1
|
Mungara P, Waiss M, Hartwig S, Burger D, Cordat E. Unraveling the molecular landscape of kAE1: a narrative review. Can J Physiol Pharmacol 2024; 102:396-407. [PMID: 38669699 DOI: 10.1139/cjpp-2023-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Kidney anion exchanger 1 (kAE1) is an isoform of the AE1 protein encoded by the SLC4A1 gene. It is a basolateral membrane protein expressed by α-intercalated cells in the connecting tubules and collecting duct of the kidney. Its main function is to exchange bicarbonate and chloride ions between the blood and urine to maintain blood pH at physiological threshold. The kAE1 protein undergoes multiple post-translational modifications such as phosphorylation and ubiquitination and interacts with many different proteins such as claudin-4 and carbonic anhydrase II. Mutations in the gene may lead to the development of distal renal tubular acidosis, characterized by the failure to acidify the urine, which may result in nephrocalcinosis and in more severe cases, renal failure. In this review, we discuss the structure and function of kAE1, its post-translational modifications, and protein-protein interactions. Finally, we discuss insights gained from the study of kAE1 mutations in humans and in mice.
Collapse
Affiliation(s)
- Priyanka Mungara
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Moubarak Waiss
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sunny Hartwig
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Dylan Burger
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Kidney Research Centre, Ottawa, ON, Canada
| | - Emmanuelle Cordat
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Hodeify R, Kreydiyyeh S, Zaid LMJ. Identified and potential internalization signals involved in trafficking and regulation of Na +/K + ATPase activity. Mol Cell Biochem 2024; 479:1583-1598. [PMID: 37634170 PMCID: PMC11254989 DOI: 10.1007/s11010-023-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
The sodium-potassium pump (NKA) or Na+/K+ ATPase consumes around 30-40% of the total energy expenditure of the animal cell on the generation of the sodium and potassium electrochemical gradients that regulate various electrolyte and nutrient transport processes. The vital role of this protein entails proper spatial and temporal regulation of its activity through modulatory mechanisms involving its expression, localization, enzymatic activity, and protein-protein interactions. The residence of the NKA at the plasma membrane is compulsory for its action as an antiporter. Despite the huge body of literature reporting on its trafficking between the cell membrane and intracellular compartments, the mechanisms controlling the trafficking process are by far the least understood. Among the molecular determinants of the plasma membrane proteins trafficking are intrinsic sequence-based endocytic motifs. In this review, we (i) summarize previous reports linking the regulation of Na+/K+ ATPase trafficking and/or plasma membrane residence to its activity, with particular emphasis on the endocytic signals in the Na+/K+ ATPase alpha-subunit, (ii) map additional potential internalization signals within Na+/K+ ATPase catalytic alpha-subunit, based on canonical and noncanonical endocytic motifs reported in the literature, (iii) pinpoint known and potential phosphorylation sites associated with NKA trafficking, (iv) highlight our recent studies on Na+/K+ ATPase trafficking and PGE2-mediated Na+/K+ ATPase modulation in intestine, liver, and kidney cells.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates.
| | - Sawsan Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Leen Mohammad Jamal Zaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
3
|
Tejeda-Muñoz N, Azbazdar Y, Sosa EA, Monka J, Wei PS, Binder G, Mei KC, Kurmangaliyev YZ, De Robertis EM. Na,K-ATPase activity promotes macropinocytosis in colon cancer via Wnt signaling. Biol Open 2024; 13:bio060269. [PMID: 38713004 PMCID: PMC11139033 DOI: 10.1242/bio.060269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Recent research has shown that membrane trafficking plays an important role in canonical Wnt signaling through sequestration of the β-catenin destruction complex inside multivesicular bodies (MVBs) and lysosomes. In this study, we introduce Ouabain, an inhibitor of the Na,K-ATPase pump that establishes electric potentials across membranes, as a potent inhibitor of Wnt signaling. We find that Na,K-ATPase levels are elevated in advanced colon carcinoma, that this enzyme is elevated in cancer cells with constitutively activated Wnt pathway and is activated by GSK3 inhibitors that increase macropinocytosis. Ouabain blocks macropinocytosis, which is an essential step in Wnt signaling, probably explaining the strong effects of Ouabain on this pathway. In Xenopus embryos, brief Ouabain treatment at the 32-cell stage, critical for the earliest Wnt signal in development-inhibited brains, could be reversed by treatment with Lithium chloride, a Wnt mimic. Inhibiting membrane trafficking may provide a way of targeting Wnt-driven cancers.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Eric A. Sosa
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Pu-Sheng Wei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Binghamton, Johnson City, NY 13790, USA
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Kuo-Ching Mei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Binghamton, Johnson City, NY 13790, USA
| | | | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| |
Collapse
|
4
|
Carullo N, Fabiano G, D'Agostino M, Zicarelli MT, Musolino M, Presta P, Michael A, Andreucci M, Bolignano D, Coppolino G. New Insights on the Role of Marinobufagenin from Bench to Bedside in Cardiovascular and Kidney Diseases. Int J Mol Sci 2023; 24:11186. [PMID: 37446363 DOI: 10.3390/ijms241311186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Marinobufagenin (MBG) is a member of the bufadienolide family of compounds, which are natural cardiac glycosides found in a variety of animal species, including man, which have different physiological and biochemical functions but have a common action on the inhibition of the adenosine triphosphatase sodium-potassium pump (Na+/K+-ATPase). MBG acts as an endogenous cardiotonic steroid, and in the last decade, its role as a pathogenic factor in various human diseases has emerged. In this paper, we have collated major evidence regarding the biological characteristics and functions of MBG and its implications in human pathology. This review focused on MBG involvement in chronic kidney disease, including end-stage renal disease, cardiovascular diseases, sex and gender medicine, and its actions on the nervous and immune systems. The role of MBG in pathogenesis and the development of a wide range of pathological conditions indicate that this endogenous peptide could be used in the future as a diagnostic biomarker and/or therapeutic target, opening important avenues of scientific research.
Collapse
Affiliation(s)
- Nazareno Carullo
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Fabiano
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Mario D'Agostino
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Michela Musolino
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Pierangela Presta
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Ashour Michael
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Andreucci
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Davide Bolignano
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Coppolino
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Baloglu E. Hypoxic Stress-Dependent Regulation of Na,K-ATPase in Ischemic Heart Disease. Int J Mol Sci 2023; 24:ijms24097855. [PMID: 37175562 PMCID: PMC10177966 DOI: 10.3390/ijms24097855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
In cardiomyocytes, regular activity of the Na,K-ATPase (NKA) and its Na/K pump activity is essential for maintaining ion gradients, excitability, propagation of action potentials, electro-mechanical coupling, trans-membrane Na+ and Ca2+ gradients and, thus, contractility. The activity of NKA is impaired in ischemic heart disease and heart failure, which has been attributed to decreased expression of the NKA subunits. Decreased NKA activity leads to intracellular Na+ and Ca2+ overload, diastolic dysfunction and arrhythmias. One signal likely related to these events is hypoxia, where hypoxia-inducible factors (HIF) play a critical role in the adaptation of cells to low oxygen tension. HIF activity increases in ischemic heart, hypertension, heart failure and cardiac fibrosis; thus, it might contribute to the impaired function of NKA. This review will mainly focus on the regulation of NKA in ischemic heart disease in the context of stressed myocardium and the hypoxia-HIF axis and argue on possible consequences of treatment.
Collapse
Affiliation(s)
- Emel Baloglu
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
6
|
Mukherji ST, Brambilla L, Stuart KB, Mayes I, Kutz LC, Chen Y, Barbosa LA, Elmadbouh I, McDermott JP, Haller ST, Romero MF, Soleimani M, Liu J, Shapiro JI, Blanco GV, Xie Z, Pierre SV. Na/K-ATPase signaling tonically inhibits sodium reabsorption in the renal proximal tubule. FASEB J 2023; 37:e22835. [PMID: 36856735 PMCID: PMC10028530 DOI: 10.1096/fj.202200785rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
Through its classic ATP-dependent ion-pumping function, basolateral Na/K-ATPase (NKA) generates the Na+ gradient that drives apical Na+ reabsorption in the renal proximal tubule (RPT), primarily through the Na+ /H+ exchanger (NHE3). Accordingly, activation of NKA-mediated ion transport decreases natriuresis through activation of basolateral (NKA) and apical (NHE3) Na+ reabsorption. In contrast, activation of the more recently discovered NKA signaling function triggers cellular redistribution of RPT NKA and NHE3 and decreases Na+ reabsorption. We used gene targeting to test the respective contributions of NKA signaling and ion pumping to the overall regulation of RPT Na+ reabsorption. Knockdown of RPT NKA in cells and mice increased membrane NHE3 and Na+ /HCO3 - cotransporter (NBCe1A). Urine output and absolute Na+ excretion decreased by 65%, driven by increased RPT Na+ reabsorption (as indicated by decreased lithium clearance and unchanged glomerular filtration rate), and accompanied by elevated blood pressure. This hyper reabsorptive phenotype was rescued upon crossing with RPT NHE3-/- mice, confirming the importance of NKA/NHE3 coupling. Hence, NKA signaling exerts a tonic inhibition on Na+ reabsorption by regulating key apical and basolateral Na+ transporters. This action, lifted upon NKA genetic suppression, tonically counteracts NKA's ATP-driven function of basolateral Na+ reabsorption. Strikingly, NKA signaling is not only physiologically relevant but it also appears to be functionally dominant over NKA ion pumping in the control of RPT reabsorption.
Collapse
Affiliation(s)
- Shreya T. Mukherji
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Luca Brambilla
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Kailey B. Stuart
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Isabella Mayes
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Laura C. Kutz
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Yiliang Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Blood Research Institute, Versiti, WI
| | - Leandro A Barbosa
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Ibrahim Elmadbouh
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Jeff P. McDermott
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Steven T. Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Michael F. Romero
- Physiology & Biomedical Engineering and Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, Rochester, MN
| | - Manoocher Soleimani
- Department of Medicine, The University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Jiang Liu
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Gustavo V. Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| |
Collapse
|
7
|
Liu J, Tian J, Sodhi K, Shapiro JI. The Na/K-ATPase Signaling and SGLT2 Inhibitor-Mediated Cardiorenal Protection: A Crossed Road? J Membr Biol 2021; 254:513-529. [PMID: 34297135 PMCID: PMC8595165 DOI: 10.1007/s00232-021-00192-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
In different large-scale clinic outcome trials, sodium (Na+)/glucose co-transporter 2 (SGLT2) inhibitors showed profound cardiac- and renal-protective effects, making them revolutionary treatments for heart failure and kidney disease. Different theories are proposed according to the emerging protective effects other than the original purpose of glucose-lowering in diabetic patients. As the ATP-dependent primary ion transporter providing the Na+ gradient to drive other Na+-dependent transporters, the possible role of the sodium–potassium adenosine triphosphatase (Na/K-ATPase) as the primary ion transporter and its signaling function is not explored.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Biomedical Sciences, JCE School of Medicine, Marshall University, Huntington, WV, USA.
| | - Jiang Tian
- Department of Biomedical Sciences, JCE School of Medicine, Marshall University, Huntington, WV, USA
| | - Komal Sodhi
- Department of Surgery, JCE School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Departments of Medicine, JCE School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
8
|
Banerjee M, Li Z, Gao Y, Lai F, Huang M, Zhang Z, Cai L, Sanabria J, Gao T, Xie Z, Pierre SV. Inverse agonism at the Na/K-ATPase receptor reverses EMT in prostate cancer cells. Prostate 2021; 81:667-682. [PMID: 33956349 PMCID: PMC10071553 DOI: 10.1002/pros.24144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
The surface expression of Na/K-ATPase α1 (NKA) is significantly reduced in primary prostate tumors and further decreased in bone metastatic lesions. Here, we show that the loss of cell surface expression of NKA induces epithelial-mesenchymal transition (EMT) and promotes metastatic potential and tumor growth of prostate cancer (PCa) by decreasing the expression of E-cadherin and increasing c-Myc expression via the activation of Src/FAK pathways. Mechanistically, reduced surface expression of NKA in PCa is due to increased endocytosis through the activation of NKA/Src receptor complex. Using a high-throughput NKA ligand-screening platform, we have discovered MB5 as an inverse agonist of the NKA/Src receptor complex, capable of blocking the endocytosis of NKA. MB5 treatment increased NKA expression and E-cadherin in PCa cells, which reversed EMT and consequently decreased the invasion and growth of spheroid models and tumor xenografts. Thus, we have identified a hitherto unrecognized mechanism that regulates EMT and invasiveness of PCa and demonstrated for the first time the feasibility of identifying inverse agonists of receptor NKA/Src complex and their potential utility as anticancer drugs. We, therefore, conclude that cell surface expression of α1 NKA can be targeted for the development of new therapeutics against aggressive PCa and that MB5 may serve as a prototype for drug development against EMT in metastatic PCa.
Collapse
Affiliation(s)
- Moumita Banerjee
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
| | - Zhichuan Li
- Department of Physiology, Pharmacology, and Medicine, University of Toledo Health Science Campus, Toledo, Ohio, USA
| | - Yingnyu Gao
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
- Institute of Edible Fungi, Shanghai Academy of Agriculture Science, Shanghai, China
| | - Fangfang Lai
- Department of Physiology, Pharmacology, and Medicine, University of Toledo Health Science Campus, Toledo, Ohio, USA
- Institute of Materia Medica, Peking Union Medical College, Beijing, China
| | - Minqi Huang
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
| | - Zhongbing Zhang
- Department of Physiology, Pharmacology, and Medicine, University of Toledo Health Science Campus, Toledo, Ohio, USA
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
| | - Juan Sanabria
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
- Department of Surgery, Joan Edwards School of Medicine Marshall University, Huntington, West Virginia, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
| |
Collapse
|
9
|
Du J, Jiang L, Chen F, Hu H, Zhou M. Cardiac Glycoside Ouabain Exerts Anticancer Activity via Downregulation of STAT3. Front Oncol 2021; 11:684316. [PMID: 34277430 PMCID: PMC8279743 DOI: 10.3389/fonc.2021.684316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiac glycosides are plant-derived steroid-like compounds which have been used for the treatment of cardiovascular diseases. Ouabain, a cardiotonic steroid and specific Na+/K+-ATPase inhibitor, has been rediscovered for its potential use in the treatment of cancer. However, the cellular targets and anticancer mechanism of ouabain in various cancers remain largely unexplored. In this study, we confirmed the cytotoxic effects of ouabain on several cancer cell lines. Further examination revealed the increase of apoptosis, intracellular ROS generation and DNA double-strand breaks induced by ouabain treatment. Besides, ouabain effectively suppressed STAT3 expression as well as phosphorylation in addition to block STAT3-mediated transcription and downstream target proteins. Interestingly, these inhibitory activities seemed to be independent of the Na+/K+-ATPase. Furthermore, we found that ouabain inhibited protein synthesis through regulation of the eukaryotic initiation factor 4E (eIF4E) and eIF4E binding protein 1 (4EBP1). Taken together, our study provided a novel molecular insight of anticancer activities of ouabain in human cancer cells, which could raise the hope of using cardiac glycosides for cancer therapeutics more rational.
Collapse
Affiliation(s)
- Jie Du
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China.,Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijun Jiang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fuqiang Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huantao Hu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Wang J, Wang X, Gao Y, Lin Z, Chen J, Gigantelli J, Shapiro JI, Xie Z, Pierre SV. Stress Signal Regulation by Na/K-ATPase As a New Approach to Promote Physiological Revascularization in a Mouse Model of Ischemic Retinopathy. Invest Ophthalmol Vis Sci 2021; 61:9. [PMID: 33275652 PMCID: PMC7718810 DOI: 10.1167/iovs.61.14.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The identification of target pathways to block excessive angiogenesis while simultaneously restoring physiological vasculature is an unmet goal in the therapeutic management of ischemic retinopathies. pNaKtide, a cell-permeable peptide that we have designed by mapping the site of α1 Na/K-ATPase (NKA)/Src binding, blocks the formation of α1 NKA/Src/reactive oxygen species (ROS) amplification loops and restores physiological ROS signaling in a number of oxidative disease models. The aim of this study was to evaluate the importance of the NKA/Src/ROS amplification loop and the effect of pNaKtide in experimental ischemic retinopathy. Methods Human retinal microvascular endothelial cells (HRMECs) and retinal pigment epithelium (ARPE-19) cells were used to evaluate the effect of pNaKtide on viability, proliferation, and angiogenesis. Retinal toxicity and distribution were assessed in those cells and in the mouse. Subsequently, the role and molecular mechanism of NKA/Src in ROS stress signaling were evaluated biochemically in the retinas of mice exposed to the well-established protocol of oxygen-induced retinopathy (OIR). Finally, pNaKtide efficacy was assessed in this model. Results The results suggest a key role of α1 NKA in the regulation of ROS stress and the Nrf2 pathway in mouse OIR retinas. Inhibition of α1 NKA/Src by pNaKtide reduced pathologic ROS signaling and restored normal expression of hypoxia-inducible factor 1-α/vascular endothelial growth factor (VEGF). Unlike anti-VEGF agents, pNaKtide did promote retinal revascularization while inhibiting neovascularization and inflammation. Conclusions Targeting α1 NKA represents a novel strategy to develop therapeutics that not only inhibit neovascularization but also promote physiological revascularization in ischemic eye diseases.
Collapse
Affiliation(s)
- Jiayan Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States.,Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States.,Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Yingnyu Gao
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Zhucheng Lin
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - James Gigantelli
- Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Joseph I Shapiro
- Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| |
Collapse
|
11
|
Xu Y, Marck P, Huang M, Xie JX, Wang T, Shapiro JI, Cai L, Feng F, Xie Z. Biased Effect of Cardiotonic Steroids on Na/K-ATPase-Mediated Signal Transduction. Mol Pharmacol 2021; 99:217-225. [PMID: 33495275 DOI: 10.1124/molpharm.120.000101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/24/2020] [Indexed: 01/13/2023] Open
Abstract
Recent studies have revealed that Na/K-ATPase (NKA) can transmit signals through ion-pumping-independent activation of pathways relayed by distinct intracellular protein/lipid kinases, and endocytosis challenges the traditional definition that cardiotonic steroids (CTS) are NKA inhibitors. Although additional effects of CTS have long been suspected, revealing its agonist impact through the NKA receptor could be a novel mechanism in understanding the basic biology of NKA. In this study, we tested whether different structural CTS could trigger different sets of NKA/effector interactions, resulting in biased signaling responses without compromising ion-pumping capacity. Using purified NKA, we found that ouabain, digitoxigenin, and somalin cause comparable levels of NKA inhibition. However, although endogenous ouabain stimulates both protein kinases and NKA endocytosis, digitoxigenin and somalin bias to protein kinases and endocytosis, respectively, in LLC-PK1 cells. The positive inotropic effects of CTS are traditionally regarded as NKA inhibitors. However, CTS-induced signaling occurs at concentrations at least one order of magnitude lower than that of inotropy, which eliminates their well known toxic actions on the heart. The current study adds a novel mechanism that CTS could exert its biased signaling properties through the NKA signal transducer. SIGNIFICANCE STATEMENT: Although it is now well accepted that NKA has an ion-pumping-independent signaling function, it is still debated whether direct and conformation-dependent NKA/effector interaction is a key to this function. Therefore, this investigation is significant in advancing our understanding of the basic biology of NKA-mediated signal transduction and gaining molecular insight into the structural elements that are important for cardiotonic steroid's biased action.
Collapse
Affiliation(s)
- Yunhui Xu
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Pauline Marck
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Minqi Huang
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Jeffrey X Xie
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Tong Wang
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Joseph I Shapiro
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Feng Feng
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| |
Collapse
|
12
|
Xu Y, Jiang X, Xu J, Qu W, Xie Z, Jiang RW, Feng F. A previously undescribed phenylethanoid glycoside from Callicarpa kwangtungensis Chun acts as an agonist of the Na/K-ATPase signal transduction pathway. PHYTOCHEMISTRY 2021; 181:112577. [PMID: 33190100 DOI: 10.1016/j.phytochem.2020.112577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
The new concept that Na/K-ATPase acts as a receptor prompted us to look for new ligands from Callicarpa kwangtungensis Chun. Using column chromatography, an undescribed phenethyl alcohol glycoside, callicarpanoside A, and an undescribed benzyl alcohol glycoside, callicarpanoside B, along with twelve known polyphenols were isolated from Callicarpa kwangtungensis Chun. All the isolated compounds were evaluated for their Na/K-ATPase (NKA) inhibitory activities. Using our NKA technology platform-based screening assay protocols, callicarpanoside B was identified as an undescribed Na/K-ATPase agonist. In particular, the newly identified benzyl alcohol glycoside was found to bind NKA and activate the receptor NKA/Src complex, resulting in the activation of protein kinase cascades. These cascades included extracellular signal-regulated kinases and protein kinase C epsilon, as well as NKA α1 endocytosis at nanomolar concentrations. Unlike the class of cardiotonic steroids, callicarpanoside B showed less inhibition of NKA activity and caused less cellular toxicity. Moreover, callicarpanoside B was found to bind NKA at a different site other than the cardiotonic steroids binding site. Thus, we have identified an undescribed NKA α1 agonist that may be used to enhance the physiological processes of NKA α1 signaling.
Collapse
Affiliation(s)
- Yunhui Xu
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, 25701, United States
| | - Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, PR China
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, PR China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, PR China
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, 25701, United States
| | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, PR China.
| |
Collapse
|
13
|
Maxwell KD, Chuang J, Chaudhry M, Nie Y, Bai F, Sodhi K, Liu J, Shapiro JI. The potential role of Na-K-ATPase and its signaling in the development of anemia in chronic kidney disease. Am J Physiol Renal Physiol 2020; 320:F234-F242. [PMID: 33356956 DOI: 10.1152/ajprenal.00244.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the most prominent diseases affecting our population today. According to the Factsheet published by Centers for Disease Control and Prevention (CDC), it effects approximately 15% of the total population in the United States in some way, shape, or form. Within the myriad of symptomatology associated with CKD, one of the most prevalent factors in terms of affecting quality of life is anemia. Anemia of CKD cannot be completely attributed to one mechanism or cause, but rather has a multifactorial origin in the pathophysiology of CKD. While briefly summarizing well-documented risk factors, this review, as a hypothesis, aims to explore the possible role of Na-K-ATPase and its signaling function [especially recent identified reactive oxygen species (ROS) amplification function] in the interwoven mechanisms of development of the anemia of CKD.
Collapse
Affiliation(s)
- Kyle D Maxwell
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Justin Chuang
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Muhammad Chaudhry
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Ying Nie
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Fang Bai
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Komal Sodhi
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia.,Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Jiang Liu
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Joseph I Shapiro
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
14
|
Lopina OD, Tverskoi AM, Klimanova EA, Sidorenko SV, Orlov SN. Ouabain-Induced Cell Death and Survival. Role of α1-Na,K-ATPase-Mediated Signaling and [Na +] i/[K +] i-Dependent Gene Expression. Front Physiol 2020; 11:1060. [PMID: 33013454 PMCID: PMC7498651 DOI: 10.3389/fphys.2020.01060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Ouabain is of cardiotonic steroids (CTS) family that is plant-derived compounds and is known for many years as therapeutic and cytotoxic agents. They are specific inhibitors of Na,K-ATPase, the enzyme, which pumps Na+ and K+ across plasma membrane of animal cells. Treatment of cells by CTS affects various cellular functions connected with the maintenance of the transmembrane gradient of Na+ and K+. Numerous studies demonstrated that binding of CTS to Na,K-ATPase not only suppresses its activity but also induces some signal pathways. This review is focused on different mechanisms of two ouabain effects: their ability (1) to protect rodent cells from apoptosis through the expression of [Na+]i-sensitive genes and (2) to trigger death of non-rodents cells (so-called «oncosis»), possessing combined markers of «classic» necrosis and «classic» apoptosis. Detailed study of oncosis demonstrated that the elevation of the [Na+]i/[K+]i ratio is not a sufficient for its triggering. Non-rodent cell death is determined by the characteristic property of "sensitive" to ouabain α1-subunit of Na,K-ATPase. In this case, ouabain binding leads to enzyme conformational changes triggering the activation of p38 mitogen-activated protein kinases (MAPK) signaling. The survival of rodent cells with ouabain-«resistant» α1-subunit is connected with another conformational transition induced by ouabain binding that results in the activation of ERK 1/2 signaling pathway.
Collapse
Affiliation(s)
- Olga Dmitrievna Lopina
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem Mikhaylovich Tverskoi
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences (RAS), Moscow, Russia
- Laboratory of Biological Membranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Sergei Nikolaevich Orlov
- Laboratory of Biological Membranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
15
|
Sodhi K, Wang X, Chaudhry MA, Lakhani HV, Zehra M, Pratt R, Nawab A, Cottrill CL, Snoad B, Bai F, Denvir J, Liu J, Sanabria JR, Xie Z, Abraham NG, Shapiro JI. Central Role for Adipocyte Na,K-ATPase Oxidant Amplification Loop in the Pathogenesis of Experimental Uremic Cardiomyopathy. J Am Soc Nephrol 2020; 31:1746-1760. [PMID: 32587074 PMCID: PMC7460907 DOI: 10.1681/asn.2019101070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/28/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Oxidative stress in adipocyte plays a central role in the pathogenesis of obesity as well as in the associated cardiovascular complications. The putative uremic toxin indoxyl sulfate induces oxidative stress and dramatically alters adipocyte phenotype in vitro. Mice that have undergone partial nephrectomy serve as an experimental model of uremic cardiomyopathy. This study examined the effects on adipocytes of administering a peptide that reduces oxidative stress to the mouse model. METHODS A lentivirus vector introduced the peptide NaKtide with an adiponectin promoter into the mouse model of experimental uremic cardiomyopathy, intraperitoneally. Then adipocyte-specific expression of the peptide was assessed for mice fed a standard diet compared with mice fed a western diet enriched in fat and fructose. RESULTS Partial nephrectomy induced cardiomyopathy and anemia in the mice, introducing oxidant stress and an altered molecular phenotype of adipocytes that increased production of systemic inflammatory cytokines instead of accumulating lipids, within 4 weeks. Consumption of a western diet significantly worsened the adipocyte oxidant stress, but expression of NaKtide in adipocytes completely prevented the worsening. The peptide-carrying lentivirus achieved comparable expression in skeletal muscle, but did not ameliorate the disease phenotype. CONCLUSIONS Adipocyte-specific expression of NaKtide, introduced with a lentiviral vector, significantly ameliorated adipocyte dysfunction and uremic cardiomyopathy in partially nephrectomized mice. These data suggest that the redox state of adipocytes controls the development of uremic cardiomyopathy in mice subjected to partial nephrectomy. If confirmed in humans, the oxidative state of adipocytes may be a therapeutic target in chronic renal failure.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Xiaoliang Wang
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Muhammad Aslam Chaudhry
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Mishghan Zehra
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Rebecca Pratt
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Athar Nawab
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Cameron L. Cottrill
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Brian Snoad
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Fang Bai
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - James Denvir
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Jiang Liu
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Juan R. Sanabria
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Zijian Xie
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Nader G. Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - Joseph I. Shapiro
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
16
|
Liu J, Nie Y, Chaudhry M, Bai F, Chuang J, Sodhi K, Shapiro JI. The Redox-Sensitive Na/K-ATPase Signaling in Uremic Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21041256. [PMID: 32069992 PMCID: PMC7072896 DOI: 10.3390/ijms21041256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions, including cardiac hypertrophy and uremic cardiomyopathy. Cardiotonic steroids (CTS), specific ligands of Na/K-ATPase, regulate its enzymatic activity (at higher concentrations) and signaling function (at lower concentrations without significantly affecting its enzymatic activity) and increase reactive oxygen species (ROS) generation. On the other hand, an increase in ROS alone also regulates the Na/K-ATPase enzymatic activity and signaling function. We termed this phenomenon the Na/K-ATPase-mediated oxidant-amplification loop, in which oxidative stress regulates both the Na/K-ATPase activity and signaling. Most recently, we also demonstrated that this amplification loop is involved in the development of uremic cardiomyopathy. This review aims to evaluate the redox-sensitive Na/K-ATPase-mediated oxidant amplification loop and uremic cardiomyopathy.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Y.N.); (M.C.); (F.B.)
- Correspondence:
| | - Ying Nie
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Y.N.); (M.C.); (F.B.)
| | - Muhammad Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Y.N.); (M.C.); (F.B.)
| | - Fang Bai
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Y.N.); (M.C.); (F.B.)
| | - Justin Chuang
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (J.C.); (K.S.); (J.I.S.)
| | - Komal Sodhi
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (J.C.); (K.S.); (J.I.S.)
| | - Joseph I. Shapiro
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (J.C.); (K.S.); (J.I.S.)
| |
Collapse
|
17
|
Pavlovic D. Endogenous cardiotonic steroids and cardiovascular disease, where to next? Cell Calcium 2019; 86:102156. [PMID: 31896530 PMCID: PMC7031694 DOI: 10.1016/j.ceca.2019.102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 11/18/2022]
Abstract
Ever since British Physician William Withering first described the use of foxglove extract for treatment of patients with congestive heart failure in 1785, cardiotonic steroids have been used clinically to treat heart failure and more recently atrial fibrillation. Due to their ability to bind and inhibit the ubiquitous transport enzyme sodium potassium pump, thus regulating intracellular Na+ concentration in every living cell, they are also an essential tool for research into the sodium potassium pump structure and function. Exogenous CTS have been clearly demonstrated to affect cardiovascular system through modulation of vagal tone, cardiac contraction (via ionic changes) and altered natriuresis. Reports of a number of endogenous CTS, since the 1980s, have intensified research into their physiologic and pathophysiologic roles and opened up novel therapeutic targets. Substantive evidence pointing to the role of endogenous ouabain and marinobufagenin, the two most prominent CTS, in development of cardiovascular disease has accumulated. Nevertheless, their presence, structure, biosynthesis pathways and even mechanism of action remain unclear or controversial. In this review the current state-of-the-art, the controversies and the remaining questions surrounding the role of endogenous cardiotonic steroids in health and disease are discussed.
Collapse
Affiliation(s)
- Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
18
|
Abstract
The term uraemic cardiomyopathy refers to the cardiac abnormalities that are seen in patients with chronic kidney disease (CKD). Historically, this term was used to describe a severe cardiomyopathy that was associated with end-stage renal disease and characterized by severe functional abnormalities that could be reversed following renal transplantation. In a modern context, uraemic cardiomyopathy describes the clinical phenotype of cardiac disease that accompanies CKD and is perhaps best characterized as diastolic dysfunction seen in conjunction with left ventricular hypertrophy and fibrosis. A multitude of factors may contribute to the pathogenesis of uraemic cardiomyopathy, and current treatments only modestly improve outcomes. In this Review, we focus on evolving concepts regarding the roles of fibroblast growth factor 23 (FGF23), inflammation and systemic oxidant stress and their interactions with more established mechanisms such as pressure and volume overload resulting from hypertension and anaemia, respectively, activation of the renin-angiotensin and sympathetic nervous systems, activation of the transforming growth factor-β (TGFβ) pathway, abnormal mineral metabolism and increased levels of endogenous cardiotonic steroids.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA.
| |
Collapse
|
19
|
Hilgemann DW. Control of cardiac contraction by sodium: Promises, reckonings, and new beginnings. Cell Calcium 2019; 85:102129. [PMID: 31835176 DOI: 10.1016/j.ceca.2019.102129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
Several generations of cardiac physiologists have verified that basal cardiac contractility depends strongly on the transsarcolemmal Na gradient, and the underlying molecular mechanisms that link cardiac excitation-contraction coupling (ECC) to the Na gradient have been elucidated in good detail for more than 30 years. In brief, small increases of cytoplasmic Na push cardiac (NCX1) Na/Ca exchangers to increase contractility by increasing the myocyte Ca load. Accordingly, basal cardiac contractility is expected to be physiologically regulated by pathways that modify the cardiac Na gradient and the function of Na transporters. Assuming that this expectation is correct, it remains to be elucidated how in detail signaling pathways affecting the cardiac Na gradient are controlled in response to changing cardiac output requirements. Some puzzle pieces that may facilitate progress are outlined in this short review. Key open issues include (1) whether the concept of local Na gradients is viable, (2) how in detail Na channels, Na transporters and Na/K pumps are regulated by lipids and metabolic processes, (3) the physiological roles of Na/K pump inactivation, and (4) the possibility that key diffusible signaling molecules remain to be discovered.
Collapse
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
| |
Collapse
|
20
|
The Adipocyte Na/K-ATPase Oxidant Amplification Loop is the Central Regulator of Western Diet-Induced Obesity and Associated Comorbidities. Sci Rep 2019; 9:7927. [PMID: 31138824 PMCID: PMC6538745 DOI: 10.1038/s41598-019-44350-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022] Open
Abstract
Obesity has become a worldwide epidemic. We have previously reported that systemic administration of pNaKtide which targets the Na/K-ATPase oxidant amplification loop (NKAL) was able to decrease systemic oxidative stress and adiposity in mice fed a high fat and fructose supplemented western diet (WD). As adipocytes are believed to play a central role in the development of obesity and its related comorbidities, we examined whether lentiviral-mediated adipocyte-specific expression of NaKtide, a peptide derived from the N domain of the alpha1 Na/K-ATPase subunit, could ameliorate the effects of the WD. C57BL6 mice were fed a WD, which activated Na/K-ATPase signaling in the adipocytes and induced an obese phenotype and caused an increase in plasma levels of leptin, IL-6 and TNFα. WD also decreased locomotor activity, expression of the D2 receptor and tyrosine hydroxylase in brain tissue, while markers of neurodegeneration and neuronal apoptosis were increased following the WD. Selective adipocyte expression of NaKtide in these mice fed a WD attenuated all of these changes including the brain biochemical alterations and behavioral adaptations. These data suggest that adipocyte derived cytokines play an essential role in the development of obesity induced by a WD and that targeting the adipocyte NKAL loop may serve as an effective therapeutic strategy.
Collapse
|
21
|
Abstract
The Na,K-ATPase is an enzyme essential for ion homeostasis in all cells. Over the last decades, it has been well-established that in addition to the transport of Na+/K+ over the cell membrane, the Na,K-ATPase acts as a receptor transducing humoral signals intracellularly. It has been suggested that ouabain-like compounds serve as endogenous modulators of this Na,K-ATPase signal transduction. The molecular mechanisms underlying Na,K-ATPase signaling are complicated and suggest the confluence of divergent biological pathways. This review discusses recent updates on the Na,K-ATPase signaling pathways characterized or suggested in vascular smooth muscle cells. The conventional view on this signaling is based on a microdomain structure where the Na,K-ATPase controls the Na,Ca-exchanger activity via modulation of intracellular Na+ in the spatially restricted submembrane space. This, in turn, affects intracellular Ca2+ and Ca2+ load in the sarcoplasmic reticulum leading to modulation of contractility as well as gene expression. An ion-transport-independent signal transduction from the Na,K-ATPase is based on molecular interactions. This was primarily characterized in other cell types but recently also demonstrated in vascular smooth muscles. The downstream signaling from the Na,K-ATPase includes Src and phosphatidylinositol-4,5-bisphosphate 3 kinase signaling pathways and generation of reactive oxygen species. Moreover, in vascular smooth muscle cells the interaction between the Na,K-ATPase and proteins responsible for Ca2+ homeostasis, e.g., phospholipase C and inositol triphosphate receptors, contributes to an integration of the signaling pathways. Recent update on the Na,K-ATPase dependent intracellular signaling and the significance for physiological functions and pathophysiological changes are discussed in this review.
Collapse
|
22
|
The Na/K-ATPase Signaling: From Specific Ligands to General Reactive Oxygen Species. Int J Mol Sci 2018; 19:ijms19092600. [PMID: 30200500 PMCID: PMC6163532 DOI: 10.3390/ijms19092600] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
The signaling function of the Na/K-ATPase has been established for 20 years and is widely accepted in the field, with many excellent reports and reviews not cited here. Even though there is debate about the underlying mechanism, the signaling function is unquestioned. This short review looks back at the evolution of Na/K-ATPase signaling, from stimulation by cardiotonic steroids (also known as digitalis-like substances) as specific ligands to stimulation by reactive oxygen species (ROS) in general. The interplay of cardiotonic steroids and ROS in Na/K-ATPase signaling forms a positive-feedback oxidant amplification loop that has been implicated in some pathophysiological conditions.
Collapse
|
23
|
Quantum Modeling: A Bridge between the Pumping and Signaling Functions of Na/K-ATPase. Int J Mol Sci 2018; 19:ijms19082347. [PMID: 30096926 PMCID: PMC6121303 DOI: 10.3390/ijms19082347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Although the signaling function of Na/K-ATPase has been studied for decades, the chasm between the pumping function and the signaling function of Na/K-ATPase is still an open issue. This article explores the relationship between ion pumping and signaling with attention to the amplification of oxidants through this signaling function. We specifically consider the Na/K-ATPase with respect to its signaling function as a superposition of different states described for its pumping function. We then examine how alterations in the relative amounts of these states could alter signaling through the Src-EGFR-ROS pathway. Using assumptions based on some experimental observations published by our laboratories and others, we develop some predictions regarding cellular oxidant stress.
Collapse
|
24
|
Liu J, Lilly MN, Shapiro JI. Targeting Na/K-ATPase Signaling: A New Approach to Control Oxidative Stress. Curr Pharm Des 2018; 24:359-364. [PMID: 29318961 PMCID: PMC6052765 DOI: 10.2174/1381612824666180110101052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/27/2017] [Accepted: 01/04/2017] [Indexed: 01/13/2023]
Abstract
Renal and cardiac function are greatly affected by chronic oxidative stress which can cause many pathophysiological states. The Na/K-ATPase is well-described as an ion pumping enzyme involved in maintaining cellular ion homeostasis; however, in the past two decades, extensive research has been done to understand the signaling function of the Na/K-ATPase and determine its role in physiological and pathophysiological states. Our lab has shown that the Na/K-ATPase signaling cascade can function as an amplifier of reactive oxygen species (ROS) which can be initiated by cardiotonic steroids or increases in ROS. Regulation of systemic oxidative stress by targeting Na/K-ATPase signaling mediated oxidant amplification improves 5/6th partial nephrectomy (PNx) mediated uremic cardiomyopathy, renal sodium handling, as well as ameliorates adipogenesis. This review will present this new concept of Na/K-ATPase signaling mediated oxidant amplification loop and its clinic implication.
Collapse
Affiliation(s)
- Jiang Liu
- Dept. of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Megan N. Lilly
- Dept. of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Joseph I. Shapiro
- Dept. of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| |
Collapse
|
25
|
Tapia R, Kralicek SE, Hecht GA. EPEC effector EspF promotes Crumbs3 endocytosis and disrupts epithelial cell polarity. Cell Microbiol 2017; 19. [PMID: 28618099 DOI: 10.1111/cmi.12757] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system to inject effector proteins into host intestinal epithelial cells causing diarrhoea. EPEC infection redistributes basolateral proteins β1-integrin and Na+ /K+ ATPase to the apical membrane of host cells. The Crumbs (Crb) polarity complex (Crb3/Pals1/Patj) is essential for epithelial cell polarisation and tight junction (TJ) assembly. Here, we demonstrate that EPEC displaces Crb3 and Pals1 from the apical membrane to the cytoplasm of cultured intestinal epithelial cells and colonocytes of infected mice. In vitro studies show that EspF, but not Map, alters Crb3, whereas both effectors modulate Pals1. EspF perturbs polarity formation in cyst morphogenesis assays and induces endocytosis and apical redistribution of Na+ /K+ ATPase. EspF binds to sorting nexin 9 (SNX9) causing membrane remodelling in host cells. Infection with ΔespF/pespFD3, a mutant strain that ablates EspF binding to SNX9, or inhibition of dynamin, attenuates Crb3 endocytosis caused by EPEC. In addition, infection with ΔespF/pespFD3 has no impact on Na+ /K+ ATPase endocytosis. These data support the hypothesis that EPEC perturbs apical-basal polarity in an EspF-dependent manner, which would contribute to EPEC-associated diarrhoea by disruption of TJ and altering the crucial positioning of membrane transporters involved in the absorption of ions and solutes.
Collapse
Affiliation(s)
- Rocio Tapia
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Sarah E Kralicek
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Gail A Hecht
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.,Edward Hines Jr. VA Hospital, Hines, IL, USA
| |
Collapse
|
26
|
Cui X, Xie Z. Protein Interaction and Na/K-ATPase-Mediated Signal Transduction. Molecules 2017; 22:molecules22060990. [PMID: 28613263 PMCID: PMC6152704 DOI: 10.3390/molecules22060990] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023] Open
Abstract
The Na/K-ATPase (NKA), or Na pump, is a member of the P-type ATPase superfamily. In addition to pumping ions across cell membrane, it is engaged in assembly of multiple protein complexes in the plasma membrane. This assembly allows NKA to perform many non-pumping functions including signal transduction that are important for animal physiology and disease progression. This article will focus on the role of protein interaction in NKA-mediated signal transduction, and its potential utility as target for developing new therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA.
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA.
| |
Collapse
|
27
|
Na⁺ i,K⁺ i-Dependent and -Independent Signaling Triggered by Cardiotonic Steroids: Facts and Artifacts. Molecules 2017; 22:molecules22040635. [PMID: 28420099 PMCID: PMC6153942 DOI: 10.3390/molecules22040635] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022] Open
Abstract
Na⁺,K⁺-ATPase is the only known receptor of cardiotonic steroids (CTS) whose interaction with catalytic α-subunits leads to inhibition of this enzyme. As predicted, CTS affect numerous cellular functions related to the maintenance of the transmembrane gradient of monovalent cations, such as electrical membrane potential, cell volume, transepithelial movement of salt and osmotically-obliged water, symport of Na⁺ with inorganic phosphate, glucose, amino acids, nucleotides, etc. During the last two decades, it was shown that side-by-side with these canonical Na⁺i/K⁺i-dependent cellular responses, long-term exposure to CTS affects transcription, translation, tight junction, cell adhesion and exhibits tissue-specific impact on cell survival and death. It was also shown that CTS trigger diverse signaling cascades via conformational transitions of the Na⁺,K⁺-ATPase α-subunit that, in turn, results in the activation of membrane-associated non-receptor tyrosine kinase Src, phosphatidylinositol 3-kinase and the inositol 1,4,5-triphosphate receptor. These findings allowed researchers to propose that endogenous CTS might be considered as a novel class of steroid hormones. We focus our review on the analysis of the relative impact Na⁺i,K⁺i-mediated and -independent pathways in cellular responses evoked by CTS.
Collapse
|
28
|
Paul S, Bhargava K, Ahmad Y. The meta-analytical paradigm in an in silico hybrid: Pathways and networks perturbed during exposure to varying degrees of hypobaric hypoxia. Proteomics Clin Appl 2017; 11. [PMID: 28155252 DOI: 10.1002/prca.201600160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 01/11/2023]
Abstract
PURPOSE Computational biology has opened a gateway to omics data analysis and shifted the focus from molecules to systemic molecular networks in the domain of hypobaric hypoxia (HH). Yet there are no meta-analytical investigations circumventing constraints such as organism (rat/human), HH exposure conditions (acute/chronic), and the tissues that can be investigated simultaneously in the realm of wet lab experiments. EXPERIMENTAL DESIGN We analyzed 154 differentially expressed proteins upon HH exposure using Ingenuity Pathway Analysis (IPA) tool, without the constraint of using a single organism or tissue type, to determine the most significant pathways and networks that are perturbed across a range of HH conditions. RESULTS We found acute phase response signaling, farsenoid X receptor/retinoid X receptor activation, liver X receptor/retinoid X receptor activation, clathrin-mediated endocytosis signaling, mitochondrial dysfunction, production of nitric oxide and ROS in macrophages, and integrin signaling to be the most significant universally perturbed pathways. Unique protein-function relationships have also been highlighted. CONCLUSION AND CLINICAL RELEVANCE This meta-analysis provides a list of specific pathways and networks across two model organisms that are perturbed due to HH exposure irrespective of its duration/intensity. Thus, it will be a map of important pathways and proteins to look at when exploring effects of HH exposure irrespective of tissue/organism chosen, particularly in the context of prophylactic/therapeutic targets.
Collapse
Affiliation(s)
- Subhojit Paul
- Peptide & Proteomics Division, Defence Institute Of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Ministry of Defence, Timarpur, New Delhi, India
| | - Kalpana Bhargava
- Peptide & Proteomics Division, Defence Institute Of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Ministry of Defence, Timarpur, New Delhi, India
| | - Yasmin Ahmad
- Peptide & Proteomics Division, Defence Institute Of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Ministry of Defence, Timarpur, New Delhi, India
| |
Collapse
|
29
|
Liu J, Yan Y, Nie Y, Shapiro JI. Na/K-ATPase Signaling and Salt Sensitivity: The Role of Oxidative Stress. Antioxidants (Basel) 2017; 6:E18. [PMID: 28257114 PMCID: PMC5384181 DOI: 10.3390/antiox6010018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/10/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Other than genetic regulation of salt sensitivity of blood pressure, many factors have been shown to regulate renal sodium handling which contributes to long-term blood pressure regulation and have been extensively reviewed. Here we present our progress on the Na/K-ATPase signaling mediated sodium reabsorption in renal proximal tubules, from cardiotonic steroids-mediated to reactive oxygen species (ROS)-mediated Na/K-ATPase signaling that contributes to experimental salt sensitivity.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Yanling Yan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Ying Nie
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Joseph I Shapiro
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
30
|
Diederich M, Muller F, Cerella C. Cardiac glycosides: From molecular targets to immunogenic cell death. Biochem Pharmacol 2017; 125:1-11. [DOI: 10.1016/j.bcp.2016.08.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/15/2016] [Indexed: 11/26/2022]
|
31
|
Akimova OA, Kapilevich LV, Orlov SN, Lopina OD. Identification of Proteins Whose Interaction with Na+,K+-ATPase Is Triggered by Ouabain. BIOCHEMISTRY (MOSCOW) 2017; 81:1013-22. [PMID: 27682173 DOI: 10.1134/s0006297916090108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prolonged exposure of different epithelial cells (canine renal epithelial cells (MDCK), vascular endothelial cells from porcine aorta (PAEC), human umbilical vein endothelial cells (HUVEC), cervical adenocarcinoma (HeLa), as well as epithelial cells from colon carcinoma (Caco-2)) with ouabain or with other cardiotonic steroids was shown earlier to result in the death of these cells. Intermediates in the cell death signal cascade remain unknown. In the present study, we used proteomics methods for identification of proteins whose interaction with Na+,K+-ATPase is triggered by ouabain. After exposure of Caco-2 human colorectal adenocarcinoma cells with 3 µM of ouabain for 3 h, the protein interacting in complex with Na+,K+-ATPase was coimmunoprecipitated using antibodies against the enzyme α1-subunit. Proteins of coimmunoprecipitates were separated by 2D electrophoresis in polyacrylamide gel. A number of proteins in the coimmunoprecipitates with molecular masses of 71-74, 46, 40-43, 38, and 33-35 kDa was revealed whose binding to Na+,K+-ATPase was activated by ouabain. Analyses conducted by mass spectroscopy allowed us to identify some of them, including seven signal proteins from superfamilies of glucocorticoid receptors, serine/threonine protein kinases, and protein phosphatases 2C, Src-, and Rho-GTPases. The possible participation of these proteins in activation of cell signaling terminated by cell death is discussed.
Collapse
Affiliation(s)
- O A Akimova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | |
Collapse
|
32
|
Yan Y, Shapiro AP, Mopidevi BR, Chaudhry MA, Maxwell K, Haller ST, Drummond CA, Kennedy DJ, Tian J, Malhotra D, Xie ZJ, Shapiro JI, Liu J. Protein Carbonylation of an Amino Acid Residue of the Na/K-ATPase α1 Subunit Determines Na/K-ATPase Signaling and Sodium Transport in Renal Proximal Tubular Cells. J Am Heart Assoc 2016; 5:e003675. [PMID: 27613772 PMCID: PMC5079028 DOI: 10.1161/jaha.116.003675] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/12/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND We have demonstrated that cardiotonic steroids, such as ouabain, signaling through the Na/K-ATPase, regulate sodium reabsorption in the renal proximal tubule. By direct carbonylation modification of the Pro222 residue in the actuator (A) domain of pig Na/K-ATPase α1 subunit, reactive oxygen species are required for ouabain-stimulated Na/K-ATPase/c-Src signaling and subsequent regulation of active transepithelial (22)Na(+) transport. In the present study we sought to determine the functional role of Pro222 carbonylation in Na/K-ATPase signaling and sodium handling. METHODS AND RESULTS Stable pig α1 knockdown LLC-PK1-originated PY-17 cells were rescued by expressing wild-type rat α1 and rat α1 with a single mutation of Pro224 (corresponding to pig Pro222) to Ala. This mutation does not affect ouabain-induced inhibition of Na/K-ATPase activity, but abolishes the effects of ouabain on Na/K-ATPase/c-Src signaling, protein carbonylation, Na/K-ATPase endocytosis, and active transepithelial (22)Na(+) transport. CONCLUSIONS Direct carbonylation modification of Pro224 in the rat α1 subunit determines ouabain-mediated Na/K-ATPase signal transduction and subsequent regulation of renal proximal tubule sodium transport.
Collapse
Affiliation(s)
- Yanling Yan
- Department of Pharmacology, Physiology and Toxicology, JCE School of Medicine, Marshall University, Huntington, WV
| | - Anna P Shapiro
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH
| | - Brahma R Mopidevi
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH
| | - Muhammad A Chaudhry
- Department of Pharmacology, Physiology and Toxicology, JCE School of Medicine, Marshall University, Huntington, WV
| | - Kyle Maxwell
- Department of Pharmacology, Physiology and Toxicology, JCE School of Medicine, Marshall University, Huntington, WV
| | - Steven T Haller
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH
| | | | - David J Kennedy
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH
| | - Jiang Tian
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH
| | - Zi-Jian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Joseph I Shapiro
- Department of Pharmacology, Physiology and Toxicology, JCE School of Medicine, Marshall University, Huntington, WV Department of Medicine, University of Toledo College of Medicine, Toledo, OH
| | - Jiang Liu
- Department of Pharmacology, Physiology and Toxicology, JCE School of Medicine, Marshall University, Huntington, WV Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| |
Collapse
|
33
|
Shah PT, Martin R, Yan Y, Shapiro JI, Liu J. Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis. Front Physiol 2016; 7:256. [PMID: 27445847 PMCID: PMC4923243 DOI: 10.3389/fphys.2016.00256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/11/2016] [Indexed: 01/01/2023] Open
Abstract
Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal tubular Na/K-ATPase signaling and decreased transcellular sodium transport leading to increases in urinary sodium excretion. However, once this system is overstimulated, the signaling, and associated changes in sodium excretion are blunted. This review aims to evaluate ROS-mediated carbonylation of the Na/K-ATPase, and its potential role in the regulation of pump signaling and sodium reabsorption in the renal proximal tubule (RPT).
Collapse
Affiliation(s)
- Preeya T Shah
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Rebecca Martin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Yanling Yan
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Joseph I Shapiro
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Jiang Liu
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| |
Collapse
|
34
|
Yan Y, Shapiro JI. The physiological and clinical importance of sodium potassium ATPase in cardiovascular diseases. Curr Opin Pharmacol 2016; 27:43-9. [PMID: 26891193 PMCID: PMC5161351 DOI: 10.1016/j.coph.2016.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/14/2016] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Abstract
The Na/K-ATPase has been extensively studied, but it is only recently that its role as a scaffolding and signaling protein has been identified. It has been identified that cardiotonic steroids (CTS) such as digitalis mediate signal transduction through the Na/K-ATPase in a process found to result in the generation of reactive oxygen species (ROS). As these ROS also appear capable of initiating this signal cascade, a feed forward amplification process has been postulated and subsequently implicated in some disease pathways including uremic cardiomyopathy.
Collapse
Affiliation(s)
- Yanling Yan
- Joan C. Edwards School of Medicine, Marshall University, Department of Medicine, USA
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Department of Medicine, USA.
| |
Collapse
|
35
|
Yosef E, Katz A, Peleg Y, Mehlman T, Karlish SJD. Do Src Kinase and Caveolin Interact Directly with Na,K-ATPase? J Biol Chem 2016; 291:11736-50. [PMID: 27022017 DOI: 10.1074/jbc.m116.721084] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/14/2022] Open
Abstract
Much evidence points to a role of Na,K-ATPase in ouabain-dependent signal transduction. Based on experiments with different cell lines and native tissue membranes, a current hypothesis postulates direct interactions between the Na,K-ATPase and Src kinase (non-receptor tyrosine kinase). Na,K-ATPase is proposed to bind Src kinase and inhibit its activity, whereas ouabain, the specific Na,K-ATPase inhibitor, binds and stabilizes the E2 conformation, thus exposing the Src kinase domain and its active site Tyr-418 for activation. Ouabain-dependent signaling is thought to be mediated within caveolae by a complex consisting of Na,K-ATPase, caveolin, and Src kinase. In the current work, we have looked for direct interactions utilizing purified recombinant Na,K-ATPase (human α1β1FXYD1 or porcine α1D369Nβ1FXYD1) and purified human Src kinase and human caveolin 1 or interactions between these proteins in native membrane vesicles isolated from rabbit kidney. By several independent criteria and techniques, no stable interactions were detected between Na,K-ATPase and purified Src kinase. Na,K-ATPase was found to be a substrate for Src kinase phosphorylation at Tyr-144. Clear evidence for a direct interaction between purified human Na,K-ATPase and human caveolin was obtained, albeit with a low molar stoichiometry (1:15-30 caveolin 1/Na,K-ATPase). In native renal membranes, a specific caveolin 14-5 oligomer (95 kDa) was found to be in direct interaction with Na,K-ATPase. We inferred that a small fraction of the renal Na,K-ATPase molecules is in a ∼1:1 complex with a caveolin 14-5 oligomer. Thus, overall, whereas a direct caveolin 1/Na,K-ATPase interaction is confirmed, the lack of direct Src kinase/Na,K-ATPase binding requires reassessment of the mechanism of ouabain-dependent signaling.
Collapse
Affiliation(s)
| | | | - Yoav Peleg
- the Israel Structural Proteomics Center, and
| | - Tevie Mehlman
- the Biological Services Department-Mass Spectrometry unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | |
Collapse
|
36
|
Kamanina YV, Klimanova EA, Dergousova EA, Petrushanko IY, Lopina OD. Identification of a Region of the Polypeptide Chain of Na,K-ATPase α-Subunit Interacting with 67-kDa Melittin-Like Protein. BIOCHEMISTRY. BIOKHIMIIA 2016; 81:249-254. [PMID: 27262194 DOI: 10.1134/s000629791603007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
It was shown earlier that a 67-kDa protein purified from mouse kidney using polyclonal antibodies against melittin (a peptide from bee venom) interacted with Na,K-ATPase from rabbit kidney. In this study, a 43-kDa proteolytic fragment of Na,K-ATPase α-subunit interacting with the 67-kDa melittin-like protein was found. The α-subunit was hydrolyzed by trypsin in the presence of 0.5 mM ouabain (E2-conformation of Na,K-ATPase). A proteolytic fragment interacting with the 67-kDa melittin-like protein that was identified by mass-spectrometry is a region of the cytoplasmic domain of Na,K-ATPase α-subunit located between amino acid residues 591 and 775. The fragment includes a conservative DPPRA motif that occurs in many P-type ATPases. It was shown earlier that this motif of H,K-ATPase from gastric mucosa binds to melittin. We suggest that namely this motif of P-type ATPases is able to interact with proteins containing melittin-like modules.
Collapse
Affiliation(s)
- Yu V Kamanina
- Lomonosov Moscow State University, Department of Biochemistry, School of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
37
|
Sarin H. Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells. Mol Clin Oncol 2015; 4:326-368. [PMID: 26998284 DOI: 10.3892/mco.2015.714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022] Open
Abstract
For proper determination of the apoptotic potential of chemoxenobiotics in synergism, it is important to understand the modes, levels and character of interactions of chemoxenobiotics with cells in the context of predicted conserved biophysical properties. Chemoxenobiotic structures are studied with respect to atom distribution over molecular space, the predicted overall octanol-to-water partition coefficient (Log OWPC; unitless) and molecular size viz a viz van der Waals diameter (vdWD). The Log OWPC-to-vdWD (nm-1 ) parameter is determined, and where applicable, hydrophilic interacting moiety/core-to-vdWD (nm-1 ) and lipophilic incorporating hydrophobic moiety/core-to-vdWD (nm-1 ) parameters of their part-structures are determined. The cellular and sub-cellular level interactions of the spectrum of xenobiotic chemotherapies have been characterized, for which a classification system has been developed based on predicted conserved biophysical properties with respect to the mode of chemotherapeutic effect. The findings of this study are applicable towards improving the effectiveness of existing combination chemotherapy regimens and the predictive accuracy of personalized cancer treatment algorithms as well as towards the selection of appropriate novel xenobiotics with the potential to be potent chemotherapeutics for dendrimer nanoparticle-based effective transvascular delivery.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, WV 25314, USA
| |
Collapse
|
38
|
Shattock MJ, Ottolia M, Bers DM, Blaustein MP, Boguslavskyi A, Bossuyt J, Bridge JHB, Chen-Izu Y, Clancy CE, Edwards A, Goldhaber J, Kaplan J, Lingrel JB, Pavlovic D, Philipson K, Sipido KR, Xie ZJ. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol 2015; 593:1361-82. [PMID: 25772291 PMCID: PMC4376416 DOI: 10.1113/jphysiol.2014.282319] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/30/2014] [Indexed: 12/17/2022] Open
Abstract
This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+-ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field.
Collapse
Affiliation(s)
- Michael J Shattock
- King's College London BHF Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sarin H. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function. J Transl Med 2015; 13:372. [PMID: 26610602 PMCID: PMC4660824 DOI: 10.1186/s12967-015-0707-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022] Open
Abstract
Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been further discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum External Cationomodulation (≥3+ → 1+); which are with respect to acute CM receptor-stabilizing effects of small biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pressuromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect 2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS 1+), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cationomodulation: 2+) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracellular microtubule network and increases the exocytosis of pre-synthesized vesicular endogolgi peptides and small molecules as well as nuclear-to-rough endoplasmic reticulum membrane proteins to the CM, with the potential to simultaneously increase the NM-associated chromatin DNA transcription of higher molecular weight protein forms, secretory and CM-destined, mitochondrial and nuclear, including the highest molecular weight nuclear proteins, Ki67 (359 kDa) and Separase (230 kDa), with the latter leading to mitogenesis and cell division; while, in the case of growth factors or cytokines with external cationomodulation capability, CM Receptor External Cationomodulation of CM receptors (≥3+ → 1+) results in cationic extracellular interaction (≥3+) with extracellular matrix heparan sulfates (≥3+ → 1+) concomitant with lamellopodesis and cell migration. It can be surmised that the modulation of cellular, and nuclear, function is mostly a reactive process, governed, primarily, by small molecule hormone and peptide interactions at the cell membrane, with CM receptors and the CM itself. These insights taken together, provide valuable translationally applicable knowledge.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, WV, USA.
| |
Collapse
|
40
|
Cherniavsky Lev M, Karlish SJD, Garty H. Cardiac glycosides induced toxicity in human cells expressing α1-, α2-, or α3-isoforms of Na-K-ATPase. Am J Physiol Cell Physiol 2015; 309:C126-35. [PMID: 25994790 DOI: 10.1152/ajpcell.00089.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na+-K+-ATPase is specifically inhibited by cardiac glycosides, some of which may also function as endogenous mammalian hormones. Previous studies using Xenopus oocytes, yeast cells, or purified isoforms demonstrated that affinities of various cardiac glycosides for three isoforms of the Na+-K+-ATPase (α1-α3β1) may differ, a finding with potential clinical implication. The present study investigates isoform selectivity and effects of cardiac glycosides on cultured mammalian cells under more physiological conditions. H1299 cells (non-small cell lung carcinoma) were engineered to express only one α-isoform (α1, α2, or α3) by combining stable transfection of isoforms and silencing endogenous α1. Cardiac glycoside binding was measured by displacement of bound 3H-ouabain. The experiments confirm moderate α1/α3:α2 selectivity of ouabain, moderate α2:α1 selectivity of digoxin, and enhanced α2:α1 selectivity of synthetic derivatives (Katz A, Tal DM, Heller D, Haviv H, Rabah B, Barkana Y, Marcovich AL, Karlish SJD. J Biol Chem 289: 21153-21162, 2014). Relative α2:α1 selectivity of digoxin vs. ouabain was also manifested by enhanced internalization of α2 in response to digoxin. Cellular proliferation assays of H1299 cells confirmed the patterns of α2:α1 selectivity for ouabain, digoxin, and a synthetic derivative and reveal a crucial role of surface pump density on sensitivity to cardiac glycosides. Because cardiac glycosides are being considered as drugs for treatment of cancer, effects of ouabain on proliferation of 12 cancer and noncancer cell lines, with variable plasma membrane expression of α1, have been tested. These demonstrated that sensitivity to ouabain indeed depends linearly on the plasma membrane surface density of Na+-K+-ATPase irrespective of status, malignant or nonmalignant.
Collapse
|
41
|
Jansson K, Venugopal J, Sánchez G, Magenheimer BS, Reif GA, Wallace DP, Calvet JP, Blanco G. Ouabain Regulates CFTR-Mediated Anion Secretion and Na,K-ATPase Transport in ADPKD Cells. J Membr Biol 2015; 248:1145-57. [PMID: 26289599 DOI: 10.1007/s00232-015-9832-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/06/2015] [Indexed: 01/16/2023]
Abstract
Cyst enlargement in autosomal dominant polycystic kidney disease (ADPKD) requires the transepithelial secretion of fluid into the cyst lumen. We previously showed that physiological amounts of ouabain enhance cAMP-dependent fluid secretion and cyst growth of human ADPKD cyst epithelial cells in culture and formation of cyst-like dilations in metanephric kidneys from Pkd1 mutant mice. Here, we investigated the mechanisms by which ouabain promotes cAMP-dependent fluid secretion and cystogenesis. Ouabain (3 nM) enhanced cAMP-induced cyst-like dilations in embryonic kidneys from Pkd1 (m1Bei) mice, but had no effect on metanephroi from Pkd1 (m1Bei) mice that lack expression of the cystic fibrosis transmembrane conductance regulator (CFTR). Similarly, ouabain stimulation of cAMP-induced fluid secretion and in vitro cyst growth of ADPKD cells were abrogated by CFTR inhibition, showing that CFTR is required for ouabain effects on ADPKD fluid secretion. Moreover, ouabain directly enhanced the cAMP-dependent Cl(-) efflux mediated by CFTR in ADPKD monolayers. Ouabain increased the trafficking of CFTR to the plasma membrane and up-regulated the expression of the CFTR activator PDZK1. Finally, ouabain decreased plasma membrane expression and activity of the Na,K-ATPase in ADPKD cells. Altogether, these results show that ouabain enhances net fluid secretion and cyst formation by activating apical anion secretion via CFTR and decreasing basolateral Na(+) transport via Na,K-ATPase. These results provide new information on the mechanisms by which ouabain affects ADPKD cells and further highlight the importance of ouabain as a non-genomic stimulator of cystogenesis in ADPKD.
Collapse
Affiliation(s)
- Kyle Jansson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.,The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jessica Venugopal
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.,The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gladis Sánchez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.,The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Brenda S Magenheimer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gail A Reif
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Darren P Wallace
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA. .,The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
42
|
Ge SN, Zhao MM, Wu DD, Chen Y, Wang Y, Zhu JH, Cai WJ, Zhu YZ, Zhu YC. Hydrogen sulfide targets EGFR Cys797/Cys798 residues to induce Na(+)/K(+)-ATPase endocytosis and inhibition in renal tubular epithelial cells and increase sodium excretion in chronic salt-loaded rats. Antioxid Redox Signal 2014; 21:2061-82. [PMID: 24684506 PMCID: PMC4215382 DOI: 10.1089/ars.2013.5304] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS The role of hydrogen sulfide (H2S) in renal sodium and water homeostasis is unknown. We investigated whether H2S promoted Na(+)/K(+)-ATPase endocytosis via the H2S/EGFR/gab1/PI3K/Akt pathway in renal tubular epithelial cells. RESULTS H2S decreased Na(+)/K(+)-ATPase activity and induced its endocytosis in renal tubular epithelial cells, which was abrogated by small interfering RNA (siRNA) knockdown of epidermal growth factor receptor (EGFR) and gab1, a dominant-negative mutant of Akt and PI3K inhibitors. H2S increased EGFR, gab1, PI3K, and Akt phosphorylation in both renal tubular epithelial cells and kidneys of chronic salt-loaded rats. These increases were abrogated by siRNA knockdown of EGFR, but not of c-Src. Radiolabeled H2S exhibited transient, direct binding to EGFR and directly activated EGFR. Some disulfide bonds in EGFR intracellular kinase domain were susceptible to H2S-induced cleavage. Mutations of EGFR Cys797 (human) or Cys798 (rat) residues increased EGFR activity and prevented H2S-induced Na(+)/K(+)-ATPase endocytosis. H2S also inhibited sodium hydrogen exchanger-3 (NHE3) activity in renal tubular epithelial cells. H2S treatment increased sodium excretion in chronic and acute salt-loaded rats and decreased blood pressure in chronic salt-loaded rats. INNOVATION AND CONCLUSION H2S directly targets some disulfide bonds in EGFR, which activates the EGFR/gab1/PI3K/Akt pathway and subsequent Na(+)/K(+)-ATPase endocytosis and inhibition in renal tubular epithelial cells. EGFR Cys797/Cys798 residues are essential for an intrinsic inhibitory mechanism and for H2S actions in renal tubular epithelial cells. Other pathways, including NHE3, may be involved in mediating the renal effects of H2S. Our results reveal a new renal sodium homeostasis mechanism, which may provide for novel treatment approaches for diseases related to renal sodium homeostasis dysfunction.
Collapse
Affiliation(s)
- Shun-Na Ge
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Research Center on Aging and Medicine, Shanghai Medical College, Fudan University , Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pavlovic D. The role of cardiotonic steroids in the pathogenesis of cardiomyopathy in chronic kidney disease. Nephron Clin Pract 2014; 128:11-21. [PMID: 25341357 DOI: 10.1159/000363301] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cardiotonic steroids (CTS) are a new class of hormones that circulate in the blood and are divided into two distinct groups, cardenolides, such as ouabain and digoxin, and bufadienolides, such as marinobufagenin, telocinobufagin and bufalin. They have the ability to bind and inhibit the ubiquitous transport enzyme sodium potassium pump, thus regulating intracellular Na(+) concentration in every living cell. Although digoxin has been prescribed to heart failure patients for at least 200 years, the realization that CTS are endogenously produced has intensified research into their physiological and pathophysiological roles. Over the last two decades, substantial evidence has accumulated demonstrating the effects of endogenously synthesised CTS on the kidneys, vasculature and the heart. In this review, the current state of art and the controversies surrounding the manner in which CTS mediate their pathophysiological effects are discussed. Several potential therapeutic strategies have emerged as a result of our increased understanding of the role CTS play in health and disease.
Collapse
Affiliation(s)
- Davor Pavlovic
- Cardiovascular Division, King's College London, Rayne Institute, St. Thomas' Hospital, London, UK
| |
Collapse
|
44
|
Rocha SC, Pessoa MTC, Neves LDR, Alves SLG, Silva LM, Santos HL, Oliveira SMF, Taranto AG, Comar M, Gomes IV, Santos FV, Paixão N, Quintas LEM, Noël F, Pereira AF, Tessis ACSC, Gomes NLS, Moreira OC, Rincon-Heredia R, Varotti FP, Blanco G, Villar JAFP, Contreras RG, Barbosa LA. 21-Benzylidene digoxin: a proapoptotic cardenolide of cancer cells that up-regulates Na,K-ATPase and epithelial tight junctions. PLoS One 2014; 9:e108776. [PMID: 25290152 PMCID: PMC4188576 DOI: 10.1371/journal.pone.0108776] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023] Open
Abstract
Cardiotonic steroids are used to treat heart failure and arrhythmia and have promising anticancer effects. The prototypic cardiotonic steroid ouabain may also be a hormone that modulates epithelial cell adhesion. Cardiotonic steroids consist of a steroid nucleus and a lactone ring, and their biological effects depend on the binding to their receptor, Na,K-ATPase, through which, they inhibit Na+ and K+ ion transport and activate of several intracellular signaling pathways. In this study, we added a styrene group to the lactone ring of the cardiotonic steroid digoxin, to obtain 21-benzylidene digoxin (21-BD), and investigated the effects of this synthetic cardiotonic steroid in different cell models. Molecular modeling indicates that 21-BD binds to its target Na,K-ATPase with low affinity, adopting a different pharmacophoric conformation when bound to its receptor than digoxin. Accordingly, 21-DB, at relatively high µM amounts inhibits the activity of Na,K-ATPase α1, but not α2 and α3 isoforms. In addition, 21-BD targets other proteins outside the Na,K-ATPase, inhibiting the multidrug exporter Pdr5p. When used on whole cells at low µM concentrations, 21-BD produces several effects, including: 1) up-regulation of Na,K-ATPase expression and activity in HeLa and RKO cancer cells, which is not found for digoxin, 2) cell specific changes in cell viability, reducing it in HeLa and RKO cancer cells, but increasing it in normal epithelial MDCK cells, which is different from the response to digoxin, and 3) changes in cell-cell interaction, altering the molecular composition of tight junctions and elevating transepithelial electrical resistance of MDCK monolayers, an effect previously found for ouabain. These results indicate that modification of the lactone ring of digoxin provides new properties to the compound, and shows that the structural change introduced could be used for the design of cardiotonic steroid with novel functions.
Collapse
Affiliation(s)
- Sayonarah C. Rocha
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Marco T. C. Pessoa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Luiza D. R. Neves
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Silmara L. G. Alves
- Laboratório de Síntese Orgânica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Luciana M. Silva
- Laboratório de Biologia Celular e Inovação Biotecnológica, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Herica L. Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Soraya M. F. Oliveira
- Laboratório de Bioinformática, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Alex G. Taranto
- Laboratório de Bioinformática, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Moacyr Comar
- Laboratório de Bioinformática, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Isabella V. Gomes
- Laboratório de Biologia Celular e Mutagenicidade, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Fabio V. Santos
- Laboratório de Biologia Celular e Mutagenicidade, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Natasha Paixão
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luis E. M. Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - François Noël
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio F. Pereira
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana C. S. C. Tessis
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil
| | - Natalia L. S. Gomes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Otacilio C. Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Ruth Rincon-Heredia
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Fernando P. Varotti
- Laboratório de Bioquímica de Parasitos, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jose A. F. P. Villar
- Laboratório de Síntese Orgânica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Rubén G. Contreras
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Leandro A. Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| |
Collapse
|
45
|
Su Y, Al-Lamki RS, Blake-Palmer KG, Best A, Golder ZJ, Zhou A, Karet Frankl FE. Physical and functional links between anion exchanger-1 and sodium pump. J Am Soc Nephrol 2014; 26:400-9. [PMID: 25012180 DOI: 10.1681/asn.2013101063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Anion exchanger-1 (AE1) mediates chloride-bicarbonate exchange across the plasma membranes of erythrocytes and, via a slightly shorter transcript, kidney epithelial cells. On an omnivorous human diet, kidney AE1 is mainly active basolaterally in α-intercalated cells of the collecting duct, where it is functionally coupled with apical proton pumps to maintain normal acid-base homeostasis. The C-terminal tail of AE1 has an important role in its polarized membrane residency. We have identified the β1 subunit of Na(+),K(+)-ATPase (sodium pump) as a binding partner for AE1 in the human kidney. Kidney AE1 and β1 colocalized in renal α-intercalated cells and coimmunoprecipitated (together with the catalytic α1 subunit of the sodium pump) from human kidney membrane fractions. ELISA and fluorescence titration assays confirmed that AE1 and β1 interact directly, with a Kd value of 0.81 μM. GST-AE1 pull-down assays using human kidney membrane proteins showed that the last 11 residues of AE1 are important for β1 binding. siRNA-induced knockdown of β1 in cell culture resulted in a significant reduction in kidney AE1 levels at the cell membrane, whereas overexpression of kidney AE1 increased cell surface sodium pump levels. Notably, membrane staining of β1 was reduced throughout collecting ducts of AE1-null mouse kidney, where increased fractional excretion of sodium has been reported. These data suggest a requirement of β1 for proper kidney AE1 membrane residency, and that activities of AE1 and the sodium pump are coregulated in kidney.
Collapse
Affiliation(s)
- Ya Su
- Departments of Medical Genetics and
| | - Rafia S Al-Lamki
- Division of Renal Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | - Fiona E Karet Frankl
- Departments of Medical Genetics and Division of Renal Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Antonescu CN, McGraw TE, Klip A. Reciprocal regulation of endocytosis and metabolism. Cold Spring Harb Perspect Biol 2014; 6:a016964. [PMID: 24984778 DOI: 10.1101/cshperspect.a016964] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cellular uptake of many nutrients and micronutrients governs both their cellular availability and their systemic homeostasis. The cellular rate of nutrient or ion uptake (e.g., glucose, Fe(3+), K(+)) or efflux (e.g., Na(+)) is governed by a complement of membrane transporters and receptors that show dynamic localization at both the plasma membrane and defined intracellular membrane compartments. Regulation of the rate and mechanism of endocytosis controls the amounts of these proteins on the cell surface, which in many cases determines nutrient uptake or secretion. Moreover, the metabolic action of diverse hormones is initiated upon binding to surface receptors that then undergo regulated endocytosis and show distinct signaling patterns once internalized. Here, we examine how the endocytosis of nutrient transporters and carriers as well as signaling receptors governs cellular metabolism and thereby systemic (whole-body) metabolite homeostasis.
Collapse
Affiliation(s)
- Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
47
|
Wang Y, Ye Q, Liu C, Xie JX, Yan Y, Lai F, Duan Q, Li X, Tian J, Xie Z. Involvement of Na/K-ATPase in hydrogen peroxide-induced activation of the Src/ERK pathway in LLC-PK1 cells. Free Radic Biol Med 2014; 71:415-426. [PMID: 24703895 PMCID: PMC6779055 DOI: 10.1016/j.freeradbiomed.2014.03.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 11/17/2022]
Abstract
We have shown that Na/K-ATPase interacts with Src. Here, we test the role of this interaction in H2O2-induced activation of Src and ERK. We found that exposure of LLC-PK1 cells to H2O2 generated by the addition of glucose oxidase into the culture medium activated Src and ERK1/2. It also caused a modest reduction in the number of surface Na/K-ATPases and in ouabain-sensitive Rb(+) uptake. These effects of H2O2 seem similar to those induced by ouabain, a specific ligand of Na/K-ATPase, in LLC-PK1 cells. In accordance, we found that the effects of H2O2 on Src and ERK1/2 were inhibited in α1 Na/K-ATPase-knockdown PY-17 cells. Whereas expression of wild-type α1 or the A420P mutant α1 defective in Src regulation rescued the pumping activity in PY-17 cells, only α1, and not the A420P mutant, was able to restore the H2O2-induced activation of protein kinases. Consistent with this, disrupting the formation of the Na/K-ATPase/Src complex with pNaKtide attenuated the effects of H2O2 on the kinases. Moreover, a direct effect of H2O2 on Na/K-ATPase-mediated regulation of Src was demonstrated. Finally, H2O2 reduced the expression of E-cadherin through the Na/K-ATPase/Src-mediated signaling pathway. Taken together, the data suggest that the Na/K-ATPase/Src complex may serve as one of the receptor mechanisms for H2O2 to regulate Src/ERK protein kinases and consequently the phenotype of renal epithelial cells.
Collapse
Affiliation(s)
- Yu Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China
| | - Qiqi Ye
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Changxuan Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China
| | - Jeffrey X Xie
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Yanling Yan
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Fangfang Lai
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Qiming Duan
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Xiaomei Li
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China
| | - Jiang Tian
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Zijian Xie
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
48
|
May O, Yu H, Riederer B, Manns MP, Seidler U, Bachmann O. Short-term regulation of murine colonic NBCe1-B (electrogenic Na+/HCO3(-) cotransporter) membrane expression and activity by protein kinase C. PLoS One 2014; 9:e92275. [PMID: 24642792 PMCID: PMC3958514 DOI: 10.1371/journal.pone.0092275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 02/20/2014] [Indexed: 12/22/2022] Open
Abstract
The colonic mucosa actively secretes HCO3(-), and several lines of evidence point to an important role of Na+/HCO3(-) cotransport (NBC) as a basolateral HCO3(-) import pathway. We could recently demonstrate that the predominant NBC isoform in murine colonic crypts is electrogenic NBCe1-B, and that secretagogues cause NBCe1 exocytosis, which likely represents a component of NBC activation. Since protein kinase C (PKC) plays a key role in the regulation of ion transport by trafficking events, we asked whether it is also involved in the observed NBC activity increase. Crypts were isolated from murine proximal colon to assess PKC activation as well as NBC function and membrane abundance using fluorometric pHi measurements and cell surface biotinylation, respectively. PKC isoform translocation and phosphorylation occurred in response to PMA-, as well as secretagogue stimulation. The conventional and novel PKC inhibitors Gö6976 or Gö6850 did not alter NBC function or surface expression by themselves, but stimulation with forskolin (10(-5) M) or carbachol (10(-4) M) in their presence led to a significant decrease in NBC-mediated proton flux, and biotinylated NBCe1. Our data thus indicate that secretagogues lead to PKC translocation and phosphorylation in murine colonic crypts, and that PKC is necessary for the increase in NBC transport rate and membrane abundance caused by cholinergic and cAMP-dependent stimuli.
Collapse
Affiliation(s)
- Oliver May
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Haoyang Yu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Oliver Bachmann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
49
|
A mechanism enhancing macromolecule transport through paracellular spaces induced by Poly-L-Arginine: Poly-L-Arginine induces the internalization of tight junction proteins via clathrin-mediated endocytosis. Pharm Res 2014; 31:2287-96. [PMID: 24590880 DOI: 10.1007/s11095-014-1324-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Poly-L-arginine (PLA) enhances the paracellular permeability of the Caco-2 cell monolayer to hydrophilic macromolecules by disappearance of tight junction (TJ) proteins from cell-cell junctions. However, the mechanism of the disappearance of TJ proteins in response to PLA has been unclear. In this study, we investigated the mechanism of disappearance of TJ proteins from cell-cell junctions after the application of PLA to Caco-2 cell monolayers. METHODS The membrane conductance (Gt), FITC-dextran (FD-4) permeability, and localization of TJ proteins were examined after the treatment of Caco-2 cell monolayers with PLA in the presence of various endocytosis inhibitors. In addition, the localization of endosome marker proteins was also observed. RESULTS Clathrin-mediated endocytosis inhibitors suppressed the increase in Gt and Papp of FD-4 induced by PLA, and also significantly suppressed the disappearance of TJ proteins induced by PLA. Furthermore, occludin, one of the TJ proteins, colocalized with early endosome and recycling endosomes after the internalization of occludin induced by PLA, and then was recycled to the cell-cell junctions. CONCLUSION PLA induced the transient internalization of TJ proteins in cell-cell junctions via clathrin-mediated endocytosis, subsequently increasing the permeability of the Caco-2 cell monolayer to FD-4 via a paracellular route.
Collapse
|
50
|
Xie JX, Shapiro AP, Shapiro JI. The Trade-Off between Dietary Salt and Cardiovascular Disease; A Role for Na/K-ATPase Signaling? Front Endocrinol (Lausanne) 2014; 5:97. [PMID: 25101054 PMCID: PMC4101451 DOI: 10.3389/fendo.2014.00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/07/2014] [Indexed: 12/12/2022] Open
Abstract
It has been postulated for some time that endogenous digitalis-like substances, also called cardiotonic steroids (CTS), exist, and that these substances are involved in sodium handling. Within the past 20 years, these substances have been unequivocally identified and measurements of circulating and tissue concentrations have been made. More recently, it has been identified that CTS also mediate signal transduction through the Na/K-ATPase, and consequently been implicated in profibrotic pathways. This review will discuss the mechanism of CTS in renal sodium handling and a potential "trade-off" effect from their role in inducing tissue fibrosis.
Collapse
Affiliation(s)
- Joe X. Xie
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Pearl Shapiro
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Joseph Isaac Shapiro
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
- *Correspondence: Joseph Isaac Shapiro, Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive Suite 3408, Huntington, WV 25701, USA e-mail:
| |
Collapse
|