1
|
Peng Y, Zhang AH, Wei L, Welsh WJ. Preclinical Evaluation of Sigma 1 Receptor Antagonists as a Novel Treatment for Painful Diabetic Neuropathy. ACS Pharmacol Transl Sci 2024; 7:2358-2368. [PMID: 39144554 PMCID: PMC11320727 DOI: 10.1021/acsptsci.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024]
Abstract
The global prevalence of diabetes is steadily rising, with an estimated 537 million adults affected by diabetes in 2021, projected to reach 783 million by 2045. A severe consequence of diabetes is the development of painful diabetic neuropathy (PDN), afflicting approximately one in every three diabetic patients and significantly compromising their quality of life. Current pharmacotherapies for PDN provide inadequate pain relief for many patients, underscoring the need for novel treatments that are both safe and effective. The Sigma 1 Receptor (S1R) is a ligand-operated chaperone protein that resides at the mitochondria-associated membrane of the endoplasmic reticulum. The S1R has been shown to play crucial roles in regulating cellular processes implicated in pain modulation. This study explores the potential of PW507, a novel S1R antagonist, as a therapeutic candidate for PDN. PW507 exhibited promising in vitro and in vivo properties in terms of ADME, toxicity, pharmacokinetics, and safety. In preclinical rat models of Streptozotocin-induced diabetic neuropathy, PW507 demonstrated significant efficacy in alleviating mechanical allodynia and thermal hyperalgesia following both acute and chronic (2-week) administration, without inducing tolerance and visual evidence of toxicity. To the best of our knowledge, this is the first report to evaluate an S1R antagonist in STZ-induced diabetic rats following both acute and 2-week chronic administration, offering compelling preclinical evidence for the potential use of PW507 as a promising therapeutic option for PDN.
Collapse
Affiliation(s)
- Youyi Peng
- Biomedical
Informatics Shared Resource, Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Allen H. Zhang
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - Liping Wei
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - William J. Welsh
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Denaro S, Pasquinucci L, Turnaturi R, Alberghina C, Longhitano L, Giallongo S, Costanzo G, Spoto S, Grasso M, Zappalà A, Li Volti G, Tibullo D, Vicario N, Parenti R, Parenti C. Sigma-1 Receptor Inhibition Reduces Mechanical Allodynia and Modulate Neuroinflammation in Chronic Neuropathic Pain. Mol Neurobiol 2024; 61:2672-2685. [PMID: 37922065 PMCID: PMC11043107 DOI: 10.1007/s12035-023-03717-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2023]
Abstract
Neuropathic pain is one of the most debilitating forms of chronic pain, resulting from an injury or disease of the somatosensory nervous system, which induces abnormal painful sensations including allodynia and hyperalgesia. Available treatments are limited by severe side-effects and reduced efficacy in the chronic phase of the disease. Sigma-1 receptor (σ1R) has been identified as a chaperone protein, which modulate opioid receptors activities and the functioning of several ion channels, exerting a role in pain transmission. As such, it represents a druggable target to treat neuropathic pain. This study aims at investigating the therapeutic potential of the novel compound (+)-2R/S-LP2, a σ1R antagonist, in reducing painful behaviour and modulating the neuroinflammatory environment. We showed that repeated administration of the compound significantly inhibited mechanical allodynia in neuropathic rats, increasing the withdrawal threshold as compared to CCI-vehicle rats. Moreover, we found that (+)-2R/S-LP2-mediated effects resolve the neuroinflammatory microenvironment by reducing central gliosis and pro-inflammatory cytokines expression levels. This effect was coupled with a significant reduction of connexin 43 (Cx43) expression levels and gap junctions/hemichannels mediated microglia-to-astrocyte communication. These results suggest that inhibition of σ1R significantly attenuates neuropathic pain chronicization, thus representing a viable effective strategy.
Collapse
Affiliation(s)
- Simona Denaro
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Lorella Pasquinucci
- Section of Medicinal Chemistry, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Rita Turnaturi
- Section of Medicinal Chemistry, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Cristiana Alberghina
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Sebastiano Giallongo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giuliana Costanzo
- Section of Medicinal Chemistry, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Salvatore Spoto
- Section of Pharmacology and Toxicology, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Margherita Grasso
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Carmela Parenti
- Section of Pharmacology and Toxicology, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| |
Collapse
|
3
|
Fan Z, Xiao Y, Shi Y, Hao C, Chen Y, Zhang G, Zhuang T, Cao X. Thiophenpiperazine amide derivatives as new dual MOR and σ 1R ligands for the treatment of pain. Biochem Biophys Res Commun 2024; 697:149547. [PMID: 38245926 DOI: 10.1016/j.bbrc.2024.149547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
A new series of thiophenpiperazine amide derivatives as potent dual ligands for the μ-opioid (MOR) and sigma-1 (σ1R) receptors are reported. Compound 23 exhibited good affinity to σ1R (Ki = 44.7 ± 7.05 nM) and high selectivity to σ2R. Furthermore, Compound 23 exerted MOR agonism and σ1R antagonism and potent analgesic activity in animal moldes (the abdominal constriction test (ED50 = 3.83 mg/kg) and carrageenan-induced inflammatory hyperalgesia model (ED50 = 5.23 mg/kg)). We obtained new dual ligands that might serve as starting points for preparing targeted tools. Furthermore, 23 may be a useful chemical probe for understanding more fully analgesic effects associated with MOR agonism and σ1R antagonism.
Collapse
Affiliation(s)
- Zhiyuan Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Xiao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuxin Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Chao Hao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Xudong Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
4
|
Grau S, Vela JM, Gurt A, Barceló-Vidal J, Ojeda F, López I, Gómez-García L, Loza MI, Martín-García E, Maldonado R, Monfort J. Efficacy of SIGMAR1-based therapy in the early treatment of confirmed mild symptomatic COVID-19 patients. J Infect 2024; 88:187-190. [PMID: 37992877 DOI: 10.1016/j.jinf.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Affiliation(s)
- Santiago Grau
- Department of Pharmacy, Hospital del Mar, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - José Miguel Vela
- Welab Barcelona, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Alba Gurt
- CAP Vila Olímpica, Parc Sanitari Pere Virgili, Barcelona, Spain
| | | | - Fabiola Ojeda
- Rheumatology Service, Hospital del Mar, Barcelona, Spain
| | - Iago López
- IMIM (Hospital Del Mar Medical Research Institute), PRBB, Barcelona, Spain
| | - Laura Gómez-García
- Health Research Institute of Santiago de Compostela (IDIS), Drug Screening and Pharmacogenomics Platform/BioFarma Research Group, CIMUS Research Center, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Isabel Loza
- Health Research Institute of Santiago de Compostela (IDIS), Drug Screening and Pharmacogenomics Platform/BioFarma Research Group, CIMUS Research Center, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Elena Martín-García
- IMIM (Hospital Del Mar Medical Research Institute), PRBB, Barcelona, Spain; Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Rafael Maldonado
- IMIM (Hospital Del Mar Medical Research Institute), PRBB, Barcelona, Spain; Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| | - Jordi Monfort
- Rheumatology Service, Hospital del Mar, Barcelona, Spain; IMIM (Hospital Del Mar Medical Research Institute), PRBB, Barcelona, Spain
| |
Collapse
|
5
|
Yousuf MS, Sahn JJ, Yang H, David ET, Shiers S, Mancilla Moreno M, Iketem J, Royer DM, Garcia CD, Zhang J, Hong VM, Mian SM, Ahmad A, Kolber BJ, Liebl DJ, Martin SF, Price TJ. Highly specific σ 2R/TMEM97 ligand FEM-1689 alleviates neuropathic pain and inhibits the integrated stress response. Proc Natl Acad Sci U S A 2023; 120:e2306090120. [PMID: 38117854 PMCID: PMC10756276 DOI: 10.1073/pnas.2306090120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023] Open
Abstract
The sigma 2 receptor (σ2R) was described pharmacologically more than three decades ago, but its molecular identity remained obscure until recently when it was identified as transmembrane protein 97 (TMEM97). We and others have shown that σ2R/TMEM97 ligands alleviate mechanical hypersensitivity in mouse neuropathic pain models with a time course wherein maximal antinociceptive effect is approximately 24 h following dosing. We sought to understand this unique antineuropathic pain effect by addressing two key questions: do these σ2R/TMEM97 compounds act selectively via the receptor, and what is their downstream mechanism on nociceptive neurons? Using male and female conventional knockout mice for Tmem97, we find that a σ2R/TMEM97 binding compound, FEM-1689, requires the presence of the gene to produce antinociception in the spared nerve injury model in mice. Using primary mouse dorsal root ganglion neurons, we demonstrate that FEM-1689 inhibits the integrated stress response (ISR) and promotes neurite outgrowth via a σ2R/TMEM97-specific action. We extend the clinical translational value of these findings by showing that FEM-1689 reduces ISR and p-eIF2α levels in human sensory neurons and that it alleviates the pathogenic engagement of ISR by methylglyoxal. We also demonstrate that σ2R/TMEM97 is expressed in human nociceptors and satellite glial cells. These results validate σ2R/TMEM97 as a promising target for further development for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
- NuvoNuro Inc., Austin, TX78712
| | - James J. Sahn
- NuvoNuro Inc., Austin, TX78712
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Hongfen Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Eric T. David
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Stephanie Shiers
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Marisol Mancilla Moreno
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Jonathan Iketem
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Danielle M. Royer
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Chelsea D. Garcia
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Jennifer Zhang
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Veronica M. Hong
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Subhaan M. Mian
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Ayesha Ahmad
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Benedict J. Kolber
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Daniel J. Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL33136
| | - Stephen F. Martin
- NuvoNuro Inc., Austin, TX78712
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Theodore J. Price
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
- NuvoNuro Inc., Austin, TX78712
| |
Collapse
|
6
|
Miao Z, Zhong Y, Gan Y, Fu K, Liu W, Cao Z, Zhao T, Li Z, Hai A, Peng Y, Zuo Z, Zhang T, Hu S, Chen C, Kang T, Huang T, Guo D, Ke B. A Novel Bifunctional μOR Agonist and σ 1R Antagonist with Potent Analgesic Responses and Reduced Adverse Effects. J Med Chem 2023; 66:16257-16275. [PMID: 38015878 DOI: 10.1021/acs.jmedchem.3c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Bifunctional ligands possessing both μOR agonism and σ1R antagonism have shown promise in producing strong analgesic effects with reduced opioid-related side effects. However, the μOR agonism activity of most dual ligands diminishes compared with classical opioids, raising concern about their effectiveness in managing nociceptive pain. In this study, a new class of dual μOR agonist/σ1R antagonist was reported. Through structure-activity relationship analyses, we identified the optimal compound, 4x, which displayed picomolar μOR agonism activity (EC50: 0.6 ± 0.2 nM) and good σ1R inhibitory activity (Ki: 363.7 ± 5.6 nM) with excellent selectivity. Compound 4x exhibited robust analgesic effects in various pain models, with significantly reduced side effects. Importantly, compound 4x also possessed good safety profiles and no abnormalities were observed in biological parameters even under a high dosage. Our findings suggest that 4x may be a promising lead compound for developing safer opioids and warrants further in-depth studies.
Collapse
Affiliation(s)
- Zhuang Miao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuhan Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Gan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kequan Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Wencheng Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihua Cao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tiantian Zhao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyuan Li
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ao Hai
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanlai Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zeping Zuo
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tian Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shilong Hu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunxia Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Kang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianguang Huang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Knowles LG, Armanious AJ, Peng Y, Welsh WJ, James MH. Recent advances in drug discovery efforts targeting the sigma 1 receptor system: Implications for novel medications designed to reduce excessive drug and food seeking. ADDICTION NEUROSCIENCE 2023; 8:100126. [PMID: 37753198 PMCID: PMC10519676 DOI: 10.1016/j.addicn.2023.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Psychiatric disorders characterized by uncontrolled reward seeking, such as substance use disorders (SUDs), alcohol use disorder (AUD) and some eating disorders, impose a significant burden on individuals and society. Despite their high prevalence and substantial morbidity and mortality rates, treatment options for these disorders remain limited. Over the past two decades, there has been a gradual accumulation of evidence pointing to the sigma-1 receptor (S1R) system as a promising target for therapeutic interventions designed to treat these disorders. S1R is a chaperone protein that resides in the endoplasmic reticulum, but under certain conditions translocates to the plasma membrane. In the brain, S1Rs are expressed in several regions important for reward, and following translocation, they physically associate with several reward-related GPCRs, including dopamine receptors 1 and 2 (D1R and D2R). Psychostimulants, alcohol, as well as palatable foods, all alter expression of S1R in regions important for motivated behavior, and S1R antagonists generally decrease behavioral responses to these rewards. Recent advances in structural modeling have permitted the development of highly-selective S1R antagonists with favorable pharmacokinetic profiles, thus providing a therapeutic avenue for S1R-based medications. Here, we provide an up-to-date overview of work linking S1R with motivated behavior for drugs of abuse and food, as well as evidence supporting the clinical utility of S1R antagonists to reduce their excessive consumption. We also highlight potential challenges associated with targeting the S1R system, including the need for a more comprehensive understanding of the underlying neurobiology and careful consideration of the pharmacological properties of S1R-based drugs.
Collapse
Affiliation(s)
- Liam G. Knowles
- Harpur School of Arts and Sciences, Binghamton University, Vestal, NY, USA
| | - Abanoub J. Armanious
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Youyi Peng
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - William J. Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
| | - Morgan H. James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| |
Collapse
|
8
|
Ruiz-Cantero MC, Huerta MÁ, Tejada MÁ, Santos-Caballero M, Fernández-Segura E, Cañizares FJ, Entrena JM, Baeyens JM, Cobos EJ. Sigma-1 receptor agonism exacerbates immune-driven nociception: Role of TRPV1 + nociceptors. Biomed Pharmacother 2023; 167:115534. [PMID: 37729726 DOI: 10.1016/j.biopha.2023.115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023] Open
Abstract
The analgesic effects of sigma-1 antagonists are undisputed, but the effects of sigma-1 agonists on pain are not well studied. Here, we used a mouse model to show that the administration of the sigma-1 agonists dextromethorphan (a widely used antitussive drug), PRE-084 (a standard sigma-1 ligand), and pridopidine (a selective drug being investigated in clinical trials for the treatment of neurodegenerative diseases) enhances PGE2-induced mechanical hyperalgesia. Superficial plantar incision induced transient weight-bearing asymmetry at early time points, but the mice appeared to recover at 24 h, despite noticeable edema and infiltration of neutrophils (a well-known cellular source of PGE2) at the injured site. Sigma-1 agonists induced a relapse of weight bearing asymmetry in a manner dependent on the presence of neutrophils. The effects of sigma-1 agonists were all reversed by administration of the sigma-1 antagonist BD-1063 in wild-type mice, and were absent in sigma-1 knockout mice, supporting the selectivity of the effects observed. The proalgesic effects of sigma-1 agonism were also abolished by the TRP antagonist ruthenium red and by in vivo resiniferatoxin ablation of TRPV1 + peripheral sensory neurons. Therefore, sigma-1 agonism exacerbates pain-like responses in mice with a mild inflammatory state through the action of TRPV1 + nociceptors. We also show that sigma-1 receptors are present in most (if not all) mouse and human DRG neurons. If our findings translate to humans, further studies will be needed to investigate potential proalgesic effects induced by sigma-1 agonism in patients treated with sigma-1 agonists.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Miriam Santos-Caballero
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Eduardo Fernández-Segura
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Department of Histology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Francisco J Cañizares
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Department of Histology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - José M Entrena
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Teófilo Hernando Institute for Drug Discovery, 28029 Madrid, Spain.
| |
Collapse
|
9
|
Yousuf MS, Sahn JJ, Yang H, David ET, Shiers S, Moreno MM, Iketem J, Royer DM, Garcia CD, Zhang J, Hong VM, Mian SM, Ahmad A, Kolber BJ, Liebl DJ, Martin SF, Price TJ. Highly specific σ 2R/TMEM97 ligand alleviates neuropathic pain and inhibits the integrated stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536439. [PMID: 37090527 PMCID: PMC10120691 DOI: 10.1101/2023.04.11.536439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The Sigma 2 receptor (σ2R) was described pharmacologically more than three decades ago, but its molecular identity remained obscure until recently when it was identified as transmembrane protein 97 (TMEM97). We and others have shown that σ2R/TMEM97 ligands alleviate mechanical hypersensitivity in mouse neuropathic pain models with a time course wherein maximal anti-nociceptive effect is approximately 24 hours following dosing. We sought to understand this unique anti-neuropathic pain effect by addressing two key questions: do these σ2R/TMEM97 compounds act selectively via the receptor, and what is their downstream mechanism on nociceptive neurons? Using male and female conventional knockout (KO) mice for Tmem97, we find that a new σ2R/TMEM97 binding compound, FEM-1689, requires the presence of the gene to produce anti-nociception in the spared nerve injury model in mice. Using primary mouse dorsal root ganglion (DRG) neurons, we demonstrate that FEM-1689 inhibits the integrated stress response (ISR) and promotes neurite outgrowth via a σ2R/TMEM97-specific action. We extend the clinical translational value of these findings by showing that FEM-1689 reduces ISR and p-eIF2α levels in human sensory neurons and that it alleviates the pathogenic engagement of ISR by methylglyoxal. We also demonstrate that σ2R/TMEM97 is expressed in human nociceptors and satellite glial cells. These results validate σ2R/TMEM97 as a promising target for further development for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
- NuvoNuro, Austin, TX 78712
| | - James J. Sahn
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
- NuvoNuro, Austin, TX 78712
| | - Hongfen Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | - Eric T. David
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Stephanie Shiers
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Marisol Mancilla Moreno
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Jonathan Iketem
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Danielle M. Royer
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Chelsea D. Garcia
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Jennifer Zhang
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Veronica M. Hong
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Subhaan M. Mian
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Ayesha Ahmad
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Benedict J. Kolber
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | | | - Stephen F. Martin
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
- NuvoNuro, Austin, TX 78712
| | - Theodore J. Price
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
- NuvoNuro, Austin, TX 78712
| |
Collapse
|
10
|
Dichiara M, Ambrosio FA, Barbaraci C, González-Cano R, Costa G, Parenti C, Marrazzo A, Pasquinucci L, Cobos EJ, Alcaro S, Amata E. Synthesis, Computational Insights, and Evaluation of Novel Sigma Receptors Ligands. ACS Chem Neurosci 2023; 14:1845-1858. [PMID: 37155827 DOI: 10.1021/acschemneuro.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The development of diazabicyclo[4.3.0]nonane and 2,7-diazaspiro[3.5]nonane derivatives as sigma receptors (SRs) ligands is reported. The compounds were evaluated in S1R and S2R binding assays, and modeling studies were carried out to analyze the binding mode. The most notable compounds, 4b (AD186, KiS1R = 2.7 nM, KiS2R = 27 nM), 5b (AB21, KiS1R = 13 nM, KiS2R = 102 nM), and 8f (AB10, KiS1R = 10 nM, KiS2R = 165 nM), have been screened for analgesic effects in vivo, and their functional profile was determined through in vivo and in vitro models. Compounds 5b and 8f reached the maximum antiallodynic effect at 20 mg/kg. The selective S1R agonist PRE-084 completely reversed their action, indicating that the effects are entirely dependent on the S1R antagonism. Conversely, compound 4b sharing the 2,7-diazaspiro[3.5]nonane core as 5b was completely devoid of antiallodynic effect. Interestingly, compound 4b fully reversed the antiallodynic effect of BD-1063, indicating that 4b induces an S1R agonistic in vivo effect. The functional profiles were confirmed by the phenytoin assay. Our study might establish the importance of 2,7-diazaspiro[3.5]nonane core for the development of S1R compounds with specific agonist or antagonist profile and the role of the diazabicyclo[4.3.0]nonane in the development of novel SR ligands.
Collapse
Affiliation(s)
- Maria Dichiara
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Carla Barbaraci
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Rafael González-Cano
- Departamento de Farmacología e Instituto de Neurociencias, Facultad de Medicina, Universitad de Granada e Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy
| | - Carmela Parenti
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Lorella Pasquinucci
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Enrique J Cobos
- Departamento de Farmacología e Instituto de Neurociencias, Facultad de Medicina, Universitad de Granada e Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy
| | - Emanuele Amata
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
11
|
Vavers E, Zvejniece L, Dambrova M. Sigma-1 receptor and seizures. Pharmacol Res 2023; 191:106771. [PMID: 37068533 PMCID: PMC10176040 DOI: 10.1016/j.phrs.2023.106771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Over the last decade, sigma-1 receptor (Sig1R) has been recognized as a valid target for the treatment of seizure disorders and seizure-related comorbidities. Clinical trials with Sig1R ligands are underway testing therapies for the treatment of drug-resistant seizures, developmental and epileptic encephalopathies, and photosensitive epilepsy. However, the direct molecular mechanism by which Sig1R modulates seizures and the balance between excitatory and inhibitory pathways has not been fully elucidated. This review article aims to summarize existing knowledge of Sig1R and its involvement in seizures by focusing on the evidence obtained from Sig1R knockout animals and the anti-seizure effects of Sig1R ligands. In addition, this review article includes a discussion of the advantages and disadvantages of the use of existing compounds and describes the challenges and future perspectives on the use of Sig1R as a target for the treatment of seizure disorders.
Collapse
Affiliation(s)
- Edijs Vavers
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; University of Tartu, Faculty of Science and Technology, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Liga Zvejniece
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; Riga Stradiņš University, Faculty of Pharmacy, Konsula 21, LV-1007, Riga, Latvia
| |
Collapse
|
12
|
Blicker L, González-Cano R, Laurini E, Nieto FR, Schmidt J, Schepmann D, Pricl S, Wünsch B. Conformationally Restricted σ 1 Receptor Antagonists from (-)-Isopulegol. J Med Chem 2023; 66:4999-5020. [PMID: 36946301 DOI: 10.1021/acs.jmedchem.2c02081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Antagonists at σ1 receptors have great potential for the treatment of neuropathic pain. Starting from monoterpene (-)-isopulegol (1), aminodiols 8-11 were obtained and transformed into bicyclic 13-16 and tricyclic ligands 19-22. Aminodiols 8-11 showed higher σ1 affinity than the corresponding bicyclic 13-16 and tricyclic derivatives 19-22. (R)-configuration in the side chain of aminodiols (8 and 10) led to higher σ1 affinity than (S)-configuration (9 and 11). 4-Benzylpiperidines (b-series) revealed higher σ1 affinity than 4-phenylbutylamines (a-series). Aminodiol 8b showed very high σ1 affinity (Ki = 1.2 nM), excellent selectivity over σ2 receptors, and promising logD7.4 (3.05) and lipophilic ligand efficiency (5.87) values. Molecular dynamics simulations were conducted to analyze the σ1 affinity and selectivity on an atomistic level. In the capsaicin assay, 8b exhibited similar antiallodynic activity to the prototypical σ1 antagonist S1RA. The antiallodynic activity of 8b was removed by co-application of the σ1 agonist PRE-084, proving σ1 antagonism being involved in the antiallodynic effect.
Collapse
Affiliation(s)
- Luca Blicker
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), Biosanitary Research Institute ibs. GRANADA, University of Granada, Avenida de la Investigación 11, Granada 18016, Spain
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), Biosanitary Research Institute ibs. GRANADA, University of Granada, Avenida de la Investigación 11, Granada 18016, Spain
| | - Judith Schmidt
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
13
|
Vidal-Torres A, Fernández-Pastor B, García M, Ayet E, Cabot A, Burgueño J, Monroy X, Aubel B, Codony X, Romero L, Pascual R, Serafini MT, Encina G, Almansa C, Zamanillo D, Merlos M, Vela JM. Bispecific sigma-1 receptor antagonism and mu-opioid receptor partial agonism: WLB-73502, an analgesic with improved efficacy and safety profile compared to strong opioids. Acta Pharm Sin B 2023; 13:82-99. [PMID: 36815042 PMCID: PMC9939367 DOI: 10.1016/j.apsb.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 07/18/2022] [Indexed: 11/01/2022] Open
Abstract
Opioids are the most effective painkillers, but their benefit-risk balance often hinder their therapeutic use. WLB-73502 is a dual, bispecific compound that binds sigma-1 (S1R) and mu-opioid (MOR) receptors. WLB-73502 is an antagonist at the S1R. It behaved as a partial MOR agonist at the G-protein pathway and produced no/unsignificant β-arrestin-2 recruitment, thus demonstrating low intrinsic efficacy on MOR at both signalling pathways. Despite its partial MOR agonism, WLB-73502 exerted full antinociceptive efficacy, with potency superior to morphine and similar to oxycodone against nociceptive, inflammatory and osteoarthritis pain, and superior to both morphine and oxycodone against neuropathic pain. WLB-73502 crosses the blood-brain barrier and binds brain S1R and MOR to an extent consistent with its antinociceptive effect. Contrary to morphine and oxycodone, tolerance to its antinociceptive effect did not develop after repeated 4-week administration. Also, contrary to opioid comparators, WLB-73502 did not inhibit gastrointestinal transit or respiratory function in rats at doses inducing full efficacy, and it was devoid of proemetic effect (retching and vomiting) in ferrets at potentially effective doses. WLB-73502 benefits from its bivalent S1R antagonist and partial MOR agonist nature to provide an improved antinociceptive and safety profile respect to strong opioid therapy.
Collapse
|
14
|
Oka K, Kaji Y, Nakamura O, Yamaguchi K, Tobiume S, Nomura Y, Yamamoto T. Addition of a Vascular Bundle Accelerates Bone Union in Femoral Bone Defects. J Reconstr Microsurg 2023; 39:1-8. [PMID: 35272371 DOI: 10.1055/s-0042-1743256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The Masquelet method has become increasingly popular for the treatment of bone defects in recent years. In this method, an induced membrane (IM) with abundant blood circulation, stem cells, and osteogenesis-promoting factors is formed by implanting bone cement during the first surgery. This IM stimulates bone formation in the bone defect after implantation of the bone graft during the second surgery. However, the Masquelet method requires two surgeries and thus a longer treatment period. In the present study, we investigated whether bone defects could be reconstructed in a single surgery by introducing a vascular bundle into the bone defect as an alternative to the IM, in addition to bone grafting. METHODS Thirty-six 12-week-old female Sprague-Dawley rats were used. After creating a 5-mm long bone defect in the femur, a mixture of autologous and artificial bone was grafted into the defect, and a saphenous arteriovenous vascular bundle was introduced. The animals were divided into three groups: the control group (bone defect only), the BG group (bone grafting only), and the BG + V group (bone grafting + vascular bundle introduction). After surgery, radiological and histological evaluations were performed to assess osteogenesis and angiogenesis in bone defects. RESULTS In the BG + V group, significant bone formation was observed in the bone defect on radiological and histological evaluations, and the amount of bone formation was significantly higher than that in the other two groups. Furthermore, cortical bone continuity was observed in many specimens in the BG + V group. On histological evaluation, the number of blood vessels was also significantly higher in the BG + V group than in the other two groups. CONCLUSION Our results suggest that the introduction of a vascular bundle in addition to bone grafting can promote bone formation in bone defects and allow for complete bone defect reconstruction in a single surgery.
Collapse
Affiliation(s)
- Kunihiko Oka
- Department of Orthopedic Surgery, Faculty of Medicine, Kagawa University, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Yoshio Kaji
- Department of Orthopedic Surgery, Faculty of Medicine, Kagawa University, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Osamu Nakamura
- Department of Orthopedic Surgery, Kagawa Prefectural Shirotori Hospital, Higashikagawa City, Kagawa, Japan
| | - Konosuke Yamaguchi
- Department of Orthopedic Surgery, Faculty of Medicine, Kagawa University, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Sachiko Tobiume
- Department of Orthopedic Surgery, Shikoku Medical Center for Children and Adults, Zentsuji City, Kagawa, Kagawa, Japan
| | - Yumi Nomura
- Department of Orthopedic Surgery, Faculty of Medicine, Kagawa University, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Tetsuji Yamamoto
- Department of Orthopedic Surgery, Faculty of Medicine, Kagawa University, Miki-Cho, Kita-gun, Kagawa, Japan
| |
Collapse
|
15
|
Zhang Y, Ye G, Chen Y, Sheng C, Wang J, Kong L, Yuan L, Lin C. Veratramine ameliorates pain symptoms in rats with diabetic peripheral neuropathy by inhibiting activation of the SIGMAR1-NMDAR pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2145-2154. [PMID: 36373991 PMCID: PMC9665081 DOI: 10.1080/13880209.2022.2136207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Veratramine may have a potential therapeutic effect for diabetic peripheral neuropathy (DPN). OBJECTIVE To evaluate whether veratramine ameliorates neuropathic pain in a rat diabetic model. MATERIALS AND METHODS Sprague-Dawley rats were used for a diabetic model induced by a streptozotocin + high-fat diet. Two months after the induction of the diabetic model, the rats with DPN were screened according to the mechanical pain threshold. The rats with DPN were divided into a model group (n = 12) and a treated group (n = 12). Rats with diabetes, but without peripheral neuropathy, were used in the vehicle group (n = 9). The treatment group received 50 μg/kg veratramine via the tail vein once a day for 4 weeks. During modelling and treatment, rats in all three groups were fed a high-fat diet. RESULTS The mechanical withdrawal threshold increased from 7.5 ± 1.9 N to 17.9 ± 2.6 N in DPN rats treated with veratramine. The tolerance time of the treated group to hot and cold ectopic pain increased from 11.8 ± 4.2 s and 3.4 ± 0.8 s to 20.4 ± 4.1 s and 5.9 ± 1.7 s, respectively. Veratramine effectively alleviated L4-L5 spinal cord and sciatic nerve pathological injury. Veratramine inhibited the expression of SIGMAR1 and the phosphorylation of the N-methyl-d-aspartate receptor (NMDAR) Ser896 site in spinal cord tissue, as well as inhibited the formation of SIGMAR1-NMDAR and NMDAR-CaMKII complexes. DISCUSSION AND CONCLUSIONS Veratramine may alleviate the occurrence of pain symptoms in rats with DPN by inhibiting activation of the SIGMAR1-NMDAR pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Guangyao Ye
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Yuebo Chen
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Chaoxu Sheng
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Jianlin Wang
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Lingsi Kong
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Liyong Yuan
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Chunyan Lin
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| |
Collapse
|
16
|
Luo X, Li B, Zhang D, Chen H, Zhou X, Yao C, Raza MA, Wang L, Tang N, Zheng G, Yan H. A new insight on peripheral nerve repair: the technique of internal nerve splinting. J Neurosurg 2022; 137:1406-1417. [PMID: 35213834 DOI: 10.3171/2022.1.jns211916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neuropathic pain produced by symptomatic neuromas is an important problem after peripheral nerve injury (PNI). End-to-end anastomosis of the nerve stump for PNI is well established but cannot efficiently prevent neuroma-in-continuity formation. METHODS Sciatic nerve injury was used in the experimental model. Seventy-two rats were randomly divided into four groups: rats with nerve anastomosis sites supported with silicone tubes represented the internal nerve splinting (INS) group (n = 18); rats with end-to-end nerve anastomosis represented control group 1 (CON1) (n = 18); rats with INS and the nerve anastomosis site represented control group 2 (CON2) (n = 18); and rats that underwent the same surgical procedures for skin and muscle operations but without sciatic nerve injury represented the normal group (n = 18). RESULTS Gross evaluations of the nerve anastomosis sites, gastrocnemius muscle atrophy, axonal regeneration and remyelination, neuropathic pain, and scar hyperplasia of the neuromas were performed, as well as motor function evaluations. Axonal regeneration, remyelination, and gastrocnemius muscle atrophy were similar between the INS group and CON1 (p > 0.05). However, neuropathic pain and scar hyperplasia-as evaluated according to the expression of anti-sigma-1 receptor antibody and anti-α-smooth muscle actin, respectively-and the weight ratios of the neuromas were reduced in the INS group compared with those of CON1 and CON2 (p < 0.05). CONCLUSIONS Application of INS in nerve repair effectively prevented traumatic neuroma-in-continuity formation and inhibited neuropathic pain without influencing nerve regeneration in rats.
Collapse
Affiliation(s)
- Xiaobin Luo
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Baolong Li
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dupiao Zhang
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Chen
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xijie Zhou
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenglun Yao
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Mazhar Ali Raza
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Liang Wang
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Nana Tang
- 4Department of Ophthalmology, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Anhui, China; and
| | - Guotong Zheng
- 5Department of Otorhinolaryngology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hede Yan
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Onode E, Uemura T, Hama S, Yokoi T, Okada M, Takamatsu K, Nakamura H. Nerve-End Capping Treatment with a Polyglycolic Acid Conduit for Rat Sciatic Neuroma: A Preliminary Report. J Reconstr Microsurg 2022; 38:711-720. [PMID: 36122572 DOI: 10.1055/s-0042-1757208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The treatment of painful neuroma remains challenging. Recently, a nerve-end capping technique using a bioabsorbable nerve conduit was newly introduced to treat amputation neuroma. A collagen-coated polyglycolic acid (PGA) conduit has been commercially available for the reconstruction of peripheral nerve defects, yielding successful clinical outcomes. However, no experimental research has been conducted using this PGA nerve conduit as capping device for treating amputation neuroma. The purpose of this study was to investigate nerve-end capping treatment with the PGA conduit in the rat sciatic nerve amputation model, focusing on histological scar formation and neuroinflammation. METHODS Forty-seven rats were divided into two groups: no capping (transected nerve stump without capping; n = 25) and capping (nerve-end capping with collagen-coated PGA nerve conduit; n = 22). Twelve weeks after sciatic neurectomy, neuropathic pain was evaluated using the autotomy score. Stump neuromas were histologically evaluated or perineural scar and neuroinflammation. RESULTS While autotomy scores gradually exacerbated in both groups, they were consistently lower in the capping group at 4, 8, and 12 weeks postprocedure. Twelve weeks after surgery, the transected nerve stumps in the no-capping group had formed macroscopic bulbous neuromas strongly adhering to surrounding tissues, whereas they remained wrapped with the PGA nerve conduits loosely adhering to surrounding tissues in the capping group. Histologically, distal axonal fibers were expanded radially and formed neuromas in the no-capping group, while they were terminated within the PGA conduit in the capping group. Perineural scars and neuroinflammation were widely found surrounding the randomly sprouting nerve end in the no-capping group. In capped counterparts, scars and inflammation were limited to closely around the terminated nerve end. CONCLUSION Nerve-end capping with a collagen-coated PGA conduit after rat sciatic neurectomy might prevent neuroma formation by suppressing perineural scar formation and neuroinflammation around the nerve stump, potentially relieving neuropathic pain.
Collapse
Affiliation(s)
- Ema Onode
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takuya Uemura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Orthopaedic Surgery, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Shunpei Hama
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takuya Yokoi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Orthopaedic Surgery, Seikeikai Hospital, Osaka, Japan
| | - Mitsuhiro Okada
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kiyohito Takamatsu
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Orthopaedic Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
18
|
Zhuang T, Xiong J, Ren X, Liang L, Qi Z, Zhang S, Du W, Chen Y, Liu X, Zhang G. Benzylaminofentanyl derivates: Discovery of bifunctional μ opioid and σ1 receptor ligands as novel analgesics with reduced adverse effects. Eur J Med Chem 2022; 241:114649. [DOI: 10.1016/j.ejmech.2022.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/04/2022]
|
19
|
Marcotti A, Fernández-Trillo J, González A, Vizcaíno-Escoto M, Ros-Arlanzón P, Romero L, Vela JM, Gomis A, Viana F, de la Peña E. TRPA1 modulation by Sigma-1 receptor prevents oxaliplatin-induced painful peripheral neuropathy. Brain 2022; 146:475-491. [PMID: 35871491 PMCID: PMC9924907 DOI: 10.1093/brain/awac273] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/30/2022] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy is a frequent, disabling side effect of anticancer drugs. Oxaliplatin, a platinum compound used in the treatment of advanced colorectal cancer, often leads to a form of chemotherapy-induced peripheral neuropathy characterized by mechanical and cold hypersensitivity. Current therapies for chemotherapy-induced peripheral neuropathy are ineffective, often leading to the cessation of treatment. Transient receptor potential ankyrin 1 (TRPA1) is a polymodal, non-selective cation-permeable channel expressed in nociceptors, activated by physical stimuli and cellular stress products. TRPA1 has been linked to the establishment of chemotherapy-induced peripheral neuropathy and other painful neuropathic conditions. Sigma-1 receptor is an endoplasmic reticulum chaperone known to modulate the function of many ion channels and receptors. Sigma-1 receptor antagonist, a highly selective antagonist of Sigma-1 receptor, has shown effectiveness in a phase II clinical trial for oxaliplatin chemotherapy-induced peripheral neuropathy. However, the mechanisms involved in the beneficial effects of Sigma-1 receptor antagonist are little understood. We combined biochemical and biophysical (i.e. intermolecular Förster resonance energy transfer) techniques to demonstrate the interaction between Sigma-1 receptor and human TRPA1. Pharmacological antagonism of Sigma-1R impaired the formation of this molecular complex and the trafficking of functional TRPA1 to the plasma membrane. Using patch-clamp electrophysiological recordings we found that antagonists of Sigma-1 receptor, including Sigma-1 receptor antagonist, exert a marked inhibition on plasma membrane expression and function of human TRPA1 channels. In TRPA1-expressing mouse sensory neurons, Sigma-1 receptor antagonists reduced inward currents and the firing of actions potentials in response to TRPA1 agonists. Finally, in a mouse experimental model of oxaliplatin neuropathy, systemic treatment with a Sigma-1 receptor antagonists prevented the development of painful symptoms by a mechanism involving TRPA1. In summary, the modulation of TRPA1 channels by Sigma-1 receptor antagonists suggests a new strategy for the prevention and treatment of chemotherapy-induced peripheral neuropathy and could inform the development of novel therapeutics for neuropathic pain.
Collapse
Affiliation(s)
- Aida Marcotti
- Present address: Instituto de Farmacología Experimental de Córdoba (IFEC) – CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba 5000, Argentina
| | | | - Alejandro González
- Present address: Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marta Vizcaíno-Escoto
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain
| | - Pablo Ros-Arlanzón
- Present address: Institute for Health and Biomedical Research (ISABIAL), 03550 San Juan de Alicante, Spain
| | - Luz Romero
- WeLab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - José Miguel Vela
- WeLab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Ana Gomis
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain
| | - Félix Viana
- Correspondence may also be addressed to: Felix Viana E-mail:
| | - Elvira de la Peña
- Correspondence to: Elvira de la Peña Instituto de Neurociencias de Alicante Universidad Miguel Hernández-CSIC 03550 San Juan de Alicante, Spain E-mail:
| |
Collapse
|
20
|
Wilson LL, Alleyne AR, Eans SO, Cirino TJ, Stacy HM, Mottinelli M, Intagliata S, McCurdy CR, McLaughlin JP. Characterization of CM-398, a Novel Selective Sigma-2 Receptor Ligand, as a Potential Therapeutic for Neuropathic Pain. Molecules 2022; 27:molecules27113617. [PMID: 35684553 PMCID: PMC9182558 DOI: 10.3390/molecules27113617] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Sigma receptors modulate nociception, offering a potential therapeutic target to treat pain, but relatively little is known regarding the role of sigma-2 receptors (S2R) in nociception. The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity and liabilities of a novel S2R selective ligand, 1-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-3-methyl-1,3-dihydro-1,3-benzimidazol-2-one (CM-398). The inhibition of thermal, induced chemical, or inflammatory pain as well as the allodynia resulting from chronic nerve constriction injury (CCI) model of neuropathic pain were assessed in male mice. CM-398 dose-dependently (10–45 mg/kg i.p.) reduced mechanical allodynia in the CCI neuropathic pain model, equivalent at the higher dose to the effect of the control analgesic gabapentin (50 mg/kg i.p.). Likewise, pretreatment (i.p.) with CM-398 dose-dependently produced antinociception in the acetic acid writhing test (ED50 (and 95% C.I.) = 14.7 (10.6–20) mg/kg, i.p.) and the formalin assay (ED50 (and 95% C.I.) = 0.86 (0.44–1.81) mg/kg, i.p.) but was without effect in the 55 °C warm-water tail-withdrawal assay. A high dose of CM-398 (45 mg/kg, i.p.) exhibited modest locomotor impairment in a rotarod assay and conditioned place aversion, potentially complicating the interpretation of nociceptive testing. However, in an operant pain model resistant to these confounds, mice experiencing CCI and treated with CM-398 demonstrated robust conditioned place preference. Overall, these results demonstrate the S2R selective antagonist CM-398 produces antinociception and anti-allodynia with fewer liabilities than established therapeutics, adding to emerging data suggesting possible mediation of nociception by S2R, and the development of S2R ligands as potential treatments for chronic pain.
Collapse
Affiliation(s)
- Lisa L. Wilson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Amy R. Alleyne
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Shainnel O. Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Thomas J. Cirino
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Heather M. Stacy
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.M.); (S.I.); (C.R.M.)
| | - Sebastiano Intagliata
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.M.); (S.I.); (C.R.M.)
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.M.); (S.I.); (C.R.M.)
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
- Correspondence: ; Tel.: +1-352-273-7207
| |
Collapse
|
21
|
Popa R, Kamble SH, Kanumuri RS, King TI, Berthold EC, Intagliata S, Sharma A, McCurdy CR. UPLC-MS/MS method for the quantification of MCI-77, a novel sigma-1 receptor ligand, and its application to pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1196:123187. [PMID: 35278810 PMCID: PMC10019089 DOI: 10.1016/j.jchromb.2022.123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 01/27/2023]
Abstract
Sigma-1 receptors are involved in pain modulation, particularly in cases of nerve injury and neuropathic pain. High-affinity ligands with improved pharmacokinetic profiles are needed to further investigate the properties of these receptors and their potential as a therapeutic target. The novel compound MCI-77 is one such selective sigma-1 receptor ligand, and the purpose of this study was to characterize its preclinical pharmacokinetic parameters. An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to quantify MCI-77 in mouse plasma and brain homogenate. The method was validated for sensitivity, selectivity, linearity, accuracy, precision, stability, and dilution integrity. The method has a linearity range of 2-200 ng/mL, a short run-time of 3.2 min, and requires a low sample volume of 25 µL. A simple protein precipitation procedure was used for compound extraction. Samples were run on an Acquity UPLC BEH C18 column (1.7 μm, 2.1 × 50 mm) following a gradient elution method using a mobile phase consisting of water containing 0.1% (v/v) formic acid and acetonitrile. The method was applied to the analysis of plasma and brain homogenate samples from preclinical pharmacokinetic studies in CD-1 mice. MCI-77 exhibited high systemic clearance (8.5 ± 0.3 L/h/kg) and extensive tissue distribution indicated by a high volume of distribution (20.1 ± 0.3 L/kg). The concentration levels were consistently higher in brain samples than in plasma (brain/plasma AUC ratio 2.9), indicating its ability to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Raluca Popa
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Shyam H Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Raju S Kanumuri
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Tamara I King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Erin C Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Sebastiano Intagliata
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Christopher R McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
22
|
de la Puente B, Zamanillo D, Romero L, Carceller A, Vela JM, Merlos M, Portillo-Salido E. Comprehensive Preclinical Assessment of Sensory, Functional, Motivational-Affective, and Neurochemical Outcomes in Neuropathic Pain: The Case of the Sigma-1 Receptor. ACS Pharmacol Transl Sci 2022; 5:240-254. [PMID: 35434530 PMCID: PMC9003638 DOI: 10.1021/acsptsci.2c00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Chronic pain remains a major health problem and is currently facing slow drug innovation. New drug treatments should address not only the sensory-discriminative but also functional and motivational-affective components of chronic pain. In a mouse model of neuropathic pain induced by partial sciatic nerve ligation (PSNL), we analyzed sensory and functional-like outcomes by hindpaw mechanical stimulation and automated gait analysis (CatWalk). We characterized over time a reward-seeking task based on diminished motivation for natural reinforcers (anhedonic-like behavior). To differentiate the appetitive ("wanting") and consummatory ("liking") aspects of motivational behavior, we quantified the latency and number of approaches to eat white chocolate, as well as the eating duration and amount consumed. We explored a putative chronic pain-induced dysregulation of monoamine function by measuring monoamine levels in the nucleus accumbens (NAc), a well-known brain reward area. Finally, we investigated the role of sigma-1 receptor (σ1R) modulation, a nonopioid target, in these multiple dimensions by genetic deletion and pharmacological dose-response studies. After 6 weeks, PSNL increased the approach latency and reduced the consumption of white chocolate in 20-25% of the mice, while around 50-60% had one or the other parameter affected independently. After 10 weeks, sham-operated mice also displayed anhedonic-like behavior. PSNL was associated with reduced extracellular baseline dopamine and increased norepinephrine in the NAc and with a suppression of increased dopamine and serotonin efflux in response to the rewarding stimulus. Genetic and pharmacological blockade of σ1R relieved these multiple alterations in nerve-injured mice. We comprehensively describe sensory, functional, and depression-like impairment of key components of motivated behavior associated with nerve injury. We provide a neurochemical substrate for the depressed mesocorticolimbic reward processing in chronic pain, with a potentially increased translational value. Our results also highlight σ1R for the therapeutic intervention of neuropathic pain.
Collapse
Affiliation(s)
| | - Daniel Zamanillo
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Luz Romero
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Alicia Carceller
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - José Miguel Vela
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Manuel Merlos
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
23
|
Lipiński PFJ, Matalińska J. Fentanyl Structure as a Scaffold for Opioid/Non-Opioid Multitarget Analgesics. Int J Mol Sci 2022; 23:ijms23052766. [PMID: 35269909 PMCID: PMC8910985 DOI: 10.3390/ijms23052766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
One of the strategies in the search for safe and effective analgesic drugs is the design of multitarget analgesics. Such compounds are intended to have high affinity and activity at more than one molecular target involved in pain modulation. In the present contribution we summarize the attempts in which fentanyl or its substructures were used as a μ-opioid receptor pharmacophoric fragment and a scaffold to which fragments related to non-opioid receptors were attached. The non-opioid ‘second’ targets included proteins as diverse as imidazoline I2 binding sites, CB1 cannabinoid receptor, NK1 tachykinin receptor, D2 dopamine receptor, cyclooxygenases, fatty acid amide hydrolase and monoacylglycerol lipase and σ1 receptor. Reviewing the individual attempts, we outline the chemistry, the obtained pharmacological properties and structure-activity relationships. Finally, we discuss the possible directions for future work.
Collapse
|
24
|
Dichiara M, Artacho-Cordón A, Turnaturi R, Santos-Caballero M, González-Cano R, Pasquinucci L, Barbaraci C, Rodríguez-Gómez I, Gómez-Guzmán M, Marrazzo A, Cobos EJ, Amata E. Dual Sigma-1 receptor antagonists and hydrogen sulfide-releasing compounds for pain treatment: Design, synthesis, and pharmacological evaluation. Eur J Med Chem 2022; 230:114091. [PMID: 35016113 DOI: 10.1016/j.ejmech.2021.114091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/04/2022]
Abstract
The development of σ1 receptor antagonists hybridized with a H2S-donor is here reported. We aimed to obtain improved analgesic effects when compared to σ1 receptor antagonists or H2S-donors alone. In an in vivo model of sensory hypersensitivity, thioamide 1a induced analgesia which was synergistically enhanced when associated with the σ1 receptor antagonist BD-1063. The selective σ1 receptor agonist PRE-084 completely reversed this effect. Four thioamide H2S-σ1 receptor hybrids (5a-8a) and their amide derivatives (5b-8b) were synthesized. Compound 7a (AD164) robustly released H2S and showed selectivity for σ1 receptor over σ2 and opioid receptors. This compound induced marked analgesia that was reversed by PRE-084. The amide analogue 7b (AD163) showed only minimal analgesia. Further studies showed that 7a exhibited negligible acute toxicity, together with a favorable pharmacokinetic profile. To the best of our knowledge, compound 7a is the first dual-acting ligand with simultaneous H2S-release and σ1 antagonistic activities.
Collapse
Affiliation(s)
- Maria Dichiara
- Department of Drug and Health Sciences, Medicinal Chemistry Section, Università Degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Antonia Artacho-Cordón
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), University of Granada and Biosanitary Research Institute Ibs.Granada, 18016, Granada, Spain
| | - Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, Università Degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Miriam Santos-Caballero
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), University of Granada and Biosanitary Research Institute Ibs.Granada, 18016, Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), University of Granada and Biosanitary Research Institute Ibs.Granada, 18016, Granada, Spain
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, Università Degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Carla Barbaraci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, Università Degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Isabel Rodríguez-Gómez
- Department of Physiology, Faculty of Medicine, University of Granada, 18016, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, Faculty of Pharmacy and Biomedical Research Center, University of Granada and Biosanitary Research Institute Ibs.Granada, 18016, Granada, Spain
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, Medicinal Chemistry Section, Università Degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), University of Granada and Biosanitary Research Institute Ibs.Granada, 18016, Granada, Spain.
| | - Emanuele Amata
- Department of Drug and Health Sciences, Medicinal Chemistry Section, Università Degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
25
|
Rabiner EA, Smith K, Bennett C, Rizzo G, Lewis Y, Mundin G, Dooner H, Oksche A. Pharmacokinetics and brain σ1 receptor occupancy of MR309, a selective σ1 receptor antagonist. Br J Clin Pharmacol 2022; 88:1644-1654. [PMID: 34156715 DOI: 10.1111/bcp.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS Preclinical studies of MR309, a selective sigma-1 receptor (σ1R) antagonist, support a potential role in treating neuropathic pain. We report 2 studies that provide insight into the pharmacokinetics (PK) and brain σ1R binding of MR309. METHODS Steady-state PK of MR309 (400 mg once daily and 200 mg twice-daily [BID] for 10 days; EudraCT 2015-001818-99 [PK study]) and the relationship between MR309 plasma exposure and brain σ1R occupancy (EudraCT 2017-000670-11 [positron emission tomography study]) were investigated in healthy volunteers. Positron emission tomography using the σ1R ligand [11 C]SA4503 was conducted at baseline, and 2 and 8 hours after a single dose of MR309 (200-800 mg). The relationship between brain σ1R occupancy and MR309 exposure was explored using data-driven model fitting. RESULTS MR309 was well tolerated, brain σ1R occupancy ranged between 30.5 and 74.9% following single-dose MR309 (n = 7). MR309 BID provided a plasma PK profile with less fluctuation than once daily dosing (n = 16). MR309 200 mg BID yielded average steady state plasma concentrations between 2000 and 4000 ng/mL in the PK study, which corresponded to an estimated brain σ1R occupancy of 59-74%. CONCLUSION MR309 200 mg BID dose was below the 75% σ1R occupancy threshold expected to elicit maximal antinociceptive effect as observed in neuropathic pain models. Further investigations of MR309 for neuropathic pain will require higher brain σ1R occupancy, and establish the optimal dose by elucidating the clinical impact of a broad range of brain σ1R occupancy across different neuropathic pain indications.
Collapse
Affiliation(s)
- Eugenii A Rabiner
- Invicro(former Imanova Ltd), A Konica Minolta Company, London, UK
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | | | | | - Gaia Rizzo
- Invicro(former Imanova Ltd), A Konica Minolta Company, London, UK
- Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
| | - Yvonne Lewis
- Invicro(former Imanova Ltd), A Konica Minolta Company, London, UK
| | | | | | - Alexander Oksche
- Mundipharma Research Limited, Cambridge, UK
- Institut für medizinische und pharmazeutische Prüfungsfragen, Mainz, Germany
- Rudolf-Buchheim Institute of Pharmacology, Giessen, Germany
| |
Collapse
|
26
|
Shin SM, Wang F, Qiu C, Itson-Zoske B, Hogan QH, Yu H. Sigma-1 receptor activity in primary sensory neurons is a critical driver of neuropathic pain. Gene Ther 2022; 29:1-15. [PMID: 32424233 PMCID: PMC7671947 DOI: 10.1038/s41434-020-0157-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
The Sigma-1 receptor (σ1R) is highly expressed in the primary sensory neurons (PSNs) that are the critical site of initiation and maintenance of pain following peripheral nerve injury. By immunoblot and immunohistochemistry, we observed increased expression of both σ1R and σ1R-binding immunoglobulin protein (BiP) in the lumbar (L) dorsal root ganglia (DRG) ipsilateral to painful neuropathy induced by spared nerve injury (SNI). To evaluate the therapeutic potential of PSN-targeted σ1R inhibition at a selected segmental level, we designed a recombinant adeno-associated viral (AAV) vector expressing a small hairpin RNA (shRNA) against rat σ1R. Injection of this vector into the L4/L5 DRGs induced downregulation of σ1R in DRG neurons of all size groups, while expression of BiP was not affected. This was accompanied by attenuation of SNI-induced cutaneous mechanical and thermal hypersensitivity. Whole-cell current-clamp recordings of dissociated neurons showed that knockdown of σ1R suppressed neuronal excitability, suggesting that σ1R silencing attenuates pain by reversal of injury-induced neuronal hyperexcitability. These findings support a critical role of σ1R in modulating PSN nociceptive functions, and that the nerve injury-induced elevated σ1R activity in the PSNs can be a significant driver of neuropathic pain. Further understanding the role of PSN-σ1R in pain pathology may open routes to exploit this system for DRG-targeted pain therapy.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Fei Wang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, PR China
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, PR China
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA.
| |
Collapse
|
27
|
Hornung RS, Raut NGR, Cantu DJ, Lockhart LM, Averitt DL. Sigma-1 receptors and progesterone metabolizing enzymes in nociceptive sensory neurons of the female rat trigeminal ganglia: A neural substrate for the antinociceptive actions of progesterone. Mol Pain 2022; 18:17448069211069255. [PMID: 35040378 PMCID: PMC8777333 DOI: 10.1177/17448069211069255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Orofacial pain disorders are predominately experienced by women. Progesterone, a major ovarian hormone, is neuroprotective and antinociceptive. We recently reported that progesterone attenuates estrogen-exacerbated orofacial pain behaviors, yet it remains unclear what anatomical substrate underlies progesterone's activity in the trigeminal system. Progesterone has been reported to exert protective effects through actions at intracellular progesterone receptors (iPR), membrane-progesterone receptors (mPR), or sigma 1 receptors (Sig-1R). Of these, the iPR and Sig-1R have been reported to have a role in pain. Progesterone can also have antinociceptive effects through its metabolite, allopregnanolone. Two enzymes, 5α-reductase and 3α-hydroxysteroid dehydrogenase (3α-HSD), are required for the metabolism of progesterone to allopregnanolone. Both progesterone and allopregnanolone rapidly attenuate pain sensitivity, implicating action of either progesterone at Sig-1R and/or conversion to allopregnanolone which targets GABAA receptors. In the present study, we investigated whether Sig-1 Rs are expressed in nociceptors within the trigeminal ganglia of cycling female rats and whether the two enzymes required for progesterone metabolism to allopregnanolone, 5α-reductase and 3α-hydroxysteroid dehydrogenase, are also present. Adult female rats from each stage of the estrous cycle were rapidly decapitated and the trigeminal ganglia collected. Trigeminal ganglia were processed by either fluorescent immunochemistry or western blotting to for visualization and quantification of Sig-1R, 5α-reductase, and 3α-hydroxysteroid dehydrogenase. Here we report that Sig-1Rs and both enzymes involved in progesterone metabolism are highly expressed in a variety of nociceptive sensory neuron populations in the female rat trigeminal ganglia at similar levels across the four stages of the estrous cycle. These data indicate that trigeminal sensory neurons are an anatomical substrate for the reported antinociceptive activity of progesterone via Sig-1R and/or conversion to allopregnanolone.
Collapse
Affiliation(s)
| | | | - Daisy J Cantu
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Lauren M Lockhart
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| |
Collapse
|
28
|
Alon A, Lyu J, Braz JM, Tummino TA, Craik V, O'Meara MJ, Webb CM, Radchenko DS, Moroz YS, Huang XP, Liu Y, Roth BL, Irwin JJ, Basbaum AI, Shoichet BK, Kruse AC. Structures of the σ 2 receptor enable docking for bioactive ligand discovery. Nature 2021; 600:759-764. [PMID: 34880501 PMCID: PMC8867396 DOI: 10.1038/s41586-021-04175-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/19/2021] [Indexed: 11/08/2022]
Abstract
The σ2 receptor has attracted intense interest in cancer imaging1, psychiatric disease2, neuropathic pain3-5 and other areas of biology6,7. Here we determined the crystal structure of this receptor in complex with the clinical candidate roluperidone2 and the tool compound PB288. These structures templated a large-scale docking screen of 490 million virtual molecules, of which 484 compounds were synthesized and tested. We identified 127 new chemotypes with affinities superior to 1 μM, 31 of which had affinities superior to 50 nM. The hit rate fell smoothly and monotonically with docking score. We optimized three hits for potency and selectivity, and achieved affinities that ranged from 3 to 48 nM, with up to 250-fold selectivity versus the σ1 receptor. Crystal structures of two ligands bound to the σ2 receptor confirmed the docked poses. To investigate the contribution of the σ2 receptor in pain, two potent σ2-selective ligands and one potent σ1/σ2 non-selective ligand were tested for efficacy in a mouse model of neuropathic pain. All three ligands showed time-dependent decreases in mechanical hypersensitivity in the spared nerve injury model9, suggesting that the σ2 receptor has a role in nociception. This study illustrates the opportunities for rapid discovery of in vivo probes through structure-based screens of ultra large libraries, enabling study of underexplored areas of biology.
Collapse
Affiliation(s)
- Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Joao M Braz
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Tia A Tummino
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
| | - Veronica Craik
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Chase M Webb
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
| | - Dmytro S Radchenko
- Enamine, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Rodríguez-Muñoz M, Cortés-Montero E, Onetti Y, Sánchez-Blázquez P, Garzón-Niño J. The σ1 Receptor and the HINT1 Protein Control α2δ1 Binding to Glutamate NMDA Receptors: Implications in Neuropathic Pain. Biomolecules 2021; 11:1681. [PMID: 34827679 PMCID: PMC8615847 DOI: 10.3390/biom11111681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 02/01/2023] Open
Abstract
Nerve injury produces neuropathic pain through the binding of α2δ1 proteins to glutamate N-methyl-D-aspartate receptors (NMDARs). Notably, mice with a targeted deletion of the sigma 1 receptor (σ1R) gene do not develop neuropathy, whereas mice lacking the histidine triad nucleotide-binding protein 1 (Hint1) gene exhibit exacerbated allodynia. σ1R antagonists more effectively diminish neuropathic pain of spinal origin when administered by intracerebroventricular injection than systemically. Thus, in mice subjected to unilateral sciatic nerve chronic constriction injury (CCI), we studied the participation of σ1Rs and HINT1 proteins in the formation of α2δ1-NMDAR complexes within the supraspinal periaqueductal gray (PAG). We found that δ1 peptides required σ1Rs in order to interact with the NMDAR NR1 variant that contains the cytosolic C1 segment. σ1R antagonists or low calcium levels provoke the dissociation of σ1R-NR1 C1 dimers, while they barely affect the integrity of δ1-σ1R-NR1 C1 trimers. However, HINT1 does remove δ1 peptides from the trimer, thereby facilitating the subsequent dissociation of σ1Rs from NMDARs. In σ1R-/- mice, CCI does not promote the formation of NMDAR-α2δ1 complexes and allodynia does not develop. The levels of α2δ1-σ1R-NMDAR complexes increase in HINT1-/- mice and after inducing CCI, degradation of α2δ1 proteins is observed. Notably, σ1R antagonists but not gabapentinoids alleviate neuropathic pain in these mice. During severe neuropathy, the metabolism of α2δ1 proteins may account for the failure of many patients to respond to gabapentinoids. Therefore, σ1Rs promote and HINT1 proteins hinder the formation α2δ1-NMDAR complexes in the PAG, and hence, the appearance of mechanical allodynia depends on the interplay between these proteins.
Collapse
Affiliation(s)
- María Rodríguez-Muñoz
- Neuropharmacology, Department of Translational Neuroscience, Cajal Institute, CSIC, 28002 Madrid, Spain; (M.R.-M.); (E.C.-M.); (Y.O.); (P.S.-B.)
| | - Elsa Cortés-Montero
- Neuropharmacology, Department of Translational Neuroscience, Cajal Institute, CSIC, 28002 Madrid, Spain; (M.R.-M.); (E.C.-M.); (Y.O.); (P.S.-B.)
| | - Yara Onetti
- Neuropharmacology, Department of Translational Neuroscience, Cajal Institute, CSIC, 28002 Madrid, Spain; (M.R.-M.); (E.C.-M.); (Y.O.); (P.S.-B.)
| | - Pilar Sánchez-Blázquez
- Neuropharmacology, Department of Translational Neuroscience, Cajal Institute, CSIC, 28002 Madrid, Spain; (M.R.-M.); (E.C.-M.); (Y.O.); (P.S.-B.)
| | - Javier Garzón-Niño
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Doctor Arce 37, 28002 Madrid, Spain
| |
Collapse
|
30
|
Zhuang T, Xiong J, Hao S, Du W, Liu Z, Liu B, Zhang G, Chen Y. Bifunctional μ opioid and σ 1 receptor ligands as novel analgesics with reduced side effects. Eur J Med Chem 2021; 223:113658. [PMID: 34175542 DOI: 10.1016/j.ejmech.2021.113658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Opioid analgesics are highly effective painkillers for the treatment of moderate or severe pain, but they are associated with a number of undesirable adverse effects, including the development of tolerance, addiction, constipation and life-threatening respiratory depression. The development of new and safer analgesics with innovative mechanisms of action, which can enhance the efficacy in comparison to available treatments and reduce their side effects, is urgently needed. The sigma-1 receptor (σ1R), a unique Ca2+-sensing chaperone protein, is expressed throughout pain-modulating tissues and affects neurotransmission by interacting with different protein partners, including molecular targets that participate in nociceptive signalling, such as the μ-opioid receptor (MOR), N-methyl-d-aspartate receptor (NMDAR) and cannabinoid 1 receptor (CB1R). Overwhelming pharmacological and genetic evidence indicates that σ1R antagonists induce anti-hypersensitive effects in sensitising pain conditions (e.g. chemically induced, inflammatory and neuropathic pain) and enhance opioid analgesia but not opioid-mediated detrimental effects. It has been suggested that balanced modulation of MORs and σ1Rs may improve both the therapeutic efficacy and safety of opioids. This review summarises the functional profiles of ligands with mixed MOR agonist and σ1R antagonist activities and highlights their therapeutic potentials for pain management. Dual MOR agonism/σ1R antagonism represents a promising avenue for the development of potent and safer analgesics.
Collapse
MESH Headings
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/therapeutic use
- Benzopyrans/chemistry
- Benzopyrans/metabolism
- Humans
- Ligands
- Pain/drug therapy
- Piperazines/chemistry
- Piperazines/metabolism
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Tao Zhuang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiaying Xiong
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuaishuai Hao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Du
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Bifeng Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guisen Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
31
|
Wang J, Xu D, Shen L, Zhou J, Lv X, Ma H, Li N, Wu Q, Duan J. Anti-inflammatory and analgesic actions of bufotenine through inhibiting lipid metabolism pathway. Biomed Pharmacother 2021; 140:111749. [PMID: 34058437 DOI: 10.1016/j.biopha.2021.111749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a primary defense and immune response. However, under pathological conditions, the inflammation processes always become uncontrolled and lead to chronic diseases. Bufotenine, as a natural component from toad venom, showed great potential for development as a novel anti-inflammation and analgesia agent. This study aimed to investigate the therapeutic effects of bufotenine against inflammation and pain on animal models with a focus on lipid metabolism. In pharmacological studies, bufotenine significantly inhibited the swelling rates on formalin-induced paw edema model, and increased paw withdrawal mechanical thresholds (PWMTs) in von Frey test and thermal pain thresholds (TPTs) in hot-plate test. High-sensitivity lipidomics analysis revealed the effects might be related to the down-regulation of inflammatory mediators from cyclooxygenase (COX), lipoxygenase (LOX), cytochrome P450 (CYP450), linoleic acid (LA), docosahexaenoic acid (DHA) and other pathways. The activities might result from the binding of bufotenine and its receptors, including sigma-1 receptor and 5-Hydroxytryptamine receptor 3A, thus regulating lipid metabolism pathway. The research provided a systemic evidence for the actions and mechanism of bufotenine. It suggested that the natural compound might be a potential candidate for reducing inflammatory pain disorders.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Dihui Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Lili Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Xiang Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Nianguang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Qinan Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
32
|
García M, Llorente V, Garriga L, Christmann U, Rodríguez-Escrich S, Virgili M, Fernández B, Bordas M, Ayet E, Burgueño J, Pujol M, Dordal A, Portillo-Salido E, Gris G, Vela JM, Almansa C. Propionamide Derivatives as Dual μ-Opioid Receptor Agonists and σ 1 Receptor Antagonists for the Treatment of Pain. J Med Chem 2021; 64:10139-10154. [PMID: 34236190 DOI: 10.1021/acs.jmedchem.1c00417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new series of propionamide derivatives was developed as dual μ-opioid receptor agonists and σ1 receptor antagonists. Modification of a high-throughput screening hit originated a series of piperazinylcycloalkylmethyl propionamides, which were explored to overcome the challenge of achieving balanced dual activity and convenient drug-like properties. The lead compound identified, 18g, showed good analgesic effects in several animal models of both acute (paw pressure) and chronic (partial sciatic nerve ligation) pain, with reduced gastrointestinal effects in comparison with oxycodone.
Collapse
Affiliation(s)
- Mónica García
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - Virginia Llorente
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - Lourdes Garriga
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - Ute Christmann
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - Sergi Rodríguez-Escrich
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - Marina Virgili
- Enantia, S.L., Parc Científic de Barcelona, C/Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Begoña Fernández
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - Magda Bordas
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - Eva Ayet
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - Javier Burgueño
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - Marta Pujol
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - Albert Dordal
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - Enrique Portillo-Salido
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - Georgia Gris
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - José Miguel Vela
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| | - Carmen Almansa
- ESTEVE Pharmaceuticals, Torre Esteve, Passeig de la Zona Franca, 109, Barcelona 08038, Spain
| |
Collapse
|
33
|
Quadir SG, Tanino SM, Sami YN, Minnig MA, Iyer MR, Rice KC, Cottone P, Sabino V. Antagonism of Sigma-1 receptor blocks heavy alcohol drinking and associated hyperalgesia in male mice. Alcohol Clin Exp Res 2021; 45:1398-1407. [PMID: 34060104 PMCID: PMC8295198 DOI: 10.1111/acer.14635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a complex psychiatric disease characterized by high alcohol intake as well as hyperkatifeia and hyperalgesia during withdrawal. A role for Sigma-1 receptors (Sig-1Rs) in the rewarding and reinforcing effects of alcohol has started to emerge in recent years, as rat studies have indicated that Sig-1R hyperactivity may result in excessive alcohol drinking. Sig-1R studies in mice are very scarce, and its potential role in alcohol-induced hyperalgesia is also unknown. METHODS In this study, we investigated the role of Sig-1R in alcohol drinking and associated hyperalgesia in male mice, using an intermittent access 2-bottle choice model of heavy drinking. RESULTS The Sig-1R antagonist BD-1063 was found dose dependently to reduce both alcohol intake and preference, without affecting either water or sucrose intake, suggesting that the effects are specific for alcohol. Notably, the ability of BD-1063 to suppress ethanol intake correlated with the individual baseline levels of alcohol drinking, suggesting that the treatment was more efficacious in heavy drinking animals. In addition, BD-1063 reversed alcohol-induced hyperalgesia during withdrawal, assessed using an automatic Hargreaves test, without affecting thermal sensitivity in alcohol-naïve animals or locomotor activity in either group. CONCLUSIONS These data show that Sig-1R antagonism dose-dependently reduced ethanol consumption in heavy drinking mice as well as its efficacy in reducing alcohol-induced hyperalgesia. These findings provide a foundation for the development of novel treatments for AUD and associated pain states.
Collapse
Affiliation(s)
- Sema G. Quadir
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord St., Boston, MA, USA
| | - Sean M. Tanino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord St., Boston, MA, USA
| | - Yasmine N. Sami
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord St., Boston, MA, USA
| | - Margaret A. Minnig
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord St., Boston, MA, USA
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kenner C. Rice
- Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord St., Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord St., Boston, MA, USA
| |
Collapse
|
34
|
Abatematteo FS, Niso M, Contino M, Leopoldo M, Abate C. Multi-Target Directed Ligands (MTDLs) Binding the σ 1 Receptor as Promising Therapeutics: State of the Art and Perspectives. Int J Mol Sci 2021; 22:6359. [PMID: 34198620 PMCID: PMC8232171 DOI: 10.3390/ijms22126359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022] Open
Abstract
The sigma-1 (σ1) receptor is a 'pluripotent chaperone' protein mainly expressed at the mitochondria-endoplasmic reticulum membrane interfaces where it interacts with several client proteins. This feature renders the σ1 receptor an ideal target for the development of multifunctional ligands, whose benefits are now recognized because several pathologies are multifactorial. Indeed, the current therapeutic regimens are based on the administration of different classes of drugs in order to counteract the diverse unbalanced physiological pathways associated with the pathology. Thus, the multi-targeted directed ligand (MTDL) approach, with one molecule that exerts poly-pharmacological actions, may be a winning strategy that overcomes the pharmacokinetic issues linked to the administration of diverse drugs. This review aims to point out the progress in the development of MTDLs directed toward σ1 receptors for the treatment of central nervous system (CNS) and cancer diseases, with a focus on the perspectives that are proper for this strategy. The evidence that some drugs in clinical use unintentionally bind the σ1 protein (as off-target) provides a proof of concept of the potential of this strategy, and it strongly supports the promise that the σ1 receptor holds as a target to be hit in the context of MTDLs for the therapy of multifactorial pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy; (F.S.A.); (M.N.); (M.C.); (M.L.)
| |
Collapse
|
35
|
Romeo G, Bonanno F, Wilson LL, Arena E, Modica MN, Pittalà V, Salerno L, Prezzavento O, McLaughlin JP, Intagliata S. Development of New Benzylpiperazine Derivatives as σ 1 Receptor Ligands with in Vivo Antinociceptive and Anti-Allodynic Effects. ACS Chem Neurosci 2021; 12:2003-2012. [PMID: 34019387 PMCID: PMC8291485 DOI: 10.1021/acschemneuro.1c00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
σ-1 receptors (σ1R) modulate nociceptive signaling, driving the search for selective antagonists to take advantage of this promising target to treat pain. In this study, a new series of benzylpiperazinyl derivatives has been designed, synthesized, and characterized for their affinities toward σ1R and selectivity over the σ-2 receptor (σ2R). Notably, 3-cyclohexyl-1-{4-[(4-methoxyphenyl)methyl]piperazin-1-yl}propan-1-one (15) showed the highest σ1R receptor affinity (Ki σ1 = 1.6 nM) among the series with a significant improvement of the σ1R selectivity (Ki σ2/Ki σ1= 886) compared to the lead compound 8 (Ki σ2/Ki σ1= 432). Compound 15 was further tested in a mouse formalin assay of inflammatory pain and chronic nerve constriction injury (CCI) of neuropathic pain, where it produced dose-dependent (3-60 mg/kg, i.p.) antinociception and anti-allodynic effects. Moreover, compound 15 demonstrated no significant effects in a rotarod assay, suggesting that this σ1R antagonist did not produce sedation or impair locomotor responses. Overall, these results encourage the further development of our benzylpiperazine-based σ1R antagonists as potential therapeutics for chronic pain.
Collapse
Affiliation(s)
- Giuseppe Romeo
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Federica Bonanno
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Lisa L. Wilson
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Emanuela Arena
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Maria N. Modica
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Jay P. McLaughlin
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Sebastiano Intagliata
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
36
|
Deuther-Conrad W, Diez-Iriepa D, Iriepa I, López-Muñoz F, Martínez-Grau MA, Gütschow M, Marco-Contelles J. Studies on the affinity of 6-[( n-(cyclo)aminoalkyl)oxy]-4 H-chromen-4-ones for sigma 1/2 receptors. RSC Med Chem 2021; 12:1000-1004. [PMID: 34223165 DOI: 10.1039/d1md00105a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/05/2021] [Indexed: 11/21/2022] Open
Abstract
Sigma (σ) receptors represent attractive targets for the development of potential agents for the treatment of several disorders, including Alzheimer's disease and neuropathic pain. In the search for multitarget small molecules (MSMs) against such disorders, we have re-discovered chromenones as new affine σ1/σ2 ligands. 6-(4-(Piperidin-1-yl)butoxy)-4H-chromen-4-one (7), a previously identified MSM with potent dual-target activities against acetylcholinesterase and monoamine oxidase B, also exhibited σ1/σ2 affinity. 6-(3-(Azepan-1-yl)propoxy)-4H-chromen-4-one (20) showed a K i value for σ1 of 27.2 nM (selectivity (σ1/σ2) = 28), combining the desired σ1 receptor affinity with a dual inhibitory capacity against both acetyl- and butyrylcholinesterase. 6-((5-Morpholinopentyl)oxy)-4H-chromen-4-one (12) was almost equipotent to S1RA, an established σ1 receptor antagonist.
Collapse
Affiliation(s)
- Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals 04318 Leipzig Germany
| | - Daniel Diez-Iriepa
- Department of Organic and Inorganic Chemistry, University of Alcalá Ctra. Madrid-Barcelona, Km. 33,6, 28871 Alcalá de Henares Madrid Spain
| | - Isabel Iriepa
- Department of Organic and Inorganic Chemistry, University of Alcalá Ctra. Madrid-Barcelona, Km. 33,6, 28871 Alcalá de Henares Madrid Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), Spain; Neuropsychopharmacology Unit, "Hospital 12 de Octubre" Research Institute Madrid Spain
| | | | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, IQOG, CSIC C/Juan de la Cierva 3 28006 Madrid Spain
| |
Collapse
|
37
|
Díaz JL, Cuevas F, Oliva AI, Font D, Sarmentero MÁ, Álvarez-Bercedo P, López-Valbuena JM, Pericàs MA, Enrech R, Montero A, Yeste S, Vidal-Torres A, Álvarez I, Pérez P, Cendán CM, Cobos EJ, Vela JM, Almansa C. Tricyclic Triazoles as σ 1 Receptor Antagonists for Treating Pain. J Med Chem 2021; 64:5157-5170. [PMID: 33826322 DOI: 10.1021/acs.jmedchem.1c00244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synthesis and pharmacological activity of a new series of 5a,7,8,8a-tetrahydro-4H,6H-pyrrolo[3,4-b][1,2,3]triazolo[1,5-d][1,4]oxazine derivatives as potent sigma-1 receptor (σ1R) ligands are reported. A lead optimization program aimed at improving the aqueous solubility of parent racemic nonpolar derivatives led to the identification of several σ1R antagonists with a good absorption, distribution, metabolism, and excretion in vitro profile, no off-target affinities, and characterized by a low basic pKa (around 5) that correlates with high exposure levels in rodents. Two compounds displaying a differential brain-to-plasma ratio distribution profile, 12lR and 12qS, exhibited a good analgesic profile and were selected as preclinical candidates for the treatment of pain.
Collapse
Affiliation(s)
- José Luis Díaz
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals S.A., Carrer Baldiri Reixac, 4-8. Parc Científic de Barcelona, 08028 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Félix Cuevas
- The Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ana I Oliva
- The Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Daniel Font
- The Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - M Ángeles Sarmentero
- The Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Paula Álvarez-Bercedo
- The Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - José M López-Valbuena
- The Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Miquel A Pericàs
- The Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Raquel Enrech
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals S.A., Carrer Baldiri Reixac, 4-8. Parc Científic de Barcelona, 08028 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Ana Montero
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals S.A., Carrer Baldiri Reixac, 4-8. Parc Científic de Barcelona, 08028 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Sandra Yeste
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals S.A., Carrer Baldiri Reixac, 4-8. Parc Científic de Barcelona, 08028 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Alba Vidal-Torres
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals S.A., Carrer Baldiri Reixac, 4-8. Parc Científic de Barcelona, 08028 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Inés Álvarez
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals S.A., Carrer Baldiri Reixac, 4-8. Parc Científic de Barcelona, 08028 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Pilar Pérez
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals S.A., Carrer Baldiri Reixac, 4-8. Parc Científic de Barcelona, 08028 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Cruz Miguel Cendán
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals S.A., Carrer Baldiri Reixac, 4-8. Parc Científic de Barcelona, 08028 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Carmen Almansa
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals S.A., Carrer Baldiri Reixac, 4-8. Parc Científic de Barcelona, 08028 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| |
Collapse
|
38
|
Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021; 139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is globally considered as one of the most debilitating disorders, which interferes with daily activities and life of the affected patients. Despite many developments in related recognizing and treating procedures, post-SCI neuropathic pain (NP) is still a clinical challenge for clinicians with no distinct treatments. Accordingly, a comprehensive search was conducted in PubMed, Medline, Scopus, Web of Science, and national database (SID and Irandoc). The relevant articles regarding signaling pathways, therapeutic targets and pharmacotherapy of post-SCI pain were also reviewed. Data were collected with no time limitation until November 2020. The present study provides the findings on molecular mechanisms and therapeutic targets, as well as developing the critical signaling pathways to introduce novel neuroprotective treatments of post-SCI pain. From the pathophysiological mechanistic point of view, post-SCI inflammation activates the innate immune system, in which the immune cells elicit secondary injuries. So, targeting the critical signaling pathways for pain management in the SCI population has significant importance in providing new treatments. Indeed, several receptors, ion channels, excitatory neurotransmitters, enzymes, and key signaling pathways could be used as therapeutic targets, with a pivotal role of n-methyl-D-aspartate, gamma-aminobutyric acid, and inflammatory mediators. The current review focuses on conventional therapies, as well as crucial signaling pathways and promising therapeutic targets for post-SCI pain to provide new insights into the clinical treatment of post-SCI pain. The need to develop innovative delivery systems to treat SCI is also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Xu D, Wang J, Chen W, Yang X, Zhou J, Ma H, Di L, Duan J. Evaluation of analgesic and anti-inflammatory actions of indolealkylamines from toad venom in mice using lipidomics and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113677. [PMID: 33321188 DOI: 10.1016/j.jep.2020.113677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Toad venom is one of widely used traditional Chinese medicines due to its analgesic and anti-inflammatory activities. However, hydrophilic alkaloids from toad venom, which may have certain pharmacological activities, have not been systematic studied. AIM OF THE STUDY The aim of the study was to identify the indolealkylamines (IAAs) from toad venom and investigate the analgesic and anti-inflammatory actions. MATERIALS AND METHODS The alkaloids were extracted and identified by high-resolution mass spectrometry. The analgesic abilities were determined using hot-plate test, formalin test and von Frey test. High-sensitivity lipidomics was used to investigate the regulatory function of IAAs on inflammatory eicosanoids. Besides, network pharmacology and molecular docking were used to demonstrate the candidate targets of IAAs. RESULTS 22 constituents have been characterized by high performance liquid chromatography (HPLC)-Triple TOF 5600, including six specific IAAs (serotonin, N-methyl serotonin, bufotenine, bufotenidine, bufothionine and dehydrobufotenine). Pharmacological studies showed that the IAAs from toad venom exerted significant analgesic activities at doses of 5, 15 and 45 mg/kg in vivo. Moreover, lipids analysis revealed IAAs might down-regulate inflammatory mediators from COX, LOX, DHA and LA pathways in formalin models, thus showing anti-inflammatory effect. The potent pharmacological function might because of the binding of IAAs and protein targets, such as sigma-1 receptor. CONCLUSION The studies provided a systemic evidence for the analgesic and anti-inflammatory activities of IAAs from toad venom. It suggested that IAAs might be a potential candidate to reduce inflammatory pain disorders.
Collapse
Affiliation(s)
- Dihui Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, And Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jiaojiao Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, And Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wuyue Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, And Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xinyi Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, And Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, And Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, And Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, And Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
40
|
Reinoso RF, Yeste S, Ayet E, Pretel MJ, Balada A, Serafini MT. Preliminary in vitro assessment of pharmacokinetic drug-drug interactions of EST64401 and EST64514, two sigma-1 receptor antagonists. Xenobiotica 2021; 51:373-386. [PMID: 33350877 DOI: 10.1080/00498254.2020.1867332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023]
Abstract
EST64401 and EST64514 are two selective sigma-1 receptor ligands that showed a good profile in a lead optimization process for oral pain treatment. Their potential for pharmacokinetic-based drug-drug interactions was assessed to anticipate clinical interactions.Both compounds showed a low potential for CYP inhibition with percentages of inhibition <50% at 1 µM in recombinant human CYPs (CYP1A2, 2C9, 2C19, 2D6 and 3A4) and IC50 ≥75 µM for CYP3A4 and 2D6 in human liver microsomes.No CYP induction was observed for CYP1A2, 2B6 and 3A4 at concentrations ≤25 µM (EST64401) or ≤50 µM (EST64514) in human hepatocytes using as endpoints CYP activities and mRNA levels.More than one enzyme participated in compound metabolism. The main enzymes involved were CYP3A4 for EST64401 and CYP2D6 besides CYP3A4 for EST64514.Neither EST64401 nor EST64514 seemed to be substrates of P-gp or BCRP in Caco-2 cells (efflux ratio ≤2). Transporter inhibition was observed at concentrations ≥20 µM; EST64401 only inhibiting P-gp at higher concentrations (≥125 µM).Preliminary in vitro interaction studies suggest a similar profile for EST64401 and EST64514. Therefore, other properties will have to be considered for compound differentiation and selection for further development.
Collapse
Affiliation(s)
- Raquel F Reinoso
- Early ADME, Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals, Barcelona, Spain
| | - Sandra Yeste
- Early ADME, Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals, Barcelona, Spain
| | - Eva Ayet
- Early ADME, Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals, Barcelona, Spain
| | - María José Pretel
- Early ADME, Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals, Barcelona, Spain
| | - Ariadna Balada
- Early ADME, Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals, Barcelona, Spain
| | - Maria Teresa Serafini
- Early ADME, Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals, Barcelona, Spain
| |
Collapse
|
41
|
Espinosa-Juárez JV, Jaramillo-Morales OA, Déciga-Campos M, Moreno-Rocha LA, López-Muñoz FJ. Sigma-1 receptor antagonist (BD-1063) potentiates the antinociceptive effect of quercetin in neuropathic pain induced by chronic constriction injury. Drug Dev Res 2021; 82:267-277. [PMID: 33051885 DOI: 10.1002/ddr.21750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 12/23/2022]
Abstract
Neuropathic pain is characterized by the presence of hyperalgesia and allodynia. Pharmacological treatments include the use of antiepileptics such as pregabalin or gabapentin, as well as antidepressants; however, given the role of the sigma-1 receptor in the generation and maintenance of pain, it has been suggested that sigma-1 receptor antagonists may be effective. There are also other alternatives that have been explored, such as the use of flavonoids such as quercetin. Due to the relevance of drug combinations in therapeutics, the objective of this work was to evaluate the effect of the combination of BD-1063 with quercetin in a chronic sciatic nerve constriction model using the "Surface of Synergistic Interaction" analysis method. The combination had preferable additive or synergistic effects, with BD-1063 (17.8 mg/kg) + QUER (5.6 mg/kg) showing the best antinociceptive effects. The required doses were also lower than those used individually to obtain the same level of effect. Our results provide the first evidence that the combination of a sigma-1 receptor antagonist and the flavonoid quercetin may be useful in the treatment of nociceptive behaviors associated with neuropathic pain, suggesting a new therapeutic alternative for this type of pain.
Collapse
Affiliation(s)
- Josué Vidal Espinosa-Juárez
- Escuela de Ciencias Químicas sede Ocozocoautla, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa, Chiapas, Mexico
| | - Osmar Antonio Jaramillo-Morales
- Departamento de Enfermería y Obstetricia. División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato. Carretera Irapuato-Silao km. 9, El copal, complejo 2 de la DICIVA, Irapuato, Guanajuato, Mexico
| | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Luis Alfonso Moreno-Rocha
- Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, México City, Mexico
| | | |
Collapse
|
42
|
Agha H, McCurdy CR. In vitro and in vivo sigma 1 receptor imaging studies in different disease states. RSC Med Chem 2021; 12:154-177. [PMID: 34046607 PMCID: PMC8127618 DOI: 10.1039/d0md00186d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The sigma receptor system has been classified into two distinct subtypes, sigma 1 (σ1R) and sigma 2 (σ2R). Sigma 1 receptors (σ1Rs) are involved in many neurodegenerative diseases and different central nervous system disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, and drug addiction, and pain. This makes them attractive targets for developing radioligands as tools to gain a better understanding of disease pathophysiology and clinical diagnosis. Over the years, several σ1R radioligands have been developed to image the changes in σ1R distribution and density providing insights into their role in disease development. Moreover, the involvement of both σ1Rs and σ2Rs with cancer make these ligands, especially those that are σ2R selective, great tools for imaging different types of tumors. This review will discuss the principles of molecular imaging using PET and SPECT, known σ1R radioligands and their applications for labelling σ1Rs under different disease conditions. Furthermore, this review will highlight σ1R radioligands that have demonstrated considerable potential as biomarkers, and an opportunity to fulfill the ultimate goal of better healthcare outcomes and improving human health.
Collapse
Affiliation(s)
- Hebaalla Agha
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
- UF Translational Drug Development Core, University of Florida Gainesville FL 32610 USA
| |
Collapse
|
43
|
Déciga-Campos M, Villafán-Gutiérrez R, Espinosa-Juárez JV, Jaramillo-Morales OA, López-Muñoz FJ. Synergistic interaction between haloperidol and gabapentin in a model of neuropathic nociception in rat. Eur J Pharmacol 2021; 891:173702. [PMID: 33152334 DOI: 10.1016/j.ejphar.2020.173702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
Preclinical studies have reported that sigma-1 receptor antagonists may have efficacy in neuropathic pain states. The sigma-1 receptor is a unique ligand-operated chaperone present in crucial areas for pain control, in both the peripheral and central nervous system. This study assesses the synergistic antihyperalgesic and antiallodynic effect of haloperidol, a sigma-1 antagonist, combined with gabapentin in rats with peripheral neuropathy. Wistar rats male were subjected to chronic constriction injury (CCI) of the sciatic nerve. The effects of systemic administration of gabapentin and the sigma-1 receptor antagonist, haloperidol, were examined at 11 days post-CCI surgery. An analysis of Surface of Synergistic Interaction was used to determine whether the combination's effects were synergistic. Twelve combinations showed various degrees of interaction in the antihyperalgesic and antiallodynic effects. In hyperalgesia, three combinations showed additive effects, four combinations showed supra-additive effects, and three combinations produced an effect limited by the maximum effect. In allodynia, five combinations showed additive effects, two combinations showed supra-additive effects, and five combinations produced antihyperalgesic effects limited by the maximum effect. These findings indicate that the administration of some specific combination of gabapentin and haloperidol can synergistically reduce nerve injury-induced allodynia and hyperalgesia. This suggests that the haloperidol-gabapentin combination can improve the antiallodynic and antihyperalgesic effects in a neuropathic pain model.
Collapse
Affiliation(s)
- Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomás, 11340, Ciudad de México, Mexico.
| | - Rodrigo Villafán-Gutiérrez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomás, 11340, Ciudad de México, Mexico
| | - Josué Vidal Espinosa-Juárez
- Escuela de Cs. Químicas Sede Ocozocoautla, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa, Chiapas, C.P, 29140, Mexico.
| | - Osmar Antonio Jaramillo-Morales
- Departamento de Enfermería y Obstetricia. División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato-Silao km. 9, El copal, complejo 2 de la DICIVA, C.P, 36500, Irapuato, Guanajuato, Mexico.
| | - Francisco Javier López-Muñoz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. Calzada de los Tenorios 235, Col. Granjas Coapa, Ciudad de México, Mexico.
| |
Collapse
|
44
|
Peng Y, Zhang Q, Welsh WJ. Novel Sigma 1 Receptor Antagonists as Potential Therapeutics for Pain Management. J Med Chem 2021; 64:890-904. [PMID: 33372782 DOI: 10.1021/acs.jmedchem.0c01964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sigma 1 receptor (S1R) is a molecular chaperone protein located in the endoplasmic reticulum and plasma membranes and has been shown to play important roles in various pathological disorders including pain and, as recently discovered, COVID-19. Employing structure- and QSAR-based drug design strategies, we rationally designed, synthesized, and biologically evaluated a series of novel triazole-based S1R antagonists. Compound 10 exhibited potent binding affinity for S1R, high selectivity over S2R and 87 other human targets, acceptable in vitro metabolic stability, slow clearance in liver microsomes, and excellent blood-brain barrier permeability in rats. Further in vivo studies in rats showed that 10 exhibited negligible acute toxicity in the rotarod test and statistically significant analgesic effects in the formalin test for acute inflammatory pain and paclitaxel-induced neuropathic pain models during cancer chemotherapy. These encouraging results promote further development of our triazole-based S1R antagonists as novel treatments for pain of different etiologies.
Collapse
Affiliation(s)
- Youyi Peng
- Biomedical Informatics Shared Resource, Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08903, United States
| | - Qiang Zhang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 661 Hoes Lane West, Piscataway, New Jersey 08854, United States
| | - William J Welsh
- Biomedical Informatics Shared Resource, Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08903, United States
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 661 Hoes Lane West, Piscataway, New Jersey 08854, United States
| |
Collapse
|
45
|
Szczepańska K, Kuder KJ, Kieć-Kononowicz K. Dual-targeting Approach on Histamine H 3 and Sigma-1 Receptor Ligands as Promising Pharmacological Tools in the Treatment of CNS-linked Disorders. Curr Med Chem 2021; 28:2974-2995. [PMID: 32767910 DOI: 10.2174/0929867327666200806103144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
With the recent market approval of Pitolisant (Wakix®), the interest in clinical application for novel multifunctional histamine H3 receptor antagonists has clearly increased. Several combinations of different H3R pharmacophores with pharmacophoric elements of other G-protein coupled receptors, transporters, or enzymes have been synthesized by numerous pharmaceutical companies and academic institutions. Since central nervous system disorders are characterized by diverse physiological dysfunctions and deregulations of a complex network of signaling pathways, optimal multipotent drugs should simultaneously and peculiarly modulate selected groups of biological targets. Interestingly, very recent studies have shown that some clinically evaluated histamine H3 receptor antagonists possess a nanomolar affinity for sigma-1 receptor binding sites, suggesting that this property might play a role in their overall efficacy. The sigma-1 receptor, unusual and yet obscure protein, is supposed to be involved in numerous CNS pathologies through neuroprotection and neuroplasticity. These two different biological structures, histamine H3 and sigma-1 receptors, combined, can represent a potential fruitful target for therapeutic developments in tackling numerous human diseases.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| |
Collapse
|
46
|
Ruiz-Cantero MC, González-Cano R, Tejada MÁ, Santos-Caballero M, Perazzoli G, Nieto FR, Cobos EJ. Sigma-1 receptor: A drug target for the modulation of neuroimmune and neuroglial interactions during chronic pain. Pharmacol Res 2021; 163:105339. [PMID: 33276102 DOI: 10.1016/j.phrs.2020.105339] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Immune and glial cells play a pivotal role in chronic pain. Therefore, it is possible that the pharmacological modulation of neurotransmission from an exclusively neuronal perspective may not be enough for adequate pain management, and the modulation of complex interactions between neurons and other cell types might be needed for successful pain relief. In this article, we review the current scientific evidence for the modulatory effects of sigma-1 receptors on communication between the immune and nervous systems during inflammation, as well as the influence of this receptor on peripheral and central neuroinflammation. Several experimental models of pathological pain are considered, including peripheral and central neuropathic pain, osteoarthritic, and cancer pain. Sigma-1 receptor inhibition prevents peripheral (macrophage infiltration into the dorsal root ganglion) and central (activation of microglia and astrocytes) neuroinflammation in several pain models, and enhances immune-driven peripheral opioid analgesia during painful inflammation, maximizing the analgesic potential of peripheral immune cells. Therefore, sigma-1 antagonists may constitute a new class of analgesics with an unprecedented mechanism of action and potential utility in several painful disorders.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Á Tejada
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Miriam Santos-Caballero
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Gloria Perazzoli
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain; Department of Nursing, Physiotherapy and Medicine, University of Almería, Almería, Spain
| | - Francisco R Nieto
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain; Teófilo Hernando Institute for Drug Discovery, Madrid, Spain.
| |
Collapse
|
47
|
Dash R, Ali MC, Jahan I, Munni YA, Mitra S, Hannan MA, Timalsina B, Oktaviani DF, Choi HJ, Moon IS. Emerging potential of cannabidiol in reversing proteinopathies. Ageing Res Rev 2021; 65:101209. [PMID: 33181336 DOI: 10.1016/j.arr.2020.101209] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
The aberrant accumulation of disease-specific protein aggregates accompanying cognitive decline is a pathological hallmark of age-associated neurological disorders, also termed as proteinopathies, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis. Along with oxidative stress and neuroinflammation, disruption in protein homeostasis (proteostasis), a network that constitutes protein surveillance system, plays a pivotal role in the pathobiology of these dementia disorders. Cannabidiol (CBD), a non-psychotropic phytocannabinoid of Cannabis sativa, is known for its pleiotropic neuropharmacological effects on the central nervous system, including the ability to abate oxidative stress, neuroinflammation, and protein misfolding. Over the past years, compelling evidence has documented disease-modifying role of CBD in various preclinical and clinical models of neurological disorders, suggesting the potential therapeutic implications of CBD in these disorders. Because of its putative role in the proteostasis network in particular, CBD could be a potent modulator for reversing not only age-associated neurodegeneration but also other protein misfolding disorders. However, the current understanding is insufficient to underpin this proposition. In this review, we discuss the potentiality of CBD as a pharmacological modulator of the proteostasis network, highlighting its neuroprotective and aggregates clearing roles in the neurodegenerative disorders. We anticipate that the current effort will advance our knowledge on the implication of CBD in proteostasis network, opening up a new therapeutic window for aging proteinopathies.
Collapse
|
48
|
García M, Virgili M, Alonso M, Alegret C, Farran J, Fernández B, Bordas M, Pascual R, Burgueño J, Vidal-Torres A, Fernández de Henestrosa AR, Ayet E, Merlos M, Vela JM, Plata-Salamán CR, Almansa C. Discovery of EST73502, a Dual μ-Opioid Receptor Agonist and σ 1 Receptor Antagonist Clinical Candidate for the Treatment of Pain. J Med Chem 2020; 63:15508-15526. [PMID: 33064947 DOI: 10.1021/acs.jmedchem.0c01127] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The synthesis and pharmacological activity of a new series of 4-alkyl-1-oxa-4,9-diazaspiro[5.5]undecane derivatives as potent dual ligands for the σ1 receptor (σ1R) and the μ-opioid receptor (MOR) are reported. A lead optimization program over the initial 4-aryl analogues provided 4-alkyl derivatives with the desired functionality and good selectivity and ADME profiles. Compound 14u (EST73502) showed MOR agonism and σ1R antagonism and a potent analgesic activity, comparable to the MOR agonist oxycodone in animal models of acute and chronic pain after single and repeated administration. Contrary to oxycodone, 14u produces analgesic activity with reduced opioid-induced relevant adverse events, like intestinal transit inhibition and naloxone-precipitated behavioral signs of opiate withdrawal. These results provide evidence that dual MOR agonism and σ1R antagonism may be a useful strategy for obtaining potent and safer analgesics and were the basis for the selection of 14u as a clinical candidate for the treatment of pain.
Collapse
MESH Headings
- Administration, Oral
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Binding Sites
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- Dose-Response Relationship, Drug
- Drug Design
- Drug Evaluation, Preclinical
- Half-Life
- Ligands
- Male
- Mice
- Molecular Dynamics Simulation
- Pain/drug therapy
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/metabolism
- Spiro Compounds/chemistry
- Spiro Compounds/metabolism
- Spiro Compounds/pharmacology
- Spiro Compounds/therapeutic use
- Structure-Activity Relationship
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Mónica García
- ESTEVE Pharmaceuticals S.A., Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Marina Virgili
- Enantia, S.L., Carrer Baldiri Reixac, 10, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Mònica Alonso
- Enantia, S.L., Carrer Baldiri Reixac, 10, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Carles Alegret
- Enantia, S.L., Carrer Baldiri Reixac, 10, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Joan Farran
- Enantia, S.L., Carrer Baldiri Reixac, 10, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Begoña Fernández
- ESTEVE Pharmaceuticals S.A., Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Magda Bordas
- ESTEVE Pharmaceuticals S.A., Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Rosalia Pascual
- ESTEVE Pharmaceuticals S.A., Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Javier Burgueño
- ESTEVE Pharmaceuticals S.A., Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Alba Vidal-Torres
- ESTEVE Pharmaceuticals S.A., Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Antonio R Fernández de Henestrosa
- ESTEVE Pharmaceuticals S.A., Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Eva Ayet
- ESTEVE Pharmaceuticals S.A., Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Manuel Merlos
- ESTEVE Pharmaceuticals S.A., Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Jose Miguel Vela
- ESTEVE Pharmaceuticals S.A., Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Carlos R Plata-Salamán
- ESTEVE Pharmaceuticals S.A., Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
| | - Carmen Almansa
- ESTEVE Pharmaceuticals S.A., Torre Esteve, Passeig de la Zona Franca, 109, 08038 Barcelona, Spain
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| |
Collapse
|
49
|
Ye N, Qin W, Tian S, Xu Q, Wold EA, Zhou J, Zhen XC. Small Molecules Selectively Targeting Sigma-1 Receptor for the Treatment of Neurological Diseases. J Med Chem 2020; 63:15187-15217. [PMID: 33111525 DOI: 10.1021/acs.jmedchem.0c01192] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sigma-1 (σ1) receptor, an enigmatic protein originally classified as an opioid receptor subtype, is now understood to possess unique structural and functional features of its own and play critical roles to widely impact signaling transduction by interacting with receptors, ion channels, lipids, and kinases. The σ1 receptor is implicated in modulating learning, memory, emotion, sensory systems, neuronal development, and cognition and accordingly is now an actively pursued drug target for various neurological and neuropsychiatric disorders. Evaluation of the five selective σ1 receptor drug candidates (pridopidine, ANAVEX2-73, SA4503, S1RA, and T-817MA) that have entered clinical trials has shown that reaching clinical approval remains an evasive and important goal. This review provides up-to-date information on the selective targeting of σ1 receptors, including their history, function, reported crystal structures, and roles in neurological diseases, as well as a useful collation of new chemical entities as σ1 selective orthosteric ligands or allosteric modulators.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wangzhi Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sheng Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
50
|
Porter M, Xiao H, Maity S, Vail N, Smith SB, Topczewski JJ. Enhanced Affinity for 3-Amino-Chromane-Derived σ 1 Receptor Ligands. ACS OMEGA 2020; 5:32724-32737. [PMID: 33376910 PMCID: PMC7758967 DOI: 10.1021/acsomega.0c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The σ1 receptor is implicated in regulating a diverse range of physiology and is a target for developing therapies for cancer, pain management, neural degradation, and COVID-19. This report describes 36 phenethylamine-containing 3-amino-chromane ligands, which bind to σ1 with low nM affinities. The family consists of 18 distinct compounds and each enantiomer was independently assayed. Three compounds with the greatest affinity bind in the 2 nM K i range (∼8.7 pK i). Furthermore, ligands with the (3R,4R) absolute stereochemistry on the 3-amino-chromane core have a higher affinity and greater σ1 versus TMEM97 selectivity. The most promising ligands were assayed in 661W cells, which did not show significant protective effects.
Collapse
Affiliation(s)
- Matthew
R. Porter
- Department
of Chemistry, University of Minnesota Twin
Cities, Minneapolis, Minnesota 55455, United States
| | - Haiyan Xiao
- Department
of Cellular Biology and Anatomy, Medical
College of Georgia at Augusta University, Augusta, Georgia 30912, United States
- James
and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia 30912, United States
| | - Sanjay Maity
- Department
of Chemistry, University of Minnesota Twin
Cities, Minneapolis, Minnesota 55455, United States
| | - Nora Vail
- Department
of Chemistry, University of Minnesota Twin
Cities, Minneapolis, Minnesota 55455, United States
| | - Sylvia B. Smith
- Department
of Cellular Biology and Anatomy, Medical
College of Georgia at Augusta University, Augusta, Georgia 30912, United States
- James
and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia 30912, United States
- Department
of Ophthalmology, Medical College of Georgia
at Augusta University, Augusta, Georgia 30912, United States
| | - Joseph J. Topczewski
- Department
of Chemistry, University of Minnesota Twin
Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|