leading to potent and less toxic off-targets toxicities compared to other thiosemicarbazones devoid of σ2-targeting.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Death/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Chelating Agents/chemical synthesis
- Chelating Agents/chemistry
- Chelating Agents/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Female
- Humans
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/metabolism
- Structure-Activity Relationship
- Thiosemicarbazones/chemical synthesis
- Thiosemicarbazones/chemistry
- Thiosemicarbazones/pharmacology
Collapse
Affiliation(s)
- Maria Laura Pati
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy; Department of Surgery, Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Dirk Spitzer
- Department of Surgery, Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, via Santena 5/bis, I-10153 Torino, Italy
| | - William G Hawkins
- Department of Surgery, Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
40
|
Qi J, Qian K, Tian L, Cheng Z, Wang Y. Gallium(iii)–2-benzoylpyridine-thiosemicarbazone complexes promote apoptosis through Ca2+ signaling and ROS-mediated mitochondrial pathways. NEW J CHEM 2018. [DOI: 10.1039/c8nj00697k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ga(iii) complexes promoted apoptosis as a result of a combination of multiple apoptotic pathways.
Collapse
Affiliation(s)
- Jinxu Qi
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Kun Qian
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Liang Tian
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Zhen Cheng
- Stanford Cancer Institute
- Member of Academic Council
- Stanford University
- USA
| | - Yihong Wang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| |
Collapse
|
41
|
Hu B, Wang B, Zhao B, Guo Q, Li ZH, Zhang XH, Liu GY, Liu Y, Tang Y, Luo F, Du Y, Chen YX, Ma LY, Liu HM. Thiosemicarbazone-based selective proliferation inactivators inhibit gastric cancer cell growth, invasion, and migration. MEDCHEMCOMM 2017; 8:2173-2180. [PMID: 30108734 DOI: 10.1039/c7md00353f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
A series of novel thiosemicarbazone derivatives were synthesized and evaluated for their antiproliferative activity against several selected tumor cell lines of different origins using the MTT assay. The preliminary results indicated that the MGC-803 cell line was remarkably sensitive to all the synthesized compounds. Among this series, compound 5n showed the best inhibitory activity with an IC50 value of 0.93 μM (about 10-fold more potent than 3-AP) against MGC-803. Further mechanism studies revealed that compound 5n could obviously inhibit the proliferation of MGC-803 cells by inducing apoptosis and arresting the cell cycle at the S phase. Compound 5n also showed marked inhibition of cell migration and invasion, without significant cytotoxicity against gastric epithelial immortalized GES-1 cells.
Collapse
Affiliation(s)
- Biao Hu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Bing Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Qian Guo
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Zhong-Hua Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Guang-Yao Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Ying Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Ying Tang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Fan Luo
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Ya Du
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Ya-Xin Chen
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| |
Collapse
|
42
|
Sestak V, Stariat J, Cermanova J, Potuckova E, Chladek J, Roh J, Bures J, Jansova H, Prusa P, Sterba M, Micuda S, Simunek T, Kalinowski DS, Richardson DR, Kovarikova P. Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents. Oncotarget 2016; 6:42411-28. [PMID: 26623727 PMCID: PMC4767442 DOI: 10.18632/oncotarget.6389] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/11/2015] [Indexed: 01/15/2023] Open
Abstract
Di(2-pyridyl)ketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di(2-pyridyl)ketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) are novel, highly potent and selective anti-tumor and anti-metastatic drugs. Despite their structural similarity, these agents differ in their efficacy and toxicity in-vivo. Considering this, a comparison of their pharmacokinetic and pharmaco/toxico-dynamic properties was conducted to reveal if these factors are involved in their differential activity. Both compounds were administered to Wistar rats intravenously (2 mg/kg) and their metabolism and disposition were studied using UHPLC-MS/MS. The cytotoxicity of both thiosemicarbazones and their metabolites was also examined using MCF-7, HL-60 and HCT116 tumor cells and 3T3 fibroblasts and H9c2 cardiac myoblasts. Their intracellular iron-binding ability was characterized by the Calcein-AM assay and their iron mobilization efficacy was evaluated. In contrast to DpC, Dp44mT undergoes rapid demethylation in-vivo, which may be related to its markedly faster elimination (T1/2 = 1.7 h for Dp44mT vs. 10.7 h for DpC) and lower exposure. Incubation of these compounds with cancer cells or cardiac myoblasts did not result in any significant metabolism in-vitro. The metabolism of Dp44mT in-vivo resulted in decreased anti-cancer activity and toxicity. In conclusion, marked differences in the pharmacology of Dp44mT and DpC were observed and highlight the favorable pharmacokinetics of DpC for cancer treatment.
Collapse
Affiliation(s)
- Vit Sestak
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jan Stariat
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jolana Cermanova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Eliska Potuckova
- Department of Biochemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jaroslav Chladek
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Jaroslav Roh
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jan Bures
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Hana Jansova
- Department of Biochemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Petr Prusa
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Martin Sterba
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Tomas Simunek
- Department of Biochemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Petra Kovarikova
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| |
Collapse
|
43
|
Guo ZL, Richardson DR, Kalinowski DS, Kovacevic Z, Tan-Un KC, Chan GCF. The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J Hematol Oncol 2016; 9:98. [PMID: 27678372 PMCID: PMC5039880 DOI: 10.1186/s13045-016-0330-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/17/2016] [Indexed: 12/20/2022] Open
Abstract
Background Neuroblastoma is a relatively common and highly belligerent childhood tumor with poor prognosis by current therapeutic approaches. A novel anti-cancer agent of the di-2-pyridylketone thiosemicarbazone series, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), demonstrates promising anti-tumor activity. Recently, a second-generation analogue, namely di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), has entered multi-center clinical trials for the treatment of advanced and resistant tumors. The current aim was to examine if these novel agents were effective against aggressive neuroblastoma in vitro and in vivo and to assess their mechanism of action. Methods Neuroblastoma cancer cells as well as immortalized normal cells were used to assess the efficacy and selectivity of DpC in vitro. An orthotopic SK-N-LP/Luciferase xenograft model was used in nude mice to assess the efficacy of DpC in vivo. Apoptosis in tumors was confirmed by Annexin V/PI flow cytometry and H&E staining. Results DpC demonstrated more potent cytotoxicity than Dp44mT against neuroblastoma cells in a dose- and time-dependent manner. DpC significantly increased levels of phosphorylated JNK, neuroglobin, cytoglobin, and cleaved caspase 3 and 9, while decreasing IkBα levels in vitro. The contribution of JNK, NF-ĸB, and caspase signaling/activity to the anti-tumor activity of DpC was verified by selective inhibitors of these pathways. After 3 weeks of treatment, tumor growth in mice was significantly (p < 0.05) reduced by DpC (4 mg/kg/day) given intravenously and the agent was well tolerated. Xenograft tissues showed significantly higher expression of neuroglobin, cytoglobin, caspase 3, and tumor necrosis factor-α (TNFα) levels and a slight decrease in interleukin-10 (IL-10). Conclusions DpC was found to be highly potent against neuroblastoma, demonstrating its potential as a novel therapeutic for this disease. The ability of DpC to increase TNFα in tumors could also promote the endogenous immune response to mediate enhanced cancer cell apoptosis. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0330-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhu-Ling Guo
- Department of Stomatology, Affiliated Hospital of Hainan Medical University, Hainan, People's Republic of China.,School of Stomatology, Hainan Medical University, Hainan, People's Republic of China.,Department of Paediatrics & Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, SAR, China
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia.
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia
| | - Kian Cheng Tan-Un
- School of Professional and Continuing Education, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics & Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
44
|
Stacy AE, Palanimuthu D, Bernhardt PV, Kalinowski DS, Jansson PJ, Richardson DR. Structure-Activity Relationships of Di-2-pyridylketone, 2-Benzoylpyridine, and 2-Acetylpyridine Thiosemicarbazones for Overcoming Pgp-Mediated Drug Resistance. J Med Chem 2016; 59:8601-20. [PMID: 27524608 DOI: 10.1021/acs.jmedchem.6b01050] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) mediated by P-glycoprotein (Pgp) represents a significant impediment to successful cancer treatment. The compound, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), has been shown to induce greater cytotoxicity against resistant cells than their nonresistant counterparts. Herein, the structure-activity relationships of selected thiosemicarbazones are explored and the novel mechanism underlying their ability to overcome resistance is further elucidated. Only thiosemicarbazones with electron-withdrawing substituents at the imine carbon mediated Pgp-dependent potentiated cytotoxicity, which was reversed by Pgp inhibition. Treatment of resistant cells with these thiosemicarbazones resulted in Pgp-dependent lysosomal membrane permeabilization (LMP) that relied on copper (Cu) chelation, reactive oxygen species generation, and increased relative lipophilicity. Hence, this study is the first to demonstrate the structural requirements of these thiosemicarbazones necessary to overcome MDR. We also demonstrate the mechanism that enables the targeting of resistant tumors, whereby thiosemicarbazones "hijack" lysosomal Pgp and form redox-active Cu complexes that mediate LMP and potentiate cytotoxicity.
Collapse
Affiliation(s)
- Alexandra E Stacy
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Level 5, Blackburn Building (D06), Sydney, New South Wales 2006, Australia
| | - Duraippandi Palanimuthu
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Level 5, Blackburn Building (D06), Sydney, New South Wales 2006, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, Queensland 4072, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Level 5, Blackburn Building (D06), Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Level 5, Blackburn Building (D06), Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Level 5, Blackburn Building (D06), Sydney, New South Wales 2006, Australia
| |
Collapse
|
45
|
Seebacher N, Lane DJR, Richardson DR, Jansson PJ. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radic Biol Med 2016; 96:432-45. [PMID: 27154979 DOI: 10.1016/j.freeradbiomed.2016.04.201] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/01/2016] [Accepted: 04/29/2016] [Indexed: 01/02/2023]
Abstract
Oxidative stress plays a role in the development of drug resistance in cancer cells. Cancer cells must constantly and rapidly adapt to changes in the tumor microenvironment, due to alterations in the availability of nutrients, such as glucose, oxygen and key transition metals (e.g., iron and copper). This nutrient flux is typically a consequence of rapid growth, poor vascularization and necrosis. It has been demonstrated that stress factors, such as hypoxia and glucose deprivation up-regulate master transcription factors, namely hypoxia inducible factor-1α (HIF-1α), which transcriptionally regulate the multi-drug resistance (MDR), transmembrane drug efflux transporter, P-glycoprotein (Pgp). Interestingly, in addition to the established role of plasma membrane Pgp in MDR, a new paradigm of intracellular resistance has emerged that is premised on the ability of lysosomal Pgp to transport cytotoxic agents into this organelle. This mechanism is enabled by the topological inversion of Pgp via endocytosis resulting in the transporter actively pumping agents into the lysosome. In this way, classical Pgp substrates, such as doxorubicin (DOX), can be actively transported into this organelle. Within the lysosome, DOX becomes protonated upon acidification of the lysosomal lumen, causing its accumulation. This mechanism efficiently traps DOX, preventing its cytotoxic interaction with nuclear DNA. This review discusses these effects and highlights a novel mechanism by which redox-active and protonatable Pgp substrates can utilize lysosomal Pgp to gain access to this compartment, resulting in catastrophic lysosomal membrane permeabilization and cell death. Hence, a key MDR mechanism that utilizes Pgp (the "gun") to sequester protonatable drug substrates safely within lysosomes can be "turned on" MDR cancer cells to destroy them from within.
Collapse
Affiliation(s)
- Nicole Seebacher
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
46
|
Park KC, Fouani L, Jansson PJ, Wooi D, Sahni S, Lane DJR, Palanimuthu D, Lok HC, Kovačević Z, Huang MLH, Kalinowski DS, Richardson DR. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics 2016; 8:874-86. [PMID: 27334916 DOI: 10.1039/c6mt00105j] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copper is an essential trace metal required by organisms to perform a number of important biological processes. Copper readily cycles between its reduced Cu(i) and oxidised Cu(ii) states, which makes it redox active in biological systems. This redox-cycling propensity is vital for copper to act as a catalytic co-factor in enzymes. While copper is essential for normal physiology, enhanced copper levels in tumours leads to cancer progression. In particular, the stimulatory effect of copper on angiogenesis has been established in the last several decades. Additionally, it has been demonstrated that copper affects tumour growth and promotes metastasis. Based on the effects of copper on cancer progression, chelators that bind copper have been developed as anti-cancer agents. In fact, a novel class of thiosemicarbazone compounds, namely the di-2-pyridylketone thiosemicarbazones that bind copper, have shown great promise in terms of their anti-cancer activity. These agents have a unique mechanism of action, in which they form redox-active complexes with copper in the lysosomes of cancer cells. Furthermore, these agents are able to overcome P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) and act as potent anti-oncogenic agents through their ability to up-regulate the metastasis suppressor protein, N-myc downstream regulated gene-1 (NDRG1). This review provides an overview of the metabolism and regulation of copper in normal physiology, followed by a discussion of the dysregulation of copper homeostasis in cancer and the effects of copper on cancer progression. Finally, recent advances in our understanding of the mechanisms of action of anti-cancer agents targeting copper are discussed.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stacy AE, Palanimuthu D, Bernhardt PV, Kalinowski DS, Jansson PJ, Richardson DR. Zinc(II)-Thiosemicarbazone Complexes Are Localized to the Lysosomal Compartment Where They Transmetallate with Copper Ions to Induce Cytotoxicity. J Med Chem 2016; 59:4965-84. [PMID: 27023111 DOI: 10.1021/acs.jmedchem.6b00238] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As the di-2-pyridylketone thiosemicarbazone (DpT) and 2-acetylpyridine thiosemicarbazone (ApT) series show potent antitumor activity in vitro and in vivo, we synthesized their fluorescent zinc(II) complexes to assess their intracellular distribution. The Zn(II) complexes generally showed significantly greater cytotoxicity than the thiosemicarbazones alone in several tumor cell-types. Notably, specific structure-activity relationships demonstrated the importance of the di-2-pyridyl pharmacophore in their activity. Confocal fluorescence imaging and live cell microscopy showed that the Zn(II) complex of our lead compound, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which is scheduled to enter clinical trials, was localized to lysosomes. Under lysosomal conditions, the Zn(II) complexes were shown to transmetallate with copper ions, leading to redox-active copper complexes that induced lysosomal membrane permeabilization (LMP) and cytotoxicity. This is the first study to demonstrate direct lysosomal targeting of our novel Zn(II)-thiosemicarbazone complexes that mediate their activity via transmetalation with copper ions and LMP.
Collapse
Affiliation(s)
- Alexandra E Stacy
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Blackburn Building (D06), Level 5, Sydney, New South Wales 2006, Australia
| | - Duraippandi Palanimuthu
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Blackburn Building (D06), Level 5, Sydney, New South Wales 2006, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, Queensland 4072, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Blackburn Building (D06), Level 5, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Blackburn Building (D06), Level 5, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Blackburn Building (D06), Level 5, Sydney, New South Wales 2006, Australia
| |
Collapse
|
48
|
Gutierrez EM, Seebacher NA, Arzuman L, Kovacevic Z, Lane DJR, Richardson V, Merlot AM, Lok H, Kalinowski DS, Sahni S, Jansson PJ, Richardson DR. Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1665-81. [PMID: 27102538 DOI: 10.1016/j.bbamcr.2016.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023]
Abstract
The potent and selective anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), localizes in lysosomes and forms cytotoxic copper complexes that generate reactive oxygen species (ROS), resulting in lysosomal membrane permeabilization (LMP) and cell death. Herein, the role of lysosomal membrane stability in the anti-tumor activity of Dp44mT was investigated. Studies were performed using molecules that protect lysosomal membranes against Dp44mT-induced LMP, namely heat shock protein 70 (HSP70) and cholesterol. Up-regulation or silencing of HSP70 expression did not affect Dp44mT-induced LMP in MCF7 cells. In contrast, cholesterol accumulation in lysosomes induced by the well characterized cholesterol transport inhibitor, 3-β-[2-(diethyl-amino)ethoxy]androst-5-en-17-one (U18666A), inhibited Dp44mT-induced LMP and markedly and significantly (p<0.001) reduced the ability of Dp44mT to inhibit cancer cell proliferation (i.e., increased the IC(50)) by 140-fold. On the other hand, cholesterol extraction using methyl-β-cyclodextrin enhanced Dp44mT-induced LMP and significantly (p<0.01) increased its anti-proliferative activity. The protective effect of U18666A in increasing lysosomal cholesterol and preventing the cytotoxic activity of Dp44mT was not due to induced autophagy. Instead, U18666A was found to decrease lysosomal turnover, resulting in autophagosome accumulation. Moreover, preincubation with U18666A did not prevent the ability of Dp44mT to induce autophagosome synthesis, indicating that autophagic initiation via Dp44mT occurs independently of LMP. These studies demonstrate the significance of lysosomal membrane stability in relation to the ability of Dp44mT to execute tumor cell death and overcome pro-survival autophagy. Hence, lysosomal-dependent cell death induced by Dp44mT serves as an important anti-tumor strategy. These results are important for comprehensively understanding the mechanism of action of Dp44mT.
Collapse
Affiliation(s)
- Elaine M Gutierrez
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nicole A Seebacher
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Laila Arzuman
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vera Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hiu Lok
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
49
|
Urano S, Ohara T, Noma K, Katsube R, Ninomiya T, Tomono Y, Tazawa H, Kagawa S, Shirakawa Y, Kimura F, Nouso K, Matsukawa A, Yamamoto K, Fujiwara T. Iron depletion enhances the effect of sorafenib in hepatocarcinoma. Cancer Biol Ther 2016; 17:648-56. [PMID: 27089255 DOI: 10.1080/15384047.2016.1177677] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTACT Human hepatocellular carcinoma (HCC) is known to have a poor prognosis. Sorafenib, a molecular targeted drug, is most commonly used for HCC treatment. However, its effect on HCC is limited in clinical use and therefore new strategies regarding sorafenib treatment are required. Iron overload is known to be associated with progression of chronic hepatitis and increased risk of HCC. We previously reported that iron depletion inhibited cancer cell proliferation and conversely induced angiogenesis. Indeed iron depletion therapy including iron chelator needs to be combined with anti-angiogenic drug for its anti-cancer effect. Since sorafenib has an anti-angiogenic effect by its inhibitory targeting VEGFR, we hypothesized that sorafenib could complement the anti-cancer effect of iron depletion. We retrospectively analyzed the relationship between the efficacy of sorafenib and serum iron-related markers in clinical HCC patients. In clinical cases, overall survival was prolonged in total iron binding capacity (TIBC) high- and ferritin low-patients. This result suggested that the low iron-pooled patients, who could have a potential of more angiogenic properties in/around HCC tumors, could be adequate for sorafenib treatment. We determined the effect of sorafenib (Nexavar®) and/or deferasirox (EXJADE®) on cancer cell viability, and on cell signaling of human hepatocarcinoma HepG2 and HLE cells. Both iron depletion by deferasirox and sorafenib revealed insufficient cytotoxic effect by each monotherapy, however, on the basis of increased angiogenesis by iron depletion, the addition of deferasirox enhanced anti-proliferative effect of sorafenib. Deferasirox was confirmed to increase vascular endothelial growth factor (VEGF) secretion into cellular supernatants by ELISA analysis. In in vivo study sorafenib combined with deferasirox also enhanced sorafenib-induced apoptosis. These results suggested that sorafenib combined with deferasirox could be a novel combination chemotherapy for HCC.
Collapse
Affiliation(s)
- Shinichi Urano
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Toshiaki Ohara
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan.,b Department of Pathology & Experimental Medicine , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Kazuhiro Noma
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Ryoichi Katsube
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Takayuki Ninomiya
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yasuko Tomono
- c Shigei Medical Research Institute , Okayama , Japan
| | - Hiroshi Tazawa
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan.,d Center for Innovative Clinical Medicine, Okayama University Hospital , Okayama , Japan
| | - Shunsuke Kagawa
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yasuhiro Shirakawa
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Fumiaki Kimura
- e Department of Internal Medicine , Tamano City Hospital , Okayama , Japan
| | - Kazuhiro Nouso
- f Department of Gastroenterology and Hepatology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Akihiro Matsukawa
- b Department of Pathology & Experimental Medicine , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Kazuhide Yamamoto
- f Department of Gastroenterology and Hepatology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Toshiyoshi Fujiwara
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| |
Collapse
|
50
|
Qi J, Zhang Y, Gou Y, Zhang Z, Zhou Z, Wu X, Yang F, Liang H. Developing an Anticancer Copper(II) Pro-Drug Based on the His242 Residue of the Human Serum Albumin Carrier IIA Subdomain. Mol Pharm 2016; 13:1501-7. [PMID: 27017838 DOI: 10.1021/acs.molpharmaceut.5b00938] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To increase delivery efficiency, anticancer activity, and selectivity of anticancer metal agents in vivo, we proposed to develop the anticancer metal pro-drug based on His242 residue of the human serum albumin (HSA) carrier IIA subdomain. To confirm our hypothesis, we prepared two Cu(II) compounds [Cu(P4 mT)Cl and Cu(Bp44 mT)Cl] by modifying Cu(II) compound ligand structure. Studies with two HSA complex structures revealed that Cu(P4 mT)Cl bound to the HSA subdomain IIA via hydrophobic interactions, but Cu(Bp44 mT)Cl bound to the HSA subdomain IIA via His242 replacement of a Cl atom of Cu(Bp44 mT)Cl, and a coordination to Cu(2+). Furthermore, Cu(II) compounds released from HSA could be regulated at different pHs. In vivo data revealed that the HSA-Cu(Bp44 mT) complex increased copper's selectivity and capacity of inhibiting tumor growth compared to Cu(Bp44 mT)Cl alone.
Collapse
Affiliation(s)
- Jinxu Qi
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi 541004, China
| | - Yao Zhang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi 541004, China
| | - Yi Gou
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi 541004, China
| | - Zuping Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Pharmaceutical Biotechnology, Guangxi Normal University , Guilin, Guangxi 541004, China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago , Chicago, Illinois 60637, United States
| | - Feng Yang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi 541004, China
| |
Collapse
|