1
|
Bao X, Wu J. Natural anti-adhesive components against pathogenic bacterial adhesion and infection in gastrointestinal tract: case studies of Helicobacter pylori, Salmonella enterica, Clostridium difficile, and diarrheagenic Escherichia coli. Crit Rev Food Sci Nutr 2024:1-46. [PMID: 39666022 DOI: 10.1080/10408398.2024.2436139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Antimicrobial resistance (AMR) poses a global public health concern. Recognizing the critical role of bacterial adhesion in pathogenesis of infection, anti-adhesive therapy emerges as a promising approach to impede initial bacterial attachment, thus preventing pathogenic colonization and infection. Natural anti-adhesive agents derived from food sources are generally safe and have the potential to inhibit the emergence of resistant bacteria. This comprehensive review explored diverse natural dietary components exhibiting anti-adhesive activities against several model enteric pathogens, including Helicobacter pylori, Salmonella enterica, Clostridium difficile, and three key diarrheagenic Escherichia coli (i.e., enterotoxigenic E. coli, enteropathogenic E. coli, and enterohemorrhagic E. coli). Investigating various anti-adhesive products will advance our understanding of current research of the field and inspire further development of these agents as potential nutraceuticals or adjuvants to improve the efficacy of conventional antibiotics.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Dehzad MJ, Ghalandari H, Askarpour M. Curcumin/turmeric supplementation could improve blood pressure and endothelial function: A grade-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2024; 59:194-207. [PMID: 38220376 DOI: 10.1016/j.clnesp.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND AND PURPOSE A number of studies have examined the impact of curcumin/turmeric on blood pressure and the factors allegedly responsible for hypertension. In this systematic review and meta-analysis, we tried to sum up the existing literature on randomized controlled trials (RCTs) investigating this hypothesis. METHODS Online databases (PubMed, Scopus, Web of Science Core Collection, Cochrane Library, and Google Scholar) were searched from inception up to October 2022. We used the cochrane quality assessment tool to evaluate the risk of bias. Outcomes of interest included systolic blood pressure (SBP), diastolic blood pressure (DBP), blood levels of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), flow-mediated vasodilation (FMD), and pulse-wave velocity (PWV). Weighted mean differences (WMDs) were derived and reported. In case of significant between-study heterogeneity, subgroup analyses were carried out. Significance level was considered as P-values<0.05. RESULTS Finally, 35 RCTs out of 4182 studies were included. Our findings suggested that curcumin/turmeric supplementation significantly improved SBP (WMD: -2.02 mmHg; 95 % CI: -2.85, -1.18), DBP (WMD: -0.82 mmHg; 95 % CI: -1.46, -0.18), VCAM-1 (WMD: -39.19 ng/mL; 95 % CI: -66.15, -12.23), and FMD (WMD: 2.00 %; 95 % CI: 1.07, 2.94). However, it did not significantly change levels of ICAM-1 (WMD: -17.05 ng/ml; 95 % CI: -80.79, 46.70), or PWV (WMD: -79.53 cm/s; 95 % CI: -210.38, 51.33). CONCLUSION It seems that curcumin/turmeric supplementation could be regarded as a complementary method to improve blood pressure and endothelial function. However, further research is needed to clarify its impact on inflammatory adhesion molecules in the circulation.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Wang C, Yao M, Zhong H, Meena SS, Shu F, Nie S, Xie M. Natural foods resources and dietary ingredients for the amelioration of Helicobacter pylori infection. Front Med (Lausanne) 2023; 10:1324473. [PMID: 38131043 PMCID: PMC10734694 DOI: 10.3389/fmed.2023.1324473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a gastric-persistent pathogen that can cause peptic ulcer disease, gastric cancer, and mucosal-associated lymphoid tissue lymphoma. This pathogen is commonly treated with antibiotic-based triple or quadruple therapy. However, antibiotic therapy could result in the bacterial resistance, imbalance of gut microbiota, and damage to the liver and kidneys, etc. Therefore, there is an urgent need for alternative therapeutic strategies. Interestingly, natural food resources, like vegetables, fruits, spices, and edible herbs, have potent inhibitory effects on H. pylori. In this review, we systematically summarized these foods with supporting evidence from both animal and clinical studies. The results have indicated that natural foods may possess temporary inhibition effect on H. pylori rather than durable eradication, and may help to reduce H. pylori colonization, enhance the effect of antibiotics and modulate the host's immune response.
Collapse
Affiliation(s)
- Chengyuan Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Meixiang Yao
- Jiangzhong Dietary Therapy Technology Co. Ltd, Jiujiang, Jiangxi, China
| | - Hongguang Zhong
- Jiangzhong Dietary Therapy Technology Co. Ltd, Jiujiang, Jiangxi, China
| | - Stephene S. Meena
- Jiangzhong Cancer Research, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Fuxing Shu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Kongkam P, Khongkha W, Lopimpisuth C, Chumsri C, Kosarussawadee P, Phutrakool P, Khamsai S, Sawanyawisuth K, Sura T, Phisalprapa P, Buamahakul T, Siwamogsatham S, Angsusing J, Poonniam P, Wanaratna K, Teerachaisakul M, Pongpirul K. Curcumin and proton pump inhibitors for functional dyspepsia: a randomised, double blind controlled trial. BMJ Evid Based Med 2023; 28:399-406. [PMID: 37696679 DOI: 10.1136/bmjebm-2022-112231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE To compare the efficacy of curcumin versus omeprazole in improving patient reported outcomes in people with dyspepsia. DESIGN Randomised, double blind controlled trial, with central randomisation. SETTING Thai traditional medicine hospital, district hospital, and university hospitals in Thailand. PARTICIPANTS Participants with a diagnosis of functional dyspepsia. INTERVENTIONS The interventions were curcumin alone (C), omeprazole alone (O), or curcumin plus omeprazole (C+O). Patients in the combination group received two capsules of 250 mg curcumin, four times daily, and one capsule of 20 mg omeprazole once daily for 28 days. MAIN OUTCOME MEASURES Functional dyspepsia symptoms on days 28 and 56 were assessed using the Severity of Dyspepsia Assessment (SODA) score. Secondary outcomes were the occurrence of adverse events and serious adverse events. RESULTS 206 patients were enrolled in the study and randomly assigned to one of the three groups; 151 patients completed the study. Demographic data (age 49.7±11.9 years; women 73.4%), clinical characteristics and baseline dyspepsia scores were comparable between the three groups. Significant improvements were observed in SODA scores on day 28 in the pain (-4.83, -5.46 and -6.22), non-pain (-2.22, -2.32 and -2.31) and satisfaction (0.39, 0.79 and 0.60) categories for the C+O, C, and O groups, respectively. These improvements were enhanced on day 56 in the pain (-7.19, -8.07 and -8.85), non-pain (-4.09, -4.12 and -3.71) and satisfaction (0.78, 1.07, and 0.81) categories in the C+O, C, and O groups, respectively. No significant differences were observed among the three groups and no serious adverse events occurred. CONCLUSION Curcumin and omeprazole had comparable efficacy for functional dyspepsia with no obvious synergistic effect. TRIAL REGISTRATION NUMBER TCTR20221208003.
Collapse
Affiliation(s)
- Pradermchai Kongkam
- Department of Internal Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
- King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Chawin Lopimpisuth
- Department of Internal Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
- King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chitsanucha Chumsri
- Department of Preventive and Social Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
- Center of Excellence in Preventive & Integrative Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Prach Kosarussawadee
- Department of Internal Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
- King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Phanupong Phutrakool
- Center of Excellence in Preventive & Integrative Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
- Chula Data Management Centre, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | | | | | - Thanyachai Sura
- Ramathibodi Hospital, Mahidol University Faculty of Medicine, Bangkok, Thailand
| | | | | | - Sarawut Siwamogsatham
- Department of Internal Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
- King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Jaenjira Angsusing
- Department of Thai Traditional and Alternative Medicine, Royal Thai Government Ministry of Public Health, Bangkok, Thailand
| | - Pratchayanan Poonniam
- Department of Thai Traditional and Alternative Medicine, Royal Thai Government Ministry of Public Health, Bangkok, Thailand
| | - Kulthanit Wanaratna
- Department of Thai Traditional and Alternative Medicine, Royal Thai Government Ministry of Public Health, Bangkok, Thailand
| | - Monthaka Teerachaisakul
- Department of Thai Traditional and Alternative Medicine, Royal Thai Government Ministry of Public Health, Bangkok, Thailand
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
- Center of Excellence in Preventive & Integrative Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Infection Biology & Microbiomes, University of Liverpool Faculty of Health and Life Sciences, Liverpool, UK
| |
Collapse
|
5
|
Joshi P, Bisht A, Paliwal A, Dwivedi J, Sharma S. Recent updates on clinical developments of curcumin and its derivatives. Phytother Res 2023; 37:5109-5158. [PMID: 37536946 DOI: 10.1002/ptr.7974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 06/19/2023] [Accepted: 07/15/2023] [Indexed: 08/05/2023]
Abstract
Curcumin, a natural polyphenol, derived from Curcuma longa L. is extensively studied by various researchers across the globe and has established its immense potential in the management of several disorders at clinical level. The underlying mechanism of curcumin involves regulation of various molecular targets, namely, inflammatory cytokines, transcription factor, apoptotic genes, growth factors, oxidative stress biomarkers, and protein kinases. In clinical trials, curcumin as an adjuvant has significantly boost-up the efficacy of many proven drugs in the management of arthritis, neurodegenerative disorder, oral infection, and gastrointestinal disorders. Moreover, clinical studies have suggested curcumin as an appropriate candidate for the prevention and/or management of various cancers via regulation of signaling molecules including NF-kB, cytokines, C-reactive protein, prostaglandin E2, Nrf2, HO-1, ALT, AST, kinases, and blood profiles. This article highlights plethora of clinical trials that have been conducted on curcumin and its derivatives in the management of several ailments. Besides, it provides recent updates to the investigators for conducting future research to fulfill the current gaps to expedite the curcumin utility in clinical subjects bearing different pathological states.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Ajita Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
6
|
Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Effects of curcumin/turmeric supplementation on glycemic indices in adults: A grade-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Diabetes Metab Syndr 2023; 17:102855. [PMID: 37748368 DOI: 10.1016/j.dsx.2023.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
INTRODUCTION Glycemic control is of utmost importance both as a preventive measure in individuals at risk of diabetes and in the management of patients with disturbed glycemia. Turmeric/curcumin has been extensively studied in this field. In the present systematic review and meta-analysis, we aimed at investigating the impact of turmeric/curcumin supplementation on glycemic control. METHODS Major online databases (PubMed, Scopus, Web of Science, Cochrane Library and Google Scholar) were systematically searched from inception up to October 2022. Relevant randomized controlled trials (RCTs) meeting our eligible criteria were included. Weighted mean differences (WMDs) with confidence intervals (CIs) were expressed using a random-effect model. Subgroup analyses were conducted to find the sources of heterogeneities. To detect risk of bias in the included studies, we used the Cochrane risk-of-bias tool. The registration number was CRD42022374874. RESULTS Out of 4182 articles retrieved from the initial search, 59 RCTs were included. Our findings suggested that turmeric/curcumin supplementation was significantly effective in improving fasting blood sugar (WMD: 4.60 mg/dl; 95% CI: 5.55, -3.66), fasting insulin levels (WMD: 0.87 μIU/ml; 95% CI: 1.46, -0.27), hemoglobin A1c (HbA1c) (WMD: 0.32%; 95% CI: 0.45, -0.19), and homeostatic model assessment of insulin resistance (HOMA-IR) (WMD: 0.33; 95% CI: 0.43, -0.22). CONCLUSION Our results indicate that turmeric/curcumin supplementation can be considered as a complementary method in the management of disturbed glycemia.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Lan H, Wang H, Chen C, Hu W, Ai C, Chen L, Teng H. Flavonoids and gastrointestinal health: single molecule for multiple roles. Crit Rev Food Sci Nutr 2023; 64:10987-11005. [PMID: 37409462 DOI: 10.1080/10408398.2023.2230501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Diet can be considered as one of the pivotal factors in regulating gastrointestinal health, and polyphenols widely distributed in human daily diet. The polyphenols and their metabolites playing a series of beneficial effects in human gastrointestinal tract that can regulate of the gut microbiota, increase intestinal barrier function, repair gastrointestinal mucosa, reduce oxidative stress, inhibit the secretion of inflammatory factors and regulating immune function, and their absorption and biotransformation mainly depend on the activity of intestinal microflora. However, little is known about the two-way interaction between polyphenols and intestinal microbiota. The objective of this review is to highlight the structure optimization and effect of flavonoids on intestinal flora, and discusses the mechanisms of dietary flavonoids regulating intestinal flora. The multiple effects of single molecule of flavonoids, and inter-dependence between the gut microbiota and polyphenol metabolites. Moreover, the protective effects of polyphenols on intestinal barrier function, and effects of interaction between plant polyphenols and macromolecules on gastrointestinal health. This review provided valuable insight that may be useful for better understanding the mechanism of the gastrointestinal health effects of polyphenols, and provide a scientific basis for their application as functional food.
Collapse
Affiliation(s)
- Haijing Lan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chong Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Wenlu Hu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
8
|
Báez G, Vargas C, Arancibia M, Papuzinski C, Franco JV. Non-Chinese herbal medicines for functional dyspepsia. Cochrane Database Syst Rev 2023; 6:CD013323. [PMID: 37323050 PMCID: PMC10267606 DOI: 10.1002/14651858.cd013323.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND One-third of people with gastrointestinal disorders, including functional dyspepsia, use some form of complementary and alternative medicine, including herbal medicines. OBJECTIVES The primary objective is to assess the effects of non-Chinese herbal medicines for the treatment of people with functional dyspepsia. SEARCH METHODS We searched the following electronic databases on 22 December 2022: Cochrane Central Register of Controlled Trials, MEDLINE, Embase, Allied and Complementary Medicine Database, Latin American and Caribbean Health Sciences Literature, among other sources, without placing language restrictions. SELECTION CRITERIA We included RCTs comparing non-Chinese herbal medicines versus placebo or other treatments in people with functional dyspepsia. DATA COLLECTION AND ANALYSIS Two review authors independently screened references, extracted data and assessed the risk of bias from trial reports. We used a random-effects model to calculate risk ratios (RRs) and mean differences (MDs). We created effect direction plots when meta-analysis was not possible, following the reporting guideline for Synthesis without Meta-analysis (SWiM). We used GRADE to assess the certainty of the evidence (CoE) for all outcomes. MAIN RESULTS We included 41 trials with 4477 participants that assessed 27 herbal medicines. This review evaluated global symptoms of functional dyspepsia, adverse events and quality of life; however, some studies did not report these outcomes. STW5 (Iberogast) may moderately improve global symptoms of dyspepsia compared with placebo at 28 to 56 days; however, the evidence is very uncertain (MD -2.64, 95% CI -4.39 to -0.90; I2 = 87%; 5 studies, 814 participants; very low CoE). STW5 may also increase the improvement rate compared to placebo at four to eight weeks' follow-up (RR 1.55, 95% CI 0.98 to 2.47; 2 studies, 324 participants; low CoE). There was little to no difference in adverse events for STW5 compared to placebo (RR 0.92, 95% CI 0.52 to 1.64; I2 = 0%; 4 studies, 786 participants; low CoE). STW5 may cause little to no difference in quality of life compared to placebo (no numerical data available, low CoE). Peppermint and caraway oil probably result in a large improvement in global symptoms of dyspepsia compared to placebo at four weeks (SMD -0.87, 95% CI -1.15 to -0.58; I2 = 0%; 2 studies, 210 participants; moderate CoE) and increase the improvement rate of global symptoms of dyspepsia (RR 1.53, 95% CI 1.30 to 1.81; I2 = 0%; 3 studies, 305 participants; moderate CoE). There may be little to no difference in the rate of adverse events between this intervention and placebo (RR 1.56, 95% CI 0.69 to 3.53; I2 = 47%; 3 studies, 305 participants; low CoE). The intervention probably improves the quality of life (measured on the Nepean Dyspepsia Index) (MD -131.40, 95% CI -193.76 to -69.04; 1 study, 99 participants; moderate CoE). Curcuma longa probably results in a moderate improvement global symptoms of dyspepsia compared to placebo at four weeks (MD -3.33, 95% CI -5.84 to -0.81; I2 = 50%; 2 studies, 110 participants; moderate CoE) and may increase the improvement rate (RR 1.50, 95% CI 1.06 to 2.11; 1 study, 76 participants; low CoE). There is probably little to no difference in the rate of adverse events between this intervention and placebo (RR 1.26, 95% CI 0.51 to 3.08; 1 study, 89 participants; moderate CoE). The intervention probably improves the quality of life, measured on the EQ-5D (MD 0.05, 95% CI 0.01 to 0.09; 1 study, 89 participants; moderate CoE). We found evidence that the following herbal medicines may improve symptoms of dyspepsia compared to placebo: Lafonesia pacari (RR 1.52, 95% CI 1.08 to 2.14; 1 study, 97 participants; moderate CoE), Nigella sativa (SMD -1.59, 95% CI -2.13 to -1.05; 1 study, 70 participants; high CoE), artichoke (SMD -0.34, 95% CI -0.59 to -0.09; 1 study, 244 participants; low CoE), Boensenbergia rotunda (SMD -2.22, 95% CI -2.62 to -1.83; 1 study, 160 participants; low CoE), Pistacia lenticus (SMD -0.33, 95% CI -0.66 to -0.01; 1 study, 148 participants; low CoE), Enteroplant (SMD -1.09, 95% CI -1.40 to -0.77; 1 study, 198 participants; low CoE), Ferula asafoetida (SMD -1.51, 95% CI -2.20 to -0.83; 1 study, 43 participants; low CoE), ginger and artichoke (RR 1.64, 95% CI 1.27 to 2.13; 1 study, 126 participants; low CoE), Glycyrrhiza glaba (SMD -1.86, 95% CI -2.54 to -1.19; 1 study, 50 participants; moderate CoE), OLNP-06 (RR 3.80, 95% CI 1.70 to 8.51; 1 study, 48 participants; low CoE), red pepper (SMD -1.07, 95% CI -1.89 to -0.26; 1 study, 27 participants; low CoE), Cuadrania tricuspidata (SMD -1.19, 95% CI -1.66 to -0.72; 1 study, 83 participants; low CoE), jollab (SMD -1.22, 95% CI -1.59 to -0.85; 1 study, 133 participants; low CoE), Pimpinella anisum (SMD -2.30, 95% CI -2.79 to -1.80; 1 study, 107 participants; low CoE). The following may provide little to no difference compared to placebo: Mentha pulegium (SMD -0.38, 95% CI -0.78 to 0.02; 1 study, 100 participants; moderate CoE) and cinnamon oil (SMD 0.38, 95% CI -0.17 to 0.94; 1 study, 51 participants; low CoE); moreover, Mentha longifolia may increase dyspeptic symptoms (SMD 0.46, 95% CI 0.04 to 0.88; 1 study, 88 participants; low CoE). Almost all the studies reported little to no difference in the rate of adverse events compared to placebo except for red pepper, which may result in a higher risk of adverse events compared to placebo (RR 4.31, 95% CI 1.56 to 11.89; 1 study, 27 participants; low CoE). With respect to the quality of life, most studies did not report this outcome. When compared to other interventions, essential oils may improve global symptoms of dyspepsia compared to omeprazole. Peppermint oil/caraway oil, STW5, Nigella sativa and Curcuma longa may provide little to no benefit compared to other treatments. AUTHORS' CONCLUSIONS Based on moderate to very low-certainty evidence, we identified some herbal medicines that may be effective in improving symptoms of dyspepsia. Moreover, these interventions may not be associated with important adverse events. More high-quality trials are needed on herbal medicines, especially including participants with common gastrointestinal comorbidities.
Collapse
Affiliation(s)
- Germán Báez
- School of Medicine, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Camila Vargas
- School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
| | - Marcelo Arancibia
- Department of Psychiatry, Universidad de Valparaíso, Valparaíso, Chile
| | - Cristian Papuzinski
- Department of Medical Specialties, Universidad de Valparaíso, Viña del Mar, Chile
- Department of Surgery, Universidad de Valencia, Valencia, Spain
| | - Juan Va Franco
- Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
Dehzad MJ, Ghalandari H, Amini MR, Askarpour M. Effects of curcumin/turmeric supplementation on lipid profile: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Complement Ther Med 2023; 75:102955. [PMID: 37230418 DOI: 10.1016/j.ctim.2023.102955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Numerous approaches have been assigned to treat dyslipidemia (DLP). Turmeric/curcumin have been widely investigated with this regard. In the current study, we explored the effect of curcumin/turmeric supplementation on lipid profile. METHODS Online databases were searched up to October 2022. The outcomes included triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), apolipoprotein B (Apo-B), and apolipoprotein A (Apo-A). We used the Cochrane quality assessment tool to evaluate the risk of bias. The effect sizes were estimated as weighted mean difference (WMD) and 95% confidence intervals (CIs). RESULTS Out of 4182 articles retrieved from the initial search, 64 randomized clinical trials (RCTs) were included in the study. Between-study heterogeneity was significant. Meta-analysis showed that turmeric/curcumin supplementation exerts statistically significant improvements on blood levels of TC (WMD = -3.99mg/dL; 95% CI = -5.33, -2.65), TG (WMD = -6.69mg/dL; 95% CI = -7.93, -5.45), LDL-c (WMD = -4.89mg/dL; 95% CI = -5.92, -3.87), and HDL-c (WMD = 1.80mg/dL; 95% CI = 1.43, 2.17). However, turmeric/curcumin supplementation was not associated with improvements in blood levels of Apo-A or Apo-B. The studies did not thoroughly address the issues of potency, purity, or consumption with other foods. CONCLUSION Turmeric/curcumin supplementation seems to be effective in improving blood levels of TC, TG, LDL-c, and HDL-c; but may not be capable of improving their pertinent apolipoproteins. Since the evidence was assessed to be low and very low concerning the outcomes, these findings should be dealt with caution.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Dehzad MJ, Ghalandari H, Amini MR, Askarpour M. Effects of curcumin/turmeric supplementation on liver function in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Complement Ther Med 2023; 74:102952. [PMID: 37178581 DOI: 10.1016/j.ctim.2023.102952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION Liver conditions are major burdens upon health systems around the world. Turmeric /curcumin is believed to possess therapeutic features in ameliorating various metabolic disorders. In this systematic review and meta-analysis of the randomized controlled trials (RCTs), we examined the effect of turmeric/curcumin supplementation on some liver function tests (LFTs). METHODS We comprehensively searched online databases (i.e. PubMed, Scopus, Web of Science, Cochrane Library, and Google Scholar) from inception up to October 2022. Final outcomes included aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT). Weighted mean differences (WMDs) were reported. In case of between-study heterogeneity, subgroup analysis was conducted. Non-linear dose-response analysis was carried out to detect the potential effect of dosage and duration. The registration code is CRD42022374871. RESULTS Thirty-one RCTs were included in the meta-analysis. Turmeric/curcumin supplementation significantly reduced blood levels of ALT (WMD = -4.09 U/L; 95 % CI = -6.49, -1.70) and AST (WMD = -3.81 U/L; 95 % CI = -5.71, -1.91), but not GGT (WMD: -12.78 U/L; 95 % CI: -28.20, 2.64). These improvements, though statistically significant, do not ensure clinical effectiveness. CONCLUSION It seems that turmeric/curcumin supplementation might be effective in improving AST and ALT levels. However, further clinical trials are needed to examine its effect on GGT. Quality of the evidence across the studies was low for AST and ALT and very low for GGT. Therefore, more studies with high quality are needed to assess this intervention on hepatic health.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
12
|
Matsumura Y, Kitabatake M, Kayano SI, Ito T. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota. Antioxidants (Basel) 2023; 12:antiox12040880. [PMID: 37107256 PMCID: PMC10135282 DOI: 10.3390/antiox12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Oxidative stress causes various diseases, such as type II diabetes and dyslipidemia, while antioxidants in foods may prevent a number of diseases and delay aging by exerting their effects in vivo. Phenolic compounds are phytochemicals such as flavonoids which consist of flavonols, flavones, flavanonols, flavanones, anthocyanidins, isoflavones, lignans, stilbenoids, curcuminoids, phenolic acids, and tannins. They have phenolic hydroxyl groups in their molecular structures. These compounds are present in most plants, are abundant in nature, and contribute to the bitterness and color of various foods. Dietary phenolic compounds, such as quercetin in onions and sesamin in sesame, exhibit antioxidant activity and help prevent cell aging and diseases. In addition, other kinds of compounds, such as tannins, have larger molecular weights, and many unexplained aspects still exist. The antioxidant activities of phenolic compounds may be beneficial for human health. On the other hand, metabolism by intestinal bacteria changes the structures of these compounds with antioxidant properties, and the resulting metabolites exert their effects in vivo. In recent years, it has become possible to analyze the composition of the intestinal microbiota. The augmentation of the intestinal microbiota by the intake of phenolic compounds has been implicated in disease prevention and symptom recovery. Furthermore, the “brain–gut axis”, which is a communication system between the gut microbiome and brain, is attracting increasing attention, and research has revealed that the gut microbiota and dietary phenolic compounds affect brain homeostasis. In this review, we discuss the usefulness of dietary phenolic compounds with antioxidant activities against some diseases, their biotransformation by the gut microbiota, the augmentation of the intestinal microflora, and their effects on the brain–gut axis.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shin-ichi Kayano
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
13
|
Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Cytokine 2023; 164:156144. [PMID: 36804260 DOI: 10.1016/j.cyto.2023.156144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Turmeric and its prominent bioactive compound, curcumin, have been the subject of many investigations with regard to their impact on inflammatory and oxidative balance in the body. In this systematic review and meta-analysis, we summarized the existing literature on randomized controlled trials (RCTs) which examined this hypothesis. Major databases (PubMed, Scopus, Web of Science, Cochrane Library and Google Scholar) were searched from inception up to October 2022. Relevant studies meeting our eligibility criteria were obtained. Main outcomes included inflammatory markers (i.e. C-reactive protein(CRP), tumour necrosis factorα(TNF-α), interleukin-6(IL-6), and interleukin 1 beta(IL-1β)) and markers of oxidative stress (i.e. total antioxidant capacity (TAC), malondialdehyde(MDA), and superoxide dismutase (SOD) activity). Weighted mean differences (WMDs) were reported. P-values < 0.05 were considered significant. Sixty-six RCTs were included in the final analysis. We observed that turmeric/curcumin supplementation significantly reduces levels of inflammatory markers, including CRP (WMD: -0.58 mg/l, 95 % CI: -0.74, -0.41), TNF-α (WMD: -3.48 pg/ml, 95 % CI: -4.38, -2.58), and IL-6 (WMD: -1.31 pg/ml, 95 % CI: -1.58, -0.67); except for IL-1β (WMD: -0.46 pg/ml, 95 % CI: -1.18, 0.27) for which no significant change was found. Also, turmeric/curcumin supplementation significantly improved anti-oxidant activity through enhancing TAC (WMD = 0.21 mmol/l; 95 % CI: 0.08, 0.33), reducing MDA levels (WMD = -0.33 µmol /l; 95 % CI: -0.53, -0.12), and SOD activity (WMD = 20.51 u/l; 95 % CI: 7.35, 33.67). It seems that turmeric/curcumin supplementation might be used as a viable intervention for improving inflammatory/oxidative status of individuals.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Student Research Committee, Department of community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS OMEGA 2023; 8:10713-10746. [PMID: 37008131 PMCID: PMC10061533 DOI: 10.1021/acsomega.2c07326] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 05/30/2023]
Abstract
Curcumin has been credited with a wide spectrum of pharmacological properties for the prevention and treatment of several chronic diseases such as arthritis, autoimmune diseases, cancer, cardiovascular diseases, diabetes, hemoglobinopathies, hypertension, infectious diseases, inflammation, metabolic syndrome, neurological diseases, obesity, and skin diseases. However, due to its weak solubility and bioavailability, it has limited potential as an oral medication. Numerous factors including low water solubility, poor intestinal permeability, instability at alkaline pH, and fast metabolism contribute to curcumin's limited oral bioavailability. In order to improve its oral bioavailability, different formulation techniques such as coadministration with piperine, incorporation into micelles, micro/nanoemulsions, nanoparticles, liposomes, solid dispersions, spray drying, and noncovalent complex formation with galactomannosides have been investigated with in vitro cell culture models, in vivo animal models, and humans. In the current study, we extensively reviewed clinical trials on various generations of curcumin formulations and their safety and efficacy in the treatment of many diseases. We also summarized the dose, duration, and mechanism of action of these formulations. We have also critically reviewed the advantages and limitations of each of these formulations compared to various placebo and/or available standard care therapies for these ailments. The highlighted integrative concept embodied in the development of next-generation formulations helps to minimize bioavailability and safety issues with least or no adverse side effects and the provisional new dimensions presented in this direction may add value in the prevention and cure of complex chronic diseases.
Collapse
|
15
|
Wang Q, Yao C, Li Y, Luo L, Xie F, Xiong Q, Feng P. Effect of polyphenol compounds on Helicobacter pylori eradication: a systematic review with meta-analysis. BMJ Open 2023; 13:e062932. [PMID: 36604137 PMCID: PMC9827256 DOI: 10.1136/bmjopen-2022-062932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Polyphenol compounds are classified as organic compounds with phenolic units exhibiting a variety of biological functions. This meta-analysis aims to assess the efficacy and safety of polyphenol compounds (curcumin, cranberry, garlic, liquorice and broccoli) in eradicating Helicobacter pylori. DESIGN Systematic review and meta-analysis. METHODS Literature searches were conducted on PubMed, Embase, The Cochrane Library, Web of Science, Medline, Chinese National Knowledge Infrastructure database, Chinese Scientific Journal Database and Wan Fang database from inception to January 2022. All randomised controlled trials comparing polyphenol compounds with the placebo or used as an adjunct treatment are included in this meta-analysis.The treatment effect for dichotomous outcomes was assessed using risk ratio (RR), while for continuous outcomes, mean differences both with 95% CIs, were used. Subgroup analyses were carried out for different treatment schemes and polyphenol compound species. RESULTS 12 trials were included in the meta-analysis. The total eradication rate of H.pylori in the polyphenol compounds group was higher than in the group without polyphenol compounds. Statistical significance was also observed (RR 1.19, 95% CI 1.03 to 1.38, p=0.02). The most frequent adverse effects of polyphenol compounds included diarrhoea, headache and vomiting. However, there were no differences regarding side effects between the two groups (RR 1.47, 95% CI 0.83 to 2.58, p=0.18). In subgroup analyses, the H.pylori eradication rate regimens with polyphenols therapy was superior to that of regimens without polyphenols therapy in the polyphenols versus placebo subgroup (RR 4.23, 95% CI 1.38 to 12.95, p=0.01), polyphenols plus triple therapy versus triple therapy subgroup (RR 1.11, 95% CI 1.01 to 1.22, p=0.03). CONCLUSION Polyphenol compounds can improve H.pylori eradication rates. Polyphenol compounds plus standard triple therapy can significantly improve the eradication. However, no evidence of a higher incidence of side effects could be found. PROSPERO REGISTRATION NUMBER CRD42022307477.
Collapse
Affiliation(s)
- Qiuxiang Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
- Department of traditional Chinese medicine, The Central Hospital of Guangyuan City, Guangyuan, Sichuan, China
| | - Chengjiao Yao
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yilin Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| | - Lihong Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| | - Fengjiao Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| | - Qin Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| | - Peimin Feng
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Shome S, Talukdar AD, Upadhyaya H. Antibacterial activity of curcumin and its essential nanoformulations against some clinically important bacterial pathogens: A comprehensive review. Biotechnol Appl Biochem 2022; 69:2357-2386. [PMID: 34826356 DOI: 10.1002/bab.2289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
Multidrug-resistant bacterial infections can kill 700,000 individuals globally each year and is considered among the top 10 global health threats faced by humanity as the arsenal of antibiotics is becoming dry and alternate antibacterial molecule is in demand. Nanoparticles of curcumin exhibit appreciable broad-spectrum antibacterial activity using unique and novel mechanisms and thus the process deserves to be reviewed and further researched to clearly understand the mechanisms. Based on the antibiotic resistance, infection, and virulence potential, a list of clinically important bacteria was prepared after extensive literature survey and all recent reports on the antibacterial activity of curcumin and its nanoformulations as well as their mechanism of antibacterial action have been reviewed. Curcumin, nanocurcumin, and its nanocomposites with improved aqueous solubility and bioavailability are very potential, reliable, safe, and sustainable antibacterial molecule against clinically important bacterial species that uses multitarget mechanism such as inactivation of antioxidant enzyme, reactive oxygen species-mediated cellular damage, and inhibition of acyl-homoserine-lactone synthase necessary for quorum sensing and biofilm formation, thereby bypassing the mechanisms of bacterial antibiotic resistance. Nanoformulations of curcumin can thus be considered as a potential and sustainable antibacterial drug candidate to address the issue of antibiotic resistance.
Collapse
Affiliation(s)
- Soumitra Shome
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Anupam Das Talukdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | | |
Collapse
|
17
|
Grafeneder J, Derhaschnig U, Eskandary F, Buchtele N, Sus N, Frank J, Jilma B, Schoergenhofer C. Micellar Curcumin: Pharmacokinetics and Effects on Inflammation Markers and PCSK-9 Concentrations in Healthy Subjects in a Double-Blind, Randomized, Active-Controlled, Crossover Trial. Mol Nutr Food Res 2022; 66:e2200139. [PMID: 36101515 PMCID: PMC9787856 DOI: 10.1002/mnfr.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/23/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Preclinical models have demonstrated the anti-inflammatory and lipid-lowering effects of curcumin. Innovative formulations have been developed to overcome the poor bioavailability of native curcumin. The study hypothesizes that the bioavailability of micellar curcumin is superior to native curcumin and investigates the potential anti-inflammatory and proprotein convertase subtilisin/kexin type 9 (PCSK9) concentration lowering effects. METHODS AND RESULTS In this double-blind, randomized, crossover trial, 15 healthy volunteers receive micellar or native curcumin (105 mg day-1 ) for 7 days with a ≥7 days washout period. Curcumin and metabolite concentrations are quantified by high-performance liquid chromatography with fluorescence detection (HPLC-FD), and pharmacokinetics are calculated. To analyze anti-inflammatory effects, blood samples (baseline, 2 h, 7 days) are stimulated with 50 ng mL-1 lipopolysaccharides (LPS). Interleukin (IL)-6, tumor-necrosis factor (TNF-α), and PCSK9 concentrations are quantified. Micellar curcumin demonstrates improved bioavailability (≈39-fold higher maximum concentrations, ≈14-fold higher area-under-the-time-concentration curve, p < 0.001) but does not reduce pro-inflammatory cytokines in the chosen model. Subjects receiving micellar curcumin have significantly lower PCSK9 concentrations (≈10% reduction) after 7 days compared to baseline (p = 0.038). CONCLUSION Micellar curcumin demonstrates an improved oral bioavailability but does not show anti-inflammatory effects in this model. Potential effects on PCSK9 concentrations warrant further investigation.
Collapse
Affiliation(s)
- Juergen Grafeneder
- Department of Emergency MedicineMedical University of ViennaVienna1090Austria
| | - Ulla Derhaschnig
- Department of Clinical PharmacologyMedical University of ViennaVienna1090Austria
| | - Farsad Eskandary
- Division of Nephrology, Department of Medicine IIIMedical University of ViennaVienna1090Austria
| | - Nina Buchtele
- Department of Medicine IMedical University of ViennaVienna1090Austria
| | - Nadine Sus
- Department of Food Biofunctionality (140b)Institute of Nutritional SciencesUniversity of HohenheimStuttgartGermany
| | - Jan Frank
- Department of Food Biofunctionality (140b)Institute of Nutritional SciencesUniversity of HohenheimStuttgartGermany
| | - Bernd Jilma
- Department of Clinical PharmacologyMedical University of ViennaVienna1090Austria
| | | |
Collapse
|
18
|
Mohammadi A, Khanbabaei H, Zandi F, Ahmadi A, Haftcheshmeh SM, Johnston TP, Sahebkar A. Curcumin: A therapeutic strategy for targeting the Helicobacter pylori-related diseases. Microb Pathog 2022; 166:105552. [DOI: 10.1016/j.micpath.2022.105552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022]
|
19
|
Yongwatana K, Harinwan K, Chirapongsathorn S, Opuchar K, Sanpajit T, Piyanirun W, Puttapitakpong C. Curcuma longa Linn versus omeprazole in treatment of functional dyspepsia: A randomized, double-blind, placebo-controlled trial. J Gastroenterol Hepatol 2022; 37:335-341. [PMID: 34652861 DOI: 10.1111/jgh.15705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Functional dyspepsia (FD) is a common problem in gastroenterology practice. The study aimed to compare the efficacy of Curcuma longa Linn versus omeprazole and placebo among patients diagnosed with FD. METHODS From November 2017 to November 2018, patients diagnosed with FD according to ROME IV criteria were enrolled. Patients were randomized into curcumin, omeprazole, or placebo groups. The Severity of Dyspepsia Assessment (SODA) was used to evaluate clinical effectiveness after 2 and 4 weeks. Health-related quality of life was assessed using the EuroQol-5 Dimension questionnaire. RESULTS A total of 132 patients were randomized. Forty-five, 43, and 44 patients were in the curcumin, omeprazole, and placebo groups, respectively. At 4 weeks, the mean SODA score change of pain and non-pain symptoms decreased in the curcumin group compared with the placebo group (pain -16.98 ± 8.09 vs -10.53 ± 4.43; P < 0.001, non-pain -7.96 ± 3.41 vs -6.05 ± 3.03; P < 0.008). No significant difference was observed between curcumin and omeprazole groups (pain -16.98 ± 8.09 vs -14.69 ± 6.41; P = 0.302, non-pain -7.96 ± 3.41 vs -7.07 ± 2.27; P = 0.486). The mean change of the SODA satisfaction score at 4 weeks was higher in the curcumin group compared with the omeprazole group but without statistical significance (9.17 ± 3.88 vs 8.63 ± 3.89, P = 1). The mean change of EQ-5D index at 4 weeks was highest in the curcumin group but not statistically different from other groups (0.12 ± 0.13 vs 0.09 ± 0.10 vs 0.07 ± 0.05; P = 0.055). CONCLUSION Curcuma longa Linn can improve dyspeptic symptoms, improve quality of life, and provide satisfaction equivalent to omeprazole in treatment of FD.
Collapse
Affiliation(s)
- Kachonsak Yongwatana
- Division of Gastroenterology and Hepatology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Kamin Harinwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Sakkarin Chirapongsathorn
- Division of Gastroenterology and Hepatology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Krit Opuchar
- Division of Gastroenterology and Hepatology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Theeranun Sanpajit
- Division of Gastroenterology and Hepatology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Wanich Piyanirun
- Division of Gastroenterology and Hepatology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Chaipichit Puttapitakpong
- Division of Gastroenterology and Hepatology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| |
Collapse
|
20
|
Kumar A, Harsha C, Parama D, Girisa S, Daimary UD, Mao X, Kunnumakkara AB. Current clinical developments in curcumin-based therapeutics for cancer and chronic diseases. Phytother Res 2021; 35:6768-6801. [PMID: 34498308 DOI: 10.1002/ptr.7264] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/16/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
The last decade has seen an unprecedented rise in the prevalence of chronic diseases worldwide. Different mono-targeted approaches have been devised to treat these multigenic diseases, still most of them suffer from limited success due to the off-target debilitating side effects and their inability to target multiple pathways. Hence a safe, efficacious, and multi-targeted approach is the need for the hour to circumvent these challenging chronic diseases. Curcumin, a natural compound extracted from the rhizomes of Curcuma longa, has been under intense scrutiny for its wide medicinal and biological properties. Curcumin is known to manifest antibacterial, antiinflammatory, antioxidant, antifungal, antineoplastic, antifungal, and proapoptotic effects. A plethora of literature has already established the immense promise of curcuminoids in the treatment and clinical management of various chronic diseases like cancer, cardiovascular, metabolic, neurological, inflammatory, and infectious diseases. To date, more than 230 clinical trials have opened investigations to understand the pharmacological aspects of curcumin in human systems. Still, further randomized clinical studies in different ethnic populations warrant its transition to a marketed drug. This review summarizes the results from different clinical trials of curcumin-based therapeutics in the prevention and treatment of various chronic diseases.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| |
Collapse
|
21
|
Shetty NP, Prabhakaran M, Srivastava AK. Pleiotropic nature of curcumin in targeting multiple apoptotic-mediated factors and related strategies to treat gastric cancer: A review. Phytother Res 2021; 35:5397-5416. [PMID: 34028111 DOI: 10.1002/ptr.7158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is one of the major reasons for cancer-associated death and exhibits the second-highest mortality rate worldwide. Several advanced approaches have been designed to treat GC; however, these strategies possess many innate complications. In view of this, the upcoming research relying on natural products could result in designing potential anticancer agents with fewer side effects. Curcumin, isolated from the rhizomes of Curcuma longa L. has several medicinal properties like antiinflammatory, antioxidant, antiapoptotic, antitumor, and antimetastatic. Such pleiotropic nature of curcumin impedes the invasion and proliferation of GC by targeting several oncogenic factors like p23, human epidermal factor receptor2 including Helicobacter pylori. The side effect of chemotherapy, that is, chemotherapeutic resistance and radiotherapy could be reduced combination therapy of curcumin. Moreover, the photodynamic therapy of curcumin destroys the cancer cells without affecting normal cells. However, further more potential studies are required to establish the potent efficacy of curcumin in the treatment of GC. The current review details the anticancer activities of curcumin and related strategies which could be employed to treat GC with additional focus on its inhibitory properties against viability, proliferation, and migration of GC cells through cell cycle arrest and stimulation by apoptosis-mediated factors.
Collapse
Affiliation(s)
- Nandini P Shetty
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Manoj Prabhakaran
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | | |
Collapse
|
22
|
Ullah H, Di Minno A, Santarcangelo C, Khan H, Xiao J, Arciola CR, Daglia M. Vegetable Extracts and Nutrients Useful in the Recovery from Helicobacter pylori Infection: A Systematic Review on Clinical Trials. Molecules 2021; 26:molecules26082272. [PMID: 33919894 PMCID: PMC8070974 DOI: 10.3390/molecules26082272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) infections affect almost half of the world’s population, with gradually increasing incidence in developed countries. Eradication of H. pylori may provide significant benefits to the affected individual by healing a number of gastrointestinal and extra-digestive disorders. But due to increased microbial resistance and lack of patient adherence to the therapy, the eradication rate of H. pylori is below 80% with current pharmacological therapies. The usage of botanicals for their therapeutic purposes and medicinal properties have been increased in last decades. They can be use as alternative H. pylori treatments, especially against drug-resistant strains. Epidemiological studies have revealed that people with lower vegetable and micronutrient intake may be at increased risk of H. pylori infection. We have undertaken a review of clinical trials to evaluate the efficacy of vegetable extracts and micronutrients in patients with H. pylori. Various databases, such as Google Scholar, PubMed, Scopus, Web of Science, and the Cochrane Library, were searched for the articles published in English. A total of 24 clinical studies (15 for vegetable extracts and 9 for micronutrients) were selected to be reviewed and summarized in this article. Vegetable extracts (Broccoli sprouts, curcumin, Burdock complex, and Nigella sativa) and micronutrients (vitamin C and E) were not found to be as effective as single agents in H. pylori eradication, rather their efficacy synergized with conventional pharmacological therapies. Conversely, GutGard was found to be significantly effective as a single agent when compared to placebo control.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; or
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
| | - Carla Renata Arciola
- Department of Experimental, Diagnostic and Specially Medicine, University of Bologna, via San Giacomo 14, 40126 Bologna, Italy;
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Correspondence:
| |
Collapse
|
23
|
Gastroprotective Effects of Polyphenols against Various Gastro-Intestinal Disorders: A Mini-Review with Special Focus on Clinical Evidence. Molecules 2021; 26:molecules26072090. [PMID: 33917379 PMCID: PMC8038706 DOI: 10.3390/molecules26072090] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022] Open
Abstract
Polyphenols are classified as an organic chemical with phenolic units that display an array of biological functions. However, polyphenols have very low bioavailability and stability, which make polyphenols a less bioactive compound. Many researchers have indicated that several factors might affect the efficiency and the metabolism (biotransformation) of various polyphenols, which include the gut microbiota, structure, and physical properties as well as its interactions with other dietary nutrients (macromolecules). Hence, this mini-review covers the two-way interaction between polyphenols and gut microbiota (interplay) and how polyphenols are metabolized (biotransformation) to produce various polyphenolic metabolites. Moreover, the protective effects of numerous polyphenols and their metabolites against various gastrointestinal disorders/diseases including gastritis, gastric cancer, colorectal cancer, inflammatory bowel disease (IBD) like ulcerative colitis (UC), Crohn’s disease (CD), and irritable bowel syndrome (IBS) like celiac disease (CED) are discussed. For this review, the authors chose only a few popular polyphenols (green tea polyphenol, curcumin, resveratrol, quercetin), and a discussion of their proposed mechanism underpinning the gastroprotection was elaborated with a special focus on clinical evidence. Overall, this contribution would help the general population and science community to identify a potent polyphenol with strong antioxidant, anti-inflammatory, anti-cancer, prebiotic, and immunomodulatory properties to combat various gut-related diseases or disorders (complementary therapy) along with modified lifestyle pattern and standard gastroprotective drugs. However, the data from clinical trials are much limited and hence many large-scale clinical trials should be performed (with different form/metabolites and dose) to confirm the gastroprotective activity of the above-mentioned polyphenols and their metabolites before recommendation.
Collapse
|
24
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
25
|
Ghazvini K, Keikha M. Can Curcumin be used as a therapeutic agent to eradicate Helicobacter pylori infection? Evidence from human clinical trials. LE PHARMACIEN HOSPITALIER ET CLINICIEN 2021. [DOI: 10.1016/j.phclin.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Azimi M, Zahedi MJ. Persian Herbal Medicine in Functional Dyspepsia: A Systematic Review. Curr Drug Discov Technol 2021; 18:272-281. [PMID: 32525777 DOI: 10.2174/1570163817666200611132831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION According to Rome IV, functional dyspepsia is diagnosed with the presence of dyspepsia in the absence of organic or metabolic causes. FD caused by several factors, such as impaired gastric accommodation and hypersensitivity to gastric distention. Several studies have reported the effectiveness of herbal medicine on FD. This article, thus, reviews Persian herbal medicine in FD. METHODS Electronic databases, including Pubmed, Scopus, Cochrane, Embase, Web of science and Ovid, were searched so as to find clinical articles related to dyspepsia and herbal medicine by July 2019. Our search strategies were traditional medicine, complementary and alternative medicine, herb, plant, and dyspepsia. We excluded all articles except Persian clinical trials. RESULTS We found 34 clinical trials with 15 herbs and 4 compound herbal remedies like Asparagus racemosus, Brassica oleracea, Cynara scolymus, Ocimum basilicum, Mentha longifolia, Mentha pulegium, Mentha piperata, Pimpinella anisum, Nigella sativa, Mastic gum, Curcuma longa, Pistatio Atlantica, Glycyrrhiza glabra, Solanum tuberosum and Zingiber officinale and compound remedies of Rosa damascene & Crocus sativus, Trachyspermum copticom & Apium graveolence, Carum carvi & Mentha pipperata, Gingiber officinalis & Cynara scolymus are effective in functional dyspepsia. CONCLUSION Many people use herbal and traditional remedies for the treatment of disorders such as gastrointestinal disorders, especially in Asian countries. Several studies reported the efficacy of herbal medicine in functional dyspepsia. Although their mechanisms are not fully understood, it seems they can modulate GI motility and improve symptoms of FD.
Collapse
Affiliation(s)
- Maryam Azimi
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Javad Zahedi
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Hakeem MJ, Lu X. Survival and Control of Campylobacter in Poultry Production Environment. Front Cell Infect Microbiol 2021; 10:615049. [PMID: 33585282 PMCID: PMC7879573 DOI: 10.3389/fcimb.2020.615049] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Campylobacter species are Gram-negative, motile, and non-spore-forming bacteria with a unique helical shape that changes to filamentous or coccoid as an adaptive response to environmental stresses. The relatively small genome (1.6 Mbp) of Campylobacter with unique cellular and molecular physiology is only understood to a limited extent. The overall strict requirement of this fastidious microorganism to be either isolated or cultivated in the laboratory settings make itself to appear as a weak survivor and/or an easy target to be inactivated in the surrounding environment of poultry farms, such as soil, water source, dust, surfaces and air. The survival of this obligate microaerobic bacterium from poultry farms to slaughterhouses and the final poultry products indicates that Campylobacter has several adaptive responses and/or environmental niches throughout the poultry production chain. Many of these adaptive responses remain puzzles. No single control method is yet known to fully address Campylobacter contamination in the poultry industry and new intervention strategies are required. The aim of this review article is to discuss the transmission, survival, and adaptation of Campylobacter species in the poultry production environments. Some approved and novel control methods against Campylobacter species throughout the poultry production chain will also be discussed.
Collapse
Affiliation(s)
- Mohammed J Hakeem
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,Department of Food Science and Human Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Ste Anne de Bellevue, QC, Canada
| |
Collapse
|
28
|
Effects of Curcumin and Its Analogues on Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:75-101. [PMID: 34331685 DOI: 10.1007/978-3-030-56153-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infectious diseases (IDs) are life-threatening illnesses, which result from the spread of pathogenic microorganisms such as bacteria, viruses, fungi, and parasites. IDs are a major challenge for the healthcare systems around the world, leading to a wide variety of clinical manifestations and complications. Despite the capability of frontline-approved medications to partially prevent or mitigate the invasion and subsequent damage of IDs to host tissues and cells, problems such as drug resistance, insufficient efficacy, unpleasant side effects, and high expenses stand in the way of their beneficial applications. One strategy is to evaluate currently explored and available bioactive compounds as possible anti-microbial agents. The natural polyphenol curcumin has been postulated to possess various properties including anti-microbial activities. Studies have shown that it possess pleiotropic effects against bacterial- and parasitic-associating IDs including drug-resistant strains. Curcumin can also potentiate the efficacy of available anti-bacterial and anti-parasitic drugs in a synergistic fashion. In this review, we summarize the findings of these studies along with reported controversies of native curcumin and its analogues, alone and in combination, toward its application in future studies as a natural anti-bacterial and anti-parasitic agent.
Collapse
|
29
|
Panahi Y, Karbasi A, Valizadegan G, Ostadzadeh N, Soflaei SS, Jamialahmadi T, Majeed M, Sahebkar A. Effect of Curcumin on Severity of Functional Dyspepsia: a Triple Blinded Clinical Trial. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:119-126. [PMID: 33861441 DOI: 10.1007/978-3-030-64872-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BackgroundFunctional dyspepsia is the main cause of upper abdominal discomfort affecting 5-10% of the world population. Despite various therapeutic approaches, up to 50% of patients with functional dyspepsia seek alternative treatments. In the present study we evaluated the effect of curcumin supplementation along with famotidine therapy on severity of functional dyspepsia. A total of 75 patients with functional dyspepsia according to Rome III criteria were allocated into intervention (N = 39) or control (N = 36) groups. The intervention group was treated with a combination of 500 mg curcumin and 40 mg famotidine daily for 1 month. The control group received placebo and 40 mg famotidine. Severity of dyspepsia symptoms was determined using the Hong Kong questionnaire at baseline, after the 1 month treatment and after a 1 month follow-up. The presence of H. pylori antigens in the stool samples was also investigated in all subjects. No significant difference was observed between intervention and control groups in biochemical indices, severity of dyspepsia and rate of H. pylori infection. A significant decrease was observed in severity of dyspepsia (p < 0.001) and rate of H. pylori infection (p = 0.004) immediately after the treatment and follow-up in the curcumin intervention group. This study indicated that curcumin therapy could be a favorable supplementation in the symptom management of functional dyspepsia. Moreover, curcumin could help efficient eradication of H. pylori in these patients.
Collapse
Affiliation(s)
- Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ashraf Karbasi
- Gastroenterology and Hepatology Department, Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ghasem Valizadegan
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
30
|
Emami B, Shakeri F, Gholamnezhad Z, Saadat S, Boskabady M, Azmounfar V, Sadatfaraji H, Boskabady MH. Calcium and potassium channels are involved in curcumin relaxant effect on tracheal smooth muscles. PHARMACEUTICAL BIOLOGY 2020; 58:257-264. [PMID: 32208946 PMCID: PMC7170316 DOI: 10.1080/13880209.2020.1723647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Context: Curcumin, the active component of Curcuma longa L. (Zingiberaceae), exhibits a wide variety of biological activities including vasodilation and anti-inflammation.Objective: The relaxant effect of curcumin in tracheal smooth muscle (TSM) was not examined so far, thus, this study was designed to assess the relaxant effect of curcumin on rat TSM and examine the underlying mechanism(s) responsible for this effect.Materials and methods: TSM was contracted by KCl (60 mM) or methacholine (10 μM), and cumulative concentrations of curcumin (12.5, 25, 50, and 100 mg/mL) or theophylline (0.2, 0.4, 0.6, and 0.8 mM, as positive control) were added to organ bath. The relaxant effect of curcumin was examined in non-incubated or incubated tissues with atropine (1 μM), chlorpheniramine (1 μM), indomethacin (1 μM), and papaverine (100 μM).Results: In non-incubated TSM, curcumin showed significant relaxant effects on KCl-induced contraction in a concentration-dependent manner (p < 0.001 for all concentrations). The relaxant effects of curcumin 12.5, 25, and 50 mg/mL were significantly lower in atropine-incubated tissue compared to non-incubated TSM (p < 0.05 to p < 0.001). A significant difference was observed in EC50 between atropine-incubated (48.10 ± 2.55) and non-incubated (41.65 ± 1.81) tissues (p < 0.05). Theophylline showed a significant relaxant effect on both KCl and methacholine-induced contraction in a concentration-dependent manner (p < 0.001 for all cases).Conclusions: The results indicated a relatively potent relaxant effect of curcumin on TSM, which was less marked than the effect of theophylline. Calcium channel blocking and/or potassium channel opening properties of curcumin may be responsible for TSM relaxation.
Collapse
Affiliation(s)
- Bahman Emami
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Marzie Boskabady
- Dental Materials Research Center and Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahab Azmounfar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Sadatfaraji
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- CONTACT Mohammad Hossein Boskabady Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Jakubczyk K, Drużga A, Katarzyna J, Skonieczna-Żydecka K. Antioxidant Potential of Curcumin-A Meta-Analysis of Randomized Clinical Trials. Antioxidants (Basel) 2020; 9:antiox9111092. [PMID: 33172016 PMCID: PMC7694612 DOI: 10.3390/antiox9111092] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 01/15/2023] Open
Abstract
Background: Antioxidant potential is defined as the ability to neutralize oxygen free radicals that are generated in excess due to environmental influences. The body’s defense mechanisms often require support in preventing the effects of oxidative stress. The literature data suggest that curcumin has antioxidant activity that can significantly reduce oxidative stress levels. The aim was to assess the impact of curcumin on oxidative stress markers. Methods: PubMed and Embase were searched from database inception until 27 September 2019 for randomized clinical trials in >20 patients treated with curcumin supplements and randomized to placebo/no intervention/physical activity to verify the antioxidant potential of curcumin. Results: Four studies were included in the meta-analysis, three of which were double-blind and one single-blind. A total of 308 participants took part in the research. A total of 40% of the respondents were men. The average age of participants was 27.60 ± 3.79 years. The average supplementation time was 67 days and the average dose of curcumin administered was 645 mg/24 h. Curcumin significantly increased total antioxidant capacity (TAC) (SMD = 2.696, Z = 2.003, CI = 95%, p = 0.045) and had a tendency to decrease malondialdehyde (MDA) concentration (SMD = −1.579, Z = −1.714, CI = 95%, p = 0.086). Conclusions: Pure curcumin has the potential to reduce MDA concentration and increase total antioxidant capacity.
Collapse
|
32
|
Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, Sestito S, Rapposelli S, Neffe-Skocińska K, Zielińska D, Salehi B, Setzer WN, Dosoky NS, Taheri Y, El Beyrouthy M, Martorell M, Ostrander EA, Suleria HAR, Cho WC, Maroyi A, Martins N. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front Pharmacol 2020; 11:01021. [PMID: 33041781 PMCID: PMC7522354 DOI: 10.3389/fphar.2020.01021] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Curcumin, a yellow polyphenolic pigment from the Curcuma longa L. (turmeric) rhizome, has been used for centuries for culinary and food coloring purposes, and as an ingredient for various medicinal preparations, widely used in Ayurveda and Chinese medicine. In recent decades, their biological activities have been extensively studied. Thus, this review aims to offer an in-depth discussion of curcumin applications for food and biotechnological industries, and on health promotion and disease prevention, with particular emphasis on its antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, and cardioprotective effects. Bioavailability, bioefficacy and safety features, side effects, and quality parameters of curcumin are also addressed. Finally, curcumin's multidimensional applications, food attractiveness optimization, agro-industrial procedures to offset its instability and low bioavailability, health concerns, and upcoming strategies for clinical application are also covered.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kasli, Jounieh, Lebanon
| | - Alain Abi Rizk
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kasli, Jounieh, Lebanon
| | - Carmen Sadaka
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Raviella Zgheib
- Institut Jean-Pierre Bourgin, AgroParisTech, INRA, Université Paris-Saclay, Versailles, France
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | | | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | | | - Dorota Zielińska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Warszawa, Poland
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | | | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kasli, Jounieh, Lebanon
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Elise Adrian Ostrander
- Medical Illustration, Kendall College of Art and Design, Ferris State University, Grand Rapids, MI, United States
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
33
|
Hassanzadeh K, Buccarello L, Dragotto J, Mohammadi A, Corbo M, Feligioni M. Obstacles against the Marketing of Curcumin as a Drug. Int J Mol Sci 2020; 21:E6619. [PMID: 32927725 PMCID: PMC7554750 DOI: 10.3390/ijms21186619] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Among the extensive public and scientific interest in the use of phytochemicals to prevent or treat human diseases in recent years, natural compounds have been highly investigated to elucidate their therapeutic effect on chronic human diseases including cancer, cardiovascular disease, and neurodegenerative disease. Curcumin, an active principle of the perennial herb Curcuma longa, has attracted an increasing research interest over the last half-century due to its diversity of molecular targets, including transcription factors, enzymes, protein kinases, growth factors, inflammatory cytokines, receptors, and it's interesting pharmacological activities. Despite that, the clinical effectiveness of the native curcumin is weak, owing to its low bioavailability and rapid metabolism. Preclinical data obtained from animal models and phase I clinical studies done in human volunteers confirmed a small amount of intestinal absorption, hepatic first pass effect, and some degree of intestinal metabolism, might explain its poor systemic availability when it is given via the oral route. During the last decade, researchers have attempted with new pharmaceutical methods such as nanoparticles, liposomes, micelles, solid dispersions, emulsions, and microspheres to improve the bioavailability of curcumin. As a result, a significant number of bioavailable curcumin-based formulations were introduced with a varying range of enhanced bioavailability. This manuscript critically reviews the available scientific evidence on the basic and clinical effects and molecular targets of curcumin. We also discuss its pharmacokinetic and problems for marketing curcumin as a drug.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Lucia Buccarello
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Jessica Dragotto
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| | - Marco Feligioni
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| |
Collapse
|
34
|
Bahrami A, A Ferns G. Effect of Curcumin and Its Derivates on Gastric Cancer: Molecular Mechanisms. Nutr Cancer 2020; 73:1553-1569. [PMID: 32814463 DOI: 10.1080/01635581.2020.1808232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gastric carcinoma is one of the most prevalent malignancies and is associated with a high mortality. Chemotherapy is the principal therapeutic option in the treatment of gastric cancer, but its success rate is restricted by severe side effects and the prevalence of chemo-resistance. Curcumin is a polyphenolic compound derived from turmeric that has potent antioxidant, anti-inflammatory and anti-tumor effects. There is accumulating evidence that curcumin may prevent gastric cancer through regulation of oncogenic pathways. Furthermore some curcumin analogues and novel formulation of curcumin appear to have anti-tumor activity. The aim of this review was to give an overview of the therapeutic potential of curcumin and its derivatives against gastric cancer in preclinical and clinical studies.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| |
Collapse
|
35
|
Zheng D, Huang C, Huang H, Zhao Y, Khan MRU, Zhao H, Huang L. Antibacterial Mechanism of Curcumin: A Review. Chem Biodivers 2020; 17:e2000171. [PMID: 32533635 DOI: 10.1002/cbdv.202000171] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Curcumin is a plant-derived polyphenolic active substance with broad-spectrum antibacterial properties. Curcumin blocks bacterial growth owing to its structural characteristics and the generation of antioxidation products. Curcumin can inhibit bacterial virulence factors, inhibit bacterial biofilm formation and prevent bacterial adhesion to host receptors through the bacterial quorum sensing regulation system. As a photosensitizer, curcumin acts under blue light irradiation to induce phototoxicity and inhibit bacterial growth. Moreover, it can exert a synergistic antibacterial effect with other antibacterial substances. In this review, we summarize the research progress on the antibacterial mechanism of curcumin based on five targeting structures and two modes of action. Our discussion provides a theoretical basis and technical foundation for the development and application of natural antibacterial agents.
Collapse
Affiliation(s)
- Dantong Zheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Chongxing Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Haohe Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yuan Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | | | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Lijie Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
36
|
In vitro Anti-Helicobacter pylori Activity of Capsaicin. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
37
|
Kunnumakkara AB, Harsha C, Banik K, Vikkurthi R, Sailo BL, Bordoloi D, Gupta SC, Aggarwal BB. Is curcumin bioavailability a problem in humans: lessons from clinical trials. Expert Opin Drug Metab Toxicol 2019; 15:705-733. [DOI: 10.1080/17425255.2019.1650914] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Bethsebie L. Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Subash C. Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
38
|
Jakubek M, Kejík Z, Kaplánek R, Hromádka R, Šandriková V, Sýkora D, Antonyová V, Urban M, Dytrych P, Mikula I, Martásek P, Král V. Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer. Biomed Pharmacother 2019; 118:109278. [PMID: 31387004 DOI: 10.1016/j.biopha.2019.109278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer is a common oncological disease. Although enormous efforts have been expended, possible therapeutic modalities are still limited. For this reason, new therapeutic approaches and agents are highly requested and intensively developed. One strategy is the application of natural agents, such as curcumin, with proven anticancer effects and low toxicity for patients. Therefore, this review discusses the potential application of curcumin in the therapy of gastric cancer and its potential incorporation in therapeutic regimens. Because one of the largest impediments for widespread curcumin application is its limited bioavailability (caused mainly by its very low water solubility), studied strategies (drug delivery systems and curcumin derivatization) aimed to solve this obstacle are discussed in more detail.
Collapse
Affiliation(s)
- Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Róbert Hromádka
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Research and Development Center C2P s.r.o., Jungmannova 101, 503 51 Chlumec nad Cidlinou, Czech Republic
| | - Viera Šandriková
- Research and Development Center C2P s.r.o., Jungmannova 101, 503 51 Chlumec nad Cidlinou, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Veronika Antonyová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Marian Urban
- Food Research Institute Prague, Radiová 1285/7, 1285/7, Prague 10, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague 2, Czech Republic
| | - Ivan Mikula
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Vladimír Král
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
39
|
Salehi B, Stojanović-Radić Z, Matejić J, Sharifi-Rad M, Anil Kumar NV, Martins N, Sharifi-Rad J. The therapeutic potential of curcumin: A review of clinical trials. Eur J Med Chem 2018; 163:527-545. [PMID: 30553144 DOI: 10.1016/j.ejmech.2018.12.016] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
Curcuma longa L., its derived extracts and even its major compound curcumin has a long history of use and doubtless effectiveness, reported through increasingly detailed in vitro, ex vivo, in vivo and even clinical trials. Regarding its biological effects, multiple health-promoting, disease-preventing and even treatment attributes has been remarkably highlighted. Clinical trials, although have increased in a progressive manner, significant disproportionalities have been stated in terms of biological effects assessment. In this sense, the present report aims to provide an extensive overview to curcumin therapeutic effects in human subjects. For that, clinical trials assessing the curcumin effect on inflammation, skin, eye, central nervous system, respiratory, cardiovascular, gastrointestinal, urogenital and metabolic disorders are here presented and discussed. A special emphasis was also given to curcumin activity on intoxications and multiple malignant diseases.
Collapse
Affiliation(s)
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Jelena Matejić
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr Zorana Đinđića 81, 18000, Niš, Serbia.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol, 61663-335, Iran.
| | - Nanjangud V Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, 4200-319, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, Porto, 4200-135, Portugal.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran; Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, R3B 2G3, Canada.
| |
Collapse
|
40
|
Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food Chem Toxicol 2018; 124:182-191. [PMID: 30529260 DOI: 10.1016/j.fct.2018.12.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
The liver is the most essential organ of the body performing vital functions. Hepatic disorders affect the physiological and biochemical functions of the body. These disorders include hepatitis B, hepatitis C, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), liver cirrhosis, hepatic failure and hepatocellular carcinoma (HCC). Drugs related hepatotoxicity is one of the major challenges facing by clinicians as it is a leading cause of liver failure. During post-marketing surveillance studies, detection and reporting of drug-induced hepatotoxicity may lead to drug withdrawal or warnings. Several mechanisms are involved in hepatotoxicity such as cell membrane disruption, initiating an immune response, alteration of cellular pathways of drug metabolism, accumulation of reactive oxygen species (ROS), lipid peroxidation and cell death. Curcumin, the active ingredient of turmeric and exhibits therapeutic potential for the treatment of diabetes, cardiovascular disorders and various types of cancers. Curcumin is strong anti-oxidant and anti-inflammatory effects and thus it possesses hepatoprotective properties. Despite its low bioavailability, its hepatoprotective effects have been studied in various protocols of hepatotoxicity including acetaminophen, alcohol, lindane, carbon tetrachloride (CCL4), diethylnitrosamine and heavy metals induced hepatotoxicities. This report reviews the hepatoprotective effects of curcumin with a focus on its mechanistic insights in various hepatotoxic protocols.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Downregulation of Interleukin- (IL-) 17 through Enhanced Indoleamine 2,3-Dioxygenase (IDO) Induction by Curcumin: A Potential Mechanism of Tolerance towards Helicobacter pylori. J Immunol Res 2018; 2018:3739593. [PMID: 30402507 PMCID: PMC6196794 DOI: 10.1155/2018/3739593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
The anti-inflammatory and antimicrobial properties of curcumin suggest its use as an anti-Helicobacter pylori (H. pylori) agent, but mechanisms underlying its helpful activity are still not clear. Indoleamine 2,3-dioxygenase (IDO) promotes the effector T cell apoptosis by catalyzing the rate-limiting first step in tryptophan catabolism, and its high expression in H. pylori-infected human gastric mucosa attenuates Th1 and Th17 immune response. The aim of this study was to investigate the role of curcumin in modulating the expression of IL-17 and IDO in H. pylori-infected human gastric mucosa. In an organ culture chamber, gastric biopsies from 35 patients were treated with and without 200 μM curcumin. In H. pylori-infected patients (n = 21), IL-17 was significantly lower, both in gastric biopsies (p = 0.0003) and culture supernatant (p = 0.0001) while IDO significantly increased (p < 0.00001) in curcumin-treated sample compared with untreated samples. In a subgroup of H. pylori-infected patients (n = 15), samples treated with curcumin in addition to IDO inhibitor 1-methyl-L-tryptophan (1-MT) showed a higher expression of IL-17 compared with untreated samples and curcumin-treated alone (p < 0.00001). Curcumin downregulates IL-17 production through the induction of IDO in H. pylori-infected human gastric mucosa, suggesting its role in dampening H. pylori-induced immune-mediated inflammatory changes.
Collapse
|
42
|
Liu Q, Meng X, Li Y, Zhao CN, Tang GY, Li S, Gan RY, Li HB. Natural Products for the Prevention and Management of Helicobacter pylori Infection. Compr Rev Food Sci Food Saf 2018; 17:937-952. [PMID: 33350111 DOI: 10.1111/1541-4337.12355] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori is the main pathogen that induces chronic gastritis, peptic ulcers, atrophic gastritis, and other gastric disorders, and it is classified as a group I carcinogen. To eradicate H. pylori infection, triple therapy consisting of two antibiotics and a proton pump inhibitor is the most widely recommended first-line therapeutic strategy. Antimicrobial resistance to antibiotics contained in triple therapy could lead to therapeutic regimen failures. Recent studies showed that many natural products, including fruits, vegetables, spices, and medicinal plants, possess inhibitory effects on H. pylori, indicating their potential to be alternatives to prevent and manage H. pylori infection. This review summarizes the effects of natural products on H. pylori infection and highlights the mechanisms of action.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Dept. of Nutrition, School of Public Health, Sun Yat-sen Univ., Guangzhou, 510080, China
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Dept. of Nutrition, School of Public Health, Sun Yat-sen Univ., Guangzhou, 510080, China
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Dept. of Nutrition, School of Public Health, Sun Yat-sen Univ., Guangzhou, 510080, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Dept. of Nutrition, School of Public Health, Sun Yat-sen Univ., Guangzhou, 510080, China
| | - Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Dept. of Nutrition, School of Public Health, Sun Yat-sen Univ., Guangzhou, 510080, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The Univ. of Hong Kong, Hong Kong, China
| | - Ren-You Gan
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Dept. of Nutrition, School of Public Health, Sun Yat-sen Univ., Guangzhou, 510080, China.,South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen Univ., Guangzhou, 510006, China
| |
Collapse
|
43
|
Rahmani AH, Alsahli MA, Aly SM, Khan MA, Aldebasi YH. Role of Curcumin in Disease Prevention and Treatment. Adv Biomed Res 2018; 7:38. [PMID: 29629341 PMCID: PMC5852989 DOI: 10.4103/abr.abr_147_16] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Treatment based on traditional medicine is very popular in developing world due to inexpensive properties. Nowadays, several types of preparations based on medicinal plants at different dose have been extensively recognized in the diseases prevention and treatment. In this vista, latest findings support the effect of Curcuma longa and its chief constituents curcumin in a broad range of diseases cure via modulation of physiological and biochemical process. In addition, various studies based on animal mode and clinical trials showed that curcumin does not cause any adverse complications on liver and kidney function and it is safe at high dose. This review article aims at gathering information predominantly on pharmacological activities such as anti-diabetic, anti-microbial, hepato-protective activity, anti-inflammatory, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Salah M Aly
- Department of Pathology, College of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yousef H Aldebasi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| |
Collapse
|
44
|
Eichenseher J. Peptic Ulcer Disease. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Zaidi SF, Ahmed K, Saeed SA, Khan U, Sugiyama T. Can Diet Modulate Helicobacter pylori-associated Gastric Pathogenesis? An Evidence-Based Analysis. Nutr Cancer 2017; 69:979-989. [PMID: 28937799 DOI: 10.1080/01635581.2017.1359310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Helicobacter pylori is involved in the pathogenesis of gastritis, peptic ulcer, and gastric cancer. The infection is prevalent in more than half of the world's population. Although the infection may lead to detrimental consequences, still the majority of the infected individuals only develop mild gastritis. Several factors are behind this paradoxical outcome including virulence of the infecting H. pylori strains, genetic background of the host, and factors related to lifestyle such as dietary habits. Among these, lifestyle including dietary factors was not in the limelight, until recently, as one of the important factors that could modulate H. pylori-linked gastric diseases. This review is directed to gather and elucidate the role of dietary components in augmenting or attenuating pathological processes initiated by H. pylori. Available evidence strongly supports the notion that the diet may play a critical role in defining the final outcome of H. pylori infection particularly if certain dietary components are taken on a regular basis for a long time. Despite a recent surge in research related to the role of dietary ingredients, further studies involving large-scale clinical trials are required to gain a better understanding of the precise role played by the dietary ingredients in H. pylori-associated pathogenesis.
Collapse
Affiliation(s)
- Syed Faisal Zaidi
- a Department of Basic Medical Sciences, College of Medicine , King Saud bin Abdulaziz University of Health Sciences , Jeddah , Kingdom of Saudi Arabia
| | - Kanwal Ahmed
- a Department of Basic Medical Sciences, College of Medicine , King Saud bin Abdulaziz University of Health Sciences , Jeddah , Kingdom of Saudi Arabia
| | - Sheikh Abdul Saeed
- a Department of Basic Medical Sciences, College of Medicine , King Saud bin Abdulaziz University of Health Sciences , Jeddah , Kingdom of Saudi Arabia
| | - Usmanghani Khan
- b Faculty of Pharmacy , Jinnah University for Women , Karachi , Pakistan
| | - Toshiro Sugiyama
- c Department of Gastroenterology, Faculty of Medicine , University of Toyama , Toyama , Japan
| |
Collapse
|
46
|
Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, Aggarwal BB. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol 2017; 174:1325-1348. [PMID: 27638428 PMCID: PMC5429333 DOI: 10.1111/bph.13621] [Citation(s) in RCA: 643] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
Curcumin, a yellow pigment in the Indian spice Turmeric (Curcuma longa), which is chemically known as diferuloylmethane, was first isolated exactly two centuries ago in 1815 by two German Scientists, Vogel and Pelletier. However, according to the pubmed database, the first study on its biological activity as an antibacterial agent was published in 1949 in Nature and the first clinical trial was reported in The Lancet in 1937. Although the current database indicates almost 9000 publications on curcumin, until 1990 there were less than 100 papers published on this nutraceutical. At the molecular level, this multitargeted agent has been shown to exhibit anti-inflammatory activity through the suppression of numerous cell signalling pathways including NF-κB, STAT3, Nrf2, ROS and COX-2. Numerous studies have indicated that curcumin is a highly potent antimicrobial agent and has been shown to be active against various chronic diseases including various types of cancers, diabetes, obesity, cardiovascular, pulmonary, neurological and autoimmune diseases. Furthermore, this compound has also been shown to be synergistic with other nutraceuticals such as resveratrol, piperine, catechins, quercetin and genistein. To date, over 100 different clinical trials have been completed with curcumin, which clearly show its safety, tolerability and its effectiveness against various chronic diseases in humans. However, more clinical trials in different populations are necessary to prove its potential against different chronic diseases in humans. This review's primary focus is on lessons learnt about curcumin from clinical trials. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
| | - Devivasha Bordoloi
- Department of Biosciences and BioengineeringIndian Institute of Technology GuwahatiAssamIndia
| | - Ganesan Padmavathi
- Department of Biosciences and BioengineeringIndian Institute of Technology GuwahatiAssamIndia
| | - Javadi Monisha
- Department of Biosciences and BioengineeringIndian Institute of Technology GuwahatiAssamIndia
| | - Nand Kishor Roy
- Department of Biosciences and BioengineeringIndian Institute of Technology GuwahatiAssamIndia
| | - Sahdeo Prasad
- Department of Experimental TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | |
Collapse
|
47
|
JUDAKI A, RAHMANI A, FEIZI J, ASADOLLAHI K, HAFEZI AHMADI MR. CURCUMIN IN COMBINATION WITH TRIPLE THERAPY REGIMES AMELIORATES OXIDATIVE STRESS AND HISTOPATHOLOGIC CHANGES IN CHRONIC GASTRITIS-ASSOCIATED HELICOBACTER PYLORI INFECTION. ARQUIVOS DE GASTROENTEROLOGIA 2017; 54:177-182. [DOI: 10.1590/s0004-2803.201700000-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
Abstract
ABSTRACT BACKGROUND Helicobacter pylori (H. pylori) gastric infection is a main cause of inflammatory changes and gastric cancers. OBJECTIVE The aim of this study was finding the effects of curcumin on oxidative stress and histological changes in chronic gastritis associated with H. pylori. METHODS In a randomized clinical trial, patients were divided into two groups: a standard triple therapy group and triple therapy with curcumin group. Endoscopic and histological examinations were measured for all patients before and after 8 weeks. RESULTS Triple therapy with curcumin treatment group significantly decreased malondialdehyde markers, glutathione peroxides and increased total antioxidant capacity of the gastric mucosa at the end of study compared to baseline and triple regimen groups. In addition, the oxidative damage to DNA was significantly decreased in triple therapy with curcumin group at the end of study compared to baseline and compared to triple therapy (P<0.05 for both). Triple therapy group in combination with Curcumin significantly decreased all active, chronic and endoscopic inflammation scores of patients compared to the baseline and triple therapy group (P<0.05 for both). The eradication rate by triple therapy + curcumin was significantly increased compared to triple therapy alone (P<0.05). CONCLUSION Curcumin can be a useful supplement to improve chronic inflammation and prevention of carcinogenic changes in patients with chronic gastritis associated by H. pylori.
Collapse
|
48
|
Abstract
There is growing evidence for the role of several natural products as either useful agents or adjuncts in the management of functional GI disorders (FGIDs). In this review, we examine the medical evidence for three such compounds: chili, a culinary spice; curcumin, another spice and active derivative of a root bark; and prebiotics, which are nondigestible food products. Chili may affect the pathogenesis of abdominal pain especially in functional dyspepsia and cause other symptoms. It may have a therapeutic role in FGIDs through desensitization of transient receptor potential vanilloid-1 receptor. Curcumin, the active ingredient of turmeric rhizome, has been shown in several preclinical studies and uncontrolled clinical trials as having effects on gut inflammation, gut permeability and the brain-gut axis, especially in FGIDs. Prebiotics, the non-digestible food ingredients in dietary fiber, may serve as nutrients and selectively stimulate the growth and/or activity of certain colonic bacteria. The net effect of this change on colonic microbiota may lead to the production of acidic metabolites and other compounds that help to reduce the production of toxins and suppress the growth of harmful or disease-causing enteric pathogens. Although some clinical benefit in IBS has been shown, high dose intake of prebiotics may cause more bloating from bacterial fermentation.
Collapse
|
49
|
Zaidi SF. Helicobacter pylori associated Asian enigma: Does diet deserve distinction? World J Gastrointest Oncol 2016; 8:341-350. [PMID: 27096029 PMCID: PMC4824712 DOI: 10.4251/wjgo.v8.i4.341] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/23/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most widespread infections in humans worldwide that chronically infects up to 50% of the world’s population. The infection is involved in the pathogenesis of chronic active gastritis, peptic ulcer, mucosa-associated lymphoid tissue lymphoma and gastric cancer, therefore, it has been classified as class I definite carcinogen by the World Health Organization. Despite the established etiological role of H. pylori, its actual distribution and association with related diseases is controversial and there is a large intercountry variation especially among Asian countries. H. pylori infection is more frequent in developing countries like India, Pakistan, and Bangladesh as compared to developed Asian countries like Japan, China and South Korea. However, the frequency of gastric cancer is comparatively lower in India, Pakistan, and Bangladesh with that of Japan, China and South Korea. Such phenomenon of clinical diversity, defined as enigma, is judged by genetic variability of the infecting H. pylori strains, differences in the host genetic background in various ethnic groups, and environmental factors such as dietary habits. Most of the studies have so far focused on the bacterial factor while environmental issues, including dietary components, were not given due attention as one of the factors related with H. pylori associated gastric carcinogenesis. The dietary factor has been suggested to play an important role in H. pylori related carcinogenesis, and in this respect several studies have corroborated the intake of various dietary components as modulatory factors for gastric cancer risk. In this review, such studies, from in vitro experiments to clinical trials, are being focused in detail with respect to enigma associated with H. pylori. It may be conceivably concluded from the available evidence that dietary factor can be a game changer in the scenario of Asian enigma, particularly in high risk population infected with virulent H. pylori strains, however further affirmation studies are desperately needed to achieve conclusive outcomes.
Collapse
|
50
|
Balan P, Mal G, Das S, Singh H. Synergistic and Additive Antimicrobial Activities of Curcumin, Manuka Honey and Whey Proteins. J Food Biochem 2016. [DOI: 10.1111/jfbc.12249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Prabhu Balan
- Riddet Institute, Massey University; Palmerston North New Zealand
- Food Assurance and Meat Quality; AgResearch Ltd, Ruakura Research Centre; Hamilton New Zealand
| | - Gorakh Mal
- Biochemistry Laboratory, Indian Veterinary Research Institute; Regional Station Palampur HP 176061, India
- Biochemistry Section, National Research Centre on Camel (ICAR); PB. No.07 Bikaner Rajasthan 334001, India
| | - Shantanu Das
- Riddet Institute, Massey University; Palmerston North New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University; Palmerston North New Zealand
| |
Collapse
|