1
|
Tantai X, Yang X, Liu X, Yang X. Antagonism of the ATP-gated P2X7 receptor inhibits the proliferation of hepatocellular carcinoma cells. Purinergic Signal 2024:10.1007/s11302-024-10064-5. [PMID: 39549156 DOI: 10.1007/s11302-024-10064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
The P2X7 receptor, an ATP-gated ion channel which belongs to the P2X receptor family, plays critical roles in recognizing extracellular adenosine 5'-triphosphate (ATP) and is widely expressed in most tumor cells as well as inflammatory cells. Previously, the P2X7 receptor has been demonstrated to modulate the progression of various malignancies, including glioblastoma, pancreatic cancer, lung cancer, leukemia, and lymphoma. However, the biological function and prognostic values of P2X7 receptor in hepatocellular carcinoma remain to be determined. Here, we investigated the expression level of P2X7 receptor in patients with hepatocellular carcinoma. Then MTS and EdU assays were carried out to study the role of P2X7 receptor blockade in the proliferation of hepatocellular carcinoma cells. In addition, the underlying mechanism was further elucidated by bulk RNAseq. Compared to the control group, the P2X7 receptor was significantly up-regulated in the hepatocellular carcinoma group. Interestingly, A740003 and A438079, two selective antagonists at P2X7 receptor, significantly blocked Ca2+ influx and decreased the proliferative rate of hepatocellular carcinoma cells. Furthermore, the expression level of chondroitin sulfate synthase 1 (CHSY1), an enzyme that mediates the polymerization step of chondroitin sulfate, was reduced by both A740003 and A438079. In conclusion, inhibition of the P2X7 receptor attenuated the proliferation of hepatocellular carcinoma cells, and this process was largely modulated by CHSY1. Thus, our findings reveal a previously unknown role for P2X7 receptor in the proliferation of hepatocellular carcinoma cells and imply that the P2X7 receptor may represent a new target for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xinxing Tantai
- Department of Gastroenterology and Scientific Research Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xin Yang
- Department of Rheumatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xinyuan Liu
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511462, Guangdong, China.
| | - Xiao Yang
- Department of Gastroenterology and Scientific Research Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
2
|
Avci IE, Teke K, Gocmez SS, Kasap M, Akpinar G, Yaprak Bayrak B, Celebi G, Sarihan M, Utkan T, Ozkurkcugil C. Therapeutic Effects of AF219 on Interstitial Cystitis/Bladder Pain Syndrome Induced by Cyclophosphamide or Water Avoidance Stress in Rats. Int Urogynecol J 2024; 35:677-688. [PMID: 38376547 DOI: 10.1007/s00192-023-05723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/18/2023] [Indexed: 02/21/2024]
Abstract
INTRODUCTION AND HYPOTHESIS To evaluate the effect of AF219, a P2X3 receptor antagonist, in animal models of interstitial cystitis/bladder pain syndrome (IC/BPS) induced by cyclophosphamide (CYP) or water avoidance stress (WAS). METHODS Thirty-two adult female Wistar albino rats were used in each IC/BPS model. Assessment of nociception and anxiety and severity of inflammation in the bladder were assessed by behavioral experiments and histopathological examinations respectively. The contraction responses of the bladder were evaluated in vitro and protein levels of P2X3, P2X7, Trk-A, TRPV1, and TRPA1 were analyzed by Western blot. RESULTS The IC/BPS groups had shorter response times to noxious stimuli, exhibited more anxiety-like behavior, had higher inflammation-based histological scores, and showed greater increased contraction responses to carbachol, adenosine triphosphate, and electrical field stimulation in in vitro bladder strips than controls for both models (p < 0.05). The improvements in behavioral and bladder contraction responses and inflammation scores in the IC/BPS + AF219 groups were similar to control findings (p > 0.05). Exposure to WAS or CYP increased P2X3 expression in the bladder compared with the controls (p < 0.05). Apart from TRPA1, the levels of P2X7, Trk-A, and TRPV1 were also higher in the IC/BPS groups than in the controls (p < 0.05). No significant differences were observed between IC/BPS + AF219 and controls regarding P2X3, P2X7, Trk-A, and TRPV1 in the WAS model (p > 0.05). Moreover, P2X3 and P2X7 levels were significantly lower in IC/BPS + AF219 than in the AF219-untreated WAS model (p < 0.05). CONCLUSIONS These findings suggest that P2X3 receptors play a significant role in bladder functional responses, nociception, and also the pathogenesis of IC/BPS. AF219 may be a promising therapeutic strategy for IC/BPS. Comparing AF219 with current IC/BPS treatment agents in future studies may yield valuable insights into its efficacy.
Collapse
Affiliation(s)
- Ibrahim Erkut Avci
- Department of Urology, Kocaeli University School of Medicine, 41001, Kocaeli, Turkey
| | - Kerem Teke
- Department of Urology, Kocaeli University School of Medicine, 41001, Kocaeli, Turkey
| | - Semil Selcen Gocmez
- Department of Pharmacology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Murat Kasap
- Department of Medical Biology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Busra Yaprak Bayrak
- Department of Pathology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Gulsen Celebi
- Department of Pharmacology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Mehmet Sarihan
- Department of Medical Biology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Tijen Utkan
- Department of Pharmacology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Cuneyd Ozkurkcugil
- Department of Urology, Kocaeli University School of Medicine, 41001, Kocaeli, Turkey.
| |
Collapse
|
3
|
Zhang J, Gao L, Zhang Y, Wang H, Sun S, Wu L. Involvement of microglial P2X7 receptor in pain modulation. CNS Neurosci Ther 2024; 30:e14496. [PMID: 37950524 PMCID: PMC10805404 DOI: 10.1111/cns.14496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Pain is a rapid response mechanism that compels organisms to retreat from the harmful stimuli and triggers a repair response. Nonetheless, when pain persists for extended periods, it can lead to adverse changes into in the individual's brain, negatively impacting their emotional state and overall quality of life. Microglia, the resident immune cells in the central nervous system (CNS), play a pivotal role in regulating a variety of pain-related disorders. Specifically, recent studies have shed light on the central role that microglial purinergic ligand-gated ion channel 7 receptor (P2X7R) plays in regulating pain. In this respect, the P2X7R on microglial membranes represents a potential therapeutic target. AIMS To expound on the intricate link between microglial P2X7R and pain, offering insights into potential avenues for future research. METHODS We reviewed 140 literature and summarized the important role of microglial P2X7R in regulating pain, including the structure and function of P2X7R, the relationship between P2X7R and microglial polarization, P2X7R-related signaling pathways, and the effects of P2X7R antagonists on pain regulation. RESULTS P2X7R activation is related to M1 polarization of microglia, while suppressing P2X7R can transfer microglia from M1 into M2 phenotype. And targeting the P2X7R-mediated signaling pathways helps to explore new therapy for pain alleviation. P2X7R antagonists also hold potential for translational and clinical applications in pain management. CONCLUSIONS Microglial P2X7R holds promise as a potential novel pharmacological target for clinical treatments due to its distinctive structure, function, and the development of antagonists.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Lei Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yaoyuan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Haozhen Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Shukai Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Li‐an Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
4
|
Saima, Anjum I, Najm S, Barkat K, Nafidi HA, Bin Jardan YA, Bourhia M. Caftaric Acid Ameliorates Oxidative Stress, Inflammation, and Bladder Overactivity in Rats Having Interstitial Cystitis: An In Silico Study. ACS OMEGA 2023; 8:28196-28206. [PMID: 38173953 PMCID: PMC10763566 DOI: 10.1021/acsomega.3c01450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/12/2023] [Indexed: 01/05/2024]
Abstract
Interstitial cystitis (IC) is the principal unwanted effect associated with the use of cyclophosphamide (CYP). It results in increased oxidative stress, overexpression of proinflammatory cytokines, and bladder overactivity. Patients receiving CYP treatment had severely depreciated quality of life, as the treatment available is not safe and effective. The goal of this study was to assess the protective effect of caftaric acid in CYP-induced IC. IC was induced in female Sprague Dawley by injecting CYP (150 mg/kg, i.p.). In the present study, oral administration of caftaric acid (20, 40, and 60 mg/kg) significantly decreased inflammation. Caftaric acid significantly increased SOD (93%), CAT (92%), and GSH (90%) while decreased iNOS (97%), IL-6 (90%), TGF 1-β (83%), and TNF-α (96%) compared to the diseased. DPPH assay showed the antioxidant capacity comparable to ascorbic acid. Molecular docking of caftaric acid with selected protein targets further confirmed its antioxidant and anti-inflammatory activities. The cyclophosphamide-induced bladder overactivity had been decreased possibly through the inhibition of M3 receptors, ATP-sensitive potassium channels, calcium channels, and COX enzyme by caftaric acid. Therefore, our findings demonstrate that caftaric acid has a considerable protective role against CYP-induced IC by decreasing the oxidative stress, inflammation, and bladder smooth muscle hyperexcitability. Thus, caftaric acid signifies a likely adjuvant agent in CYP-based chemotherapy treatments.
Collapse
Affiliation(s)
- Saima
- Faculty
of Pharmacy, The University of Lahore, Lahore 55150, Pakistan
| | - Irfan Anjum
- Faculty
of Pharmacy, The University of Lahore, Lahore 55150, Pakistan
| | - Saima Najm
- Department
of Pharmacy, Lahore College of Pharmaceutical
Sciences, Lahore 55150, Pakistan
| | - Kashif Barkat
- Faculty
of Pharmacy, The University of Lahore, Lahore 55150, Pakistan
| | - Hiba-Allah Nafidi
- Department
of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325, Quebec City, Quebec G1V 0A6, Canada
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory
of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| |
Collapse
|
5
|
Ferreira FCS, Clementino M, Rodrigues FAP, Veras HN, Martins DS, Queiroga ML, Lima MA, Silva DO, de Freitas TM, Ribeiro SA, Mota MRL, da Silva JA, Lima AAM, Havt A. [8] and [10]-Gingerol reduces urothelial damage in ifosfamide-induced hemorrhagic cystitis via JAK/STAT/FOXO signaling pathway via IL-10. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1773-1786. [PMID: 36843129 DOI: 10.1007/s00210-023-02436-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/19/2023] [Indexed: 02/28/2023]
Abstract
Acrolein is the main toxic metabolite of ifosfamide (IFO) that causes urothelial damage by oxidative stress and inflammation. Here, we investigate the molecular mechanism of action of gingerols, Zingiber officinale bioactive molecules, as an alternative treatment for ifosfamide-induced hemorrhagic cystitis. Female Swiss mice were randomly divided into 5 groups: control; IFO; IFO + Mesna; and IFO + [8]- or [10]-gingerol. Mesna (80 mg/kg, i.p.) was given 5 min before, 4 and 8 h after IFO (400mg/kg, i.p.). Gingerols (25 mg/kg, p.o.) were given 1 h before and 4 and 8 h after IFO. Animals were euthanized 12 h after IFO injection. Bladders were submitted to macroscopic and histological evaluation. Oxidative stress and inflammation were assessed by malondialdehyde (MDA) or myeloperoxidase assays, respectively. mRNA gene expression was performed to evaluate mesna and gingerols mechanisms of action. Mesna was able to protect bladder tissue by activating NF-κB and NrF2 pathways. However, we demonstrated that gingerols acted as an antioxidant and anti-inflammatory agent stimulating the expression of IL-10, which intracellularly activates JAK/STAT/FOXO signaling pathway.
Collapse
Affiliation(s)
- Francisco C S Ferreira
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Marco Clementino
- Institute of Biomedicine for Brazilian Semiarid, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Herlice N Veras
- Institute of Biomedicine for Brazilian Semiarid, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Dainesy S Martins
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Marcus L Queiroga
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Mikael A Lima
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Dayara O Silva
- Institute of Biomedicine for Brazilian Semiarid, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thiago M de Freitas
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Samilly A Ribeiro
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Mario R L Mota
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, CE, Brazil
| | - James A da Silva
- Department of Pharmacy, Federal University of Sergipe, Lagarto, SE, Brazil
| | - Aldo A M Lima
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
- Institute of Biomedicine for Brazilian Semiarid, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Alexandre Havt
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil.
- Institute of Biomedicine for Brazilian Semiarid, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
6
|
Aresta Branco MSL, Gutierrez Cruz A, Peri LE, Mutafova-Yambolieva VN. The Pannexin 1 Channel and the P2X7 Receptor Are in Complex Interplay to Regulate the Release of Soluble Ectonucleotidases in the Murine Bladder Lamina Propria. Int J Mol Sci 2023; 24:9964. [PMID: 37373111 PMCID: PMC10298213 DOI: 10.3390/ijms24129964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The bladder urothelium releases ATP into the lamina propria (LP) during filling, which can activate P2X receptors on afferent neurons and trigger the micturition reflex. Effective ATP concentrations are largely dependent on metabolism by membrane-bound and soluble ectonucleotidases (s-ENTDs), and the latter are released in the LP in a mechanosensitive manner. Pannexin 1 (PANX1) channel and P2X7 receptor (P2X7R) participate in urothelial ATP release and are physically and functionally coupled, hence we investigated whether they modulate s-ENTDs release. Using ultrasensitive HPLC-FLD, we evaluated the degradation of 1,N6-etheno-ATP (eATP, substrate) to eADP, eAMP, and e-adenosine (e-ADO) in extraluminal solutions that were in contact with the LP of mouse detrusor-free bladders during filling prior to substrate addition, as an indirect measure of s-ENDTS release. Deletion of Panx1 increased the distention-induced, but not the spontaneous, release of s-ENTDs, whereas activation of P2X7R by BzATP or high concentration of ATP in WT bladders increased both. In Panx1-/- bladders or WT bladders treated with the PANX1 inhibitory peptide 10Panx, however, BzATP had no effect on s-ENTDS release, suggesting that P2X7R activity depends on PANX1 channel opening. We concluded, therefore, that P2X7R and PANX1 are in complex interaction to regulate s-ENTDs release and maintain suitable ATP concentrations in the LP. Thus, while stretch-activated PANX1 hinders s-ENTDS release possibly to preserve effective ATP concentration at the end of bladder filling, P2X7R activation, presumably in cystitis, would facilitate s-ENTDs-mediated ATP degradation to counteract excessive bladder excitability.
Collapse
Affiliation(s)
| | | | | | - Violeta N. Mutafova-Yambolieva
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA; (M.S.L.A.B.); (A.G.C.); (L.E.P.)
| |
Collapse
|
7
|
Taidi Z, Mansfield KJ, Sana-Ur-Rehman H, Moore KH, Liu L. Protective Effect of Purinergic P2X7 Receptor Inhibition on Acrolein-Induced Urothelial Cell Damage. Front Physiol 2022; 13:885545. [PMID: 35492615 PMCID: PMC9041750 DOI: 10.3389/fphys.2022.885545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
Patients undergoing chemotherapy with cyclophosphamide experience cystitis due to excretion of a toxic metabolite, acrolein. Cystitis, an inflammation of the bladder, is associated with damage to the integrity of the urothelial barrier. The purinergic P2X7 receptor (P2X7R) is increasingly recognized for its role in inflammation and cell death. P2X7R is expressed abundantly on the bladder urothelium. The aim of this study was to investigate the role of P2X7R in acrolein-induced inflammatory damage in primary cultured porcine bladder urothelial cells. Confluent urothelial cells in culture were treated with acrolein to induce damage; also, with the P2X7R selective antagonist, A804598. Cell viability assay, immunocytochemistry, and trans-epithelial electrical resistance (TEER) studies were carried out to investigate the effect of treatments on urothelial cell function. Acrolein induced a significant reduction in urothelial cell viability, which was protected by the presence of A804598 (10 µM). The urothelial barrier function, indicated by TEER values, was also significantly reduced by acrolein, whereas pre-incubation with P2X7R antagonist significantly protected the urothelial cell barrier from acrolein-induced TEER reduction. The structure of urothelial cell tight junctions was similarly impacted by acrolein treatment, showing the fragmentation of zona occludens-1 (ZO-1) immunoreactivity. Pre-treatment of cells with A804598 countered against the actions of acrolein and maintained ZO-1 expression level and cell structure. The damaging effect of acrolein on urothelial cells integrity could be impaired by inhibition of P2X7R, therefore P2X7R blockade may be a possible therapy in patients with bladder cystitis caused by cyclophosphamide treatment.
Collapse
Affiliation(s)
- Zhinoos Taidi
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kylie J. Mansfield
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | | | - Kate H. Moore
- St George Hospital, UNSW Sydney, Sydney, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Lu Liu,
| |
Collapse
|
8
|
Kobayashi D, Sugiura Y, Umemoto E, Takeda A, Ueta H, Hayasaka H, Matsuzaki S, Katakai T, Suematsu M, Hamachi I, Yegutkin GG, Salmi M, Jalkanen S, Miyasaka M. Extracellular ATP Limits Homeostatic T Cell Migration Within Lymph Nodes. Front Immunol 2022; 12:786595. [PMID: 35003105 PMCID: PMC8728011 DOI: 10.3389/fimmu.2021.786595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
Whereas adenosine 5'-triphosphate (ATP) is the major energy source in cells, extracellular ATP (eATP) released from activated/damaged cells is widely thought to represent a potent damage-associated molecular pattern that promotes inflammatory responses. Here, we provide suggestive evidence that eATP is constitutively produced in the uninflamed lymph node (LN) paracortex by naïve T cells responding to C-C chemokine receptor type 7 (CCR7) ligand chemokines. Consistently, eATP was markedly reduced in naïve T cell-depleted LNs, including those of nude mice, CCR7-deficient mice, and mice subjected to the interruption of the afferent lymphatics in local LNs. Stimulation with a CCR7 ligand chemokine, CCL19, induced ATP release from LN cells, which inhibited CCR7-dependent lymphocyte migration in vitro by a mechanism dependent on the purinoreceptor P2X7 (P2X7R), and P2X7R inhibition enhanced T cell retention in LNs in vivo. These results collectively indicate that paracortical eATP is produced by naïve T cells in response to constitutively expressed chemokines, and that eATP negatively regulates CCR7-mediated lymphocyte migration within LNs via a specific subtype of ATP receptor, demonstrating its fine-tuning role in homeostatic cell migration within LNs.
Collapse
Affiliation(s)
- Daichi Kobayashi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Umemoto
- Laboratory of Microbiology and Immunology, University of Shizuoka, Shizuoka, Japan
| | - Akira Takeda
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Hisashi Ueta
- Department of Anatomy, School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Haruko Hayasaka
- Laboratory of Immune Molecular Function, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan.,Department of Radiological Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | | | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Masayuki Miyasaka
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan.,World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
9
|
Amanat S, Shal B, Kyoung Seo E, Ali H, Khan S. Icariin attenuates cyclophosphamide-induced cystitis via down-regulation of NF-кB and up-regulation of Nrf-2/HO-1 signaling pathways in mice model. Int Immunopharmacol 2022; 106:108604. [PMID: 35149295 DOI: 10.1016/j.intimp.2022.108604] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Cystitis is a chronic bladder pain associated with frequency and nocturia. In the present study, Icariin a prenylated flavonoid extracted from Epimedium koreanum, was investigated against cyclophosphamide (CYP)-induced cystitis pain in mice model. Preliminarily in an acute model, single dose of CYP (150 mg/kg; i.p) was administered followed by Icariin (5, 25 and 50 mg/kg, i.p.). The visceral sensitivity and nociceptive behaviors were significantly ameliorated by pretreatment with Icariin (25, 50 mg/kg) that were assessed by spontaneous pain scoring, von Frey test and clinical scoring. Further, in chronic model Icariin (25 mg/kg, i.p.) was administered for 10 consecutive days prior to CYP (75 mg/kg; i.p) challenged every 3rd day for the duration of 10 days. Icariin not only had a protective effect on edema including bladder wet weight and hemorrhage but also had a potential to reduce vascular permeability, mast cells infiltration and tissue fibrosis. Evidently, Icariin prevented the neutrophilia/lymphopenia caused by CYP, and markedly improved the antioxidant enzymes level including superoxide dismutase, glutathione sulfo-transferase, catalase, glutathione level and reduced Malondialdehyde level, myeloperoxidase activity and nitric oxide, and also decreased the production of tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) in bladder. Icariin markedly enhanced the Nrf-2, heme oxygenase (HO-1) and IкB-α expression, while attenuated the expression level of Keap1, TLR-4, NF-кB, i-NOS, COX-2 and TRPV1 as compared to negative group. This research illustrated the anti-inflammatory properties of Icariin and effectively improved CYP-induced cystitis pain.
Collapse
Affiliation(s)
- Safa Amanat
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Faculty of Health Sciences, IQRA University, Islamabad Campus, (Chak Shahzad), Islamabad, Pakistan
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
10
|
Domoto R, Sekiguchi F, Kamaguchi R, Iemura M, Yamanishi H, Tsubota M, Wang D, Nishibori M, Kawabata A. Role of neuron-derived ATP in paclitaxel-induced HMGB1 release from macrophages and peripheral neuropathy. J Pharmacol Sci 2021; 148:156-161. [PMID: 34924121 DOI: 10.1016/j.jphs.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022] Open
Abstract
We examined the role of ATP and high mobility group box 1 (HMGB1) in paclitaxel-induced peripheral neuropathy (PIPN). PIPN in mice was prevented by HMGB1 neutralization, macrophage depletion, and P2X7 or P2X4 blockade. Paclitaxel and ATP synergistically released HMGB1 from macrophage-like RAW264.7 cells, but not neuron-like NG108-15 cells. The paclitaxel-induced HMGB1 release from RAW264.7 cells was accelerated by co-culture with NG108-15 cells in a manner dependent on P2X7 or P2X4. Paclitaxel released ATP from NG108-15 cells, but not RAW264.7 cells. Thus, PIPN is considered to involve acceleration of HMGB1 release from macrophages through P2X7 and P2X4 activation by neuron-derived ATP.
Collapse
Affiliation(s)
- Risa Domoto
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Riki Kamaguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Maiko Iemura
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Hiroki Yamanishi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
11
|
Ochiai T, Sasaki Y, Yokoyama C, Kuwata H, Hara S. Absence of prostacyclin greatly relieves cyclophosphamide-induced cystitis and bladder pain in mice. FASEB J 2021; 35:e21952. [PMID: 34555210 DOI: 10.1096/fj.202101025r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 01/22/2023]
Abstract
Cyclophosphamide (CP) has been widely used in the treatment of various malignancies and autoimmune diseases, but acrolein, a byproduct of CP, causes severe hemorrhagic cystitis as the major side effect of CP. On the other hand, a large amount of prostacyclin (PGI2 ) is produced in bladder tissues, and PGI2 has been shown to play a critical role in bladder homeostasis. PGI2 is biosynthesized from prostaglandin (PG) H2 , the common precursor of PGs, by PGI2 synthase (PTGIS) and is known to also be involved in inflammatory responses. However, little is known about the roles of PTGIS-derived PGI2 in bladder inflammation including CP-induced hemorrhagic cystitis. Using both genetic and pharmacological approaches, we here revealed that PTGIS-derived PGI2 -IP (PGI2 receptor) signaling exacerbated CP-induced bladder inflammatory reactions. Ptgis deficiency attenuated CP-induced vascular permeability and chemokine-mediated neutrophil migration into bladder tissues and then suppressed hemorrhagic cystitis. Treatment with RO1138452, an IP selective antagonist, also suppressed CP-induced cystitis. We further found that cystitis-related nociceptive behavior was also relieved in both Ptgis-/- mice and RO1138452-treated mice. Our findings may provide new drug targets for bladder inflammation and inflammatory pain in CP-induced hemorrhagic cystitis.
Collapse
Affiliation(s)
- Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Chieko Yokoyama
- Department of Nutrition and Life Science, Kanagawa Institute of Technology, Atsugi, Japan
| | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| |
Collapse
|
12
|
Taidi Z, Zhou T, Moore KH, Mansfield KJ, Liu L. P2X7 Receptor Blockade Protects Against Acrolein-Induced Bladder Damage: A Potential New Therapeutic Approach for the Treatment of Bladder Inflammatory Diseases. Front Pharmacol 2021; 12:682520. [PMID: 34456718 PMCID: PMC8397461 DOI: 10.3389/fphar.2021.682520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2021] [Indexed: 01/28/2023] Open
Abstract
Inflammatory conditions of the urinary bladder have been shown to be associated with urothelial damage and loss of function. The purinergic P2X7 receptor has been implicated in several inflammatory conditions. The aim of this study was to investigate the role of the P2X7 receptor in acrolein-induced inflammatory damage using the porcine urinary bladder. For this purpose, an ex-vivo model of porcine urothelial damage induced by direct instillation of acrolein into the whole bladder lumen was used. To determine the role of the P2X7 receptor, the bladders were pre-incubated with a selective P2X7 receptor antagonist, A804598 (10 μM), for 1 h. The effects of the acrolein-induced urothelial damage on the bladder’s function were assessed by examining the bladder wall contractile response, structure changes, apoptosis, and oxidative stress in the bladder tissues. The acrolein treatment led to significant damage to the urothelium histology, tight junction expression, and contractile responses. Acrolein also induced apoptosis in the mucosa layer. All these acrolein-induced responses were attenuated by pre-treatment with the P2X7 receptor antagonist A804598. Acrolein also significantly induced DNA oxidation in the submucosal layer; however, the P2X7 receptor antagonism did not show any protective effect towards the acrolein-induced oxidative stress. These findings suggested that the P2X7 receptor is involved in the acrolein-induced damage to the urothelium; therefore, the P2X7 receptor antagonists may be a new therapeutic option for the treatment of bladder inflammation.
Collapse
Affiliation(s)
- Zhinoos Taidi
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Tommy Zhou
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kate H Moore
- St George Hospital, UNSW Sydney, Kogarah, NSW, Australia
| | - Kylie J Mansfield
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Macrophage as a Peripheral Pain Regulator. Cells 2021; 10:cells10081881. [PMID: 34440650 PMCID: PMC8392675 DOI: 10.3390/cells10081881] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
A neuroimmune crosstalk is involved in somatic and visceral pathological pain including inflammatory and neuropathic components. Apart from microglia essential for spinal and supraspinal pain processing, the interaction of bone marrow-derived infiltrating macrophages and/or tissue-resident macrophages with the primary afferent neurons regulates pain signals in the peripheral tissue. Recent studies have uncovered previously unknown characteristics of tissue-resident macrophages, such as their origins and association with regulation of pain signals. Peripheral nerve macrophages and intestinal resident macrophages, in addition to adult monocyte-derived infiltrating macrophages, secrete a variety of mediators, such as tumor necrosis factor-α, interleukin (IL)-1β, IL-6, high mobility group box 1 and bone morphogenic protein 2 (BMP2), that regulate the excitability of the primary afferents. Neuron-derived mediators including neuropeptides, ATP and macrophage-colony stimulating factor regulate the activity or polarization of diverse macrophages. Thus, macrophages have multitasks in homeostatic conditions and participate in somatic and visceral pathological pain by interacting with neurons.
Collapse
|
14
|
A Systematic Review of Therapeutic Approaches Used in Experimental Models of Interstitial Cystitis/Bladder Pain Syndrome. Biomedicines 2021; 9:biomedicines9080865. [PMID: 34440069 PMCID: PMC8389661 DOI: 10.3390/biomedicines9080865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a multifactorial, chronic bladder disorder with limited therapeutic options currently available. The present review provides an extensive overview of therapeutic approaches used in in vitro, ex vivo, and in vivo experimental models of IC/BPS. Publications were identified by electronic search of three online databases. Data were extracted for study design, type of treatment, main findings, and outcome, as well as for methodological quality and the reporting of measures to avoid bias. A total of 100 full-text articles were included. The majority of identified articles evaluated therapeutic agents currently recommended to treat IC/BPS by the American Urological Association guidelines (21%) and therapeutic agents currently approved to treat other diseases (11%). More recently published articles assessed therapeutic approaches using stem cells (11%) and plant-derived agents (10%), while novel potential drug targets identified were proteinase-activated (6%) and purinergic (4%) receptors, transient receptor potential channels (3%), microRNAs (2%), and activation of the cannabinoid system (7%). Our results show that the reported methodological quality of animal studies could be substantially improved, and measures to avoid bias should be more consistently reported in order to increase the value of preclinical research in IC/BPS for potential translation to a clinical setting.
Collapse
|
15
|
Jiang C, Fang W, Lv T, Gu Y, Lv J. Neuronal Dual Leucine Zipper Kinase Mediates Inflammatory and Nociceptive Responses in Cyclophosphamide-Induced Cystitis. J Innate Immun 2021; 13:259-268. [PMID: 34175846 DOI: 10.1159/000514545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/18/2020] [Indexed: 11/19/2022] Open
Abstract
Interstitial cystitis is associated with neurogenic inflammation and neuropathic bladder pain. Dual leucine zipper kinase (DLK) expressed in sensory neurons is implicated in neuropathic pain. We hypothesized that neuronal DLK is involved in the regulation of inflammation and nociceptive behavior in cystitis. Mice deficient in DLK in sensory neurons (cKO) were generated by crossing DLK floxed mice with mice expressing Cre recombinase under Advillin promoter. Cystitis was induced by cyclophosphamide (CYP) administration in mice. Nociceptive behavior, bladder inflammation, and pathology were assessed following cystitis induction in control and cKO mice. The role of DLK in CYP-induced cystitis was further determined by pharmacological inhibition of DLK with GNE-3511. Deletion of neuronal DLK attenuated CYP-induced pain-like nociceptive behavior and suppressed histamine release from mast cells, neuronal activation in the spinal cord, and bladder pathology. Mice deficient in neuronal DLK also showed reduced inflammation induced by CYP and reduced c-Jun activation in the dorsal root ganglia (DRG). Pharmacological inhibition of DLK with GNE-3511 recapitulated the effects of neuronal DLK depletion in CYP treatment mice. Our study suggests that DLK is a potential target for the treatment of neuropathic pain and bladder pathology associated with cystitis.
Collapse
Affiliation(s)
- Chen Jiang
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weilin Fang
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Lv
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinjun Gu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianwei Lv
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Cystitis-Related Bladder Pain Involves ATP-Dependent HMGB1 Release from Macrophages and Its Downstream H 2S/Ca v3.2 Signaling in Mice. Cells 2020; 9:cells9081748. [PMID: 32707767 PMCID: PMC7463894 DOI: 10.3390/cells9081748] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Cystitis-related bladder pain involves RAGE activation by HMGB1, and increased Cav3.2 T-type Ca2+ channel activity by H2S, generated by upregulated cystathionine-γ-lyase (CSE) in mice treated with cyclophosphamide (CPA). We, thus, investigated possible crosstalk between the HMGB1/RAGE and CSE/H2S/Cav3.2 pathways in the bladder pain development. Bladder pain (nociceptive behavior/referred hyperalgesia) and immuno-reactive CSE expression in the bladder were determined in CPA-treated female mice. Cell signaling was analyzed in urothelial T24 and macrophage-like RAW264.7 cells. The CPA-induced bladder pain was abolished by pharmacological inhibition of T-type Ca2+ channels or CSE, and genetic deletion of Cav3.2. The CPA-induced CSE upregulation, as well as bladder pain was prevented by HMGB1 inactivation, inhibition of HMGB1 release from macrophages, antagonists of RAGE or P2X4/P2X7 receptors, and N-acetylcysteine, an antioxidant. Acrolein, a metabolite of CPA, triggered ATP release from T24 cells. Adenosine triphosphate (ATP) stimulated cell migration via P2X7/P2X4, and caused HMGB1 release via P2X7 in RAW264.7 cells, which was dependent on p38MAPK/NF-κB signaling and reactive oxygen species (ROS) accumulation. Together, our data suggest that CPA, once metabolized to acrolein, causes urothelial ATP-mediated, redox-dependent HMGB1 release from macrophages, which in turn causes RAGE-mediated CSE upregulation and subsequent H2S-targeted Cav3.2-dependent nociceptor excitation, resulting in bladder pain.
Collapse
|
18
|
Pereira JMS, Barreira AL, Gomes CR, Ornellas FM, Ornellas DS, Miranda LC, Cardoso LR, Coutinho-Silva R, Schanaider A, Morales MM, Leite M, Takiya CM. Brilliant blue G, a P2X7 receptor antagonist, attenuates early phase of renal inflammation, interstitial fibrosis and is associated with renal cell proliferation in ureteral obstruction in rats. BMC Nephrol 2020; 21:206. [PMID: 32471386 PMCID: PMC7260756 DOI: 10.1186/s12882-020-01861-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/21/2020] [Indexed: 01/10/2023] Open
Abstract
Background Previous study showed that purinergic P2X7 receptors (P2X7R) reach the highest expression in the first week after unilateral ureteral obstruction (UUO) in mice, and are involved in the process of inflammation, apoptosis and fibrosis of renal tissue. We, herein, document the role of purinergic P2X7 receptors activation on the third day of UUO, as assessed by means of BBG as its selective inhibitor. Methods We investigated the effects of brilliant blue G (BBG), a P2X7R antagonist, in the third day of kidney tissue response to UUO in rats. For this purpose, male Wistar rats submitted to UUO or sham operated, received BBG or vehicle (V), comprising four groups: UUO-BBG, UUO-V, sham-BBG and sham-V. The kidneys were harvested on day 3 UUO and prepared for histology, immunohistochemistry (P2X7R, PCNA, CD-68, α-sma, TGF-β1, Heat-shock protein-47, TUNEL assay), quantitative real-time PCR (IL-1β, procollagens type I, III, and IV) for mRNA quantification. Results The group UUO-V presented an enhancement in tubular cell P2X7-R expression, increase influx of macrophages and myofibroblasts, HSP-47 and TGF- β1 expression. Also, upregulation of procollagen types I, III, and IV, and IL-1β mRNAs were seen. On the other hand, group UUO-BBG showed lower expression of procollagens and IL-1β mRNAs, as well as less immunoreactivity of HSP-47, TGF-β, macrophages, myofibroblasts, and tubular apoptosis. This group also presented increased epithelial cell proliferation. Conclusion BBG, a known highly selective inhibitor of P2X7R, attenuated renal inflammation, collagen synthesis, renal cell apoptosis, and enhanced renal cell proliferation in the early phase of rat model of UUO.
Collapse
Affiliation(s)
- José Monteiro Sad Pereira
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Urologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Barreira
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Conrado Rodrigues Gomes
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Mateus Ornellas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Santos Ornellas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Carlos Miranda
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Urologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Ronaldo Cardoso
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Schanaider
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Cirurgia Experimental, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurilo Leite
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Christina Maeda Takiya
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
González-Cano R, Artacho-Cordón A, Romero L, Tejada MA, Nieto FR, Merlos M, Cañizares FJ, Cendán CM, Fernández-Segura E, Baeyens JM. Urinary bladder sigma-1 receptors: A new target for cystitis treatment. Pharmacol Res 2020; 155:104724. [PMID: 32105755 DOI: 10.1016/j.phrs.2020.104724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/12/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023]
Abstract
No adequate treatment is available for painful urinary bladder disorders such as interstitial cystitis/bladder pain syndrome, and the identification of new urological therapeutic targets is an unmet need. The sigma-1 receptor (σ1-R) modulates somatic pain, but its role in painful urological disorders is unexplored. The urothelium expresses many receptors typical of primary sensory neurons (e.g. TRPV1, TRPA1 and P2X3) and high levels of σ1-R have been found in these neurons; we therefore hypothesized that σ1-R may also be expressed in the urothelium and may have functional relevance in this tissue. With western blotting and immunohistochemical methods, we detected σ1-R in the urinary bladder in wild-type (WT) but not in σ1-R-knockout (σ1-KO) mice. Interestingly, σ1-R was located in the bladder urothelium not only in mouse, but also in human bladder sections. The severity of histopathological (edema, hemorrhage and urothelial desquamation) and biochemical alterations (enhanced myeloperoxidase activity and phosphorylation of extracellular regulated kinases 1/2 [pERK1/2]) that characterize cyclophosphamide-induced cystitis was lower in σ1-KO than in WT mice. Moreover, cyclophosphamide-induced pain behaviors and referred mechanical hyperalgesia were dose-dependently reduced by σ1-R antagonists (BD-1063, NE-100 and S1RA) in WT but not in σ1-KO mice. In contrast, the analgesic effect of morphine was greater in σ1-KO than in WT mice. Together these findings suggest that σ1-R plays a functional role in the mechanisms underlying cyclophosphamide-induced cystitis, and modulates morphine analgesia against urological pain. Therefore, σ1-R may represent a new drug target for urinary bladder disorders.
Collapse
Affiliation(s)
- Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Anesthesia Department and Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain
| | - Antonia Artacho-Cordón
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain
| | - Lucía Romero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain
| | - Miguel A Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain
| | - Manuel Merlos
- Drug Discovery and Preclinical Development, Esteve Pharmaceuticals SA, Barcelona, 08028, Spain
| | - Francisco J Cañizares
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain; Department of Histology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
| | - Cruz M Cendán
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain
| | - Eduardo Fernández-Segura
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain; Department of Histology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain.
| |
Collapse
|
20
|
Taidi Z, Mansfield KJ, Bates L, Sana-Ur-Rehman H, Liu L. Purinergic P2X7 receptors as therapeutic targets in interstitial cystitis/bladder pain syndrome; key role of ATP signaling in inflammation. Bladder (San Franc) 2019; 6:e38. [PMID: 32775480 PMCID: PMC7401983 DOI: 10.14440/bladder.2019.789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic lower urinary tract condition. Patients with IC/BPS suffer from debilitating pain and urinary urgency. The underlying etiology of IC/BPS is unknown and as such current treatments are mostly symptomatic with no real cure. Many theories have been proposed to describe the etiology of IC/BPS, but this review focuses on the role of inflammation. In IC/BPS patients, the permeability of the urothelium barrier is compromised and inflammatory cells infiltrate the bladder wall. There are increased levels of many inflammatory mediators in patients with IC/BPS and symptoms such as pain and urgency that have been associated with the degree of inflammation. Recent evidence has highlighted the role of purinergic receptors, specifically the P2X7 receptor, in the process of inflammation. The results from studies in animals including cyclophosphamide-induced hemorrhagic cystitis strongly support the role of P2X7 receptors in inflammation. Furthermore, the deletion of the P2X7 receptor or antagonism of this receptor significantly reduces inflammatory mediator release from the bladder and improves symptoms. Research results from IC/BPS patients and animal models of IC/BPS strongly support the crucial role of inflammation in the pathophysiology of this painful disease. Purinergic signaling and purinergic receptors, especially the P2X7 receptor, play an undisputed role in inflammation. Purinergic receptor antagonists show positive results in treating different symptoms of IC/BPS.
Collapse
Affiliation(s)
- Zhinoos Taidi
- School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Kylie J Mansfield
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lucy Bates
- Westmead Hospital, Westmead, NSW 2145, Australia
| | - Hafiz Sana-Ur-Rehman
- School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Lu Liu
- School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
21
|
Ueda N, Kondo M, Takezawa K, Kiuchi H, Sekii Y, Inagaki Y, Soda T, Fukuhara S, Fujita K, Uemura M, Imamura R, Miyagawa Y, Nonomura N, Shimada S. Intravesical ATP instillation induces urinary frequency because of activation of bladder afferent nerves without inflammatory changes in mice: A promising model for overactive bladder. Biochem Biophys Res Commun 2018; 506:498-503. [PMID: 30361095 DOI: 10.1016/j.bbrc.2018.10.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
Abstract
ATP in the suburothelial layer is released from the bladder urothelium by mechanical stimuli. ATP directly activates purinergic receptors that are expressed on primary bladder afferent neurons and induces the micturition reflex. Although ATP is also released to the bladder lumen from the bladder urothelium, the role of ATP in the bladder lumen is unknown. Recently, clinical studies have reported that urinary ATP levels are much higher in patients with an overactive bladder than healthy controls. These results suggest that ATP in the bladder lumen is also involved in the micturition reflex. In this study, we performed intravesical ATP instillation in the mouse bladder. We evaluated urinary function with novel reliable methods using improved cystometry and ultrasonography, which we previously established. We found that intravesical ATP instillation induced urinary frequency because of activation of bladder afferent nerves without inflammatory changes in the bladder or an increase in post-void residual urine. These results suggest that not only ATP in the suburothelial layer, but also ATP in the bladder lumen, are involved in enhancement of the micturition reflex.
Collapse
Affiliation(s)
- Norichika Ueda
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan; Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Makoto Kondo
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Kentaro Takezawa
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Kiuchi
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yosuke Sekii
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Inagaki
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tetsuji Soda
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
22
|
Neutrophils contribute to the pathogenesis of hemorrhagic cystitis induced by ifosfamide. Int Immunopharmacol 2018; 62:96-108. [DOI: 10.1016/j.intimp.2018.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 01/13/2023]
|
23
|
Burnstock G, Knight GE. The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 2018; 14:1-18. [PMID: 29164451 PMCID: PMC5842154 DOI: 10.1007/s11302-017-9593-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Seven P2X ion channel nucleotide receptor subtypes have been cloned and characterised. P2X7 receptors (P2X7R) are unusual in that there are extra amino acids in the intracellular C terminus. Low concentrations of ATP open cation channels sometimes leading to cell proliferation, whereas high concentrations of ATP open large pores that release inflammatory cytokines and can lead to apoptotic cell death. Since many diseases involve inflammation and immune responses, and the P2X7R regulates inflammation, there has been recent interest in the pathophysiological roles of P2X7R and the potential of P2X7R antagonists to treat a variety of diseases. These include neurodegenerative diseases, psychiatric disorders, epilepsy and a number of diseases of peripheral organs, including the cardiovascular, airways, kidney, liver, bladder, skin and musculoskeletal. The potential of P2X7R drugs to treat tumour progression is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.
| | - Gillian E Knight
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
24
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
25
|
Tsubota M, Miyamoto T, Hiruma S, Saeki H, Miyazaki T, Sekiguchi F, Funakami Y, Kawabata A. Repeated Cold Stress Reduces Cyclophosphamide-Induced Cystitis/Bladder Pain and Macrophage Activity in Mice. Pharmacology 2017; 99:286-290. [PMID: 28253499 DOI: 10.1159/000461588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/10/2017] [Indexed: 11/19/2022]
Abstract
We examined the effect of repeated cold (RC) stress on cyclophosphamide (CPA)-induced cystitis/bladder pain in mice, in relation to macrophage activity. CPA, given i.p. at 400 mg/kg, caused bladder pain symptoms accompanying cystitis in both unstressed and RC-stressed mice, which were prevented by the macrophage inhibitor minocycline. A low dose, that is, 200 mg/kg, of CPA still produced bladder pain symptoms in unstressed but not RC-stressed mice. Lipopolysaccharide-induced cytokine production in peritoneal macrophages from RC-stressed mice was less than that from unstressed mice. Thus, RC stress appears to reduce CPA-induced bladder pain in mice, which may be associated with the decreased macrophage activity.
Collapse
Affiliation(s)
- Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (Formerly Kinki University), Higashi-osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Teixeira JM, Dias EV, Parada CA, Tambeli CH. Intra-Articular Blockade of P2X7 Receptor Reduces the Articular Hyperalgesia and Inflammation in the Knee Joint Synovitis Especially in Female Rats. THE JOURNAL OF PAIN 2016; 18:132-143. [PMID: 27818192 DOI: 10.1016/j.jpain.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 01/15/2023]
Abstract
Synovitis is a key factor in joint disease pathophysiology, which affects a greater proportion of women than men. P2X7 receptor activation contributes to arthritis, but whether it plays a role in articular inflammatory pain in a sex-dependent manner is unknown. We investigated whether the P2X7 receptor blockade in the knee joint of male and female rats reduces the articular hyperalgesia and inflammation induced by a carrageenan knee joint synovitis model. Articular hyperalgesia was quantified using the rat knee joint incapacitation test and the knee joint inflammation, characterized by the concentration of cytokines tumor necrosis factor-α, interleukin-1β, interleukin-6, and cytokine-induced neutrophil chemoattractant-1, and by neutrophil migration, was quantified using enzyme-linked immunosorbent assay and by myeloperoxidase enzyme activity measurement, respectively. P2X7 receptor blockade by the articular coadministration of selective P2X7 receptor antagonist A740003 with carrageenan significantly reduced articular hyperalgesia, pro-inflammatory cytokine concentrations, and myeloperoxidase activity induced by carrageenan injection into the knee joint of male and estrus female rats. However, a lower dose of P2X7 receptor antagonist was sufficient to significantly induce the antihyperalgesic and anti-inflammatory effects in estrus female but not in male rats. These results suggest that P2X7 receptor activation by endogenous adenosine 5'-triphosphate is essential to articular hyperalgesia and inflammation development in the knee joint of male and female rats. However, female rats are more responsive than male rats to the antihyperalgesic and anti-inflammatory effects induced by P2X7 receptor blockade. PERSPECTIVE P2X7 receptors could be promising therapeutic targets in the treatment of knee joint disease symptoms, especially in women, who are more affected than men by these conditions.
Collapse
Affiliation(s)
- Juliana Maia Teixeira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, São Paulo, Brazil
| | - Elayne Vieira Dias
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, São Paulo, Brazil
| | - Carlos Amílcar Parada
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, São Paulo, Brazil
| | - Cláudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, São Paulo, Brazil.
| |
Collapse
|
27
|
TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse. Pflugers Arch 2016; 468:1741-9. [PMID: 27491796 PMCID: PMC5026715 DOI: 10.1007/s00424-016-1859-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/05/2016] [Accepted: 07/20/2016] [Indexed: 11/12/2022]
Abstract
The role of transient receptor potential vanilloid subtype 4 (TRPV4) channels in urinary bladder afferent neural pathways was investigated using spinal c-fos measurements in mice. Anesthetized wild type and TRPV4 knockout (−/−) mice underwent noxious bladder distention and treatment with either intravesical instillation with lipopolysaccharide (LPS), or the TRPV1 agonist resiniferatoxin (RTX), vehicle or an intraperitoneal injected TRPV4 antagonist (HC067047). Mice underwent paraformaldehyde perfusion for rapid fixation and L6-S1 spinal cord sections were removed followed by immunohistochemical staining for c-fos. A number of c-fos expressing neurons in the dorsal horns of L6-S1 spinal cord transections were quantified. Groups were compared using univariate ANOVA. Even with the absence of bladder inflammation on H&E, the TRPV4 −/− mice still have a significant twofold higher c-fos expression (n = 39, SD 2) after noxious bladder distention compared to wild type mice (n = 20, SD 3). A twofold increase in c-fos expression was observed after LPS treatment in wild types (n = 42, SD 5), but no increase was seen in TRPV4 −/− mice (n = 42, SD 2). After desensitization of primary afferent C-nerve fibers with RTX, c-fos expression in TRPV4−/− mice decreased significantly (threefold) (n = 12, SD 4). Results imply that TRPV4 channels are important for bladder afferent signaling. TRPV4 −/− mice bladders generate more noxious sensory output, which is predominantly mediated through TRPV1 expressing high threshold nerve fibers. This study reveals TRPV1 related adaptive changes in afferent pathways of the TRPV4 −/− mouse. We propose that this effect is caused by a congenital impairment of low threshold nerves that mediate normal bladder filling sensations.
Collapse
|
28
|
Sadler KE, Kolber BJ. Urine Trouble: Alterations in Brain Function Associated with Bladder Pain. J Urol 2016; 196:24-32. [PMID: 26905019 DOI: 10.1016/j.juro.2015.10.198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/30/2022]
Abstract
PURPOSE Chronic bladder pain is a debilitating condition often accompanied by alterations in affective and autonomic function. Many symptoms associated with chronic bladder pain are mediated by the central nervous system. In this review data from preclinical animal models and human neuroimaging studies were analyzed and a theoretical supraspinal bladder pain network was generated. MATERIALS AND METHODS We comprehensively reviewed the literature using PubMed® and Google Scholar™. Relevant reviews and original research articles, and the cited references were summarized and then organized on a neuroanatomical basis. RESULTS The brain loci the most predominant in the bladder pain literature are the thalamus, parabrachial nucleus, cerebral cortex, amygdala, hypothalamus, periaqueductal gray and rostral ventromedial medulla. This review highlights each of these regions, discussing the molecular and physiological changes that occur in each in the context of bladder pain. CONCLUSIONS A complex network of brain loci is involved in bladder pain modulation. Studying these brain regions and the changes that they undergo during the transition from acute to chronic bladder pain will provide novel therapeutic strategies for patients with chronic bladder pain diseases such as interstitial cystitis/bladder pain syndrome and chronic prostatitis/chronic pelvic pain syndrome.
Collapse
Affiliation(s)
- Katelyn E Sadler
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania; Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania
| | - Benedict J Kolber
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania; Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania.
| |
Collapse
|
29
|
Omega-3 fatty acids are able to modulate the painful symptoms associated to cyclophosphamide-induced-hemorrhagic cystitis in mice. J Nutr Biochem 2016; 27:219-32. [DOI: 10.1016/j.jnutbio.2015.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/30/2022]
|
30
|
Chen L, Liu YW, Yue K, Ru Q, Xiong Q, Ma BM, Tian X, Li CY. Differential expression of ATP-gated P2X receptors in DRG between chronic neuropathic pain and visceralgia rat models. Purinergic Signal 2015; 12:79-87. [PMID: 26531254 DOI: 10.1007/s11302-015-9481-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022] Open
Abstract
There are divergences between neuropathic pain and visceralgia in terms of the duration, location, and character of hyperalgesia. It is generally recognized that nociceptive receptors, including P2X receptors, may play different roles in nociceptive mechanisms. The different roles of P2X1-7 receptors have not been fully understood both in neuropathic pain and visceral hyperalgesia. In order to explore the different expressions of P2X1-7 receptors in these two hyperalgesia models, the lumbosacral dorsal root ganglion (DRG) neurons from rat sciatic nerve chronic constriction injury (CCI) model and neonatal colorectal distention (NCRD) model were studied (both the primary nociceptive neuron afferents of those two models projected to the same segment of spinal cord). Both immunohistochemistry (IHC) technique and real-time fluorescence quantitative polymerase chain reaction (RT-PCR) technology were applied to analyze the protein expression levels and nucleic acid of P2X1-7 receptors. We found that except P2X2 and P2X3, the expression levels of P2X1 and P2X5 receptors increased in neuropathic pain while those expression levels of P2X4, P2X6, and P2X7 receptors increased in visceral pain. Our results also suggested that in addition to P2X2/3 heteromeric, other P2X subunits may also involved in generation heteromeric such as P2X1/5 and/or P2X2/5 in neuropathic pain and P2X4/6 and/or P2X4/7 in visceral pain.
Collapse
Affiliation(s)
- Lin Chen
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, 430056, China
| | - Yu-wei Liu
- School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Kai Yue
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, 430056, China
| | - Qin Ru
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, 430056, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, 430056, China
| | - Bao-miao Ma
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, 430056, China
| | - Xiang Tian
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, 430056, China
| | - Chao-ying Li
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
31
|
Zanin RF, Bergamin LS, Morrone FB, Coutinho-Silva R, de Souza Wyse AT, Battastini AMO. Pathological concentrations of homocysteine increases IL-1β production in macrophages in a P2X7, NF-ĸB, and erk-dependent manner. Purinergic Signal 2015; 11:463-70. [PMID: 26265456 DOI: 10.1007/s11302-015-9464-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022] Open
Abstract
Elevated plasma levels of homocysteine (Hcy) are associated with the development of coronary artery disease (CAD), peripheral vascular disease, and atherosclerosis. Hyperhomocysteinemia is likely related to the enhanced production of pro-inflammatory cytokines including IL-1β. However, the mechanisms underlying the effects of Hcy in immune cells are not completely understood. Recent studies have established a link between macrophage accumulation, cytokine IL-1β, and the advance of vascular diseases. The purpose of the present study is to investigate the effects of Hcy on IL-1β secretion by murine macrophages. Hcy (100 μM) increases IL-1β synthesis via enhancement of P2X7 expression and NF-ĸB and ERK activation in murine macrophages. In addition, the antioxidant agent N-acetylcysteine (NAC) reduces NF-κB activation, ERK phosphorylation, and IL-1β production in Hcy-exposed macrophages, indicating the importance of ROS in this pro-inflammatory process. In summary, our results show that Hcy may be involved in the synthesis and secretion of IL-1β via NF-ĸB, ERK, and P2X7 stimulation in murine macrophages.
Collapse
Affiliation(s)
- Rafael Fernandes Zanin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, 2600-anexo, CEP 90035-003, Porto Alegre, RS, Brazil. .,Faculdades de Farmácia, Programa de Pós-Graduação em Biologia Celular e Molecular e Instituto de Toxicologia e Farmacologia, Pontificia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, RS, Brazil. .,Mestrado em Saúde e Desenvolvimento Humano do Unilasalle, Canoas, RS, Brazil.
| | - Letícia Scussel Bergamin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, 2600-anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- Faculdades de Farmácia, Programa de Pós-Graduação em Biologia Celular e Molecular e Instituto de Toxicologia e Farmacologia, Pontificia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, RS, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Angela Terezinha de Souza Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, 2600-anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, 2600-anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Svennersten K, Hallén-Grufman K, de Verdier PJ, Wiklund NP, Poljakovic M. Localization of P2X receptor subtypes 2, 3 and 7 in human urinary bladder. BMC Urol 2015; 15:81. [PMID: 26253104 PMCID: PMC4529706 DOI: 10.1186/s12894-015-0075-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/28/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Voiding dysfunctions are a common problem that has a severe negative impact on the quality of life. Today there is a need for new drug targets for these conditions. The role of ATP receptors in bladder physiology has been studied for some time, primarily in animal models. The aim of this work is to investigate the localization of the ATP receptors P2X2, P2X3 and P2X7 and their colocalization with vimentin and actin in the human urinary bladder. METHODS Immunohistochemical analysis was conducted on full-thickness bladder tissues from fundus and trigonum collected from 15 patients undergoing open radical cystectomy due to chronic cystitis, bladder cancer or locally advanced prostate cancer. Colocalization analyses were performed between the three different P2X subtypes and the structural proteins vimentin and actin. Specimens were examined using epifluorescence microscopy and correlation coefficients were calculated for each costaining as well as the mean distance from the laminin positive basal side of the urothelium to the vimentin positive cells located in the suburothelium. RESULTS P2X2 was expressed in vimentin positive cells located in the suburothelium. Less distinct labelling of P2X2 was also observed in actin positive smooth muscle cells and in the urothelium. P2X3 was expressed in vimentin positive cells surrounding the smooth muscle, and in vimentin positive cells located in the suburothelium. Weaker P2X3 labelling was seen in the urothelium. P2X7 was expressed in the smooth muscle cells and the urothelium. In the suburothelium, cells double positive for P2X2 and vimentin where located closer to the urothelium while cells double positive for P2X3 and vimentin where located further from the urothelium. CONCLUSION The results from this study demonstrate that there is a significant difference in the expression of the purinergic P2X2, P2X3 and P2X7 receptors in the different histological layers of the human urinary bladder.
Collapse
Affiliation(s)
- Karl Svennersten
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden.
| | - Katarina Hallén-Grufman
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden.
| | - Petra J de Verdier
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - N Peter Wiklund
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden.
| | - Mirjana Poljakovic
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
33
|
Dietrich F, Pietrobon Martins J, Kaiser S, Madeira Silva RB, Rockenbach L, Albano Edelweiss MI, Ortega GG, Morrone FB, Campos MM, Battastini AMO. The Quinovic Acid Glycosides Purified Fraction from Uncaria tomentosa Protects against Hemorrhagic Cystitis Induced by Cyclophosphamide in Mice. PLoS One 2015; 10:e0131882. [PMID: 26154141 PMCID: PMC4496084 DOI: 10.1371/journal.pone.0131882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022] Open
Abstract
Uncaria tomentosa is widely used in folk medicine for the treatment of numerous diseases, such as urinary tract disease. Hemorrhagic cystitis (HE) is an inflammatory condition of the bladder associated with the use of anticancer drugs such as cyclophosphamide (CYP). Sodium 2-mercaptoethanesulfonate (Mesna) has been used to prevent the occurrence of HE, although this compound is not effective in established lesions. It has been demonstrated that the purinergic system is involved in several pathophysiological events. Among purinergic receptors, P2X7 deserves attention because it is involved in HE induced by CYP and, therefore, can be considered a therapeutic target. The objective of this study was to investigate the potential therapeutic effect of the quinovic acid glycosides purified fraction (QAPF) from U. tomentosa in the mouse model of CYP-induced HE. Pretreatment with QAPF not only had a protective effect on HE-induced urothelial damage (edema, hemorrhage and bladder wet weight) but was also able to control visceral pain, decrease IL-1β levels and down-regulates P2X7 receptors, most likely by inhibit the neutrophils migration to the bladder. This research clearly demonstrates the promising anti-inflammatory properties of QAPF, supporting its use as complementary therapy. QAPF represents a promising therapeutic option for this pathological condition.
Collapse
Affiliation(s)
- Fabrícia Dietrich
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | | | - Samuel Kaiser
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Rodrigo Braccini Madeira Silva
- Laboratório de Farmacologia Aplicada, Faculdade de Farmácia, PUCRS, Porto Alegre, RS, Brazil
- Instituto de Toxicologia e Farmacologia, PUCRS, Porto Alegre, RS, Brazil
| | - Liliana Rockenbach
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | | | - George González Ortega
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- Laboratório de Farmacologia Aplicada, Faculdade de Farmácia, PUCRS, Porto Alegre, RS, Brazil
- Instituto de Toxicologia e Farmacologia, PUCRS, Porto Alegre, RS, Brazil
| | - Maria Martha Campos
- Instituto de Toxicologia e Farmacologia, PUCRS, Porto Alegre, RS, Brazil
- Faculdade de Odontologia, PUCRS, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
34
|
Patra PB, Patra S. Research Findings on Overactive Bladder. Curr Urol 2015; 8:1-21. [PMID: 26195957 PMCID: PMC4483299 DOI: 10.1159/000365682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 01/09/2014] [Indexed: 12/19/2022] Open
Abstract
Several physiopathologic conditions lead to the manifestation of overactive bladder (OAB). These conditions include ageing, diabetes mellitus, bladder outlet obstruction, spinal cord injury, stroke and brain injury, Parkinson's disease, multiple sclerosis, interstitial cystitis, stress and depression. This review has discussed research findings in human and animal studies conducted on the above conditions. Several structural and functional changes under these conditions have not only been observed in the lower urinary tract, but also in the brain and spinal cord. Significant changes were observed in the following areas: neurotransmitters, prostaglandins, nerve growth factor, Rho-kinase, interstitial cells of Cajal, and ion and transient receptor potential channels. Interestingly, alterations in these areas showed great variation in each of the conditions of the OAB, suggesting that the pathophysiology of the OAB might be different in each condition of the disease. It is anticipated that this review will be helpful for further research on new and specific drug development against OAB.
Collapse
Affiliation(s)
- Phani B. Patra
- King of Prussia, Drexel University College of Medicine, Philadelphia, Pa., USA
| | - Sayani Patra
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pa., USA
| |
Collapse
|
35
|
Tung HC, Lee FY, Wang SS, Tsai MH, Lee JY, Huo TI, Huang HC, Chuang CL, Lin HC, Lee SD. The Beneficial Effects of P2X7 Antagonism in Rats with Bile Duct Ligation-induced Cirrhosis. PLoS One 2015; 10:e0124654. [PMID: 25933224 PMCID: PMC4416718 DOI: 10.1371/journal.pone.0124654] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/17/2015] [Indexed: 02/06/2023] Open
Abstract
Splanchnic angiogenesis in liver cirrhosis often leads to complications as gastroesophageal variceal hemorrhage and the treatment efficacy is adversely affected by poor portal-systemic collateral vasoresponsiveness related to nitric oxide (NO). Purinergic receptor subtype P2X7 participates in the modulation of inflammation, angiogenesis, fibrogenesis and vasoresponsiveness, but the relevant influence in cirrhosis is unknown. Common bile duct-ligated (CBDL) or sham-operated Spraque-Dawley rats received brilliant blue G (BBG, a P2X7 antagonist and food additive) or vehicle from the 15th to 28th day after operations, then hemodynamics, mesenteric angiogenesis, portal-systemic shunting, liver fibrosis, and protein expressions of angiogenic and fibrogenic factors were evaluated. The influence of oxidized ATP (oATP, another P2X7 receptor antagonist) on the collateral vasoresponsiveness to arginine vasopressin (AVP) was also surveyed. BBG decreased superior mesenteric artery (SMA) flow, portal-systemic shunting, mesenteric vascular density, and mesenteric protein expressions of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), phospho (p)-VEGFR2, platelet-derived growth factor (PDGF), PDGF receptor beta (PDGFRβ), cyclooxygenase (COX)-1, COX-2, and endothelial NO synthase (eNOS) in CBDL rats. BBG also ameliorated liver fibrosis and down-regulated hepatic interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), PDGF, IL-1β, transforming growth factor-beta (TGF-β), p-extracellular-signal-regulated kinases (ERK), and alpha-smooth muscle actin (α-SMA) expressions in CBDL rats. The collateral vasocontractility to AVP was enhanced by oATP. oATP down-regulated eNOS, inducible NOS (iNOS), VEGF, Akt, p-Akt, and nuclear factor-kappa B (NF-κB) expressions in splenorenal shunt, the most prominent intra-abdominal collateral vessel in rodents. P2X7 antagonism alleviates splanchnic hyperemia, severity of portal-systemic shunting, mesenteric angiogenesis, liver fibrosis, and enhances portal-systemic collateral vasoresponsiveness in cirrhotic rats. P2X7 blockade may be a feasible strategy to control cirrhosis and complications.
Collapse
Affiliation(s)
- Hung-Chun Tung
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sun-Sang Wang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Medical Affair and Planning, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Hung Tsai
- Division of digestive therapeutic endoscopy, Chang Gung Memorial Hospital, Taipei, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jing-Yi Lee
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Teh-Ia Huo
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chun Huang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail:
| | - Chiao-Lin Chuang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
36
|
Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 2015; 66:638-75. [PMID: 24928329 DOI: 10.1124/pr.113.008003] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The P2X7 receptor is a trimeric ATP-gated cation channel found predominantly, but not exclusively, on immune cells. P2X7 activation results in a number of downstream events, including the release of proinflammatory mediators and cell death and proliferation. As such, P2X7 plays important roles in various inflammatory, immune, neurologic and musculoskeletal disorders. This review focuses on the use of P2X7 antagonists in rodent models of neurologic disease and injury, inflammation, and musculoskeletal and other disorders. The cloning and characterization of human, rat, mouse, guinea pig, dog, and Rhesus macaque P2X7, as well as recent observations regarding the gating and permeability of P2X7, are discussed. Furthermore, this review discusses polymorphic and splice variants of P2X7, as well as the generation and use of P2X7 knockout mice. Recent evidence for emerging signaling pathways downstream of P2X7 activation and the growing list of negative and positive modulators of P2X7 activation and expression are also described. In addition, the use of P2X7 antagonists in numerous rodent models of disease is extensively summarized. Finally, the use of P2X7 antagonists in clinical trials in humans and future directions exploring P2X7 as a therapeutic target are described.
Collapse
Affiliation(s)
- Rachael Bartlett
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Leanne Stokes
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Ronald Sluyter
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| |
Collapse
|
37
|
Silva RBM, Sperotto NDM, Andrade EL, Pereira TCB, Leite CE, de Souza AH, Bogo MR, Morrone FB, Gomez MV, Campos MM. Spinal blockage of P/Q- or N-type voltage-gated calcium channels modulates functional and symptomatic changes related to haemorrhagic cystitis in mice. Br J Pharmacol 2014; 172:924-39. [PMID: 25298144 DOI: 10.1111/bph.12966] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/14/2014] [Accepted: 09/23/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Spinal voltage-gated calcium channels (VGCCs) are pivotal regulators of painful and inflammatory alterations, representing attractive therapeutic targets. We examined the effects of epidural administration of the P/Q- and N-type VGCC blockers Tx3-3 and Phα1β, respectively, isolated from the spider Phoneutria nigriventer, on symptomatic, inflammatory and functional changes allied to mouse cyclophosphamide (CPA)-induced haemorrhagic cystitis (HC). The effects of P. nigriventer-derived toxins were compared with those displayed by MVIIC and MVIIA, extracted from the cone snail Conus magus. EXPERIMENTAL APPROACH HC was induced by a single i.p. injection of CPA (300 mg·kg(-1) ). Dose- and time-related effects of spinally administered P/Q and N-type VGCC blockers were assessed on nociceptive behaviour and macroscopic inflammation elicited by CPA. The effects of toxins were also evaluated on cell migration, cytokine production, oxidative stress, functional cystometry alterations and TRPV1, TRPA1 and NK1 receptor mRNA expression. KEY RESULTS The spinal blockage of P/Q-type VGCC by Tx3-3 and MVIIC or N-type VGCC by Phα1β attenuated nociceptive and inflammatory events associated with HC, including bladder oxidative stress and cytokine production. CPA produced a slight increase in bladder TRPV1 and TRPA1 mRNA expression, which was reversed by all the toxins tested. Noteworthy, Phα1β strongly prevented bladder neutrophil migration, besides HC-related functional alterations, and its effects were potentiated by co-injecting the selective NK1 receptor antagonist CP-96345. CONCLUSIONS AND IMPLICATIONS Our results shed new light on the role of spinal P/Q and N-type VGCC in bladder dysfunctions, pointing out Phα1β as a promising alternative for treating complications associated with CPA-induced HC.
Collapse
Affiliation(s)
- R B M Silva
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Institute of Toxicology and Pharmacology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pannexin 1 channels play essential roles in urothelial mechanotransduction and intercellular signaling. PLoS One 2014; 9:e106269. [PMID: 25170954 PMCID: PMC4149561 DOI: 10.1371/journal.pone.0106269] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 08/04/2014] [Indexed: 11/19/2022] Open
Abstract
Urothelial cells respond to bladder distension with ATP release, and ATP signaling within the bladder and from the bladder to the CNS is essential for proper bladder function. In other cell types, pannexin 1 (Panx1) channels provide a pathway for mechanically-induced ATP efflux and for ATP-induced ATP release through interaction with P2X7 receptors (P2X7Rs). We report that Panx1 and P2X7R are functionally expressed in the bladder mucosa and in immortalized human urothelial cells (TRT-HU1), and participate in urothelial ATP release and signaling. ATP release from isolated rat bladders induced by distention was reduced by the Panx1 channel blocker mefloquine (MFQ) and was blunted in mice lacking Panx1 or P2X7R expression. Hypoosmotic shock induced YoPro dye uptake was inhibited by MFQ and the P2X7R blocker A438079 in TRT-HU1 cells, and was also blunted in primary urothelial cells derived from mice lacking Panx1 or P2X7R expression. Rinsing-induced mechanical stimulation of TRT-HU1 cells triggered ATP release, which was reduced by MFQ and potentiated in low divalent cation solution (LDPBS), a condition known to enhance P2X7R activation. ATP signaling evaluated as intercellular Ca2+ wave radius was significantly larger in LDPBS, reduced by MFQ and by apyrase (ATP scavenger). These findings indicate that Panx1 participates in urothelial mechanotransduction and signaling by providing a direct pathway for mechanically-induced ATP release and by functionally interacting with P2X7Rs.
Collapse
|
39
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
40
|
Costa KM, Maciel IS, Kist LW, Campos MM, Bogo MR. Pharmacological inhibition of CXCR2 chemokine receptors modulates paraquat-induced intoxication in rats. PLoS One 2014; 9:e105740. [PMID: 25153082 PMCID: PMC4143277 DOI: 10.1371/journal.pone.0105740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 07/28/2014] [Indexed: 11/23/2022] Open
Abstract
Paraquat (PQ) is an agrochemical agent commonly used worldwide, which is allied to potential risks of intoxication. This herbicide induces the formation of reactive oxygen species (ROS) that ends up compromising various organs, particularly the lungs and the brain. This study evaluated the deleterious effects of paraquat on the central nervous system (CNS) and peripherally, with special attempts to assess the putative protective effects of the selective CXCR2 receptor antagonist SB225002 on these parameters. PQ-toxicity was induced in male Wistar rats, in a total dose of 50 mg/kg, and control animals received saline solution at the same schedule of administration. Separate groups of animals were treated with the selective CXCR2 antagonist SB225002 (1 or 3 mg/kg), administered 30 min before each paraquat injection. The major changes found in paraquat-treated animals were: decreased body weight and hypothermia, nociception behavior, impairment of locomotor and gait capabilities, enhanced TNF-α and IL-1β expression in the striatum, and cell migration to the lungs and blood. Some of these parameters were reversed when the antagonist SB225002 was administered, including recovery of physiological parameters, decreased nociception, improvement of gait abnormalities, modulation of striatal TNF-α and IL-1β expression, and decrease of neutrophil migration to the lungs and blood. Taken together, our results demonstrate that damage to the central and peripheral systems elicited by paraquat can be prevented by the pharmacological inhibition of CXCR2 chemokine receptors. The experimental evidence presented herein extends the comprehension on the toxicodynamic aspects of paraquat, and opens new avenues to treat intoxication induced by this herbicide.
Collapse
Affiliation(s)
- Kesiane M. Costa
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
| | - Izaque S. Maciel
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
| | - Luiza W. Kist
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
| | - Maria M. Campos
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
- Institute of Toxicology and Pharmacology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
- Faculty of Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil,
| | - Maurício R. Bogo
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
- Postgraduate Program in Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
- * E-mail:
| |
Collapse
|
41
|
Dejima T, Shibata K, Yamada H, Takeuchi A, Hara H, Eto M, Naito S, Yoshikai Y. A C-type lectin receptor pathway is responsible for the pathogenesis of acute cyclophosphamide-induced cystitis in mice. Microbiol Immunol 2014; 57:833-41. [PMID: 24102807 DOI: 10.1111/1348-0421.12100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 01/13/2023]
Abstract
Hemorrhagic cystitis often arises after cyclophosphamide (CYP) administration. As yet, however, the mechanism involved in its pathogenesis is unknown. In this study, it was found that the Fc receptor γ chain (FcRγ)- caspase recruitment domain-containing protein 9 (CARD9)-dependent pathway rather than the myeloid differentiation primary response gene 88 (MyD88)-dependent pathway is involved in the pathogenesis of acute CYP-induced cystitis in mice. Rapid and transient production of interleukin (IL)-6 and IL-1β was detected in the bladder at 4 hr, preceding IL-23 and IL-17A production and an influx of neutrophils, which reached a peak at 24 hr after injection. As assessed by weight, edema and neutrophil infiltration, cystitis was significantly attenuated in CARD9 knockout (KO) and FcRγKO mice, this attenuation being accompanied by impaired production of IL-1β, IL-6, IL-23 and IL-17A. The major source of IL-17A is the vesical γδ T cell population: IL-17AKO, CδKO and Tyk2KO mice showed little IL-17A production and reduced neutrophil infiltration in the bladder after CYP injection. These results suggest that FcRγ-CARD9-dependent production of proinflammatory cytokines such as IL-1β, IL-6, and IL-23 and the subsequent activation of IL-17A-producing γδ T cells are at least partly involved in the pathogenesis of acute CYP-induced cystitis in mice.
Collapse
Affiliation(s)
- Takashi Dejima
- Division of Host Defense, Medical Institute of Bioregulation; Department of Urology, Graduate School of Medical Science, Kyushu University, Fukuoka
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schwingel TE, Klein CP, Nicoletti NF, Dora CL, Hadrich G, Bica CG, Lopes TG, da Silva VD, Morrone FB. Effects of the compounds resveratrol, rutin, quercetin, and quercetin nanoemulsion on oxaliplatin-induced hepatotoxicity and neurotoxicity in mice. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:837-48. [PMID: 24908156 DOI: 10.1007/s00210-014-0994-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 05/16/2014] [Indexed: 02/06/2023]
Abstract
Oxaliplatin (OXA) is a platinum compound widely used in the treatment of some solid tumors, especially colorectal cancer. Despite its usefulness, oxaliplatin-associated neurotoxicity represents the main dose-limiting factor of this drug, and until now, there is no suitable treatment. Chemotherapy with oxaliplatin also increases the rate of developing hepatic damages with inflammatory activity, termed chemotherapy-associated steatohepatitis (CASH). In the present study, we aimed to compare the effects of a series of antioxidant compounds on simultaneous development of oxaliplatin-induced hepato- and neurotoxicity in mice. Mice BALB/c were treated with oxaliplatin for 6 weeks, 10 mg/kg, intraperitoneally, resulting in mechanical allodynia and hepatic steatosis. We administered the following antioxidant compounds--rutin (RT) (20 mg/kg), resveratrol (RVS) (100 mg/kg), quercetin (QT) (20 mg/kg), and quercetin nanoemulsion (NQT) (20 mg/kg)--daily by gavage to BALB/c, and N-acetylcysteine (NAC) was used as positive control. Treatments with RSV, RUT, or NQT were able to prevent mechanical allodynia when compared to the OXA group, and this effect was associated with decreased c-Fos immunopositivity in the lumbar spinal cord. Regarding the effects on steatohepatitis, RVS, QT, and NQT almost completely reversed the mean liver weight increase induced by OXA. In accordance with these previous data, histological evaluation indicated attenuation of all features of hepatic steatosis evaluated in RSV, RUT, QT, and NQT groups. These compounds were able to reduce the immunopositivity for the apoptosis marker caspase-3. On the other hand, only QT and NQT treatments were able to reduce neutrophil migration measured by myeloperoxidase (MPO) activity. These results suggest that the compounds tested, RSV, RUT, QT, and NQT, would be useful for the clinical treatment of neuro- and hepatoxicity induced by oxaliplatin.
Collapse
Affiliation(s)
- Tania E Schwingel
- Programa de Pós Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Burnstock G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal 2014; 10:103-55. [PMID: 24265069 PMCID: PMC3944045 DOI: 10.1007/s11302-013-9395-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/25/2022] Open
Abstract
Purinergic signalling is involved in a number of physiological and pathophysiological activities in the lower urinary tract. In the bladder of laboratory animals there is parasympathetic excitatory cotransmission with the purinergic and cholinergic components being approximately equal, acting via P2X1 and muscarinic receptors, respectively. Purinergic mechanosensory transduction occurs where ATP, released from urothelial cells during distension of bladder and ureter, acts on P2X3 and P2X2/3 receptors on suburothelial sensory nerves to initiate the voiding reflex, via low threshold fibres, and nociception, via high threshold fibres. In human bladder the purinergic component of parasympathetic cotransmission is less than 3 %, but in pathological conditions, such as interstitial cystitis, obstructed and neuropathic bladder, the purinergic component is increased to 40 %. Other pathological conditions of the bladder have been shown to involve purinoceptor-mediated activities, including multiple sclerosis, ischaemia, diabetes, cancer and bacterial infections. In the ureter, P2X7 receptors have been implicated in inflammation and fibrosis. Purinergic therapeutic strategies are being explored that hopefully will be developed and bring benefit and relief to many patients with urinary tract disorders.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
44
|
Hughes FM, Vivar NP, Kennis JG, Pratt-Thomas JD, Lowe DW, Shaner BE, Nietert PJ, Spruill LS, Purves JT. Inflammasomes are important mediators of cyclophosphamide-induced bladder inflammation. Am J Physiol Renal Physiol 2013; 306:F299-308. [PMID: 24285499 DOI: 10.1152/ajprenal.00297.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bladder inflammation (cystitis) underlies numerous bladder pathologies and is elicited by a plethora of agents such as urinary tract infections, bladder outlet obstruction, chemotherapies, and catheters. Pattern recognition receptors [Toll-like receptors (TLRs) and Nod-like receptors (NLRs)] that recognize pathogen- and/or damage-associated molecular patterns (PAMPs and/or DAMPs, respectively) are key components of the innate immune system that coordinates the production (TLRs) and maturation (NLRs) of proinflammatory IL-1β. Despite multiple studies of TLRs in the bladder, none have investigated NLRs beyond one small survey. We now demonstrate that NLRP3 and NLRC4, and their binding partners apoptosis-associated speck-like protein containing a COOH-terminal caspase recruitment domain (ASC) and NLR family apoptosis inhibitory protein (NAIP), are expressed in the bladder and localized predominantly to the urothelia. Activated NLRs form inflammasomes that activate caspase-1. Placement of a NLRP3- or NLRC4-activating PAMP or NLRP3-activating DAMPs into the lumen of the bladder stimulated caspase-1 activity. To investigate inflammasomes in vivo, we induced cystitis with cyclophosphamide (CP, 150 mg/kg ip) in the presence or absence of the inflammasome inhibitor glyburide. Glyburide completely blocked CP-induced activation of caspase-1 and the production of IL-1β at 4 h. At 24 h, glyburide reduced two markers of inflammation by 30-50% and reversed much of the inflammatory morphology. Furthermore, glyburide reversed changes in bladder physiology (cystometry) induced by CP. In conclusion, NLRs/inflammasomes are present in the bladder urothelia and respond to DAMPs and PAMPs, whereas NLRP3 inhibition blocks bladder dysfunction in the CP model. The coordinated response of NLRs and TLRs in the urothelia represents a first-line innate defense that may provide an important target for pharmacological intervention.
Collapse
Affiliation(s)
- Francis M Hughes
- Jr., Dept. of Urology, CSB644, Medical Univ. of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Implication of purinergic P2X7 receptor in M. tuberculosis infection and host interaction mechanisms: A mouse model study. Immunobiology 2013; 218:1104-12. [DOI: 10.1016/j.imbio.2013.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 02/06/2013] [Accepted: 03/08/2013] [Indexed: 11/24/2022]
|
46
|
da Silva GL, Sperotto NDM, Borges TJ, Bonorino C, Takyia CM, Coutinho-Silva R, Campos MM, Zanin RF, Morrone FB. P2X7 receptor is required for neutrophil accumulation in a mouse model of irritant contact dermatitis. Exp Dermatol 2013; 22:184-8. [DOI: 10.1111/exd.12094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Gabriela L. da Silva
- Programa de Pós-Graduação em Biologia Celular e Molecular; Pontificia Universidade Católica do Rio Grande do Sul -PUCRS; Porto Alegre; RS; Brazil
| | - Nathalia D. M. Sperotto
- Faculdade de Farmácia; Pontificia Universidade Católica do Rio Grande do Sul -PUCRS; Porto Alegre; RS; Brazil
| | | | | | - Cristina M. Takyia
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro - UFRJ; Rio de Janeiro; RJ; Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro - UFRJ; Rio de Janeiro; RJ; Brazil
| | | | | | | |
Collapse
|
47
|
Burnstock G. Purinergic signalling in the lower urinary tract. Acta Physiol (Oxf) 2013; 207:40-52. [PMID: 23176070 DOI: 10.1111/apha.12012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/22/2011] [Accepted: 09/10/2012] [Indexed: 02/01/2023]
Abstract
The aim of this review is to describe the conceptual steps contributing to our current knowledge of purinergic signalling and to consider its involvement in the physiology and pathophysiology of the lower urinary tract. The voiding reflex involves ATP released as a cotransmitter with acetylcholine from parasympathetic nerves supplying the bladder and ATP released from urothelial cells during bladder distension to initiate the voiding reflex via P2X3 receptors on suburothelial low threshold sensory nerve fibres. This mechanosensory transduction pathway also participates, via high threshold sensory nerve fibres, in the initiation of pain in bladder and ureter. Treatment of prostate and bladder cancer with ATP is effective against the primary tumours in animal models and human cell lines, via P2X5 and P2X7 receptors, and also improves the systemic symptoms associated with advanced malignancy. Acupuncture is widely used for the treatment of urinary disorders, and a purinergic hypothesis is discussed for the underlying mechanism.
Collapse
Affiliation(s)
- G. Burnstock
- Autonomic Neuroscience Centre; University College Medical School; London; UK
| |
Collapse
|
48
|
Aronsson P, Johnsson M, Vesela R, Winder M, Tobin G. Adenosine receptor antagonism suppresses functional and histological inflammatory changes in the rat urinary bladder. Auton Neurosci 2012; 171:49-57. [PMID: 23142515 DOI: 10.1016/j.autneu.2012.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
Cyclophosphamide (CYP) induces an interstitial cystitis-like inflammation. The resulting bladder dysfunction has been associated with increased release of adenosine-5'-triphosphate (ATP), structural bladder wall changes and contractile impairment. Due to the inflammatory modulatory effects of purines it was presently wondered if pre-treatment with P1 and P2 purinoceptor antagonists affect the CYP-induced alterations. Rats were pre-treated with saline or antagonists for five days, and 60 h before the in vitro functional examination the rats were administered either saline or CYP. Histological examination revealed CYP-induced bladder wall thickening largely depending on submucosal enlargement, mast cell invasion of the detrusor muscle, increase in muscarinic M5 receptor expression and macrophage migration inhibitory factor (MIF) occurrence in large parts of the urothelium. Functionally, methacholine- and ATP-evoked contractions were smaller in urinary bladders from CYP-treated rats. Pre-treatment with the P2 purinoceptor antagonist suramin and the P1A2B antagonist PSB1115 did not to any great extent affect the CYP-induced changes. The P1A1 antagonist DPCPX, however, abolished the difference of methacholine-evoked contractions between saline- and CYP-treated rats. ATP-evoked contractions were reduced in control after the DPCPX pre-treatment, but not in cystitis. The functional observations for DPCPX were supported by its suppression of CYP-induced submucosal thickening, muscarinic M5 receptor expression and, possibly, detrusor mast cell infiltration and the spread of urothelial MIF occurrence. Thus, P1A1 is an important pro-inflammatory receptor in the acute CYP-induced cystitis and a P1A1 blockade during the initial phase may suppress CYP-induced cystitis. P1A1 purinoceptors seem to regulate contractility in healthy and in inflamed rat urinary bladders.
Collapse
Affiliation(s)
- Patrik Aronsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 431, SE-40530 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
49
|
Nasrin S, Masuda E, Kugaya H, Ito Y, Yamada S. Improvement by phytotherapeutic agent of detrusor overactivity, down-regulation of pharmacological receptors and urinary cytokines in rats with cyclophosphamide induced cystitis. J Urol 2012; 189:1123-9. [PMID: 23000860 DOI: 10.1016/j.juro.2012.09.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE We characterized pharmacological effects of the phytotherapeutic agent Eviprostat® on urodynamic parameters, bladder muscarinic and purinergic receptors, and urinary cytokines in rats with cyclophosphamide induced cystitis. MATERIALS AND METHODS Urodynamic parameters in cyclophosphamide (150 mg/kg intraperitoneally) treated rats were measured by a cystometric method. Muscarinic and purinergic receptors in the bladder and other tissues were measured by radioreceptor assays using [N-methyl-(3)H]scopolamine methyl chloride and [(3)H]αβ-MeATP, respectively. The urinary cytokines interleukin-1β, 6 and 17 were measured with enzyme-linked immunoassay kits. Eviprostat (36 mg/kg per day twice daily for 7 days) was orally administered. RESULTS On cystometry the micturition interval and micturition volume were significantly decreased in cyclophosphamide vs sham treated rats, while micturition frequency, basal pressure and post-void residual urine volume were significantly increased. Repeat oral administration of Eviprostat in cyclophosphamide treated rats significantly increased the micturition interval and micturition volume, and decreased micturition frequency, basal pressure and post-void residual urine volume. The maximal number of binding sites for [N-methyl-(3)H]scopolamine methyl chloride and [(3)H]αβ-MeATP was significantly decreased in the bladder of cyclophosphamide vs sham treated rats. Such decreases were significantly attenuated by repeat Eviprostat treatment. Increased urinary cytokine levels in cyclophosphamide treated rats were also effectively attenuated by Eviprostat. CONCLUSIONS Repeat Eviprostat treatment significantly improved detrusor overactivity, down-regulated the expression of bladder pharmacological receptors and increased urinary cytokine levels in rats with cyclophosphamide induced cystitis. Therefore, Eviprostat may be a pharmacologically useful phytotherapeutic agent for cystitis.
Collapse
Affiliation(s)
- Sweety Nasrin
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | |
Collapse
|
50
|
Corriden R, Insel PA. New insights regarding the regulation of chemotaxis by nucleotides, adenosine, and their receptors. Purinergic Signal 2012; 8:587-98. [PMID: 22528684 PMCID: PMC3360098 DOI: 10.1007/s11302-012-9311-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/05/2012] [Indexed: 12/23/2022] Open
Abstract
The directional movement of cells can be regulated by ATP, certain other nucleotides (e.g., ADP, UTP), and adenosine. Such regulation occurs for cells that are "professional phagocytes" (e.g., neutrophils, macrophages, certain lymphocytes, and microglia) and that undergo directional migration and subsequent phagocytosis. Numerous other cell types (e.g., fibroblasts, endothelial cells, neurons, and keratinocytes) also change motility and migration in response to ATP, other nucleotides, and adenosine. In this article, we review how nucleotides and adenosine modulate chemotaxis and motility and highlight the importance of nucleotide- and adenosine-regulated cell migration in several cell types: neutrophils, microglia, endothelial cells, and cancer cells. We also discuss difficulties in conducting experiments and drawing conclusions regarding the ability of nucleotides and adenosine to modulate the migration of professional and non-professional phagocytes.
Collapse
Affiliation(s)
- Ross Corriden
- Institute of Cell Signalling, University of Nottingham, Nottingham, UK
| | - Paul A. Insel
- Departments of Pharmacology and Medicine, University of California, San Diego, CA USA
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, Mail code 0636, La Jolla, CA 92093 USA
| |
Collapse
|