1
|
Zhang Q, Yang D, Han X, Ren Y, Fan Y, Zhang C, Sun L, Ye T, Wang Q, Ban Y, Cao Y, Zou H, Zhang Z. Alarmins and their pivotal role in the pathogenesis of spontaneous abortion: insights for therapeutic intervention. Eur J Med Res 2024; 29:640. [PMID: 39741354 DOI: 10.1186/s40001-024-02236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Alarmins are a class of molecules released when affected cells damaged or undergo apoptosis. They contain various chemotactic and immunomodulatory proteins or peptides. These molecules regulate the immune response by interacting with pattern recognition receptors (PRRs) and play important roles in inflammatory response, tissue repair, infection defense, and cancer treatment. Spontaneous abortion (SA) is a common pregnancy-related disease, and its pathogenesis has been puzzling clinicians, so it needs to be further studied. In this paper, we first reviewed the research status of various alarmins and SA, focusing on the role of high mobility box 1 (HMGB1), interleukin33 (IL-33), interleukin1β (IL-1β) and S-100 protein (S100 protein) in immune response, inflammation, embryonic development and abortion. Subsequently, this paper summarized the effect of alarmins on pregnancy outcome by influencing angiogenesis-related factors. Finally, from the perspective of aseptic inflammation, the pro-inflammatory signaling pathways involved in various alarmins and their targeted drugs were reviewed. By focusing on specific molecules in alarmins and their receptors and signaling pathways, we can more accurately conduct drug research and development. The purpose of this review is to explore the role of alarmins in SA, and provide important references for early detection of abortion risk, revealing the disease mechanism, developing new therapies and improving the prognosis of patients.
Collapse
Affiliation(s)
- Qiqi Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Dandan Yang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Xingxing Han
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yu Ren
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, Anhui, China
| | - Yongqi Fan
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Chao Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Lei Sun
- Department of Clinical Medical, The First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Tingting Ye
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Qiushuang Wang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Youhao Ban
- Hefei Anhua Trauma Rehabilitation Hospital, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Huijuan Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China.
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
2
|
Fan X, Lin J, Liu H, Deng Q, Zheng Y, Wang X, Yang L. The role of macrophage-derived exosomes in noncancer liver diseases: From intercellular crosstalk to clinical potential. Int Immunopharmacol 2024; 143:113437. [PMID: 39454408 DOI: 10.1016/j.intimp.2024.113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Chronic liver disease has a substantial global prevalence and mortality rate. Macrophages, pivotal cells in innate immunity, exhibit remarkable heterogeneity and plasticity and play a considerable role in maintaining organ homeostasis, modulating inflammatory responses, and influencing disease progression in the liver. Exosomes, which can serve as conduits for intercellular communication, biomarkers, and therapeutic targets for a spectrum of diseases, have recently garnered increasing attention recently. Given that the liver is the organ with the highest macrophage content, a thorough understanding of the influence of macrophage-derived exosomes (MDEs) on noncancer liver disease pathogenesis and their potential therapeutic applications is paramount. Interactions among MDEs, hepatocytes, hepatic stellate cells (HSCs), and other nonparenchymal cells constitute a complex network regulates liver immune homeostasis. In this review, we summarize the latest progress in the current understanding of MDE heterogeneity and cellular crosstalk in noncancer liver diseases, as well as their potential clinical applications. Additionally, challenges and future directions are underscored.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Lin
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Honglan Liu
- Dazhou Central Hospital, Dazhou 635000, Sichuan Province, China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Cheng S, Zou Y, Zhang M, Bai S, Tao K, Wu J, Shi Y, Wu Y, Lu Y, He K, Sun P, Su X, Hou S, Han B. Single-cell RNA sequencing reveals the heterogeneity and intercellular communication of hepatic stellate cells and macrophages during liver fibrosis. MedComm (Beijing) 2023; 4:e378. [PMID: 37724132 PMCID: PMC10505372 DOI: 10.1002/mco2.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023] Open
Abstract
Uncontrolled and excessive progression of liver fibrosis is thought to be the prevalent pathophysiological cause of liver cirrhosis and hepatocellular cancer, and there are currently no effective antifibrotic therapeutic options available. Intercellular communication and cellular heterogeneity in the liver are involved in the progression of liver fibrosis, but the exact nature of the cellular phenotypic changes and patterns of interregulatory remain unclear. Here, we performed single-cell RNA sequencing on nonparenchymal cells (NPCs) isolated from normal and fibrotic mouse livers. We identified eight main types of cells, including endothelial cells, hepatocytes, dendritic cells, B cells, natural killer/T (NK/T) cells, hepatic stellate cells (HSCs), cholangiocytes and macrophages, and revealed that macrophages and HSCs exhibit the most variance in transcriptional profile. Further analyses of HSCs and macrophage subpopulations and ligand-receptor interaction revealed a high heterogeneity characterization and tightly interregulated network of these two groups of cells in liver fibrosis. Finally, we uncovered a profibrotic Thbs1+ macrophage subcluster, which expands in mouse and human fibrotic livers, activating HSCs via PI3K/AKT/mTOR signaling pathway. Our findings decode unanticipated insights into the heterogeneity of HSCs and macrophages and their intercellular crosstalk at a single-cell level, and may provide potential therapeutic strategies in liver fibrosis.
Collapse
Affiliation(s)
- Sheng Cheng
- Department of General SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunhan Zou
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Man Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Shihao Bai
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Kun Tao
- Department of PathologyTongren HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Jiaoxiang Wu
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric DisordersBio‐X InstitutesShanghai Jiao Tong UniversityShanghaiChina
- eHealth Program of Shanghai Anti‐Doping LaboratoryShanghai University of SportShanghaiChina
| | - Yuelan Wu
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yinzhong Lu
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of AnesthesiologyTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kunyan He
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Peng Sun
- Department of General SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- eHealth Program of Shanghai Anti‐Doping LaboratoryShanghai University of SportShanghaiChina
| | - Shangwei Hou
- Department of AnesthesiologyTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bo Han
- Department of General SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Najimi N, Zahednasab H, Farahmand M, Fouladvand A, Talei GR, Bouzari B, Khanizadeh S, Karampoor S. Exploring the role of tryptophanyl-tRNA synthetase and associations with inflammatory markers and clinical outcomes in COVID-19 patients: A case-control study. Microb Pathog 2023; 183:106300. [PMID: 37567323 DOI: 10.1016/j.micpath.2023.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Tryptophanyl-tRNA synthetase (WRS) is a critical enzyme involved in protein synthesis, responsible for charging tRNA with the essential amino acid tryptophan. Recent studies have highlighted its novel role in stimulating innate immunity against bacterial and viral infections. However, the significance of WRS in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains elusive. In this study, we aimed to investigate the complex interplay between WRS, inflammatory markers, Toll-like receptor-4 (TLR-4), and clinical outcomes in coronavirus disease 19 (COVID-19) patients. A case-control investigation comprised 127 COVID-19 patients, carefully classified as severe or moderate upon admission, and 112 healthy individuals as a comparative group. Blood samples were meticulously collected before treatment initiation, and WRS, interleukin-6 (IL-6), and C-reactive protein (CRP) concentrations were quantified using a well-established commercial ELISA kit. Peripheral blood mononuclear cells (PBMCs) were isolated from the blood samples, and RNA was extracted for cDNA synthesis. Semi-quantitative real-time polymerase chain reaction (PCR) was employed to assess the relative expression of TLR-4. COVID-19 patients exhibited elevated levels of WRS, IL-6, CRP, and TLR-4 expression compared to healthy individuals, with the severe group displaying significantly higher levels than the moderate group. Notably, severe patients demonstrated substantial fluctuations in CRP, IL-6, and WRS levels over time, a pattern not observed in their moderate counterparts. Although no significant distinctions were observed in the dynamic alterations of WRS, IL-6, CRP, and TLR-4 expression between deceased and surviving patients, a trend emerged indicating higher IL-6_1 levels in deceased patients and elevated lactate dehydrogenase (LDH) levels in severe patients who succumbed to the disease. This pioneering research highlights the dynamic alterations of WRS in COVID-19 patients, providing valuable insights into the correlation between WRS, inflammatory markers, and disease severity within this population. Understanding the role of WRS in SARS-CoV-2 infection may open new avenues for therapeutic interventions targeting innate immunity to combat COVID-19.
Collapse
Affiliation(s)
- Nastaran Najimi
- Department of Virology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Farahmand
- Research Center for Emergency and Disaster Resilience, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
| | - Ali Fouladvand
- Hepatitis Research Center, Department of Pediatrics, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Gholam Reza Talei
- Department of Virology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Department of Virology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Jiao M, Sun Y, Shi J, Zhang N, Tang X, Fan A, Liu S, Dai C, Qian Z, Zhang F, Wang C, Chen H, Zheng F. IL-33 and HMGB1 modulate the progression of EAE via oppositely regulating each other. Int Immunopharmacol 2023; 122:110653. [PMID: 37467690 DOI: 10.1016/j.intimp.2023.110653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/19/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Interleukin-33 (IL-33) and high mobility group box 1 (HMGB1) have been reported to play crucial and distinct roles in experimental autoimmune encephalomyelitis (EAE). However, little is known about their interaction in the progression of EAE. In this study, the dynamic expression and release of IL-33 and HMGB1 in different stages of EAE in vivo, and their interaction in vitro were explored. We found that HMGB1 was dominant in pre-onset stage of EAE, while IL-33 was dominant in peak stage. Moreover, both blockade of extracellular HMGB1 in the central nervous system (CNS) and conditional knockout of HMGB1 in astrocytes decreased IL-33 release. HMGB1 promoted the release of IL-33, while IL-33 reduced the release of HMGB1 from primary astrocytes in vitro. Taken together, IL-33 and HMGB1 in the CNS jointly participate in the EAE progression and the inhibitory effect of IL-33 on HMGB1 may be involved in the self-limiting of EAE.
Collapse
Affiliation(s)
- Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Junyu Shi
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Na Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Anqi Fan
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Shiwang Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhigang Qian
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Feng Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chenchen Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Huoying Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China.
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| |
Collapse
|
6
|
Wang Y, Wang Q, Yang TW, Yin JM, Wei F, Liu H, Yang PX, Li J, Liu N, Zhu Y, Chen D. Analysis of Immune and Inflammatory Microenvironment Characteristics of Noncancer End-Stage Liver Disease. J Interferon Cytokine Res 2023; 43:86-97. [PMID: 36749162 DOI: 10.1089/jir.2022.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic liver injury eventually progresses to cirrhosis and end-stage liver disease (ESLD), which are the leading causes of death in patients with liver disease worldwide. ESLD has a variety of etiologies and a complex pathogenesis. This study analyzed the characteristics of ESLD by studying the immune microenvironment and inflammatory microenvironment of ESLD caused by 4 noncancer diseases, including HBV-ALF, ALF, AILD, and AH. We collected transcriptome data from noncancer ESLD patients, collected liver tissue samples and blood samples from ESLD liver transplant patients, and analyzed the immune and inflammatory microenvironments in the liver and blood. The results showed that with the exception of HBV-induced ESLD, there were no significant differences in immune microenvironment scores among patients with ESLD caused by other noncancer diseases. Moreover, there were no significant differences in the inflammatory microenvironment in the liver and blood of patients with ESLD caused by the 4 noncancer diseases. Furthermore, we found that the cytokine, IL-15, could predict the prognosis of ESLD patients.
Collapse
Affiliation(s)
- Yang Wang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Qi Wang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China.,Beijing DiTan Hospital, Capital Medical University, Beijing, China.,Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Wang Yang
- Hunan Key Laboratory of Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha, China.,Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ji Ming Yin
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Huan Liu
- Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Xiang Yang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Jiaxi Li
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Ning Liu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Yunxia Zhu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Gong J, Tu W, Liu J, Tian D. Hepatocytes: A key role in liver inflammation. Front Immunol 2023; 13:1083780. [PMID: 36741394 PMCID: PMC9890163 DOI: 10.3389/fimmu.2022.1083780] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Hepatocytes, the major parenchymal cells in the liver, are responsible for a variety of cellular functions including carbohydrate, lipid and protein metabolism, detoxification and immune cell activation to maintain liver homeotasis. Recent studies show hepatocytes play a pivotal role in liver inflammation. After receiving liver insults and inflammatory signals, hepatocytes may undergo organelle damage, and further respond by releasing mediators and expressing molecules that can act in the microenvironment as well as initiate a robust inflammatory response. In this review, we summarize how the hepatic organelle damage link to liver inflammation and introduce numerous hepatocyte-derived pro-inflammatory factors in response to chronic liver injury.
Collapse
Affiliation(s)
| | | | | | - Dean Tian
- *Correspondence: Jingmei Liu, ; Dean Tian,
| |
Collapse
|
8
|
Luo L, Wang S, Chen B, Zhong M, Du R, Wei C, Huang F, Kou X, Xing Y, Tong G. Inhibition of inflammatory liver injury by the HMGB1-A box through HMGB1/TLR-4/NF-κB signaling in an acute liver failure mouse model. Front Pharmacol 2022; 13:990087. [PMID: 36313316 PMCID: PMC9614247 DOI: 10.3389/fphar.2022.990087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
We aimed to investigate the preventive effect of high mobility group box 1 (HMGB1)-A box and the mechanism by which it alleviates inflammatory injury in acute liver failure (ALF) by inhibiting the extracellular release of HMGB1. BALB/c mice were intraperitoneally (i.p.) administered LPS/D-GalN to establish an ALF mouse model. HMGB1-A box was administered (i.p.) 1 h before establishing the ALF mouse model. The levels of extracellularly released HMGB1, TLR-4/NF-κB signaling molecules, the proinflammatory cytokines TNF-α, IL-1β, and IL-6 and COX-2 were measured in the liver tissue and/or serum by Immunohistochemistry, Western blotting and Enzyme-linked immunosorbent assay (ELISA). The levels of extracellularly released HMGB1, TLR-4/NF-κB signaling molecules and proinflammatory cytokines were measured in Huh7 cells as well as LPS- and/or HMGB1-A box treatment by confocal microscopy, Western blotting and ELISA. In the ALF mouse model, the levels of HMGB1 were significantly increased both in the liver and serum, TLR-4/NF-κB signaling molecules and proinflammatory cytokines also was upregulated. Notably, HMGB1-A box could reverse these changes. HMGB1-A box could also cause these changes in LPS-induced Huh7 cells. HMGB1-A box played a protective role by inhibiting inflammatory liver injury via the regulation of HMGB1/TLR-4/NF-κB signaling in the LPS/D-GaIN-induced ALF mouse model, which may be related to inhibiting the extracellular release of HMGB1.
Collapse
Affiliation(s)
- Lidan Luo
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- *Correspondence: Lidan Luo, ; Yufeng Xing, ; Guangdong Tong,
| | - Shuai Wang
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Bohao Chen
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, China
| | - Mei Zhong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, China
| | - Ruili Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, China
| | - ChunShan Wei
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Furong Huang
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Xinhui Kou
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Yufeng Xing
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- *Correspondence: Lidan Luo, ; Yufeng Xing, ; Guangdong Tong,
| | - Guangdong Tong
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
- *Correspondence: Lidan Luo, ; Yufeng Xing, ; Guangdong Tong,
| |
Collapse
|
9
|
Imaoka Y, Sato K, Ohira M, Imaoka K, Yano T, Nakano R, Tanaka Y, Ohdan H. Acute portal hypertension using portal vein ligation abrogates TRAIL expression of liver-resident NK cells. Hepatol Commun 2022; 6:2551-2564. [PMID: 35726345 PMCID: PMC9426399 DOI: 10.1002/hep4.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
The effects of acute portal hypertension (PHT), which is reported as poor prognostic factors in patients with hepatocellular carcinoma, are not well known on the liver immune system, including natural killer (NK) cells. The aim of this study, therefore, was to investigate how acute PHT influences the functions and characteristics of liver‐resident NK (lr‐NK) cells using an acute PHT mouse model. Acute PHT decreased the number of tumor necrosis factor–related apoptosis‐inducing ligand (TRAIL+) lr‐NK cells by about 20% and attenuated cytotoxic activity against the Hepa1‐6 cell line by about 40%. Among various cytokine, only interleukin‐33 (IL‐33), which inhibits NK activity, significantly increased after portal vein ligation (PVL). Because lr‐NK cells highly expressed ST2/IL‐33R, IL‐33 co‐culture significantly suppressed TRAIL expression on lr‐NK cells by about 50%, and IL‐33 administration markedly decreased TRAIL expression and cytotoxic activity of lr‐NK cells. Furthermore, the TRAIL+ NK cells population was maintained by anti‐IL33 antibody or following portosystemic shunt procedure even after PVL. Finally, we demonstrated that IL‐33 decreased TRAIL expression in lr‐NK cells via AKT–forkhead box O (FoxO) and mitogen‐activated protein kinase (MAPK) signaling. Conclusion: This work demonstrates that PHT suppresses the TRAIL+ lr‐NK cell population and antitumor activities in the liver. Additionally, Akt‐FoxO and MAPK signaling pathways attenuate the TRAIL expression in lt‐NK cells via IL‐33 receptor in mice.
Collapse
Affiliation(s)
- Yuki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3, Hiroshima, Japan
| | - Koki Sato
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3, Hiroshima, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3, Hiroshima, Japan.,Medical Center for Translational and Clinical Research Hiroshima University Hospital, Hiroshima, Japan
| | - Kouki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3, Hiroshima, Japan
| | - Takuya Yano
- Department of Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Ryosuke Nakano
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3, Hiroshima, Japan
| |
Collapse
|
10
|
Yang J, Tang X, Wu Q, Ren P, Yan Y, Liu W, Pan C. Heparin Protects Severe Acute Pancreatitis by Inhibiting HMGB-1 Active Secretion from Macrophages. Polymers (Basel) 2022; 14:polym14122470. [PMID: 35746047 PMCID: PMC9227308 DOI: 10.3390/polym14122470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/01/2022] Open
Abstract
Heparin has shown benefits in severe acute pancreatitis (SAP) therapy, but the underlying mechanisms were unknown. Extracellular high-mobility group protein-1 (HMGB-1) has been regarded as a central mediator contributing to inflammation exacerbation and disease aggravation. We hypothesized heparin attenuated the disease by targeting HMGB-1-related pathways. In the present study, the possible therapeutic roles of heparin and its non-anticoagulant derivatives, 6-O-desulfulted heparin and N-acylated-heparin, were determined on mouse models induced by “Two-Hit” of L-arginine. The compounds exhibited potent efficiency by substantially decreasing the pancreatic necrosis, macrophage infiltration, and serum inflammatory cytokine (IL-6 and TNF-α) concentration. Moreover, they greatly reduced the rapidly increasing extracellular HMGB-1 levels in the L-arginine injured pancreases. As a result, multiple organ failure and mortality of the mice were inhibited. Furthermore, the drugs were incubated with the RAW264.7 cells activated with damaged pancreatic tissue of SAP mice in vitro. They were found to inhibit HMGB-1 transfer from the nucleus to the plasma, a critical step during HMGB-1 active secretion from macrophages. The results were carefully re-examined with a caerulein and LPS induced mouse model, and similar results were found. The paper demonstrated heparin alleviated SAP independent of the anti-coagulant functions. Therefore, non-anticoagulant heparin derivatives might become promising approaches to treat patients suffering from SAP.
Collapse
Affiliation(s)
- Jing Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (J.Y.); (X.T.); (Q.W.); (P.R.)
| | - Xujiao Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (J.Y.); (X.T.); (Q.W.); (P.R.)
| | - Qingqing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (J.Y.); (X.T.); (Q.W.); (P.R.)
| | - Panpan Ren
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (J.Y.); (X.T.); (Q.W.); (P.R.)
| | - Yishu Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (J.Y.); (X.T.); (Q.W.); (P.R.)
- Correspondence:
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China;
| | - Chun Pan
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, China;
| |
Collapse
|
11
|
Hazrati A, Malekpour K, Soudi S, Hashemi SM. Mesenchymal Stromal/Stem Cells and Their Extracellular Vesicles Application in Acute and Chronic Inflammatory Liver Diseases: Emphasizing on the Anti-Fibrotic and Immunomodulatory Mechanisms. Front Immunol 2022; 13:865888. [PMID: 35464407 PMCID: PMC9021384 DOI: 10.3389/fimmu.2022.865888] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Various factors, including viral and bacterial infections, autoimmune responses, diabetes, drugs, alcohol abuse, and fat deposition, can damage liver tissue and impair its function. These factors affect the liver tissue and lead to acute and chronic liver damage, and if left untreated, can eventually lead to cirrhosis, fibrosis, and liver carcinoma. The main treatment for these disorders is liver transplantation. Still, given the few tissue donors, problems with tissue rejection, immunosuppression caused by medications taken while receiving tissue, and the high cost of transplantation, liver transplantation have been limited. Therefore, finding alternative treatments that do not have the mentioned problems is significant. Cell therapy is one of the treatments that has received a lot of attention today. Hepatocytes and mesenchymal stromal/stem cells (MSCs) are used in many patients to treat liver-related diseases. In the meantime, the use of mesenchymal stem cells has been studied more than other cells due to their favourable characteristics and has reduced the need for liver transplantation. These cells increase the regeneration and repair of liver tissue through various mechanisms, including migration to the site of liver injury, differentiation into liver cells, production of extracellular vesicles (EVs), secretion of various growth factors, and regulation of the immune system. Notably, cell therapy is not entirely excellent and has problems such as cell rejection, undesirable differentiation, accumulation in unwanted locations, and potential tumorigenesis. Therefore, the application of MSCs derived EVs, including exosomes, can help treat liver disease and prevent its progression. Exosomes can prevent apoptosis and induce proliferation by transferring different cargos to the target cell. In addition, these vesicles have been shown to transport hepatocyte growth factor (HGF) and can promote the hepatocytes'(one of the most important cells in the liver parenchyma) growths.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Cao S, Miao J, Qian M, Zhu C, Ding S, Yin J, Zhu L, Zhang Q. Helicobacter hepaticus Infection Promotes the Progression of Liver Preneoplasia in BALB/c Mice via the Activation and Accumulation of High-Mobility Group Box-1. Front Microbiol 2022; 12:789752. [PMID: 35046917 PMCID: PMC8763329 DOI: 10.3389/fmicb.2021.789752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
It has been documented that Helicobacter hepaticus (H. hepaticus) infection is linked to chronic hepatitis and fibrosis in male BALB/c mice. However, the mechanism underlying the mice model of H. hepaticus–induced hepatocellular carcinoma is not fully known. In this study, male BALB/c mice were infected with H. hepaticus for 3, 6, 12, and 18 months. H. hepaticus colonization, histopathology, expression of proinflammatory cytokines, key signaling pathways, and protein downstream high-mobility group box-1 (HMGB1) in the liver were examined. Our data suggested that the H. hepaticus colonization level in the colon and liver progressively increased over the duration of the infection. H. hepaticus–induced hepatic inflammation and fibrosis were aggravated during the infection, and hepatic preneoplasia developed in the liver of infected mice at 12 and 18 months post-inoculation (MPI). H. hepaticus infection increased the levels of alanine aminotransferase and aspartate aminotransferase in the infected mice. In addition, the mRNA levels of IL-6, Tnf-α, Tgf-β, and HMGB1 were significantly elevated in the liver of H. hepaticus–infected mice from 3 to 18 MPI as compared to the controls. In addition, Ki67 was increased throughout the duration of the infection. Furthermore, HMGB1 protein was activated and translocated from the nucleus to the cytoplasm in the hepatocytes and activated the proteins of signal transducers and activators of transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) [extracellular regulated protein kinases 1/2 (Erk1/2) and mitogen-activated protein kinase p38 (p38)] upon H. hepaticus infection. In conclusions, these data demonstrated that male BALB/c mice infected with H. hepaticus are prone to suffering hepatitis and developing into hepatic preneoplasia. To verify the effect of HMGB1 in the progression of liver preneoplasia, mice were infected by H. hepaticus for 2 months before additional HMGB1 recombinant adenovirus treatment. All mice were sacrificed at 4 MPI, and the sera and liver tissues from all of the mice were collected. Immunology and histopathology evaluation showed that HMGB1 knockdown attenuated the H. hepaticus–induced hepatic and fibrosis at 4 MPI. Therefore, we showed that H. hepaticus–induced liver preneoplasia is closely correlated with the activation and accumulation of HMGB1.
Collapse
Affiliation(s)
- Shuyang Cao
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiancheng Miao
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Miao Qian
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chen Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shiping Ding
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Jun Yin
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Liqi Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Quan Zhang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Wang Z, Wu L, Pan B, Chen Y, Zhang T, Tang N. Interleukin 33 mediates hepatocyte autophagy and innate immune response in the early phase of acetaminophen-induced acute liver injury. Toxicology 2021; 456:152788. [PMID: 33887374 DOI: 10.1016/j.tox.2021.152788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 12/08/2022]
Abstract
Despite interleukin 33 (IL-33) functions as an "alarmin" released from hepatic dead cells in response to tissue damages, the interrelationship between IL-33-mediated hepatocyte autophagy and innate immune response in the acetaminophen (APAP)-induced liver injury (AILI) process remains obscure. This study aimed to explore the regulation of IL-33 on hepatocyte autophagy and macrophage polarization after APAP challenge in vivo and vitro. We found IL-33 released from hepatic necrosis was elevated in the AILI mouse model. Blockage of IL-33 exacerbated liver injury by consuming liver-resident macrophages cells (Kupffer cells, KCs) and promoting hepatic inflammatory factors secretion, such as TNF-α, IL-6 and IL-1β in the early phase of liver injury. Interestingly, IL-33 deficiency further activated hepatocyte autophagy and disrupted M2 macrophage polarization post-APAP challenge in vivo and vitro, which can be reversed by recombinant IL-33 treatment. Mechanistically, administration of IL-33 can directly enhance M2 polarization via PI3K/Akt signaling pathway and activate protective hepatocyte autophagy via AMPKα/mTOR signaling pathway in the AILI process. In conclusion, our data firstly demonstrates that IL-33 exerts protective effects on hepatocytes through the activation of autophagy and functions as an innate immunity regulator mediating macrophage polarization in the early phase of AILI.
Collapse
Affiliation(s)
- Zengbin Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Linqing Wu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yizhong Chen
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
14
|
Fattori V, Staurengo-Ferrari L, Zaninelli TH, Casagrande R, Oliveira RD, Louzada-Junior P, Cunha TM, Alves-Filho JC, Teixeira MM, Cunha FQ, Amaral FA, Verri WA. IL-33 enhances macrophage release of IL-1β and promotes pain and inflammation in gouty arthritis. Inflamm Res 2020; 69:1271-1282. [PMID: 32886146 DOI: 10.1007/s00011-020-01399-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the role of IL-33 in gouty arthritis. MATERIAL 174 Balb/c (wild-type) and 54 ST2-/- mice were used in this study. In vitro experiments were conducted in bone marrow-derived macrophages (BMDMs). Synovial fluid samples from gouty arthritis (n = 7) and osteoarthritis (n = 8) hospital patients were used to measure IL-33 and sST2 levels. METHODS Gout was induced by injection of monosodium urate (MSU) crystals in the knee joint of mice. Pain was determined using the electronic von Frey and static weight bearing. Neutrophil recruitment was determined by H&E staining, Rosenfeld staining slides, and MPO activity. ELISA was used for cytokine and sST2 measurement. The priming effect of IL-33 was determined in BMDM. RESULTS Synovial fluid of gout patients showed higher IL-33 levels and neutrophil counts than osteoarthritis patients. In mice, the absence of ST2 prevented mechanical pain, knee joint edema, neutrophil recruitment to the knee joint, and lowered IL-1β and superoxide anion levels. In macrophages, IL-33 enhanced the release of IL-1β and TNF-α, and BMDMs from ST2-/- showed reduced levels of these cytokines after stimulus with MSU crystals. CONCLUSION IL-33 mediates gout pain and inflammation by boosting macrophages production of cytokines upon MSU crystals stimulus.
Collapse
Affiliation(s)
- Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Science, Londrina State University, Londrina, Brazil
| | - Rene D Oliveira
- Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo Louzada-Junior
- Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Flavio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil.
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, KM 380, PO Box 10.011, Londrina, Parana, 86057-970, Brazil.
| |
Collapse
|
15
|
Baidya R, Crawford DHG, Gautheron J, Wang H, Bridle KR. Necroptosis in Hepatosteatotic Ischaemia-Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21165931. [PMID: 32824744 PMCID: PMC7460692 DOI: 10.3390/ijms21165931] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
While liver transplantation remains the sole treatment option for patients with end-stage liver disease, there are numerous limitations to liver transplantation including the scarcity of donor livers and a rise in livers that are unsuitable to transplant such as those with excess steatosis. Fatty livers are susceptible to ischaemia-reperfusion (IR) injury during transplantation and IR injury results in primary graft non-function, graft failure and mortality. Recent studies have described new cell death pathways which differ from the traditional apoptotic pathway. Necroptosis, a regulated form of cell death, has been associated with hepatic IR injury. Receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL) are thought to be instrumental in the execution of necroptosis. The study of hepatic necroptosis and potential therapeutic approaches to attenuate IR injury will be a key factor in improving our knowledge regarding liver transplantation with fatty donor livers. In this review, we focus on the effect of hepatic steatosis during liver transplantation as well as molecular mechanisms of necroptosis and its involvement during liver IR injury. We also discuss the immune responses triggered during necroptosis and examine the utility of necroptosis inhibitors as potential therapeutic approaches to alleviate IR injury.
Collapse
Affiliation(s)
- Raji Baidya
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Jérémie Gautheron
- Sorbonne University, Inserm, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France;
- Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France
| | - Haolu Wang
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Diamantina Institute, The University of Queensland, Brisbane, Queensland QLD 4102, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Correspondence: ; Tel.: +61-7-3346-0698
| |
Collapse
|
16
|
Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg 2020; 46:751-775. [PMID: 31612270 PMCID: PMC7427761 DOI: 10.1007/s00068-019-01235-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
In 1994, the "danger model" argued that adaptive immune responses are driven rather by molecules released upon tissue damage than by the recognition of "strange" molecules. Thus, an alternative to the "self versus non-self recognition model" has been provided. The model, which suggests that the immune system discriminates dangerous from safe molecules, has established the basis for the future designation of damage-associated molecular patterns (DAMPs), a term that was coined by Walter G. Land, Seong, and Matzinger. The pathological importance of DAMPs is barely somewhere else evident as in the posttraumatic or post-surgical inflammation and regeneration. Since DAMPs have been identified to trigger specific immune responses and inflammation, which is not necessarily detrimental but also regenerative, it still remains difficult to describe their "friend or foe" role in the posttraumatic immunogenicity and healing process. DAMPs can be used as biomarkers to indicate and/or to monitor a disease or injury severity, but they also may serve as clinically applicable parameters for optimized indication of the timing for, i.e., secondary surgeries. While experimental studies allow the detection of these biomarkers on different levels including cellular, tissue, and circulatory milieu, this is not always easily transferable to the human situation. Thus, in this review, we focus on the recent literature dealing with the pathophysiological importance of DAMPs after traumatic injury. Since dysregulated inflammation in traumatized patients always implies disturbed resolution of inflammation, so-called model of suppressing/inhibiting inducible DAMPs (SAMPs) will be very briefly introduced. Thus, an update on this topic in the field of trauma will be provided.
Collapse
Affiliation(s)
- Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590, Frankfurt, Germany.
| | - Walter Gottlieb Land
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France
| |
Collapse
|
17
|
Hassan HM, Al-Wahaibi LH, Elmorsy MA, Mahran YF. Suppression of Cisplatin-Induced Hepatic Injury in Rats Through Alarmin High-Mobility Group Box-1 Pathway by Ganoderma lucidum: Theoretical and Experimental Study. Drug Des Devel Ther 2020; 14:2335-2353. [PMID: 32606602 PMCID: PMC7296982 DOI: 10.2147/dddt.s249093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Drug-induced liver injury (DILI) is the most common cause of acute liver failure. The aim of this study was to investigate the molecular mechanisms by which Ganoderma lucidum mushroom (GLM) may ameliorate cisplatin (CP)-induced hepatotoxicity theoretically and experimentally. MATERIALS AND METHODS Thirty-six male Sprague-Dawley (SD) rats were divided into six groups, two of them are normal and Ganoderma lucidum control groups. Liver injury was induced by a single dose of CP (12 mg/kg i.p) in four groups, one of them is CP control group. Besides cisplatin injection in day 1, rats in groups (4-6) were subjected to GLM (500 mg/kg/day) either every other day or daily oral dose or via i.p injection for 10 consecutive days. RESULTS In this study, GLM supplementation caused significant reduction of elevated high-mobility group box-1 (HMGB-1) with a concurrent decline in TNF-α and upregulation of IL-10 compared to the CP group (P<0.05). The histopathological and fibrosis evaluation significantly confirmed the improvement upon simultaneous treatment with GLM. Moreover, immunohistochemical examination also confirmed the recovery following GLM treatment indicated by downregulation of NF-κB, p53 and caspase-3 along with upsurge of B-cell lymphoma 2 (Bcl-2) expression (P<0.05). GLM treatment significantly decreased serum levels of hepatic injury markers; ALT, AST, T. bilirubin as well as oxidative stress markers; MDA and H2O2 with a concomitant increase in hepatic GSH and SOD. Also, the performed docking simulation of ganoderic acid exhibited good fitting and binding with HMGB-1 through hydrogen bond formation with conservative amino acids which gives a strong evidence for its hepatoprotective effect and may interpret the effect of Ganoderma lucidum. CONCLUSION GLM attenuated hepatic injury through downregulation of HMGB-1/NF-kB and caspase-3 resulted in modulation of the induced oxidative stress and the subsequent cross-talk between the inflammatory and apoptotic cascade indicating its promising role in DILI.
Collapse
Affiliation(s)
- Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science & Technology, Gamasa City, Dakhliya, Egypt
| | - Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, KSA, 11671, Saudi Arabia
| | - Mohammed A Elmorsy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | - Yasmen F Mahran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, KSA, Saudi Arabia
| |
Collapse
|
18
|
Gonzalez-Polo V, Pucci-Molineris M, Cervera V, Gambaro S, Yantorno SE, Descalzi V, Tiribelli C, Gondolesi GE, Meier D. Group 2 innate lymphoid cells exhibit progressively higher levels of activation during worsening of liver fibrosis. Ann Hepatol 2020; 18:366-372. [PMID: 31053540 DOI: 10.1016/j.aohep.2018.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The interleukin-33/interleukin-13 pathway is involved in the immunopathology of liver fibrosis and recently characterized group 2 innate lymphoid cells (ILC2) were identified as profibrotic immune cells in the liver of mouse models. Our aim was to elucidate whether ILC2 might be present in human liver tissue and whether ILC2 contribute to liver fibrosis. MATERIALS AND METHODS To identify ILC2 in liver tissue and blood, we purified mononuclear immune cells from needle biopsies, cirrhotic explant specimen, and paired peripheral blood samples. Cell suspensions were incubated with specific markers for ILC2 and analyzed by flow cytometry. The CD69 marker was included to assess the activation level of ILC2. In addition, we determined the IL-33 plasma level. RESULTS Results were correlated with the METAVIR fibrotic score of patients enrolled in this study. We detected ILC2 in a higher percentage of CD45+ cells in liver tissue than in paired peripheral blood. The number of ILC2 was significantly increased in fibrotic tissue, but only slightly increased in paired peripheral blood. A higher percentage of CD69+ ILC2 was observed in fibrotic tissue, and this increase correlates positively with aggravation of liver fibrosis measured by fibrotic METAVIR score. A higher level of plasma IL-33 was only detected in samples obtained from cirrhotic patients. CONCLUSION Our study indicates that ILC2 are present in the human liver and are activated in tissue contributing to the immunopathology of human liver fibrosis, independently of the etiology; which might be a potential new therapeutic target.
Collapse
Affiliation(s)
- Virginia Gonzalez-Polo
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, BA, Argentina; Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | - Melisa Pucci-Molineris
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, BA, Argentina; Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | - Victorio Cervera
- Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | - Sabrina Gambaro
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, BA, Argentina; Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | - Silvina E Yantorno
- Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | - Valeria Descalzi
- Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | | | - Gabriel E Gondolesi
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, BA, Argentina; Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | - Dominik Meier
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, BA, Argentina; Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina.
| |
Collapse
|
19
|
Released Tryptophanyl-tRNA Synthetase Stimulates Innate Immune Responses against Viral Infection. J Virol 2019; 93:JVI.01291-18. [PMID: 30355684 DOI: 10.1128/jvi.01291-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/14/2018] [Indexed: 01/31/2023] Open
Abstract
Tryptophanyl-tRNA synthetase (WRS) is one of the aminoacyl-tRNA synthetases (ARSs) that possesses noncanonical functions. Full-length WRS is released during bacterial infection and primes the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex to elicit innate immune responses. However, the role of WRS in viral infection remains unknown. Here, we show that full-length WRS is secreted by immune cells in the early phase of viral infection and functions as an antiviral cytokine. Treatment of cells with recombinant WRS protein promotes the production of inflammatory cytokines and type I interferons (IFNs) and curtails virus replication in THP-1 and Raw264.7 cells but not in TLR4-/- or MD2-/- bone marrow-derived macrophages (BMDMs). Intravenous and intranasal administration of recombinant WRS protein induces an innate immune response and blocks viral replication in vivo These findings suggest that secreted full-length WRS has a noncanonical role in inducing innate immune responses to viral infection as well as to bacterial infection.IMPORTANCE ARSs are essential enzymes in translation that link specific amino acids to their cognate tRNAs. In higher eukaryotes, some ARSs possess additional, noncanonical functions in the regulation of cell metabolism. Here, we report a novel noncanonical function of WRS in antiviral defense. WRS is rapidly secreted in response to viral infection and primes the innate immune response by inducing the secretion of proinflammatory cytokines and type I IFNs, resulting in the inhibition of virus replication both in vitro and in vivo Thus, we consider WRS to be a member of the antiviral innate immune response. The results of this study enhance our understanding of host defense systems and provide additional information on the noncanonical functions of ARSs.
Collapse
|
20
|
Triantafyllou E, Woollard KJ, McPhail MJW, Antoniades CG, Possamai LA. The Role of Monocytes and Macrophages in Acute and Acute-on-Chronic Liver Failure. Front Immunol 2018; 9:2948. [PMID: 30619308 PMCID: PMC6302023 DOI: 10.3389/fimmu.2018.02948] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022] Open
Abstract
Acute and acute-on-chronic liver failure (ALF and ACLF), though distinct clinical entities, are considered syndromes of innate immune dysfunction. Patients with ALF and ACLF display evidence of a pro-inflammatory state with local liver inflammation, features of systemic inflammatory response syndrome (SIRS) and vascular endothelial dysfunction that drive progression to multi-organ failure. In an apparent paradox, these patients are concurrently immunosuppressed, exhibiting acquired immune defects that render them highly susceptible to infections. This paradigm of tissue injury succeeded by immunosuppression is seen in other inflammatory conditions such as sepsis, which share poor outcomes and infective complications that account for high morbidity and mortality. Monocyte and macrophage dysfunction are central to disease progression of ALF and ACLF. Activation of liver-resident macrophages (Kupffer cells) by pathogen and damage associated molecular patterns leads to the recruitment of innate effector cells to the injured liver. Early monocyte infiltration may contribute to local tissue destruction during the propagation phase and results in secretion of pro-inflammatory cytokines that drive SIRS. In the hepatic microenvironment, recruited monocytes mature into macrophages following local reprogramming so as to promote resolution responses in a drive to maintain tissue integrity. Intra-hepatic events may affect circulating monocytes through spill over of soluble mediators and exposure to apoptotic cell debris during passage through the liver. Hence, peripheral monocytes show numerous acquired defects in acute liver failure syndromes that impair their anti-microbial programmes and contribute to enhanced susceptibility to sepsis. This review will highlight the cellular and molecular mechanisms by which monocytes and macrophages contribute to the pathophysiology of ALF and ACLF, considering both hepatic inflammation and systemic immunosuppression. We identify areas for further research and potential targets for immune-based therapies to treat these devastating conditions.
Collapse
Affiliation(s)
- Evangelos Triantafyllou
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College London, London, United Kingdom
- Division of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kevin J. Woollard
- Division of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Mark J. W. McPhail
- Department of Inflammation Biology, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Charalambos G. Antoniades
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College London, London, United Kingdom
| | - Lucia A. Possamai
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College London, London, United Kingdom
- Division of Immunology and Inflammation, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
HMGB1-induced autophagy facilitates hepatic stellate cells activation: a new pathway in liver fibrosis. Clin Sci (Lond) 2018; 132:1645-1667. [PMID: 29907694 DOI: 10.1042/cs20180177] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
High-mobility group box-1 (HMGB1) plays a context-dependent role in autophagy, which is required for hepatic stellate cells (HSCs) activation. However, the significance of HMGB1-induced HSCs autophagy in liver fibrosis has not been elucidated. Here, we first documented an enrichment of peripheral and intrahepatic HMGB1 signal in hepatitis B virus (HBV)-related liver fibrosis progression, and presented a direct evidence of anatomic proximity of HMGB1 with a-SMA (a marker for HSCs activation) in cirrhotic liver specimens. Then, we demonstrated the autophagy-inducing effects by serum-sourced HMGB1 in both primary murine HSCs and human HSCs cell line (LX-2), reflected by increased number of autophagic vacuoles (AVs) under the transmission electron microscope (TEM) and up-regulated protein expression of lipidated microtubule-associated light chain 3 (LC3-II) (a marker for autophagosome) in Western blot analysis. Intriguingly, there is a possible translocation of endogenous HMGB1 from the nucleus to cytoplasm to extracellular space, during exogenous HMGB1-induced HSCs autophagy. Meanwhile, the dose- and time-dependent effects by recombinant HMGB1 (rHMGB1) in enhancing LX-2 autophagy and fibrogenesis have been revealed with activated extracellular regulated protein kinase (ERK)/c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) and restrained mammalian target of rapamycin (mTOR)/STAT3 signaling pathways. Additionally, the ERK or JNK inhibitor could not only inhibit rHMGB1-induced autophagy and fibrogenesis in LX-2 cells, but also restore the suppressed mTOR and STAT3 pathways. Furthermore, using LC3-siRNA transfected LX-2, we found HMGB1-induced fibrogenesis is dependent on its autophagy-inducing effects. Finally, we elucidated the involvement of extracellular HMGB1-receptor for advenced glycation end product (RAGE) axis and endogenous HMGB1 in exogenous HMGB1-induced effects. Our findings could open new perspectives in developing an antifibrotic therapy by targetting the HSCs autophagy.
Collapse
|
22
|
Kim SJ, Lee SM. Necrostatin-1 Protects Against D-Galactosamine and Lipopolysaccharide-Induced Hepatic Injury by Preventing TLR4 and RAGE Signaling. Inflammation 2018; 40:1912-1923. [PMID: 28752362 DOI: 10.1007/s10753-017-0632-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fulminant hepatic failure (FHF) is a life-threatening clinical syndrome results in massive inflammation and hepatocyte death. Necroptosis is a regulated form of necrotic cell death that is emerging as a crucial control point for inflammatory diseases. The kinases receptor interacting protein (RIP) 1 and RIP3 are known as key modulators of necroptosis. In this study, we investigated the impact of necroptosis in the pathogenesis of FHF and molecular mechanisms, particularly its linkage to damage-associated molecular pattern (DAMP)-mediated pattern recognition receptor (PRR) signaling pathways. Male C57BL/6 mice were given an intraperitoneal injection of necrostatin-1 (Nec-1, RIP1 inhibitor; 1.8 mg/kg; dissolved in 2% dimethyl sulfoxide in phosphate-buffered saline) 1 h before receiving D-galactosamine (GalN; 800 mg/kg)/lipopolysaccharide (LPS; 40 μg/kg). Hepatic RIP1, RIP3 protein expression, their phosphorylation, and RIP1/RIP3 complex formation upregulated in the GalN/LPS group were attenuated by Nec-1. Nec-1 markedly reduced the increases in mortality and serum alanine aminotransferase activity induced by GalN/LPS. Increased serum high mobility group box 1 (HMGB1) and interleukin (IL)-33 release, HMGB1-toll-like receptor 4 and HMGB1-receptor for advanced glycation end products (RAGE) interaction, and nuclear protein expressions of NF-κB and early growth response protein-1 (egr-1) were attenuated by Nec-1. Our finding suggests that necroptosis is responsible for GalN/LPS-induced liver injury through DAMP-activated PRR signaling.
Collapse
Affiliation(s)
- Seok-Joo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
23
|
Abstract
This review summarizes a short list of currently discussed trauma-induced danger-associated molecular patterns (DAMP). Due to the bivalent character and often pleiotropic effects of a DAMP, it is difficult to describe its "friend or foe" role in post-traumatic inflammation and regeneration, both systemically as well locally in tissues. DAMP can be used as biomarkers to indicate or monitor disease or injury severity, but also may serve as clinically applicable parameters for better indication and timing of surgery. Due to the inflammatory processes at the local tissue level or the systemic level, the precise role of DAMP is not always clear to define. While in vitro and experimental studies allow for the detection of these biomarkers at the different levels of an organism-cellular, tissue, circulation-this is not always easily transferable to the human setting. Increased knowledge exploring the dual role of DAMP after trauma, and concentrating on their nuclear functions, transcriptional targets, release mechanisms, cellular sources, multiple functions, their interactions and potential therapeutic targeting is warranted.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany.
| | - Katharina Mörs
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany
| |
Collapse
|
24
|
Zhou X, Geng S, Zhang S, Zhao W, Zhao G, Wen Y, Wang X, Wang B. Biomarkers distinguish HBeAg seroconverted from non-converted individuals in chronic hepatitis B patients treated with a therapeutic vaccine. Cytokine 2017; 106:176-181. [PMID: 29158122 DOI: 10.1016/j.cyto.2017.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 11/25/2022]
Abstract
Cytokine assays of host immune responses to vaccination can indicate vaccine efficacy. Here we tested the hypothesis that assays of the cytokine status of infected individuals prior to therapeutic vaccination might provide a guide to vaccine therapeutic efficacy. If so, cytokine analysis might be used to select appropriate patients for therapeutic vaccination. Data were obtained from a panel of 14 cytokine/chemokine assays that were done during a phase III clinical trial of HBsAg-HBIG therapeutic vaccine (YIC) treatment of chronic hepatitis B (CHB) patients. Summarized assay results were compared between patients who responded by HBeAg-seroconversion and non-responders. Though no single cytokine or chemokine showed clear correlation with responsiveness, by bio-mathematical analysis with Boolean modelling, the combined results revealed that plasma IL-10, IL-33 and MIP-1α together correlated best with responsiveness. However, the difference between HBeAg seroconverted and non-converted YIC-treated CHB patients was maximized when results of all 14 cytokine/chemokine assays were included and showed a sensitivity around 0.59, and a specificity of 0.8. It suggested that the combined analysis of these elements may be useful to screen appropriate CHB patients for therapeutic vaccination with YIC.
Collapse
Affiliation(s)
- Xian Zhou
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuang Geng
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shijie Zhang
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weidong Zhao
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gan Zhao
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuanyi Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017; 121:27-42. [PMID: 28506744 DOI: 10.1016/j.addr.2017.05.007] [Citation(s) in RCA: 995] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
Progressive liver fibrosis, induced by chronic viral and metabolic disorders, leads to more than one million deaths annually via development of cirrhosis, although no antifibrotic therapy has been approved to date. Transdifferentiation (or "activation") of hepatic stellate cells is the major cellular source of matrix protein-secreting myofibroblasts, the major driver of liver fibrogenesis. Paracrine signals from injured epithelial cells, fibrotic tissue microenvironment, immune and systemic metabolic dysregulation, enteric dysbiosis, and hepatitis viral products can directly or indirectly induce stellate cell activation. Dysregulated intracellular signaling, epigenetic changes, and cellular stress response represent candidate targets to deactivate stellate cells by inducing reversion to inactivated state, cellular senescence, apoptosis, and/or clearance by immune cells. Cell type- and target-specific pharmacological intervention to therapeutically induce the deactivation will enable more effective and less toxic precision antifibrotic therapies.
Collapse
|
26
|
Antunes MM, Araújo AM, Diniz AB, Pereira RVS, Alvarenga DM, David BA, Rocha RM, Lopes MAF, Marchesi SC, Nakagaki BN, Carvalho É, Marques PE, Ryffel B, Quesniaux V, Guabiraba Brito R, Filho JCA, Cara DC, Rezende RM, Menezes GB. IL-33 signalling in liver immune cells enhances drug-induced liver injury and inflammation. Inflamm Res 2017; 67:77-88. [PMID: 29032512 DOI: 10.1007/s00011-017-1098-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE AND DESIGN The aim of this study was to investigate the contribution of IL-33/ST2 axis in the onset and progression of acute liver injury using a mice model of drug-induced liver injury (DILI). MATERIAL AND TREATMENTS DILI was induced by overdose administration of acetaminophen (APAP) by oral gavage in wild-type BALB/c, ST2-deficient mice and in different bone marrow chimeras. Neutrophils were depleted by anti-Ly6G and macrophages with clodronate liposomes (CLL). METHODS Blood and liver were collected for biochemical, immunologic and genetic analyses. Mice were imaged by confocal intravital microscopy and liver non-parenchymal cells and hepatocytes were isolated for flow cytometry, genetic and immunofluorescence studies. RESULTS Acetaminophen overdose caused a massive necrosis and accumulation of immune cells within the liver, concomitantly with IL-33 and chemokine release. Liver non-parenchymal cells were the major sensors for IL-33, and amongst them, neutrophils were the major players in amplification of the inflammatory response triggered by IL-33/ST2 signalling pathway. CONCLUSION Blockage of IL-33/ST2 axis reduces APAP-mediated organ injury by dampening liver chemokine release and activation of resident and infiltrating liver non-parenchymal cells.
Collapse
Affiliation(s)
- Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Alan Moreira Araújo
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Ariane Barros Diniz
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Rafaela Vaz Sousa Pereira
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Débora Moreira Alvarenga
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bruna Araújo David
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Renata Monti Rocha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maria Alice Freitas Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Sarah Cozzer Marchesi
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Érika Carvalho
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Pedro Elias Marques
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics CNRS, University of Orleans, Orleans, France
| | - Valérie Quesniaux
- Experimental and Molecular Immunology and Neurogenetics CNRS, University of Orleans, Orleans, France
| | | | - José Carlos Alves Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Denise Carmona Cara
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
27
|
Inkaya AC, Demir NA, Kolgelier S, Sumer S, Demir LS, Ural O, Pehlivan FS, Aslan M, Arpaci A. Is serum high-mobility group box 1 (HMGB-1) level correlated with liver fibrosis in chronic hepatitis B? Medicine (Baltimore) 2017; 96:e7547. [PMID: 28885322 PMCID: PMC6392731 DOI: 10.1097/md.0000000000007547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND High-mobility group box 1 (HMGB1), identified as an alarmin molecule, was shown to have a role in virus-triggered liver injury. We aimed to evaluate the association between serum levels of HMGB1 and liver fibrosis. METHOD This cross-sectional case-control study included 189 chronic hepatitis B (CHB) patients and 51 healthy controls. All patients underwent liver biopsy and modified Knodell scoring system used to determine the fibrosis level in CHB patients. Serum HMGB1 levels were determined with enzyme-linked immunosorbent assay (ELISA). RESULTS Mean serum HMGB1 levels of patients (58.1 ± 54.7) were found to be higher than those of the control group (7.1 ± 4.3) (P = .001). HMGB1 levels of patients with advanced-stage fibrosis (stage 4 and 5) were detected to be higher than those of patients with early-stage fibrosis (stage 1-3). However, this difference was not statistically significant (P > .05). Albumin levels of fibrosis 3 and 4 patients were lower than fibrosis 1 and 2 patients. ALT, HBV DNA, and AFP levels of fibrosis 5 patients were significantly higher than fibrosis 1 and 2 patients, and their platelet and albumin levels are lower than fibrosis 1 and 2 patients (P < .001). In a logistic regression model, fibrosis levels were correlated with ALT values and inversely correlated with albumin levels. CONCLUSION In this study, we demonstrated that serum HMGB1 levels increase in the early course of liver injury and this increase is not correlated with severity of the liver damage.
Collapse
Affiliation(s)
- Ahmet Cagkan Inkaya
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara
| | - Nazlim Aktug Demir
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Selçuk University, Konya
| | - Servet Kolgelier
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Adiyaman University, Adiyaman
| | - Sua Sumer
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Selçuk University, Konya
| | - Lutfi Saltuk Demir
- Department of Public Health, Faculty of Medicine, Necmettin Erbakan University, Konya
| | - Onur Ural
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Selçuk University, Konya
| | | | - Mahmure Aslan
- Department of Biochemistry, Adiyaman Education and Research Hospital, Adiyaman
| | - Abdullah Arpaci
- Department of Biochemistry, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
28
|
Dondorf F, Fahrner R, Ardelt M, Patsenker E, Stickel F, Dahmen U, Settmacher U, Rauchfuß F. Induction of chronic cholestasis without liver cirrhosis - Creation of an animal model. World J Gastroenterol 2017; 23:4191-4199. [PMID: 28694659 PMCID: PMC5483493 DOI: 10.3748/wjg.v23.i23.4191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/27/2017] [Accepted: 05/09/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To analyze time intervals of inflammation and regeneration in a cholestatic rat liver model.
METHODS In 36 Lewis rats, divided into six groups of 6 animals (postoperative observation periods: 1, 2, 3, 4, 6, 8 wk), the main bile duct was ligated with two ligatures and observed for the periods mentioned above. For laboratory evaluation, cholestasis parameters (bilirubin, γ-GT), liver cell parameters (ASAT, ALAT) and liver synthesis parameters (quick, albumin) were determined. For histological analysis, HE, EvG, ASDCL and HMGB-1 stainings were performed. Furthermore, we used the mRNA of IL-33, GADD45a and p-21 for analyzing cellular stress and regeneration in cholestatic rats.
RESULTS In chemical laboratory and histological evaluation, a distinction between acute and chronic cholestatic liver injury with identification of inflammation and regeneration could be demonstrated by an increase in cholestasis (bilirubin: 1-wk group, 156.83 ± 34.12 μmol/L, P = 0.004) and liver cell parameters (ASAT: 2-wk group, 2.1 ± 2.19 μmol/L.s, P = 0.03; ALAT: 2-wk group, 1.03 ± 0.38 μmol/L.s, P = 0.03) after bile duct ligation (BDL). Histological evaluation showed an increase of bile ducts per portal field (3-wk group, 48 ± 6.13, P = 0.004) during the first four weeks after bile duct ligation. In addition to inflammation, which is an expression of acute cholestasis, there was an increase of necrotic areas in the histological sections (2-wk group, 1.38% ± 2.28% per slide, P = 0.002). Furthermore, the inflammation could be verified by ASDCL (4-wk group, 22 ± 5.93 positive cells per portal field, P = 0.041) and HMGB-1 [2-wk group, 13 ± 8.18 positive cells per field of view (FoV), P = 0.065] staining. Therefore, in summary of the laboratory evaluation and histological studies, acute cholestasis could be found during the first four weeks after bile duct ligation. Subsequently, the described parameters declined so that chronic cholestasis could be assumed. For quantification of secondary biliary cirrhosis, eosin staining was performed, which did not reveal any signs of liver remodeling, thus precluding the development of a chronic cholestasis model. Additionally, to establish the chronic cholestasis model, we evaluated liver regeneration capacity through measurements of IL-33, p-21 and GADD45a mRNA.
CONCLUSION We created a chronic cholestasis model. The point of inflammatory and regenerative balance was reached after four weeks. This finding should be used for experimental approaches dealing with chronic cholestatic liver damage.
Collapse
|
29
|
Endogenous IL-33 Deficiency Exacerbates Liver Injury and Increases Hepatic Influx of Neutrophils in Acute Murine Viral Hepatitis. Mediators Inflamm 2017; 2017:1359064. [PMID: 28607531 PMCID: PMC5457781 DOI: 10.1155/2017/1359064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 12/28/2022] Open
Abstract
The alarmin IL-33 has been described to be upregulated in human and murine viral hepatitis. However, the role of endogenous IL-33 in viral hepatitis remains obscure. We aimed to decipher its function by infecting IL-33-deficient mice (IL-33 KO) and their wild-type (WT) littermates with pathogenic mouse hepatitis virus (L2-MHV3). The IL-33 KO mice were more sensitive to L2-MHV3 infection exhibiting higher levels of AST/ALT, higher tissue damage, significant weight loss, and earlier death. An increased depletion of B and T lymphocytes, NKT cells, dendritic cells, and macrophages was observed 48 h postinfection (PI) in IL-33 KO mice than that in WT mice. In contrast, a massive influx of neutrophils was observed in IL-33 KO mice at 48 h PI. A transcriptomic study of inflammatory and cell-signaling genes revealed the overexpression of IL-6, TNFα, and several chemokines involved in recruitment/activation of neutrophils (CXCL2, CXCL5, CCL2, and CCL6) at 72 h PI in IL-33 KO mice. However, the IFNγ was strongly induced in WT mice with less profound expression in IL-33 KO mice demonstrating that endogenous IL-33 regulated IFNγ expression during L2-MHV3 hepatitis. In conclusion, we demonstrated that endogenous IL-33 had multifaceted immunoregulatory effect during viral hepatitis via induction of IFNγ, survival effect on immune cells, and infiltration of neutrophils in the liver.
Collapse
|
30
|
Garay-Lugo N, Domínguez-Lopez A, Miliar García A, Aguilar Barrera E, Gómez López M, Gómez Alcalá A, Martínez Godinez MDLA, Lara-Padilla E. n-3 Fatty acids modulate the mRNA expression of the Nlrp3 inflammasome and Mtor in the liver of rats fed with high-fat or high-fat/fructose diets. Immunopharmacol Immunotoxicol 2017; 38:353-63. [PMID: 27367537 DOI: 10.1080/08923973.2016.1208221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT There is evidence that n-3 polyunsaturated fatty acids (n-3-PUFAs) can inhibit mTORC1, which should potentiate autophagy and eliminate NLRP3 inflammasome activity. OBJECTIVE Evaluate the effect of a high-fat or high-fat/fructose diet with and without n-3-PUFAs on hepatic gene expression. MATERIALS AND METHODS We examined the mRNA expression by RT-PCR of Mtor, Nlrp3, and other 22 genes associated with inflammation in rats livers after a 9-week diet. The dietary regimens were low-fat (control, CD), high-fat (HF), high-fat/fructose (HF-Fr), and also each of these supplemented with n-3-PUFAs (CD-n-3-PUFAs, HF-n-3-PUFAs, and HF-Fr-n-3-PUFAs). These data were processed by GeneMania and STRING databases. RESULTS Compared to the control, the HF group showed a significant increase (between p < 0.05 and p < 0.0001) in 20 of these genes (Il1b, Il18, Rxra, Nlrp3, Casp1, Il33, Tnf, Acaca, Mtor, Eif2s1, Eif2ak4, Nfkb1, Srebf1, Hif1a, Ppara, Ppard, Pparg, Mlxipl, Fasn y Scd1), and a decrease in Sirt1 (p < 0.05). With the HF-Fr diet, a significant increase (between p < 0.05 and p < 0.005) was also found in the expression of 16 evaluated genes (Srebf1, Mlxipl, Rxra, Abca1, Il33, Nfkb1, Hif1a, Pparg, Casp1, Il1b, Il-18, Tnf, Ppard, Acaca, Fasn, Scd1), along with a decrease in the transcription of Mtor and Elovl6 (p < 0.05). Contrarily, many of the genes whose expression increased with the HF and HF-Fr diets did not significantly increase with the HF-n-3-PUFAs or HF-Fr-n-3-PUFAs diet. DISCUSSION AND CONCLUSION We found the interrelation of the genes for the mTORC1 complex, the NLRP3 inflammasome, and other metabolically important proteins, and that these genes respond to n-3-PUFAs.
Collapse
Affiliation(s)
- Natalia Garay-Lugo
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Aarón Domínguez-Lopez
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Angel Miliar García
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Eliud Aguilar Barrera
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Modesto Gómez López
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Alejandro Gómez Alcalá
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Maria de Los Angeles Martínez Godinez
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Eleazar Lara-Padilla
- b Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Díaz Mirón , México , D.F , México
| |
Collapse
|
31
|
Abstract
Macrophages represent a key cellular component of the liver, and are essential for maintaining tissue homeostasis and ensuring rapid responses to hepatic injury. Our understanding of liver macrophages has been revolutionized by the delineation of heterogeneous subsets of these cells. Kupffer cells are a self-sustaining, liver-resident population of macrophages and can be distinguished from the monocyte-derived macrophages that rapidly accumulate in the injured liver. Specific environmental signals further determine the polarization and function of hepatic macrophages. These cells promote the restoration of tissue integrity following liver injury or infection, but they can also contribute to the progression of liver diseases, including hepatitis, fibrosis and cancer. In this Review, we highlight novel findings regarding the origin, classification and function of hepatic macrophages, and we discuss their divergent roles in the healthy and diseased liver.
Collapse
Affiliation(s)
- Oliver Krenkel
- Department of Medicine III, University Hospital Aachen, D-52074 Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
32
|
Wang C, Dong C, Xiong S. IL-33 enhances macrophage M2 polarization and protects mice from CVB3-induced viral myocarditis. J Mol Cell Cardiol 2016; 103:22-30. [PMID: 28041873 DOI: 10.1016/j.yjmcc.2016.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 01/13/2023]
Abstract
Viral myocarditis is the inflammation caused by myocardial virus infection, and the coxsackievirus group B3 virus (CVB3) is the most common pathogen. An efficient therapeutic agent against viral myocarditis is currently unavailable. IL-33, a new member of the IL-1 cytokine superfamily, exhibits potential immunotherapeutic effect against inflammatory and autoimmune diseases. However, the functional role of IL-33 in viral myocarditis has not been investigated. To examine the therapeutic role of IL-33 in viral myocarditis, an IL-33 overexpression plasmid (pDisplay-IL-33) and IL-33 knockdown plasmid (pLL3.7-IL-33) were packaged with polyethylenimine and delivered intravenously at the orbital area of BALB/c male mice after CVB3 infection. Then, myocarditis severity was assessed 7days after infection. Results showed that IL-33 up-regulation significantly alleviated the severity of viral myocarditis with an increased cardiac contractive function and survival rate. Mechanistic studies demonstrated that IL-33 can stimulate ST2L+F4/80+ macrophages and ST2L+CD4+T cells in cardiac tissue to express IL-4, which is a potent inducer for macrophage M2 polarization. Mice with adoptive transfer of M2 macrophages exhibited less cardiac inflammation and attenuated myocarditis, suggesting the protective role of M2 macrophage in viral myocarditis. Additionally, IL-4 neutralization abolished the IL-33-mediated cardiac functional improvement in myocarditis mice. Collectively, our findings provide a novel therapeutic role for IL-33 in CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Chao Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China.
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
33
|
Mouse Hepatitis Virus Infection Induces a Toll-Like Receptor 2-Dependent Activation of Inflammatory Functions in Liver Sinusoidal Endothelial Cells during Acute Hepatitis. J Virol 2016; 90:9096-113. [PMID: 27489277 DOI: 10.1128/jvi.01069-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/23/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Under physiological conditions, the liver sinusoidal endothelial cells (LSECs) mediate hepatic immune tolerance toward self or foreign antigens through constitutive expression of anti-inflammatory mediators. However, upon viral infection or Toll-like receptor 2 (TLR2) activation, LSECs can achieve proinflammatory functions, but their role in hepatic inflammation during acute viral hepatitis is unknown. Using the highly virulent mouse hepatitis virus type 3 (MHV3) and the attenuated variants 51.6-MHV3 and YAC-MHV3, exhibiting lower tropism for LSECs, we investigated in vivo and in vitro the consequence of LSEC infection on their proinflammatory profiles and the aggravation of acute hepatitis process. In vivo infection with virulent MHV3, in comparison to attenuated strains, resulted in fulminant hepatitis associated with higher hepatic viral load, tissue necrosis, and levels of inflammatory mediators and earlier recruitment of inflammatory cells. Such hepatic inflammatory disorders correlated with disturbed production of interleukin-10 (IL-10) and vascular factors by LSECs. We next showed in vitro that infection of LSECs by the virulent MHV3 strain altered their production of anti-inflammatory cytokines and promoted higher release of proinflammatory and procoagulant factors and earlier cell damage than infection by attenuated strains. This higher replication and proinflammatory activation in LSECs by the virulent MHV3 strain was associated with a specific activation of TLR2 signaling by the virus. We provide evidence that TLR2 activation of LSCEs by MHV3 is an aggravating factor of hepatic inflammation and correlates with the severity of hepatitis. Taken together, these results indicate that preservation of the immunotolerant properties of LSECs during acute viral hepatitis is imperative in order to limit hepatic inflammation and damage. IMPORTANCE Viral hepatitis B and C infections are serious health problems affecting over 350 million and 170 million people worldwide, respectively. It has been suggested that a balance between protection and liver damage mediated by the host's immune response during the acute phase of infection would be determinant in hepatitis outcome. Thus, it appears crucial to identify the factors that predispose in exacerbating liver inflammation to limit hepatocyte injury. Liver sinusoidal endothelial cells (LSECs) can express both anti- and proinflammatory functions, but their role in acute viral hepatitis has never been investigated. Using mouse hepatitis virus (MHV) infections as animal models of viral hepatitis, we report for the first time that in vitro and in vivo infection of LSECs by the pathogenic MHV3 serotype leads to a reversion of their intrinsic anti-inflammatory phenotype toward a proinflammatory profile as well to as disorders in vascular factors, correlating with the severity of hepatitis. These results highlight a new virus-promoted mechanism of exacerbation of liver inflammatory response during acute hepatitis.
Collapse
|
34
|
Noel G, Arshad MI, Filliol A, Genet V, Rauch M, Lucas-Clerc C, Lehuen A, Girard JP, Piquet-Pellorce C, Samson M. Ablation of interaction between IL-33 and ST2+ regulatory T cells increases immune cell-mediated hepatitis and activated NK cell liver infiltration. Am J Physiol Gastrointest Liver Physiol 2016; 311:G313-23. [PMID: 27340126 DOI: 10.1152/ajpgi.00097.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/30/2016] [Indexed: 01/31/2023]
Abstract
The IL-33/ST2 axis plays a protective role in T-cell-mediated hepatitis, but little is known about the functional impact of endogenous IL-33 on liver immunopathology. We used IL-33-deficient mice to investigate the functional effect of endogenous IL-33 in concanavalin A (Con A)-hepatitis. IL-33(-/-) mice displayed more severe Con A liver injury than wild-type (WT) mice, consistent with a hepatoprotective effect of IL-33. The more severe hepatic injury in IL-33(-/-) mice was associated with significantly higher levels of TNF-α and IL-1β and a larger number of NK cells infiltrating the liver. The expression of Th2 cytokines (IL-4, IL-10) and IL-17 was not significantly varied between WT and IL-33(-/-) mice following Con A-hepatitis. The percentage of CD25(+) NK cells was significantly higher in the livers of IL-33(-/-) mice than in WT mice in association with upregulated expression of CXCR3 in the liver. Regulatory T cells (Treg cells) strongly infiltrated the liver in both WT and IL-33(-/-) mice, but Con A treatment increased their membrane expression of ST2 and CD25 only in WT mice. In vitro, IL-33 had a significant survival effect, increasing the total number of splenocytes, including B cells, CD4(+) and CD8(+) T cells, and the frequency of ST2(+) Treg cells. In conclusion, IL-33 acts as a potent immune modulator protecting the liver through activation of ST2(+) Treg cells and control of NK cells.
Collapse
Affiliation(s)
- Gregory Noel
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France
| | - Muhammad Imran Arshad
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France
| | - Aveline Filliol
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France
| | - Valentine Genet
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France
| | - Michel Rauch
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France
| | - Catherine Lucas-Clerc
- Université de Rennes 1, Rennes, France; Service de Biochimie CHU Rennes, Université de Rennes 1; Rennes, France
| | - Agnès Lehuen
- Inserm UMRS 1016-CNRS UMR 8104, Institut Cochin, Université Paris, Descartes, France; and
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique (IPBS-CNRS), Université de Toulouse, Toulouse, France
| | - Claire Piquet-Pellorce
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France
| | - Michel Samson
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France;
| |
Collapse
|
35
|
Potential Therapeutic Aspects of Alarmin Cytokine Interleukin 33 or Its Inhibitors in Various Diseases. Clin Ther 2016; 38:1000-1016.e1. [PMID: 26992663 DOI: 10.1016/j.clinthera.2016.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The purpose of this review was to examine the comprehensively accumulated data regarding potential therapeutic aspects of exogenous administration of interleukin 33 (IL-33) or its antagonists in allergic, cancerous, infectious, and inflammatory diseases. METHODS A selected review was undertaken of publications that examined the protective and exacerbating effects of IL-33 or its inhibitors in different diseases. Mechanisms of action are summarized to examine the putative role of IL-33 in various diseases. FINDINGS IL-33 promoted antibacterial, antiviral, anti-inflammatory, and vaccine adjuvant functions. However, in TH2-biased respiratory, allergic, parasitic, and inflammatory conditions, IL-33 exhibited disease-sensitizing effects. The alarmin cytokine IL-33 induced protective effects in diseases via recruitment of regulatory T cells; antiviral CD8(+) cells, natural killer cells, γδ T cells, and nuocytes; antibacterial and antifungal neutrophils or macrophages; vaccine-associated B/T cells; and inhibition of nuclear factor-κB-mediated gene transcription. In contrast, IL-33 exacerbated the disease process by increasing TH2 cytokines, IgE and eosinophilic immune responses, and inhibition of leukocyte recruitment in various diseases. IMPLICATIONS The protective or exacerbated aspects of use of IL-33 or its inhibitors are dependent on the type of infection or inflammatory condition, duration of disease (acute or chronic), organ involved, cytokine microenvironment, dose or kinetics of IL-33, and genetic predisposition. The alarmin cytokine IL-33 acts at cellular, molecular, and transcriptional levels to mediate pluripotent functions in various diseases and has potential therapeutic value to mitigate the disease process.
Collapse
|
36
|
Tosello-Trampont AC, Krueger P, Narayanan S, Landes SG, Leitinger N, Hahn YS. NKp46(+) natural killer cells attenuate metabolism-induced hepatic fibrosis by regulating macrophage activation in mice. Hepatology 2016; 63:799-812. [PMID: 26662852 PMCID: PMC4764418 DOI: 10.1002/hep.28389] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/06/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Nonalcoholic steatohepatitis (NASH) affects 3%-5% of the U.S. population, having severe clinical complications to the development of fibrosis and end-stage liver diseases, such as cirrhosis and hepatocellular carcinoma. A critical cause of NASH is chronic systemic inflammation promoted by innate immune cells, such as liver macrophages (Mϕ) and natural killer (NK) cells. However, little is known about how the crosstalk between Mϕ and NK cells contributes to regulate NASH progression to fibrosis. In this report, we demonstrate that NKp46(+) cells play an important role in preventing NASH progression to fibrosis by regulating M1/M2 polarization of liver Mϕ. Using a murine model of NASH, we demonstrate that DX5(+)NKp46(+) NK cells are increased during disease and play a role in polarizing Mϕ toward M1-like phenotypes. This NK's immunoregulatory function depends on the production of interferon-gamma (IFN-γ), but not by granzyme-mediated cytolytic activity. Notably, depletion of NKp46(+) cells promotes the development of fibrosis with increased expression of profibrogenic genes as well as skewed M2 Mϕ phenotypes in hepatic tissues. CONCLUSIONS NK cell-derived IFN-γ may be essential for maintaining a balanced inflammatory environment that promotes tissue integrity and limiting NASH progression to fibrosis.
Collapse
Affiliation(s)
| | - Peter Krueger
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Sowmya Narayanan
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Susan G. Landes
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Young S. Hahn
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
37
|
Abstract
The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.
Collapse
Affiliation(s)
- Felix Heymann
- Department of Medicine III, RWTH University-Hospital Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH University-Hospital Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| |
Collapse
|
38
|
Morris GF, Danchuk S, Wang Y, Xu B, Rando RJ, Brody AR, Shan B, Sullivan DE. Cigarette smoke represses the innate immune response to asbestos. Physiol Rep 2015; 3:3/12/e12652. [PMID: 26660560 PMCID: PMC4760433 DOI: 10.14814/phy2.12652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Both cigarette smoke (CS) and asbestos cause lung inflammation and lung cancer, and at high asbestos exposure levels, populations exposed to both of these carcinogens display a synergistic increase in the development of lung cancer. The mechanisms through which these two toxic agents interact to promote lung tumorigenesis are poorly understood. Here, we begin to dissect the inflammatory signals induced by asbestos in combination with CS using a rodent inhalation model and in vitro cell culture. Wild‐type C57BL/6 mice were exposed to room air as a control, CS, and/or asbestos (4 days per week to CS and 1 day per week to asbestos for 5 weeks). Bronchoalveolar lavage (BAL) fluid was collected following exposure and analyzed for inflammatory mediators. Asbestos‐exposed mice displayed an increased innate immune response consistent with NLRP3 inflammasome activation. Compared to mice exposed only to asbestos, animals coexposed to CS + asbestos displayed attenuated levels of innate immune mediators and altered inflammatory cell recruitment. Histopathological changes in CS + asbestos‐exposed mice correlated with attenuated fibroproliferative lesion development relative to their counterparts exposed only to asbestos. In vitro experiments using a human monocyte cell line (THP‐1 cells) supported the in vivo results in that coexposure to cigarette smoke extract repressed NLRP3 inflammasome markers in cells treated with asbestos. These observations indicate that CS represses central components of the innate immune response to inhaled asbestos.
Collapse
Affiliation(s)
- Gilbert F Morris
- Departments of Pathology and Laboratory Medicine, Program in Lung Biology, New Orleans, Louisiana
| | - Svitlana Danchuk
- Microbiology and Immunology, Program in Lung Biology, New Orleans, Louisiana
| | - Yu Wang
- Departments of Pathology and Laboratory Medicine, Program in Lung Biology, New Orleans, Louisiana
| | - Beibei Xu
- Departments of Pathology and Laboratory Medicine, Program in Lung Biology, New Orleans, Louisiana
| | - Roy J Rando
- Global Environmental Health Sciences, Tulane University Health Sciences Center Program in Lung Biology, New Orleans, Louisiana
| | - Arnold R Brody
- Departments of Pathology and Laboratory Medicine, Program in Lung Biology, New Orleans, Louisiana
| | - Bin Shan
- College of Medical Sciences, Washington State University Spokane Program in Lung Biology, Spokane, Washington
| | - Deborah E Sullivan
- Microbiology and Immunology, Program in Lung Biology, New Orleans, Louisiana
| |
Collapse
|
39
|
Kiczak L, Wałecka-Zacharska E, Bania J, Sambor I, Stefaniak T, Dzięgiel P, Zacharski M, Tomaszek A, Rybińska I, Pasławska U. Anti-inflammatory properties and expression in selected organs of canine interleukin-1β splice variant 1. Vet Immunol Immunopathol 2015; 167:91-5. [PMID: 26239893 DOI: 10.1016/j.vetimm.2015.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
Abstract
The IL-1β gene can be also be spliced with the intron 4 retention; the result is a IL-1β splice variant 1 (IL-1βsv1), which was significantly up-regulated in failing myocardium of dogs suffering from chronic degenerative valvular disease (CDVD). Expression of IL-1βsv1 was assessed, at both RNA and protein levels, in organs affected by heart failure, namely, kidneys, liver, and lungs from 35 dogs suffering chronic degenerative valvular disease (CDVD) and in 20 disease free control dogs. IL-1βsv1 RNA was detected in the dogs from both groups. In the CDVD group, the highest RNA and protein IL-1βsv1 levels were observed in lungs, followed, in that order, by the liver and kidneys. IL-1βsv1 protein was found in the cytoplasm of hepatocytes and IL-1βsv1-overexpressing DH82 cells. In lungs, IL-1βsv1 was localized in the cytoplasm and in the nuclei of bronchiolar epithelial and smooth-muscle cells. Cytoplasmic and nuclear IL-1βsv1 expression was observed in macrophages, and a strong nuclear signal was detected in epithelial cells of the alveolar sacs. Following lipopolysaccharide (LPS) stimulation, overexpression of IL-1βsv1 in DH82 cells decreased the pro-inflammatory response. Our results indicate that IL-1βsv1 is constitutively expressed in both normal tissues and in tissues from cases of heart failure. The presence of IL-1βsv1 in tissues exposed to invading agents and its anti-inflammatory activity in DH82 cells may point to its immunomodulatory role in vivo.
Collapse
Affiliation(s)
- L Kiczak
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | - E Wałecka-Zacharska
- Department of Food Hygiene and Consumer Protection, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - J Bania
- Department of Food Hygiene and Consumer Protection, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - I Sambor
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - T Stefaniak
- Department of Immunology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - P Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - M Zacharski
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - A Tomaszek
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland; Department of Internal Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - I Rybińska
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - U Pasławska
- Department of Internal Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
40
|
Abstract
Inflammation contributes to the pathogenesis of most acute and chronic liver diseases. Inflammasomes are multiprotein complexes that can sense danger signals from damaged cells and pathogens and assemble to mediate caspase-1 activation, which proteolytically activates the cytokines IL-1β and IL-18. In contrast to other inflammatory responses, inflammasome activation uniquely requires two signals to induce inflammation, therefore setting an increased threshold. IL-1β, generated upon caspase-1 activation, provides positive feed-forward stimulation for inflammatory cytokines, thereby amplifying inflammation. Inflammasome activation has been studied in different human and experimental liver diseases and has been identified as a major contributor to hepatocyte damage, immune cell activation and amplification of liver inflammation. In this Review, we discuss the different types of inflammasomes, their activation and biological functions in the context of liver injury and disease progression. Specifically, we focus on the triggers of inflammasome activation in alcoholic steatohepatitis and NASH, chronic HCV infection, ischaemia-reperfusion injury and paracetamol-induced liver injury. The application and translation of these discoveries into therapies promises novel approaches in the treatment of inflammation in liver disease.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jan Petrasek
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
41
|
Zhao PW, Shi X, Li C, Ayana DA, Niu JQ, Feng JY, Wang J, Jiang YF. IL-33 Enhances Humoral Immunity Against Chronic HBV Infection Through Activating CD4(+)CXCR5(+) TFH Cells. J Interferon Cytokine Res 2015; 35:454-63. [PMID: 25714983 PMCID: PMC4490772 DOI: 10.1089/jir.2013.0122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/07/2014] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the potential effect of interleukin 33 (IL-33) on humoral responses to hepatitis B virus (HBV) and the possible mechanisms underlying the action of IL-33 in regulating follicular helper T (TFH) cells. The impact of IL-33 treatment on the levels of serum HBV DNA, HBsAg, HBeAg, HBsAb, and HBeAb, as well as the frequencies of CD4(+)CXCR5(+) TFH cells in wild-type HBV transgenic (HBV-Tg) mice and in a transwell coculture of HepG2.2.15 with IL-33-treated peripheral blood mononuclear cells (PBMCs) were determined. Furthermore, the gene transcription profiles in IL-33-treated TFH cells were determined by microarrays. IL-33 treatment significantly reduced the levels of serum HBV DNA, HBsAg, and HBeAg, but increased the levels of HBsAb and HBeAb in HBV-Tg mice, accompanied by increased frequency of splenic infiltrating CD4(+)CXCR5(+) TFH cells in HBV-Tg. Similarly, coculture of HepG2.2.15 cells with IL-33-treated PBMCs reduced the levels of HBV DNA, HBsAg, and HBeAg, but increased the levels of HBsAb and HBeAb. Microarray analyses indicated that IL-33 significantly modulated the transcription of many genes involved in regulating TFH activation and differentiation. Our findings suggest that IL-33 may activate TFH cells, promoting humoral responses to HBV during the pathogenic process.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- Coculture Techniques
- Gene Expression Regulation
- Hep G2 Cells
- Hepatitis B Surface Antigens/blood
- Hepatitis B e Antigens/blood
- Hepatitis B virus/immunology
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/pathology
- Hepatitis B, Chronic/virology
- Host-Pathogen Interactions
- Humans
- Immunity, Humoral/drug effects
- Interleukin-33/genetics
- Interleukin-33/immunology
- Interleukin-33/pharmacology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Mice
- Mice, Transgenic
- Receptors, CXCR5/agonists
- Receptors, CXCR5/genetics
- Receptors, CXCR5/immunology
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/virology
Collapse
Affiliation(s)
- Ping-Wei Zhao
- Key Laboratory for Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xu Shi
- Key Laboratory for Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Cong Li
- Key Laboratory for Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | | | - Jun-Qi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Jun-Yan Feng
- Key Laboratory for Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Juan Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yan-Fang Jiang
- Key Laboratory for Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
- Department of Pediatrics, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
42
|
Arshad MI, Piquet-Pellorce C, Filliol A, L'Helgoualc'h A, Lucas-Clerc C, Jouan-Lanhouet S, Dimanche-Boitrel MT, Samson M. The chemical inhibitors of cellular death, PJ34 and Necrostatin-1, down-regulate IL-33 expression in liver. J Mol Med (Berl) 2015; 93:867-78. [PMID: 25747661 DOI: 10.1007/s00109-015-1270-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED Interleukin-33 (IL-33), a cytokine belonging to the IL-1 family, is crucially involved in inflammatory pathologies including liver injury and linked to various modes of cell death. However, a link between IL-33 and necroptosis or programmed necrosis in liver pathology remains elusive. We aimed to investigate the regulation of IL-33 during necroptosis-associated liver injury. The possible regulation of IL-33 during liver injury by receptor-interacting protein kinase 1 (RIPK1) and poly(ADP-ribose) polymerase 1 (PARP-1) was investigated in mice in vivo and in hepatic stellate cells in vitro. The liver immunohistopathology, flow cytometry, serum transaminase measurement, ELISA, and qPCR-based cytokine measurement were carried out. By using a chemical approach, we showed that pretreatment of mice with Necrostatin-1 (Nec-1) (inhibitor of RIPK1) and/or PJ34 (inhibitor of PARP-1) significantly protected mice against concanavalin A (ConA) liver injury (aspartate amino-transferase (AST)/alanine amino-transferase (ALT)) associated with down-regulated hepatocyte-specific IL-33 expression. In contrast, the expression level of most systemic cytokines (except for IL-6) or activation of liver immune cells was not altered by chemical inhibitors rather an increased infiltration of neutrophils in the liver. During polyinosine-polycytidylic acid (Poly(I:C))-induced acute hepatitis, liver injury and hepatocyte-specific IL-33 expression was also inhibited by PJ34 without any protective effect of PJ34 in CCl4-induced liver injury. Moreover, PJ34 down-regulated the protein expression of IL-33 in activated hepatic stellate cells by cocktail of cytokines or staurosporine in vitro. In conclusion, we evidenced that the Nec-1/PJ34 is a potent inhibitor of liver injury and Nec-1/PJ34 down-regulated hepatocyte-specific IL-33 expression in the liver in vivo or in hepatic stellate cells in vitro, suggesting IL-33 as a possible readout of necroptosis-involved liver pathologies. KEY MESSAGE Necroptosis inhibitors can protect mice against liver injury induced by ConA or Poly(I:C). IL-33 expression in liver injury in vivo is inhibited by PJ34. IL-33 expression in hepatic stellate cells in vitro is inhibited by PJ34. Hepatocyte-specific IL-33 expression is down-regulated by Nec-1/PJ34 during hepatitis. IL-33 is a new marker of necroptosis-associated liver injuries.
Collapse
Affiliation(s)
- Muhammad Imran Arshad
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement and Travail (IRSET), 35043, Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Increased levels of soluble ST2 in patients with active newly diagnosed ANCA-associated vasculitis. Mediators Inflamm 2015; 2015:603750. [PMID: 25802482 PMCID: PMC4352904 DOI: 10.1155/2015/603750] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE ST2, a member of the interleukin-1 receptor family, is selectively expressed on Th2 cells and mediates important Th2 functions. IL-33 is a specific ligand of ST2. The aim of the study was to determine whether serum levels of soluble ST2 (sST2) or IL-33 predict activity of the disease in patients with ANCA-associated vasculitides (AAV). METHODS 139 AAV patients and 62 controls were studied. IL-33 and sST2 in the blood were measured with a commercially available ELISA. RESULTS Newly diagnosed AAV patients had higher sST2 levels than controls (P < 0.01). Levels of sST2 were significantly higher in active newly diagnosed AAV patients than in patients with remission (P < 0.001). IL-33 levels were higher in AAV patients than in the control groups (P = 0.002). However, serum IL-33 levels were not increased in patients with active AAV compared to patients in remission. IL-33 levels were higher in patients with granulomatosis with polyangiitis than in patients with microscopic polyangiitis (P = 0.012). CONCLUSIONS Serum sST2, but not serum IL-33, may be a marker of activity in AAV patients.
Collapse
|
44
|
Crucial and diverse role of the interleukin-33/ST2 axis in infectious diseases. Infect Immun 2015; 83:1738-48. [PMID: 25712928 DOI: 10.1128/iai.02908-14] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Interleukin-33 (IL-33) has now emerged as a cytokine with diverse and pleiotropic functions in various infectious and inflammatory diseases. IL-33 is expressed by epithelial cells, endothelial cells, fibroblasts, and hepatocytes. The target cells of IL-33 are Th2 cells, basophils, dendritic cells, mast cells, macrophages, NKT cells, and nuocytes, newly discovered natural helper cells/innate lymphoid cells bearing the ST2 receptor. IL-33 has dual functions, both as a traditional cytokine and as a nuclear factor that regulates gene transcription. IL-33 functions as an "alarmin" released following cell death, as a biomarker, and as a vaccine adjuvant, with proinflammatory and protective effects during various infections. The exacerbated or protective role of the IL-33/ST2 axis during different infections is dependent upon the organ involved, type of infectious agent, whether the infection is acute or chronic, the invasiveness of the infectious agent, the host immune compartment, and cellular and cytokine microenvironments. In this review, we focus on recent advances in the understanding of the role of the IL-33/ST2 axis in various viral, bacterial, fungal, helminth, and protozoal infectious diseases gained from animal models and studies in human patients. The functional role of IL-33 and ST2 during experimentally induced infections has been summarized by accumulating the data for IL-33- and ST2-deficient mice or for mice exogenously administered IL-33. In summary, exploring the crucial and diverse roles of the IL-33/ST2 axis during infections may help in the development of therapeutic interventions for a wide range of infectious diseases.
Collapse
|
45
|
Buzzelli JN, Chalinor HV, Pavlic DI, Sutton P, Menheniott TR, Giraud AS, Judd LM. IL33 Is a Stomach Alarmin That Initiates a Skewed Th2 Response to Injury and Infection. Cell Mol Gastroenterol Hepatol 2015; 1:203-221.e3. [PMID: 28210674 PMCID: PMC5301136 DOI: 10.1016/j.jcmgh.2014.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/13/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Interleukin (IL)33 is a recently described alarmin that is highly expressed in the gastric mucosa and potently activates Th2 immunity. It may play a pivotal role during Helicobacter pylori infection. Here, we delineate the role of IL33 in the normal gastric mucosa and in response to gastropathy. METHODS IL33 expression was evaluated in mice and human biopsy specimens infected with H pylori and in mice after dosing with aspirin. IL33 expression was localized in the gastric mucosa using immunofluorescence. Mice were given 1 or 7 daily doses of recombinant IL33 (1 μg/dose), and the stomach and the spleen responses were quantified morphologically, by flow cytometry and using quantitative reverse-transcription polymerase chain reaction and immunoblotting. RESULTS In mice, the IL33 protein was localized to the nucleus of a subpopulation of surface mucus cells, and co-localized with the surface mucus cell markers Ulex Europaeus 1 (UEA1), and Mucin 5AC (Muc5AC). A small proportion of IL33-positive epithelial cells also were Ki-67 positive. IL33 and its receptor Interleukin 1 receptor-like 1 (ST2) were increased 4-fold after acute (1-day) H pylori infection, however, this increase was not apparent after 7 days and IL33 expression was reduced 2-fold after 2 months. Similarly, human biopsy specimens positive for H pylori had a reduced IL33 expression. Chronic IL33 treatment in mice caused systemic activation of innate lymphoid cell 2 and polarization of macrophages to the M2 phenotype. In the stomach, IL33-treated mice developed transmural inflammation and mucous metaplasia that was mediated by Th2/signal transducer and activator of transcription 3 signaling. Rag-1-/- mice, lacking mature lymphocytes, were protected from IL33-induced gastric pathology. CONCLUSIONS IL33 is highly expressed in the gastric mucosa and promotes the activation of T helper 2-cytokine-expressing cells. The loss of IL33 expression after prolonged H pylori infection may be permissive for the T helper 1-biased immune response observed during H pylori infection and subsequent precancerous progression.
Collapse
Key Words
- AB, Alcian blue
- DC, dendritic cell
- ELISA, enzyme-linked immunosorbent assay
- ERK, extracellular signal–regulated kinase
- FBS, fetal bovine serum
- Gastric Cancer
- HBSS, Hank’s balanced salt solution
- Helicobacter pylori
- IL, interleukin
- IL33
- ILC, innate lymphoid cell
- Inflammatory Response
- NF-κB, nuclear factor-κB
- PAS, periodic acid–Schiff
- PCR, polymerase chain reaction
- QRT-PCR, quantitative reverse-transcription polymerase chain reaction
- SMC, surface mucus cells
- SPF, specific pathogen free
- SS1, Sydney strain 1
- STAT, signal transducer and activator of transcription
- TFF, trefoil factor
- Th, T-helper
- WT, wild type
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Jon N. Buzzelli
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia,Department of Paediatrics, Royal Children’s Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Heather V. Chalinor
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Daniel I. Pavlic
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Philip Sutton
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia,Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | - Trevelyan R. Menheniott
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Andrew S. Giraud
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia,Department of Paediatrics, Royal Children’s Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Louise M. Judd
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia,Department of Paediatrics, Royal Children’s Hospital, University of Melbourne, Parkville, Victoria, Australia,Correspondence Address correspondence to: Louise Judd, PhD, Royal Children’s Hospital–Murdoch Children’s Research Institute, Gastrointestinal Research in Inflammation and Pathology, Royal Children’s Hospital, Flemington Road, Parkville, Victoria, Australia 3052. fax: (61) 3-9936-6528.
| |
Collapse
|
46
|
High-mobility group box 1 (HMGB1) impaired cardiac excitation–contraction coupling by enhancing the sarcoplasmic reticulum (SR) Ca2+ leak through TLR4–ROS signaling in cardiomyocytes. J Mol Cell Cardiol 2014; 74:260-73. [DOI: 10.1016/j.yjmcc.2014.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/04/2014] [Accepted: 06/08/2014] [Indexed: 10/25/2022]
|
47
|
Alisi A, Nobili V, Ceccarelli S, Panera N, De Stefanis C, De Vito R, Vitali R, Bedogni G, Balsano C, Cucchiara S, Stronati L. Plasma high mobility group box 1 protein reflects fibrosis in pediatric nonalcoholic fatty liver disease. Expert Rev Mol Diagn 2014; 14:763-71. [DOI: 10.1586/14737159.2014.928205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Chen XJ, Huang YD, Li N, Chen M, Liu F, Pu D, Zhou TY. Correlations Between Serum IL33 and Tumor Development: a Meta-analysis. Asian Pac J Cancer Prev 2014; 15:3503-5. [DOI: 10.7314/apjcp.2014.15.8.3503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
49
|
Yu SL, Wong CK, Tam LS. The alarmin functions of high-mobility group box-1 and IL-33 in the pathogenesis of systemic lupus erythematosus. Expert Rev Clin Immunol 2014; 9:739-49. [PMID: 23971752 DOI: 10.1586/1744666x.2013.814428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
'Alarmins' are a group of endogenous proteins or molecules that are released from cells during cellular demise to alert the host innate immune system. Two of them, high-mobility group box-1 (HMGB1) and IL-33 shared many similarities of cellular localization, functions and involvement in various inflammatory diseases including systemic lupus erythematosus (SLE). The expressions of HMGB1 and IL-33, and their corresponding receptors RAGE (receptor for advanced glycation end products) and ST2, respectively, are substantially upregulated in patients with lupus nephritis (LN). This review highlights the emerging roles of alarmin proteins in various pathologies of LN, by focusing on classical HMGB1 and a newly discovered alarmin IL-33.
Collapse
Affiliation(s)
- Shui-Lian Yu
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | | |
Collapse
|
50
|
Li J, Wang FP, She WM, Yang CQ, Li L, Tu CT, Wang JY, Jiang W. Enhanced high-mobility group box 1 (HMGB1) modulates regulatory T cells (Treg)/T helper 17 (Th17) balance via toll-like receptor (TLR)-4-interleukin (IL)-6 pathway in patients with chronic hepatitis B. J Viral Hepat 2014; 21:129-40. [PMID: 24383926 DOI: 10.1111/jvh.12152] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/03/2013] [Indexed: 12/12/2022]
Abstract
High-mobility group box 1 (HMGB1) proteins are substantially up-regulated in acute and chronic hepatitis. However, the immunopathogenic role of HMGB1 in patients with chronic hepatitis B (CHB) has not been elucidated. In this study, using a cohort of 36 CHB patients, we demonstrated a crucial role for HMGB1 to modulate balance between regulatory T (Treg) and T helper 17 (Th17) cells via the toll-like receptor (TLR)-4-interleukin (IL)-6 pathway. Serum HMGB1 levels were dramatically higher in CHB patients and increased along with liver injury, inflammation and fibrosis. Notably, HMGB1 increased along with decreased Treg/Th17 cells ratios in the periphery or intrahepatic microenvironment, which provides a clue for HMGB1 to favour Th17 responses whereas inhibit Treg responses. For in vitro studies, serum pools were constructed with serum from CHB patients at an advanced stage, whereas peripheral blood mononuclear cells (PBMC) pools were constructed with cells from those at an early stage. CHB-serum significantly enhanced retinoic acid-related orphan receptor-γt (RORγt), whereas they inhibited forkhead box P3 (Foxp3) expression in CHB-PBMC, which could be reversed by blocking of HMGB1, TLR4, or IL-6. Besides, recombinant HMGB1 (rHMGB1) dose-dependently up-regulated RORγt whereas down-regulated Foxp3 expression in CHB-PBMC, and meanwhile, rHMGB1 enhanced TLR4 and IL-6 expression in CHB-PBMC. Moreover, the axis of HMGB1-TLR4-IL-6-Treg/Th17 required noncontact interactions between CD4 and non-CD4 cells. In addition, rHMGB1 down-regulated anti-inflammatory proteins on CD4(+) CD25(+) cells whereas up-regulated pro-inflammatory cytokines in CD4(+) CD25(-) cells. In summary, enriched HMGB1 in CHB patients shifts Treg/Th17 balance to Th17 dominance via the TLR4-IL-6 pathway, which exacerbates liver injury and inflammation.
Collapse
Affiliation(s)
- J Li
- Department of Gastroenterology, Tongji Hospital, Tongji University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|