1
|
Shiue SJ, Wu MS, Chiang YH, Lin HY. Bacteriophage-cocktail hydrogel dressing to prevent multiple bacterial infections and heal diabetic ulcers in mice. J Biomed Mater Res A 2024; 112:1846-1859. [PMID: 38706446 DOI: 10.1002/jbm.a.37728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Bacteriophage (phage) has been reported to reduce the bacterial infection in delayed-healing wounds and, as a result, aiding in the healing of said wounds. In this study we investigated whether the presence of phage itself could help repair delayed-healing wounds in diabetic mice. Three strains of phage that target Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa were used. To prevent the phage liquid from running off the wound, the mixture of phage (phage-cocktail) was encapsulated in a porous hydrogel dressing made with three-dimensional printing. The phage-cocktail dressing was tested for its phage preservation and release efficacy, bacterial reduction, cytotoxicity with 3T3 fibroblast, and performance in repairing a sterile full-thickness skin wound in diabetic mice. The phage-cocktail dressing released 1.7%-5.7% of the phages embedded in 24 h, and reduced between 37%-79% of the surface bacteria compared with the blank dressing (p <.05). The phage-cocktail dressing exhibited no sign of cytotoxicity after 3 days (p <.05). In vivo studies showed that 14 days after incision, the full-thickness wound treated with a phage-cocktail dressing had a higher wound healing ratio compared with the blank dressing and control (p <.01). Histological analysis showed that the structure of the skin layers in the group treated with phage-cocktail dressing was restored in an orderly fashion. Compared with the blank dressing and control, the repaired tissue in the phage-cocktail dressing group had new capillary vessels and no sign of inflammation in its dermis, and its epidermis had a higher degree of re-epithelialization (p <.05). The slow-released phage has demonstrated positive effects in repairing diabetic skin wounds.
Collapse
Affiliation(s)
- Sheng-Jie Shiue
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsien Chiang
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Hsin-Yi Lin
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, Taipei, Taiwan
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
2
|
Uppuganti S, Creecy A, Fernandes D, Garrett K, Donovan K, Ahmed R, Voziyan P, Rendina-Ruedy E, Nyman JS. Bone Fragility in High Fat Diet-induced Obesity is Partially Independent of Type 2 Diabetes in Mice. Calcif Tissue Int 2024; 115:298-314. [PMID: 39012489 PMCID: PMC11333511 DOI: 10.1007/s00223-024-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Obesity and type 2 diabetes (T2D) are risk factors for fragility fractures. It is unknown whether this elevated risk is due to a diet favoring obesity or the diabetes that often occurs with obesity. Therefore, we hypothesized that the fracture resistance of bone is lower in mice fed with a high fat diet (45% kcal; HFD) than in mice that fed on a similar, control diet (10% kcal; LFD), regardless of whether the mice developed overt T2D. Sixteen-week-old, male NON/ShiLtJ mice (resistant to T2D) and age-matched, male NONcNZO10/LtJ (prone to T2D) received a control LFD or HFD for 21 weeks. HFD increased the bodyweight to a greater extent in the ShiLtJ mice compared to the NZO10 mice, while blood glucose levels were significantly higher in NZO10 than in ShiLtJ mice. As such, the glycated hemoglobin A1c (HbA1c) levels exceeded 10% in NZO10 mice, but it remained below 6% in ShiLtJ mice. Diet did not affect HbA1c. HFD lowered trabecular number and bone volume fraction of the distal femur metaphysis (micro-computed tomography or μCT) in both strains. For the femur mid-diaphysis, HFD significantly reduced the yield moment (mechanical testing by three-point bending) in both strains but did not affect cross-sectional bone area, cortical thickness, nor cortical tissue mineral density (μCT). Furthermore, the effect of diet on yield moment was independent of the structural resistance of the femur mid-diaphysis suggesting a negative effect of HFD on characteristics of the bone matrix. However, neither Raman spectroscopy nor assays of advanced glycation end-products identified how HFD affected the matrix. HFD also lowered the resistance of cortical bone to crack growth in only the diabetic NZO10 mice (fracture toughness testing of other femur), while HFD reduced the ultimate force of the L6 vertebra in both strains (compression testing). In conclusion, the HFD-related decrease in bone strength can occur in mice resistant and prone to diabetes indicating that a diet high in fat deleteriously affects bone without necessarily causing hyperglycemia.
Collapse
Affiliation(s)
- Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
| | - Amy Creecy
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 550 N. University Blvd, Indianapolis, IN, 46202, USA
| | - Daniel Fernandes
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA
| | - Kate Garrett
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
| | - Kara Donovan
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
| | - Elizabeth Rendina-Ruedy
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Ave., Nashville, TN, 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA.
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA.
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Ave. S., Nashville, TN, 37212, USA.
| |
Collapse
|
3
|
Zhu Y, Mei O, Zhang H, You W, Zhong J, Collins CP, Shen G, Luo C, Wu X, Li J, Shu Y, Wen Y, Luu HH, Shi LL, Fan J, He TC, Ameer GA, Sun C, Wen L, Reid RR. Establishment and characterization of a rat model of scalp-cranial composite defect for multilayered tissue engineering. RESEARCH SQUARE 2024:rs.3.rs-4643966. [PMID: 39108474 PMCID: PMC11302684 DOI: 10.21203/rs.3.rs-4643966/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Composite cranial defects have individual functional and aesthetic ramifications, as well as societal burden, while posing significant challenges for reconstructive surgeons. Single-stage composite reconstruction of these deformities entail complex surgeries that bear many short- and long-term risks and complications. Current research on composite scalp-cranial defects is sparse and one-dimensional, often focusing solely on bone or skin. Thus, there is an unmet need for a simple, clinically relevant composite defect model in rodents, where there is a challenge in averting healing of the skin component via secondary intention. By utilizing a customizable (3D-printed) wound obturator, the scalp wound can be rendered non-healing for a long period (more than 6 weeks), with the cranial defect patent. The wound obturator shows minimal biotoxicity and will not cause severe endocranium-granulation adhesion. This composite defect model effectively slowed the scalp healing process and preserved the cranial defect, embodying the characteristics of a "chronic composite defect". In parallel, an autologous reconstruction model was established as the positive control. This positive control exhibited reproducible healing of the skin within 3 weeks with variable degrees of osseointegration, consistent with clinical practice. Both models provide a stable platform for subsequent research not only for composite tissue engineering and scaffold design but also for mechanistic studies of composite tissue healing.
Collapse
Affiliation(s)
- Yi Zhu
- The University of Chicago Medical Center
| | - Ou Mei
- The University of Chicago Medical Center
| | - Hui Zhang
- The University of Chicago Medical Center
| | - Wulin You
- The University of Chicago Medical Center
| | | | | | | | | | - Xingye Wu
- The University of Chicago Medical Center
| | | | - Yi Shu
- The University of Chicago Medical Center
| | - Ya Wen
- Capital Medical University
| | - Hue H Luu
- The University of Chicago Medical Center
| | | | | | | | | | | | - Liangyuan Wen
- Chinese Academy of Medical Sciences & Peking Union Medical College
| | | |
Collapse
|
4
|
Kim JW, Jeong JS, Kim JH, Chung EH, Kim CY, Lee DR, Choi BK, Lim JH, Ko JW, Kim TW. Anti-hyperglycemic effects of Cissus quadrangularis extract via regulation of gluconeogenesis in type 2 diabetic db/db mice. Front Pharmacol 2024; 15:1415670. [PMID: 39050759 PMCID: PMC11266303 DOI: 10.3389/fphar.2024.1415670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Cissus quadrangularis is a vining plant widely used as a traditional herbal remedy for various ailments. In this study, the therapeutic effects of C. quadrangularis extract (CQR-300) on type 2 diabetes mellitus (T2DM) were investigated in a leptin receptor-mutated db/db mouse model. Methods: CQR-300 was orally administered to db/db mice (n = 6/group) at different doses (50, 100, and 200 mg/kg) for 8 weeks. Blood glucose levels and oral glucose tolerance were assessed using the AccuCheck glucometer. Enzyme-linked immunosorbent assay was performed to evaluate insulin and hemoglobin A1c (HbA1c) levels in the blood of db/db mice. Liver and pancreatic tissues from db/db mice were examined by hematoxylin and eosin (H&E) and immunohistochemical staining. The protein levels of gluconeogenesis-, lipogenesis-, and oxidative stress-related factors were evaluated using western blotting. Results and discussion: CQR-300 treatment effectively reduced body weight, blood glucose, and insulin levels. HbA1c levels were increased by leptin receptor mutation. Additionally, in the oral glucose tolerance tests, the CQR-300 treated group had a faster blood glucose recovery rate than the db/db group. H&E and Oil red-O staining of the liver showed decreased lipid accumulation in the CQR-300 treated group than the db/db group. Western blot analysis confirmed that CQR-300 effectively inhibited gluconeogenesis, lipogenesis, and oxidative stress-related factors. Our findings suggest that CQR-300 has the potential to be used as a T2DM supplement.
Collapse
Affiliation(s)
- Jeong-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Soo Jeong
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Jin-Hwa Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Hye Chung
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Chang-Yeop Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Dong-Ryung Lee
- Research Institute, NUON Co., Ltd., Seongnam, Republic of Korea
| | - Bong-Keun Choi
- Research Institute, NUON Co., Ltd., Seongnam, Republic of Korea
| | | | - Je-Won Ko
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Pignet AL, Schellnegger M, Hecker A, Kamolz LP, Kotzbeck P. Modeling Wound Chronicity In Vivo: The Translational Challenge to Capture the Complexity of Chronic Wounds. J Invest Dermatol 2024; 144:1454-1470. [PMID: 38483357 DOI: 10.1016/j.jid.2023.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 06/24/2024]
Abstract
In an aging society with common lifestyle-associated health issues such as obesity and diabetes, chronic wounds pose a frequent challenge that physicians face in everyday clinical practice. Therefore, nonhealing wounds have attracted much scientific attention. Several in vitro and in vivo models have been introduced to deepen our understanding of chronic wound pathogenesis and amplify therapeutic strategies. Understanding how wounds become chronic will provide insights to reverse or avoid chronicity. Although choosing a suitable model is of utmost importance to receive valuable outcomes, an ideal in vivo model capturing the complexity of chronic wounds is still missing and remains a translational challenge. This review discusses the most relevant mammalian models for wound healing studies and provides guidance on how to implement the hallmarks of chronic wounds. It highlights the benefits and pitfalls of established models and maps out future avenues for research.
Collapse
Affiliation(s)
- Anna-Lisa Pignet
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| | - Marlies Schellnegger
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria.
| | - Andrzej Hecker
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria
| | - Petra Kotzbeck
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Safoine M, Paquette C, Gingras GM, Fradette J. Improving Cutaneous Wound Healing in Diabetic Mice Using Naturally Derived Tissue-Engineered Biological Dressings Produced under Serum-Free Conditions. Stem Cells Int 2024; 2024:3601101. [PMID: 38737365 PMCID: PMC11087150 DOI: 10.1155/2024/3601101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/13/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Long-term diabetes often leads to chronic wounds refractory to treatment. Cell-based therapies are actively investigated to enhance cutaneous healing. Various cell types are available to produce biological dressings, such as adipose-derived stem/stromal cells (ASCs), an attractive cell source considering their abundancy, accessibility, and therapeutic secretome. In this study, we produced human ASC-based dressings under a serum-free culture system using the self-assembly approach of tissue engineering. The dressings were applied every 4 days to full-thickness 8-mm splinted skin wounds created on the back of polygenic diabetic NONcNZO10/LtJ mice and streptozotocin-induced diabetic K14-H2B-GFP mice. Global wound closure kinetics evaluated macroscopically showed accelerated wound closure in both murine models, especially for NONcNZO10/LtJ; the treated group reaching 98.7% ± 2.3% global closure compared to 76.4% ± 11.8% for the untreated group on day 20 (p=0.0002). Histological analyses revealed that treated wounds exhibited healed skin of better quality with a well-differentiated epidermis and a more organized, homogeneous, and 1.6-fold thicker granulation tissue. Neovascularization, assessed by CD31 labeling, was 2.5-fold higher for the NONcNZO10/LtJ treated wounds. We thus describe the beneficial impact on wound healing of biologically active ASC-based dressings produced under an entirely serum-free production system facilitating clinical translation.
Collapse
|
7
|
Saeed S, Martins-Green M. Assessing Animal Models to Study Impaired and Chronic Wounds. Int J Mol Sci 2024; 25:3837. [PMID: 38612647 PMCID: PMC11011258 DOI: 10.3390/ijms25073837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Impaired healing wounds do not proceed through the normal healing processes in a timely and orderly manner, and while they do eventually heal, their healing is not optimal. Chronic wounds, on the other hand, remain unhealed for weeks or months. In the US alone, chronic wounds impact ~8.5 million people and cost ~USD 28-90 billion per year, not accounting for the psychological and physical pain and emotional suffering that patients endure. These numbers are only expected to rise in the future as the elderly populations and the incidence of comorbidities such as diabetes, hypertension, and obesity increase. Over the last few decades, scientists have used a variety of approaches to treat chronic wounds, but unfortunately, to date, there is no effective treatment. Indeed, while there are thousands of drugs to combat cancer, there is only one single drug approved for the treatment of chronic wounds. This is in part because wound healing is a very complex process involving many phases that must occur sequentially and in a timely manner. Furthermore, models that fully mimic human chronic wounds have not been developed. In this review, we assess various models currently being used to study the biology of impaired healing and chronic non-healing wounds. Among them, this paper also highlights one model which shows significant promise; this model uses aged and obese db/db-/- mice and the chronic wounds that develop show characteristics of human chronic wounds that include increased oxidative stress, chronic inflammation, damaged microvasculature, abnormal collagen matrix deposition, a lack of re-epithelialization, and the spontaneous development of multi-bacterial biofilm. We also discuss how important it is that we continue to develop chronic wound models that more closely mimic those of humans and that can be used to test potential treatments to heal chronic wounds.
Collapse
Affiliation(s)
| | - Manuela Martins-Green
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
8
|
Singh R, Gholipourmalekabadi M, Shafikhani SH. Animal models for type 1 and type 2 diabetes: advantages and limitations. Front Endocrinol (Lausanne) 2024; 15:1359685. [PMID: 38444587 PMCID: PMC10912558 DOI: 10.3389/fendo.2024.1359685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Diabetes mellitus, commonly referred to as diabetes, is a group of metabolic disorders characterized by chronic elevation in blood glucose levels, resulting from inadequate insulin production, defective cellular response to extracellular insulin, and/or impaired glucose metabolism. The two main types that account for most diabetics are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), each with their own pathophysiological features. T1D is an autoimmune condition where the body's immune system attacks and destroys the insulin-producing beta cells in the pancreas. This leads to lack of insulin, a vital hormone for regulating blood sugar levels and cellular glucose uptake. As a result, those with T1D depend on lifelong insulin therapy to control their blood glucose level. In contrast, T2DM is characterized by insulin resistance, where the body's cells do not respond effectively to insulin, coupled with a relative insulin deficiency. This form of diabetes is often associated with obesity, sedentary lifestyle, and/or genetic factors, and it is managed with lifestyle changes and oral medications. Animal models play a crucial role in diabetes research. However, given the distinct differences between T1DM and T2DM, it is imperative for researchers to employ specific animal models tailored to each condition for a better understanding of the impaired mechanisms underlying each condition, and for assessing the efficacy of new therapeutics. In this review, we discuss the distinct animal models used in type 1 and type 2 diabetes mellitus research and discuss their strengths and limitations.
Collapse
Affiliation(s)
- Raj Singh
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL, United States
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sasha H Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL, United States
- Cancer Center, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
9
|
Lauterbach AL, Wallace RP, Alpar AT, Refvik KC, Reda JW, Ishihara A, Beckman TN, Slezak AJ, Mizukami Y, Mansurov A, Gomes S, Ishihara J, Hubbell JA. Topically-applied collagen-binding serum albumin-fused interleukin-4 modulates wound microenvironment in non-healing wounds. NPJ Regen Med 2023; 8:49. [PMID: 37696884 PMCID: PMC10495343 DOI: 10.1038/s41536-023-00326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Non-healing wounds have a negative impact on quality of life and account for many cases of amputation and even early death among patients. Diabetic patients are the predominate population affected by these non-healing wounds. Despite the significant clinical demand, treatment with biologics has not broadly impacted clinical care. Interleukin-4 (IL-4) is a potent modulator of the immune system, capable of skewing macrophages towards a pro-regeneration phenotype (M2) and promoting angiogenesis, but can be toxic after frequent administration and is limited by its short half-life and low bioavailability. Here, we demonstrate the design and characterization of an engineered recombinant interleukin-4 construct. We utilize this collagen-binding, serum albumin-fused IL-4 variant (CBD-SA-IL-4) delivered in a hyaluronic acid (HA)-based gel for localized application of IL-4 to dermal wounds in a type 2 diabetic mouse model known for poor healing as proof-of-concept for improved tissue repair. Our studies indicate that CBD-SA-IL-4 is retained within the wound and can modulate the wound microenvironment through induction of M2 macrophages and angiogenesis. CBD-SA-IL-4 treatment significantly accelerated wound healing compared to native IL-4 and HA vehicle treatment without inducing systemic side effects. This CBD-SA-IL-4 construct can address the underlying immune dysfunction present in the non-healing wound, leading to more effective tissue healing in the clinic.
Collapse
Affiliation(s)
- Abigail L Lauterbach
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Aaron T Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Kirsten C Refvik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Joseph W Reda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ako Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Taryn N Beckman
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, 60637, USA
| | - Anna J Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yukari Mizukami
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Suzana Gomes
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jun Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
10
|
Berger AG, Deiss-Yehiely E, Vo C, McCoy MG, Almofty S, Feinberg MW, Hammond PT. Electrostatically assembled wound dressings deliver pro-angiogenic anti-miRs preferentially to endothelial cells. Biomaterials 2023; 300:122188. [PMID: 37329684 PMCID: PMC10424785 DOI: 10.1016/j.biomaterials.2023.122188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
Chronic non-healing wounds occur frequently in individuals affected by diabetes, yet standard-of-care treatment leaves many patients inadequately treated or with recurring wounds. MicroRNA (miR) expression is dysregulated in diabetic wounds and drives an anti-angiogenic phenotype, but miRs can be inhibited with short, chemically-modified RNA oligonucleotides (anti-miRs). Clinical translation of anti-miRs is hindered by delivery challenges such as rapid clearance and uptake by off-target cells, requiring repeated injections, excessively large doses, and bolus dosing mismatched to the dynamics of the wound healing process. To address these limitations, we engineered electrostatically assembled wound dressings that locally release anti-miR-92a, as miR-92a is implicated in angiogenesis and wound repair. In vitro, anti-miR-92a released from these dressings was taken up by cells and inhibited its target. An in vivo cellular biodistribution study in murine diabetic wounds revealed that endothelial cells, which play a critical role in angiogenesis, exhibit higher uptake of anti-miR eluted from coated dressings than other cell types involved in the wound healing process. In a proof-of-concept efficacy study in the same wound model, anti-miR targeting anti-angiogenic miR-92a de-repressed target genes, increased gross wound closure, and induced a sex-dependent increase in vascularization. Overall, this proof-of-concept study demonstrates a facile, translational materials approach for modulating gene expression in ulcer endothelial cells to promote angiogenesis and wound healing. Furthermore, we highlight the importance of probing cellular interactions between the drug delivery system and the target cells to drive therapeutic efficacy.
Collapse
Affiliation(s)
- Adam G Berger
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elad Deiss-Yehiely
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chau Vo
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael G McCoy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Almofty
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Poblete Jara C, Nogueira G, Morari J, do Prado TP, de Medeiros Bezerra R, Velloso LA, Velander W, de Araújo EP. An older diabetes-induced mice model for studying skin wound healing. PLoS One 2023; 18:e0281373. [PMID: 36800369 PMCID: PMC9937492 DOI: 10.1371/journal.pone.0281373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
Advances in wound treatment depend on the availability of animal models that reflect key aspects of human wound healing physiology. To this date, the accepted mouse models do not reflect defects in the healing process for chronic wounds that are associated with type two diabetic skin ulcers. The long term, systemic physiologic stress that occurs in middle aged or older Type 2 diabetes patients is difficult to simulate in preclinical animal model. We have strived to incorporate the essential elements of this stress in a manageable mouse model: long term metabolic stress from obesity to include the effects of middle age and thereafter onset of diabetes. At six-weeks age, male C57BL/6 mice were separated into groups fed a chow and High-Fat Diet for 0.5, 3, and 6 months. Treatment groups included long term, obesity stressed mice with induction of diabetes by streptozotocin at 5 months, and further physiologic evaluation at 8 months old. We show that this model results in a severe metabolic phenotype with insulin resistance and glucose intolerance associated with obesity and, more importantly, skin changes. The phenotype of this older age mouse model included a transcriptional signature of gene expression in skin that overlapped that observed with elderly patients who develop diabetic foot ulcers. We believe this unique old age phenotype contrasts with current mice models with induced diabetes.
Collapse
Affiliation(s)
- Carlos Poblete Jara
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Guilherme Nogueira
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Joseane Morari
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Thaís Paulino do Prado
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- University of Campinas, Campinas, Brazil
- Faculty of Nursing, University of Campinas, Campinas, Brazil
| | - Renan de Medeiros Bezerra
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- University of Campinas, Campinas, Brazil
- Faculty of Nursing, University of Campinas, Campinas, Brazil
| | - Lício A. Velloso
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - William Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Eliana Pereira de Araújo
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- University of Campinas, Campinas, Brazil
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- * E-mail:
| |
Collapse
|
12
|
Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 2022; 29:1161-1180. [PMID: 35931028 PMCID: PMC9357250 DOI: 10.1016/j.stem.2022.07.006] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblasts are highly dynamic cells that play a central role in tissue repair and fibrosis. However, the mechanisms by which they contribute to both physiologic and pathologic states of extracellular matrix deposition and remodeling are just starting to be understood. In this review article, we discuss the current state of knowledge in fibroblast biology and heterogeneity, with a primary focus on the role of fibroblasts in skin wound repair. We also consider emerging techniques in the field, which enable an increasingly nuanced and contextualized understanding of these complex systems, and evaluate limitations of existing methodologies and knowledge. Collectively, this review spotlights a diverse body of research examining an often-overlooked cell type-the fibroblast-and its critical functions in wound repair and beyond.
Collapse
Affiliation(s)
- Heather E Talbott
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Wound Healing Impairment in Type 2 Diabetes Model of Leptin-Deficient Mice—A Mechanistic Systematic Review. Int J Mol Sci 2022; 23:ijms23158621. [PMID: 35955751 PMCID: PMC9369324 DOI: 10.3390/ijms23158621] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is one of the most prevalent diseases in the world, associated with diabetic foot ulcers and impaired wound healing. There is an ongoing need for interventions effective in treating these two problems. Pre-clinical studies in this field rely on adequate animal models. However, producing such a model is near-impossible given the complex and multifactorial pathogenesis of T2DM. A leptin-deficient murine model was developed in 1959 and relies on either dysfunctional leptin (ob/ob) or a leptin receptor (db/db). Though monogenic, this model has been used in hundreds of studies, including diabetic wound healing research. In this study, we systematically summarize data from over one hundred studies, which described the mechanisms underlying wound healing impairment in this model. We briefly review the wound healing dynamics, growth factors’ dysregulation, angiogenesis, inflammation, the function of leptin and insulin, the role of advanced glycation end-products, extracellular matrix abnormalities, stem cells’ dysregulation, and the role of non-coding RNAs. Some studies investigated novel chronic diabetes wound models, based on a leptin-deficient murine model, which was also described. We also discussed the interventions studied in vivo, which passed into human clinical trials. It is our hope that this review will help plan future research.
Collapse
|
14
|
Mieczkowski M, Mrozikiewicz-Rakowska B, Kowara M, Kleibert M, Czupryniak L. The Problem of Wound Healing in Diabetes—From Molecular Pathways to the Design of an Animal Model. Int J Mol Sci 2022; 23:ijms23147930. [PMID: 35887276 PMCID: PMC9319250 DOI: 10.3390/ijms23147930] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic wounds are becoming an increasingly common clinical problem due to an aging population and an increased incidence of diabetes, atherosclerosis, and venous insufficiency, which are the conditions that impair and delay the healing process. Patients with diabetes constitute a group of subjects in whom the healing process is particularly prolonged regardless of its initial etiology. Circulatory dysfunction, both at the microvascular and macrovascular levels, is a leading factor in delaying or precluding wound healing in diabetes. The prolonged period of wound healing increases the risk of complications such as the development of infection, including sepsis and even amputation. Currently, many substances applied topically or systemically are supposed to accelerate the process of wound regeneration and finally wound closure. The role of clinical trials and preclinical studies, including research based on animal models, is to create safe medicinal products and ensure the fastest possible healing. To achieve this goal and minimize the wide-ranging burdens associated with conducting clinical trials, a correct animal model is needed to replicate the wound conditions in patients with diabetes as closely as possible. The aim of the paper is to summarize the most important molecular pathways which are impaired in the hyperglycemic state in the context of designing an animal model of diabetic chronic wounds. The authors focus on research optimization, including economic aspects and model reproducibility, as well as the ethical dimension of minimizing the suffering of research subjects according to the 3 Rs principle (Replacement, Reduction, Refinement).
Collapse
Affiliation(s)
- Mateusz Mieczkowski
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.M.); (M.K.); (L.C.)
| | - Beata Mrozikiewicz-Rakowska
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.M.); (M.K.); (L.C.)
- Correspondence:
| | - Michał Kowara
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland;
| | - Marcin Kleibert
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.M.); (M.K.); (L.C.)
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland;
| | - Leszek Czupryniak
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.M.); (M.K.); (L.C.)
| |
Collapse
|
15
|
Gvazava IG, Karimova MV, Vasiliev AV, Vorotelyak EA. Type 2 Diabetes Mellitus: Pathogenic Features and Experimental Models in Rodents. Acta Naturae 2022; 14:57-68. [PMID: 36348712 PMCID: PMC9611859 DOI: 10.32607/actanaturae.11751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common endocrine disorder (90%) in the world; it has numerous clinical, immunological, and genetic differences from type 1 diabetes mellitus. The pathogenesis of T2DM is complex and not fully clear. To date, animal models remain the main tool by which to study the pathophysiology and therapy of T2DM. Rodents are considered the best choice among animal models, because they are characterized by a small size, short induction period, easy diabetes induction, and economic efficiency. This review summarizes data on experimental models of T2DM that are currently used, evaluates their advantages and disadvantages vis-a-vis research, and describes in detail the factors that should be taken into account when using these models. Selection of a suitable model for tackling a particular issue is not always trivial; it affects study results and their interpretation.
Collapse
Affiliation(s)
- I. G. Gvazava
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - M. V. Karimova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. V. Vasiliev
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - E. A. Vorotelyak
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| |
Collapse
|
16
|
Rai V, Moellmer R, Agrawal DK. Clinically relevant experimental rodent models of diabetic foot ulcer. Mol Cell Biochem 2022; 477:1239-1247. [PMID: 35089527 DOI: 10.1007/s11010-022-04372-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/23/2022] [Indexed: 12/19/2022]
Abstract
Chronic wounds are a substantial clinical problem in diabetes and nearly 6% of diabetics suffer from foot disease including ulceration, infection, and tissue necrosis. Wound healing in diabetes is impaired and delayed and is augmented by diabetic complications. Wound healing involves complex cellular, molecular, and biochemical processes and animal models are the most suitable prototype to investigate and understand the underlying pathological changes in the process of wound healing. Animal models are also useful in evaluating the safety and efficacy of newer therapeutic agents and improving the clinical approaches for human patients with chronic ulcers. The wound healing strategies get more complicated in the presence of diabetes and its associated complication. Despite the advancement in methods of wound healing, the healing of the chronic diabetic foot ulcer (DFU) remains an important clinical problem resulting in costly and prolonged treatment and poses a risk for major amputation. Saying that it is important to elucidate the newer therapeutic targets and strategies via an in-depth understanding of the complicated cascade of the chronic DFU. A major challenge in translating lab findings to clinics is the lack of an optimal preclinical model capable of properly recapitulating human wounds. Both small and large animal models of wound healing involving rodents, rabbits, and pigs have been discussed. Mouse and rats as small animal models and pig as large animal models have been discussed in association with the diabetic wound but there are advantages and limitations for each model. In this review, we critically reviewed the pros and cons of experimental models of diabetic wound healing with a focus on type II diabetes rodent models.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| | - Rebecca Moellmer
- Western University College of Podiatric Medicine, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| |
Collapse
|
17
|
RŮŽIČKA J, DEJMEK J, BOLEK L, BENEŠ J, KUNCOVÁ J. Hyperbaric oxygen influences chronic wound healing – a cellular level review. Physiol Res 2021; 70:S261-S273. [DOI: 10.33549/physiolres.934822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic wound is a serious medical issue due to its high prevalence and complications; hyperbaric oxygen therapy (HBOT) is also considered in comprehensive treatment. Clinical trials, including large meta-analyses bring inconsistent results about HBOT efficacy. This review is summarizing the possible effect of HBOT on the healing of chronic wound models at the cellular level. HBOT undoubtedly escalates the production of reactive oxygen and nitrogen radicals (ROS and RNS), which underlie both the therapeutic and toxic effects of HBOT on certain tissues. HBOT paradoxically elevates the concentration of Hypoxia inducible factor (HIF) 1 by diverting the HIF-1 degradation to pathways that are independent of the oxygen concentration. Elevated HIF-1 stimulates the production of different growth factors, boosting the healing process. HBOT supports synthesis of Heat shock proteins (HSP), which are serving as chaperones of HIF-1. HBOT has antimicrobial effect, increases the effectiveness of some antibiotics, stimulates fibroblasts growth, collagen synthesis and suppresses the activity of proteolytic enzymes like matrix metalloproteinases. All effects of HBOT were investigated on cell cultures and animal models, the limitation of their translation is discussed at the end of this revie
Collapse
Affiliation(s)
- J RŮŽIČKA
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J DEJMEK
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - L BOLEK
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J BENEŠ
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J KUNCOVÁ
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| |
Collapse
|
18
|
Kim MJ, Lee WB, Park BY. Effect of Morphologically Transformed Acellular Dermal Matrix on Chronic Diabetic Wounds: An Experimental Study in a Calvarial Bone Exposure Diabetic Rat Model. J Surg Res 2021; 272:153-165. [PMID: 34974331 DOI: 10.1016/j.jss.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The use of acellular dermal matrix on chronic diabetic wounds in clinical practice is hindered by its high cost and difficulty in application. We aimed to acquire experimental evidence on the effect of morphologically transformed acellular dermal matrix on chronic diabetic wounds and investigate how this transformation affects the wound healing mechanism. MATERIALS AND METHODS We developed a new chronic wound model that resembles a diabetic chronic wound as it involves an open wound with partial calvarial bone exposure in diabetic rats. According to treatment materials, rats were assigned into the CONTROL, ADM, and PASTE groups. The wound healing period was subdivided into T1 and T2 (postoperative days 14 and 30, respectively). Three-staged analyses were performed using 3D camera, histological analysis, and real-time quantitative polymerase chain reaction. RESULTS The morphologically transformed acellular dermal matrix showed a compatible treatment rate in the total wound and more rapidly reduced the initial bone exposure area. In the PASTE group, collagen scaffold appeared at a later period and expression levels of epidermal growth factor and epidermal growth factor receptor increased. CONCLUSIONS The transformation of acellular dermal matrix into the pulverized form is thought to contribute to its non-inferior therapeutic effect compared with normal acellular dermal matrix. With respect to the mechanism, the pulverized form reduced the bone exposure area in the early stage and provided a collagen scaffold at a later period. An increase in epithelial growth factors through mechanochemical transformations along with increased contact area contribute to the enhanced healing capacity of the morphologically transformed acellular dermal matrix.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Plastic and Reconstructive Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Woo Beom Lee
- Department of Plastic and Reconstructive Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Bo Young Park
- Department of Plastic and Reconstructive Surgery, School of Medicine, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
19
|
Bibby G, Krasniqi B, Reddy I, Sekar D, Ross K. Capturing the RNA castle: Exploiting MicroRNA inhibition for wound healing. FEBS J 2021; 289:5137-5151. [PMID: 34403569 DOI: 10.1111/febs.16160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
The growing pipelines of RNA-based therapies herald new opportunities to deliver better patient outcomes for complex disorders such as chronic nonhealing wounds associated with diabetes. Members of the microRNA (miRNA) family of small noncoding RNAs have emerged as targets for diverse elements of cutaneous wound repair, and both miRNA enhancement with mimics or inhibition with antisense oligonucleotides represent tractable approaches for miRNA-directed wound healing. In this review, we focus on miRNA inhibition strategies to stimulate skin repair given advances in chemical modifications to enhance the performance of antisense miRNA (anti-miRs). We first explore miRNAs whose inhibition in keratinocytes promotes keratinocyte migration, an essential part of re-epithelialisation during wound repair. We then focus on miRNAs that can be targeted for inhibition in endothelial cells to promote neovascularisation for wound healing in the context of diabetic mouse models. The picture that emerges is that direct comparisons of different anti-miRNAs modifications are required to establish the most translationally viable options in the chronic wound environment, that direct comparisons of the impact of inhibition of different miRNAs are needed to quantify and rank their relative efficacies in promoting wound repair, and that a standardised human ex vivo model of the diabetic wound is needed to reduce reliance on mouse models that do not necessarily enhance mechanistic understanding of miRNA-targeted wound healing.
Collapse
Affiliation(s)
- George Bibby
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - Blerta Krasniqi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - Izaak Reddy
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - Durairaj Sekar
- Dental Research Cell and Biomedical Research Unit (DRC-BRULAC), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| |
Collapse
|
20
|
Stem Cell Extracellular Vesicles in Skin Repair. Bioengineering (Basel) 2018; 6:bioengineering6010004. [PMID: 30598033 PMCID: PMC6466099 DOI: 10.3390/bioengineering6010004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 12/13/2022] Open
Abstract
Stem cell extracellular vesicles (EVs) have been widely studied because of their excellent therapeutic potential. EVs from different types of stem cell can improve vascularization as well as aid in the treatment of cancer and neurodegenerative diseases. The skin is a complex organ that is susceptible to various types of injury. Strategies designed to restore epithelial tissues’ integrity with stem cell EVs have shown promising results. Different populations of stem cell EVs are able to control inflammation, accelerate skin cell migration and proliferation, control wound scarring, improve angiogenesis, and even ameliorate signs of skin aging. However, large-scale production of such stem cell EVs for human therapy is still a challenge. This review focuses on recent studies that explore the potential of stem cell EVs in skin wound healing and skin rejuvenation, as well as challenges of their use in therapy.
Collapse
|
21
|
Grada A, Mervis J, Falanga V. Research Techniques Made Simple: Animal Models of Wound Healing. J Invest Dermatol 2018; 138:2095-2105.e1. [DOI: 10.1016/j.jid.2018.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 01/15/2023]
|
22
|
Cogan NG, Mellers AP, Patel BN, Powell BD, Aggarwal M, Harper KM, Blaber M. A mathematical model for the determination of mouse excisional wound healing parameters from photographic data. Wound Repair Regen 2018; 26:136-143. [DOI: 10.1111/wrr.12634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/30/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas G. Cogan
- Departments of Mathematics; Florida State University; Tallahassee Florida
| | - Alana P. Mellers
- Biomedical Sciences; Florida State University; Tallahassee Florida
| | - Bhavi N. Patel
- Biomedical Sciences; Florida State University; Tallahassee Florida
| | - Brett D. Powell
- Biomedical Sciences; Florida State University; Tallahassee Florida
| | - Manu Aggarwal
- Departments of Mathematics; Florida State University; Tallahassee Florida
| | - Kathleen M. Harper
- Biomedical Research Laboratory Animal Resources; Florida State University; Tallahassee Florida
| | - Michael Blaber
- Biomedical Sciences; Florida State University; Tallahassee Florida
| |
Collapse
|
23
|
Neuropeptides, Inflammation, and Diabetic Wound Healing: Lessons from Experimental Models and Human Subjects. CONTEMPORARY DIABETES 2018. [DOI: 10.1007/978-3-319-89869-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Zomer HD, Trentin AG. Skin wound healing in humans and mice: Challenges in translational research. J Dermatol Sci 2017; 90:3-12. [PMID: 29289417 DOI: 10.1016/j.jdermsci.2017.12.009] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/20/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
Despite the great progress in translational research concerning skin wound healing in the last few decades, no animal model fully predicts all clinical outcomes. The mouse is the most commonly used model, as it is easy to maintain and standardize, and is economically accessible. However, differences between murine and human skin repair, such as the contraction promoted by panniculus carnosus and the role of specific niches of skin stem cells, make it difficult to bridge the gap between preclinical and clinical studies. Therefore, this review highlights the particularities of each species concerning skin morphophysiology, immunology, and genetics, which is essential to properly interpret findings and translate them to medicine.
Collapse
Affiliation(s)
- Helena D Zomer
- Department of Biology, Embryology and Genetics, Federal University of Santa Catarina, Brazil.
| | - Andrea G Trentin
- Department of Biology, Embryology and Genetics, Federal University of Santa Catarina, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Lightell DJ, Moss SC, Woods TC. Upregulation of miR-221 and -222 in response to increased extracellular signal-regulated kinases 1/2 activity exacerbates neointimal hyperplasia in diabetes mellitus. Atherosclerosis 2017; 269:71-78. [PMID: 29276985 DOI: 10.1016/j.atherosclerosis.2017.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Diabetes is associated with accelerated arterial intimal thickening that contributes to the increased cardiovascular disease seen in this population. In healthy arteries, intimal thickening is inhibited by elevated levels of the cyclin-dependent kinase inhibitor, p27Kip1, and intimal thickening is promoted by activation of the mammalian Target of Rapamycin to promote degradation of p27Kip1 protein. Recently, we reported that two microRNAs, miR-221 and -222, which promote intimal thickening via down-regulation of mRNA encoding p27Kip1, are elevated in the arteries of diabetic patients. To determine if these miRNAs are critical to the increased intimal thickening under diabetic conditions, we examined the regulation of p27Kip1in a mouse model of diabetes. METHODS Comparisons of p27Kip1 signaling in NONcNZO10 mice fed a diabetogenic versus control diet were performed using immunochemistry and real-time PCR. RESULTS Vascular smooth muscle cells and arteries of diabetic mice exhibited decreased levels of p27Kip1 that derived from destabilization of p27Kip1 mRNA in an extracellular signal response kinase-1/2 (ERK-1/2) dependent manner. The activity of ERK-1/2 is increased in the arteries of diabetic mice and promotes an increase in miR-221 and -222. Inhibition of miR-221 and -222 restores normal levels of p27Kip1 mRNA and protein in the arteries of diabetic mice and reduces intimal thickening following wire injury. CONCLUSIONS These data suggest diabetes is accompanied by increases in arterial miR-221 and -222 expression that promotes intimal thickening. Inhibition of the increased miR-221 and -222 may be efficacious in the prevention of the cardiovascular complications of diabetes.
Collapse
Affiliation(s)
- Daniel J Lightell
- Department of Physiology and the Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Laboratory of Molecular Cardiology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Stephanie C Moss
- Laboratory of Molecular Cardiology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - T Cooper Woods
- Department of Physiology and the Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Laboratory of Molecular Cardiology, Ochsner Clinic Foundation, New Orleans, LA, USA.
| |
Collapse
|
26
|
Hirata T, Yoshitomi T, Inoue M, Iigo Y, Matsumoto K, Kubota K, Shinagawa A. Pathological and gene expression analysis of a polygenic diabetes model, NONcNZO10/LtJ mice. Gene 2017; 629:52-58. [PMID: 28760554 DOI: 10.1016/j.gene.2017.07.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/19/2017] [Accepted: 07/27/2017] [Indexed: 01/07/2023]
Abstract
The NONcNZO10/LtJ mouse is a polygenic model of type-2 diabetes (T2D) that shows moderate obesity and diabetes, and is regarded as a good model reflective of the conditions of human T2D. In this study, we analyzed pathological changes of pancreases with the progress of time by using histopathology and gene expression analysis, including microRNA. A number of gene expression changes associated with decreased insulin secretion (possibly regulated by miR-29a/b) were observed, and zinc homeostasis (Slc30a8, Mt1 and Mt2) or glucose metabolism (Slc2a2) was suggested as being the candidate mechanism of pancreas failure in NONcNZO10/LtJ mice. These results demonstrate NONcNZO10/LtJ mice have a complex pathogenic mechanism of diabetes, and moreover, this fundamental information of NONcNZO10/LtJ mice would offer the opportunity for research and development of a novel antidiabetic drug.
Collapse
Affiliation(s)
- Tsuyoshi Hirata
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Tomomi Yoshitomi
- End-Organ Disease Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Minoru Inoue
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yutaka Iigo
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Koji Matsumoto
- End-Organ Disease Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazuishi Kubota
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Akira Shinagawa
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
27
|
Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int J Pharm 2017; 523:556-566. [DOI: 10.1016/j.ijpharm.2016.11.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023]
|
28
|
Suckow MA, Gobbett TA, Peterson RG. Wound Healing Delay in the ZDSD Rat. ACTA ACUST UNITED AC 2017; 31:55-60. [PMID: 28064221 DOI: 10.21873/invivo.11025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/14/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Abstract
Animal models of diabetic delayed wound healing are essential to the development of strategies to improve clinical approaches for human patients. The Zucker diabetic Sprague Dawley (ZDSD) rat has proved to be an accurate model of diet-induced obesity and diabetes and we evaluated the utility of the ZDSD rat as a model for delayed wound healing associated with diabetes and obesity. Groups of ZDSD and Sprague Dawley (SD) rats were placed on a diabetogenic diet and evaluated two weeks later for hyperglycemia, as a sign of diabetes. Rats with blood glucose levels of >300 mg/dl were considered diabetic and those with blood glucose of <180 mg/dl were considered non-diabetic. All SD rats were non-diabetic. A full-thickness excisional skin wound was created in anesthetized rats using a punch biopsy and wound diameter measured on days 1, 4, 7, 9 and 11. Blood glucose levels and body weights were measured periodically before and after wounding. Diabetic ZDSD rats had significantly greater blood glucose levels than non-diabetic ZDSD and SD rats within 10 days of being placed on the diabetogenic diet. Furthermore, diabetic ZDSD rats initially weighed more than non-diabetic ZDSD and SD rats, however, by the end of the study there was no significant difference in body weight between the ZDSD groups. By day nine, wounds in ZDSD rats were significantly larger than those in SD rats and this persisted until the end of the study at day fourteen. Wounds from all groups were characterized histologically by abundant fibroblast cells, collagen deposition and macrophages. These results demonstrate delayed wound healing in both diabetic and non-diabetic ZDSD rats and suggest that obesity or metabolic syndrome are important factors in wound healing delay.
Collapse
Affiliation(s)
- Mark A Suckow
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, U.S.A.
| | | | | |
Collapse
|
29
|
Liu W, Ma K, Kwon SH, Garg R, Patta YR, Fujiwara T, Gurtner GC. The Abnormal Architecture of Healed Diabetic Ulcers Is the Result of FAK Degradation by Calpain 1. J Invest Dermatol 2017; 137:1155-1165. [PMID: 28082186 DOI: 10.1016/j.jid.2016.11.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 01/20/2023]
Abstract
Delayed wound healing is a major complication of diabetes occurring in approximately 15% of chronic diabetic patients. It not only significantly affects patients' quality of life but also poses a major economic burden to the health care system. Most efforts have been focused on accelerating wound reepithelialization and closure. However, even after healing the quality of healed tissue in diabetics is abnormal and recurrence is common (50-75%). Thus, understanding how diabetes alters the ultimate mechanical properties of healed wounds will be important to develop more effective approaches for this condition. Focal adhesion kinase is an intracellular protein kinase that plays critical roles in cell migration, focal adhesion formation, and is an important component of cellular mechanotransduction. We have found that focal adhesion kinase expression is downregulated under a high glucose condition both in vitro and in vivo. This is secondary to increased activity of calpain 1, the primary enzyme responsible for focal adhesion kinase degradation, which becomes induced in hyperglycemia. We demonstrate that selective inhibition of calpain 1 activation improves wound healing and normalizes the mechanical properties of diabetic skin, suggesting a new therapeutic approach to prevent diabetic wound recurrence.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kun Ma
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sun Hyung Kwon
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ravi Garg
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yoda R Patta
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Toshihiro Fujiwara
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
30
|
Engineered human vascularized constructs accelerate diabetic wound healing. Biomaterials 2016; 102:107-19. [DOI: 10.1016/j.biomaterials.2016.06.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/22/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
|
31
|
Blaber SI, Diaz J, Blaber M. Accelerated healing in NONcNZO10/LtJ type 2 diabetic mice by FGF-1. Wound Repair Regen 2016; 23:538-49. [PMID: 25891187 DOI: 10.1111/wrr.12305] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of novel therapies to treat chronic diabetic ulcers depends upon appropriate animal models for early stage investigation. The NONcNZO10/LtJ mouse is a new polygenic strain developed to more realistically model human metabolic syndrome and obesity-induced type 2 diabetes; however, detailed wound healing properties have not been reported. Herein, we describe a quantitative wound healing study in the NONcNZO10/LtJ mouse using a splinted excisional wound. The rate of wound healing is compared to various controls, and is also quantified in response to topical administration of normal and mutant fibroblast growth factor-1 (FGF-1). Quantitation of reepithelialization shows that the diabetic condition in the NONcNZO10/LtJ mouse is concomitant with a decreased rate of dermal healing. Furthermore, topical administration of a FGF-1/heparin formulation effectively accelerates reepithelialization. A similar acceleration can also be achieved by a stabilized mutant form of FGF-1 formulated in the absence of heparin. Such accelerated rates of healing are not associated with any abnormal histology in the healed wounds. The results identify the NONcNZO10/LtJ mouse as a useful model of impaired wound healing in type 2 diabetes, and further, identify engineered forms of FGF-1 as a potential “second-generation” therapeutic to promote diabetic dermal wound healing.
Collapse
|
32
|
Park SA, Covert J, Teixeira L, Motta MJ, DeRemer SL, Abbott NL, Dubielzig R, Schurr M, Isseroff RR, McAnulty JF, Murphy CJ. Importance of defining experimental conditions in a mouse excisional wound model. Wound Repair Regen 2016; 23:251-61. [PMID: 25703258 DOI: 10.1111/wrr.12272] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 11/29/2022]
Abstract
The murine dorsum dermal excisional wound model has been widely utilized with or without splint application. However, variations in experimental methods create challenges for direct comparison of results provided in the literature and for design of new wound healing studies. Here, we investigated the effects of wound location and size, number of wounds, type of adhesive used for splint fixation on wound healing using splinted or unsplinted dorsum excisional full thickness wound models. One or two 6- or 8-mm full thickness wounds were made with or without splinting in genetically diabetic but heterozygous mice (Dock7(m) + / + Lepr(db) ). Two different adhesives: tissue adhesive and an over the counter cyanoacrylate adhesive (OTCA) "Krazy glue" were used to fix splints. Wound contraction, wound closure, and histopathological parameters including reepithelialization, collagen deposition and inflammation were compared between groups. No significant effect of wound number (1 vs. 2), side (left vs. right and cranial vs. caudal) or size on wound healing was observed. The OTCA group had a significantly higher splint success compared to the tissue adhesive group that resulted in significantly higher reepithelialization and collagen deposition in the OTCA group. Understanding the outcomes and effects of the variables will help investigators choose appropriate experimental conditions for the study purpose and interpret data.
Collapse
Affiliation(s)
- Shin Ae Park
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Jill Covert
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Leandro Teixeira
- Department of Pathobiological Sciences School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin
| | - Monica J Motta
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Sara L DeRemer
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin
| | - Richard Dubielzig
- Department of Pathobiological Sciences School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin
| | - Michael Schurr
- Trauma Surgery, Mission Medical Associates, Mission Hospital, Asheville, North Carolina
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California, Davis, California.,Dermatology Service, VA Northern California Health Care System, Mather, California
| | - Jonathan F McAnulty
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin.,Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California.,Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California
| |
Collapse
|
33
|
Garcia-Orue I, Gainza G, Girbau C, Alonso R, Aguirre JJ, Pedraz JL, Igartua M, Hernandez RM. LL37 loaded nanostructured lipid carriers (NLC): A new strategy for the topical treatment of chronic wounds. Eur J Pharm Biopharm 2016; 108:310-316. [PMID: 27080206 DOI: 10.1016/j.ejpb.2016.04.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/05/2016] [Accepted: 04/09/2016] [Indexed: 11/16/2022]
Abstract
The LL37 is a human antimicrobial peptide which not only has a broad spectrum of antimicrobial activity, but it has also been proved to modulate wound healing by participating in angiogenesis, epithelial cell migration and proliferation, and immune response. In this work, LL37 has been encapsulated in nanostructured lipid carriers (NLCs), produced by the melt-emulsification method, in order to improve its effectiveness. The characterisation of the NLC-LL37 showed a mean size of 270nm, a zeta potential of -26mV and an encapsulation efficiency of 96.4%. The cytotoxicity assay performed in Human Foreskin Fibroblasts demonstrated that the NLC-LL37 did not affect cell viability. Moreover, the in vitro bioactivityassay evidenced that the peptide remained active after the encapsulation, since the NLC-LL37 reversed the activation of the macrophages induced by LPS in the same way as the LL37 in solution. In addition, the in vitro antimicrobial assay revealed the NLC-LL37 activity against Escherichia coli. The effectiveness of the nanoparticles was assessed in a full thickness wound model indb/dbmice. The data demonstrated that NLC-LL37 significantly improved healing compared to the same concentration of the LL37 solution in terms of wound closure, reepithelisation grade and restoration of the inflammatory process. Overall, these findings suggest a promising potential of the NLC-LL37 formulation for chronic wound healing.
Collapse
Affiliation(s)
- Itxaso Garcia-Orue
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Garazi Gainza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biopraxis Research AIE, Miñano, Vitoria-Gasteiz, Spain
| | - Cecilia Girbau
- Department of Immunology, Microbiology and Parasitology, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Rodrigo Alonso
- Department of Immunology, Microbiology and Parasitology, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - José Javier Aguirre
- Hospital Universitario de Álava (HUA) Txagorritxu, Vitoria-Gasteiz 01009, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
34
|
Soares MA, Cohen OD, Low YC, Sartor RA, Ellison T, Anil U, Anzai L, Chang JB, Saadeh PB, Rabbani PS, Ceradini DJ. Restoration of Nrf2 Signaling Normalizes the Regenerative Niche. Diabetes 2016; 65:633-46. [PMID: 26647385 PMCID: PMC5314719 DOI: 10.2337/db15-0453] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022]
Abstract
Chronic hyperglycemia impairs intracellular redox homeostasis and contributes to impaired diabetic tissue regeneration. The Keap1/Nrf2 pathway is a critical regulator of the endogenous antioxidant response system, and its dysfunction has been implicated in numerous pathologies. Here we characterize the effect of chronic hyperglycemia on Nrf2 signaling within a diabetic cutaneous regeneration model. We characterized the effects of chronic hyperglycemia on the Keap1/Nrf2 pathway within models of diabetic cutaneous wound regeneration. We assessed reactive oxygen species (ROS) production and antioxidant gene expression following alterations in the Nrf2 suppressor Keap1 and the subsequent changes in Nrf2 signaling. We also developed a topical small interfering RNA (siRNA)-based therapy to restore redox homeostasis within diabetic wounds. Western blotting demonstrated that chronic hyperglycemia-associated oxidative stress inhibits nuclear translocation of Nrf2 and impairs activation of antioxidant genes, thus contributing to ROS accumulation. Keap1 inhibition increased Nrf2 nuclear translocation, increased antioxidant gene expression, and reduced ROS production to normoglycemic levels, both in vitro and in vivo. Topical siKeap1 therapy resulted in improved regenerative capacity of diabetic wounds and accelerated closure. We report that chronic hyperglycemia weakens the endogenous antioxidant response, and the consequences of this defect are manifested by intracellular redox dysregulation, which can be restored by Keap1 inhibition. Targeted siRNA-based therapy represents a novel, efficacious strategy to reestablish redox homeostasis and accelerate diabetic cutaneous tissue regeneration.
Collapse
Affiliation(s)
- Marc A Soares
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY
| | - Oriana D Cohen
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY
| | - Yee Cheng Low
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY
| | - Rita A Sartor
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY
| | - Trevor Ellison
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY
| | - Utkarsh Anil
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY
| | - Lavinia Anzai
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY
| | - Jessica B Chang
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY
| | - Pierre B Saadeh
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY
| | - Piul S Rabbani
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY
| | - Daniel J Ceradini
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY
| |
Collapse
|
35
|
Clark RM, Coffman B, McGuire PG, Howdieshell TR. Myocutaneous revascularization following graded ischemia in lean and obese mice. Diabetes Metab Syndr Obes 2016; 9:325-336. [PMID: 27757044 PMCID: PMC5053374 DOI: 10.2147/dmso.s117793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Murine models of diabetes and obesity have provided insight into the pathogenesis of impaired epithelialization of excisional skin wounds. However, knowledge of postischemic myocutaneous revascularization in these models is limited. MATERIALS AND METHODS A myocutaneous flap was created on the dorsum of wild type (C57BL/6), genetically obese and diabetic (ob/ob, db/db), complementary heterozygous (ob+/ob-, db+/db-), and diet-induced obese (DIO) mice (n=48 total; five operative mice per strain and three unoperated mice per strain as controls). Flap perfusion was documented by laser speckle contrast imaging. Local gene expression in control and postoperative flap tissue specimens was determined by quantitative reverse transcription polymerase chain reaction (RT-PCR). Image analysis of immunochemically stained histologic sections confirmed microvascular density and macrophage presence. RESULTS Day 10 planimetric analysis revealed mean flap surface area necrosis values of 10.8%, 12.9%, 9.9%, 0.4%, 1.4%, and 23.0% for wild type, db+/db-, ob+/ob-, db/db, ob/ob, and DIO flaps, respectively. Over 10 days, laser speckle imaging documented increased perfusion at all time points with revascularization to supranormal perfusion in db/db and ob/ob flaps. In contrast, wild type, heterozygous, and DIO flaps displayed expected graded ischemia with failure of perfusion to return to baseline values. RT-PCR demonstrated statistically significant differences in angiogenic gene expression between lean and obese mice at baseline (unoperated) and at day 10. CONCLUSION Unexpected increased baseline skin perfusion and augmented myocutaneous revascularization accompanied by a control proangiogenic transcriptional signature in genetically obese mice compared to DIO and lean mice are reported. In future research, laser speckle imaging has been planned to be utilized in order to correlate spatiotemporal wound reperfusion with changes in cell recruitment and gene expression to better understand the differences in wound microvascular biology in lean and obese states.
Collapse
Affiliation(s)
| | | | - Paul G McGuire
- Department of Cell Biology and Vascular Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Thomas R Howdieshell
- Department of Surgery
- Department of Cell Biology and Vascular Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Correspondence: Thomas R Howdieshell, Department of Surgery, MSC10-5610, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA, Tel +1 505 272 6441, Fax +1 505 272 0432, Email
| |
Collapse
|
36
|
Johnson NR, Wang Y. Coacervate delivery of HB-EGF accelerates healing of type 2 diabetic wounds. Wound Repair Regen 2015; 23:591-600. [PMID: 26032846 PMCID: PMC5957479 DOI: 10.1111/wrr.12319] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/05/2015] [Indexed: 12/25/2022]
Abstract
Chronic wounds such as diabetic ulcers pose a significant challenge as a number of underlying deficiencies prevent natural healing. In pursuit of a regenerative wound therapy, we developed a heparin-based coacervate delivery system that provides controlled release of heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) within the wound bed. In this study, we used a polygenic type 2 diabetic mouse model to evaluate the capacity of HB-EGF coacervate to overcome the deficiencies of diabetic wound healing. In full-thickness excisional wounds on NONcNZO10 diabetic mice, HB-EGF coacervate enhanced the proliferation and migration of epidermal keratinocytes, leading to accelerated epithelialization. Furthermore, increased collagen deposition within the wound bed led to faster wound contraction and greater wound vascularization. Additionally, in vitro assays demonstrated that HB-EGF released from the coacervate successfully increased migration of diabetic human keratinocytes. The multifunctional role of HB-EGF in the healing process and its enhanced efficacy when delivered by the coacervate make it a promising therapy for diabetic wounds.
Collapse
Affiliation(s)
- Noah R. Johnson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Rebalka IA, Raleigh MJ, D'Souza DM, Coleman SK, Rebalka AN, Hawke TJ. Inhibition of PAI-1 Via PAI-039 Improves Dermal Wound Closure in Diabetes. Diabetes 2015; 64:2593-602. [PMID: 25754958 DOI: 10.2337/db14-1174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/02/2015] [Indexed: 11/13/2022]
Abstract
Diabetes impairs the ability to heal cutaneous wounds, leading to hospitalization, amputations, and death. Patients with diabetes experience elevated levels of plasminogen activator inhibitor 1 (PAI-1), regardless of their glycemic control. It has been demonstrated that PAI-1-deficient mice exhibit improved cutaneous wound healing, and that PAI-1 inhibition improves skeletal muscle repair in mice with type 1 diabetes mellitus, leading us to hypothesize that pharmacologically mediated reductions in PAI-1 using PAI-039 would normalize cutaneous wound healing in streptozotocin (STZ)-induced diabetic (STZ-diabetic) mice. To simulate the human condition of variations in wound care, wounds were aggravated or minimally handled postinjury. Following cutaneous injury, PAI-039 was orally administered twice daily for 10 days. Compared with nondiabetic mice, wounds in STZ-diabetic mice healed more slowly. Wound site aggravation exacerbated this deficit. PAI-1 inhibition had no effect on dermal collagen levels or wound bed size. PAI-039 treatment failed to improve angiogenesis in the wounds of STZ-diabetic mice and blunted angiogenesis in the wounds of nondiabetic mice. Importantly, PAI-039 treatment significantly improved epidermal cellular migration and wound re-epithelialization compared with vehicle-treated STZ-diabetic mice. These findings support the use of PAI-039 as a novel therapeutic agent to improve diabetic wound closure and demonstrate the primary mechanism of its action to be related to epidermal closure.
Collapse
Affiliation(s)
- Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Matthew J Raleigh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Donna M D'Souza
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Samantha K Coleman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alexandra N Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
38
|
Nunan R, Harding KG, Martin P. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech 2015; 7:1205-13. [PMID: 25359790 PMCID: PMC4213725 DOI: 10.1242/dmm.016782] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The efficient healing of a skin wound is something that most of us take for granted but is essential for surviving day-to-day knocks and cuts, and is absolutely relied on clinically whenever a patient receives surgical intervention. However, the management of a chronic wound – defined as a barrier defect that has not healed in 3 months – has become a major therapeutic challenge throughout the Western world, and it is a problem that will only escalate with the increasing incidence of conditions that impede wound healing, such as diabetes, obesity and vascular disorders. Despite being clinically and molecularly heterogeneous, all chronic wounds are generally assigned to one of three major clinical categories: leg ulcers, diabetic foot ulcers or pressure ulcers. Although we have gleaned much knowledge about the fundamental cellular and molecular mechanisms that underpin healthy, acute wound healing from various animal models, we have learned much less about chronic wound repair pathology from these models. This might largely be because the animal models being used in this field of research have failed to recapitulate the clinical features of chronic wounds. In this Clinical Puzzle article, we discuss the clinical complexity of chronic wounds and describe the best currently available models for investigating chronic wound pathology. We also assess how such models could be optimised to become more useful tools for uncovering pathological mechanisms and potential therapeutic treatments.
Collapse
Affiliation(s)
- Robert Nunan
- Schools of Biochemistry and Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK.
| | - Keith G Harding
- School of Medicine, University of Cardiff, Cardiff, CF14 4XN, UK
| | - Paul Martin
- Schools of Biochemistry and Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK. School of Medicine, University of Cardiff, Cardiff, CF14 4XN, UK
| |
Collapse
|
39
|
Dhuria RS, Singh G, Kaur A, Kaur R, Kaur T. Current status and patent prospective of animal models in diabetic research. Adv Biomed Res 2015; 4:117. [PMID: 26261819 PMCID: PMC4513317 DOI: 10.4103/2277-9175.157847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/15/2014] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus is a heterogeneous complex metabolic disorder with multiple etiology which characterized by chronic hyperglycemia resulting from defects in insulin secretion, insulin action or both. The widespread occurrence of diabetes throughout the world has increased dramatically over the past few years. For better understanding, appropriate animal models that closely mimic the changes in humans needed, as vital tool for understanding the etiology and pathogenesis of the disease at the cellular/molecular level and for preclinical testing of drugs. This review aims to describe the animal models of type-1 diabetes (T1Ds) and T2Ds to mimic the causes and progression of the disease in humans. And also we highlight patent applications published in the last few years related to animal models in diabetes as an important milestone for future therapies that are aim to treating diabetes with specific symptoms and complications.
Collapse
Affiliation(s)
- Radhey S. Dhuria
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anudeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ramandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tanurajvir Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
40
|
Park SA, Teixeira LBC, Raghunathan VK, Covert J, Dubielzig RR, Isseroff RR, Schurr M, Abbott NL, McAnulty J, Murphy CJ. Full-thickness splinted skin wound healing models in db/db and heterozygous mice: Implications for wound healing impairment. Wound Repair Regen 2014; 22:368-80. [DOI: 10.1111/wrr.12172] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/27/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Shin Ae Park
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine; University of California; Davis California
| | | | - Vijay Krishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine; University of California; Davis California
| | - Jill Covert
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine; University of California; Davis California
| | - Richard R. Dubielzig
- Department of Pathobiological Sciences; University of Wisconsin; Madison Wisconsin
| | - Roslyn Rivkah Isseroff
- Department of Dermatology; University of California; Davis California
- VA Northern California Health Care System; Mather California
| | - Michael Schurr
- Department of Surgery; University of Colorado; Denver Colorado
| | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering; University of Wisconsin; Madison Wisconsin
| | - Jonathan McAnulty
- Department of Surgical Sciences, School of Veterinary Medicine; University of Wisconsin; Madison Wisconsin
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine; University of California; Davis California
- Ophthalmology & Vision Science, School of Medicine; University of California; Davis California
| |
Collapse
|
41
|
Theoret CL, Olutoye OO, Parnell LKS, Hicks J. Equine exuberant granulation tissue and human keloids: a comparative histopathologic study. Vet Surg 2013; 42:783-9. [PMID: 24015864 DOI: 10.1111/j.1532-950x.2013.12055.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 07/21/2013] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To compare histopathologic features of a fibroproliferative disorder in horses (exuberant granulation tissue-EGT) and people (keloid). SAMPLE POPULATION Archival tissue samples of EGT (n = 8) and keloid (12). METHODS After automated hematoxylin and eosin, histochemical (Gomori trichrome, Verhoeff-van Gieson elastin) and immunohistochemical (vimentin, α-smooth muscle actin, CD34, CD68, CD117) stainings, tissue sections were evaluated using a semi-quantitative grading scale for presence or absence of ulceration, keloidal collagen, myofibroblasts, and elastic fibers as well as degree of inflammation, fibrosis, vascularity, and orientation of collagen fibers. RESULTS Superficial dermis and deep dermis of both horses and people had increased numbers of haphazardly oriented thickened collagen fibers; however, only keloids contained "keloidal" collagen. Fibroblast numbers were markedly increased in both groups but only EGT had myofibroblasts. Minimal vascularity was observed in the deep dermis of both groups. The superficial dermis in EGT was characterized by small vessels within immature granulation tissue. Macrophages and mast cells were infrequently found in both groups but polymorphonuclear cells were markedly increased in EGT. CONCLUSIONS Humans and horses are the only mammals known to naturally develop excessive granulation during wound healing; however, similarities and differences between fibroblast populations and associated collagen have not been reported. Inflammatory response may contribute to observed differences in the cellular populations, with EGT possessing markedly increased myofibroblasts, small vessels, and acute inflammatory cells compared with keloids. Further work is warranted to develop common treatment strategies for these fibroproliferative conditions.
Collapse
|
42
|
Abstract
In this chapter a review of animal model systems already being utilized to study normal and pathologic wound healing is provided. We also go into details on alternatives for animal wound model systems. The case is made for limitations in the various approaches. We also discuss the benefits/limitations of in vitro/ex vivo systems bringing everything up to date with our current work on developing a cell-based reporter system for diabetic wound healing.
Collapse
Affiliation(s)
- Phil Stephens
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair Tissue Engineering and Reparative Dentistry, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | | | | |
Collapse
|
43
|
Novel animal models for tracking the fate and contributions of bone marrow derived cells in diabetic healing. Methods Mol Biol 2013; 1037:99-115. [PMID: 24029932 DOI: 10.1007/978-1-62703-505-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a vast wealth of information to be gained by tracking both the fate and contribution of individual cell types to the wound healing response. This is particularly important in research focused on impaired healing, such as diabetic wound healing, where the number or function of one or more specific cell types may be abnormal and contribute to the observed healing derangements. Specifically, diabetic wounds have been shown to have an overactive inflammatory response and decreased angiogenesis. The ability to track specific cell types participating in these responses would dramatically improve our understanding of the cellular derangements in diabetic healing. In this chapter, we review two novel chimeric models based on the leptin deficient Db/Db mouse. The use of these models allows for the tracking of bone marrow derived inflammatory and progenitor cell populations as well as the determination of the molecular contributions of these cell populations to the wound healing response.
Collapse
|
44
|
Leiter EH, Strobel M, O'Neill A, Schultz D, Schile A, Reifsnyder PC. Comparison of Two New Mouse Models of Polygenic Type 2 Diabetes at the Jackson Laboratory, NONcNZO10Lt/J and TALLYHO/JngJ. J Diabetes Res 2013; 2013:165327. [PMID: 23671854 PMCID: PMC3647594 DOI: 10.1155/2013/165327] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/14/2013] [Indexed: 01/17/2023] Open
Abstract
This review compares two novel polygenic mouse models of type 2 diabetes (T2D), TALLYHO/JngJ and NONcNZO10/LtJ, and contrasts both with the well-known C57BLKS/J-Lepr(db) (db/db) monogenic diabesity model. We posit that the new polygenic models are more representative of the "garden variety" obesity underlying human T2D in terms of their polygenetic rather than monogenic etiology. Moreover, the clinical phenotypes in these new models are less extreme, for example, more moderated development of obesity coupled with less extreme endocrine disturbances. The more progressive development of obesity produces a maturity-onset development of hyperglycemia in contrast to the juvenile-onset diabetes observed in the morbidly obese db/db model. Unlike the leptin receptor-deficient db/db models with central leptin resistance, the new models develop a progressive peripheral leptin resistance and are able to maintain reproductive function. Although the T2D pathophysiology in both TALLYHO/JngJ and NONcNZO10/LtJ is remarkably similar, their genetic etiologies are clearly different, underscoring the genetic heterogeneity underlying T2D in humans.
Collapse
Affiliation(s)
- Edward H. Leiter
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- *Edward H. Leiter:
| | - Marjorie Strobel
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Adam O'Neill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - David Schultz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Andrew Schile
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
45
|
In vivo bioluminescence imaging to evaluate systemic and topical antibiotics against community-acquired methicillin-resistant Staphylococcus aureus-infected skin wounds in mice. Antimicrob Agents Chemother 2012. [PMID: 23208713 DOI: 10.1128/aac.01003-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) frequently causes skin and soft tissue infections, including impetigo, cellulitis, folliculitis, and infected wounds and ulcers. Uncomplicated CA-MRSA skin infections are typically managed in an outpatient setting with oral and topical antibiotics and/or incision and drainage, whereas complicated skin infections often require hospitalization, intravenous antibiotics, and sometimes surgery. The aim of this study was to develop a mouse model of CA-MRSA wound infection to compare the efficacy of commonly used systemic and topical antibiotics. A bioluminescent USA300 CA-MRSA strain was inoculated into full-thickness scalpel wounds on the backs of mice and digital photography/image analysis and in vivo bioluminescence imaging were used to measure wound healing and the bacterial burden. Subcutaneous vancomycin, daptomycin, and linezolid similarly reduced the lesion sizes and bacterial burden. Oral linezolid, clindamycin, and doxycycline all decreased the lesion sizes and bacterial burden. Oral trimethoprim-sulfamethoxazole decreased the bacterial burden but did not decrease the lesion size. Topical mupirocin and retapamulin ointments both reduced the bacterial burden. However, the petrolatum vehicle ointment for retapamulin, but not the polyethylene glycol vehicle ointment for mupirocin, promoted wound healing and initially increased the bacterial burden. Finally, in type 2 diabetic mice, subcutaneous linezolid and daptomycin had the most rapid therapeutic effect compared with vancomycin. Taken together, this mouse model of CA-MRSA wound infection, which utilizes in vivo bioluminescence imaging to monitor the bacterial burden, represents an alternative method to evaluate the preclinical in vivo efficacy of systemic and topical antimicrobial agents.
Collapse
|
46
|
Abstract
Diabetes is a disease characterized by a relative or absolute lack of insulin, leading to hyperglycaemia. There are two main types of diabetes: type 1 diabetes and type 2 diabetes. Type 1 diabetes is due to an autoimmune destruction of the insulin-producing pancreatic beta cells, and type 2 diabetes is caused by insulin resistance coupled by a failure of the beta cell to compensate. Animal models for type 1 diabetes range from animals with spontaneously developing autoimmune diabetes to chemical ablation of the pancreatic beta cells. Type 2 diabetes is modelled in both obese and non-obese animal models with varying degrees of insulin resistance and beta cell failure. This review outlines some of the models currently used in diabetes research. In addition, the use of transgenic and knock-out mouse models is discussed. Ideally, more than one animal model should be used to represent the diversity seen in human diabetic patients.
Collapse
|
47
|
Affiliation(s)
- David M. Ansell
- The Healing Foundation Centre; Faculty of Life Sciences; The University of Manchester; Manchester; UK
| | | | - Matthew J. Hardman
- The Healing Foundation Centre; Faculty of Life Sciences; The University of Manchester; Manchester; UK
| |
Collapse
|
48
|
Ko SH, Nauta A, Morrison SD, Zhou H, Zimmermann A, Gurtner GC, Ding S, Longaker MT. Antimycotic ciclopirox olamine in the diabetic environment promotes angiogenesis and enhances wound healing. PLoS One 2011; 6:e27844. [PMID: 22125629 PMCID: PMC3220686 DOI: 10.1371/journal.pone.0027844] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 10/26/2011] [Indexed: 12/01/2022] Open
Abstract
Diabetic wounds remain a major medical challenge with often disappointing outcomes despite the best available care. An impaired response to tissue hypoxia and insufficient angiogenesis are major factors responsible for poor healing in diabetic wounds. Here we show that the antimycotic drug ciclopirox olamine (CPX) can induce therapeutic angiogenesis in diabetic wounds. Treatment with CPX in vitro led to upregulation of multiple angiogenic genes and increased availability of HIF-1α. Using an excisional wound splinting model in diabetic mice, we showed that serial topical treatment with CPX enhanced wound healing compared to vehicle control treatment, with significantly accelerated wound closure, increased angiogenesis, and increased dermal cellularity. These findings offer a promising new topical pharmacologic therapy for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Sae Hee Ko
- Hagey Laboratory for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Allison Nauta
- Hagey Laboratory for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Shane D. Morrison
- Hagey Laboratory for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Stanford University School of Medicine, Stanford, California, United States of America
| | - Hongyan Zhou
- Gladstone Institute of Cardiovascular Disease, University of California San Francisco Mission Bay Campus, San Francisco, California, United States of America
| | - Andrew Zimmermann
- Hagey Laboratory for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Stanford University, Stanford, California, United States of America
| | - Geoffrey C. Gurtner
- Hagey Laboratory for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sheng Ding
- Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael T. Longaker
- Hagey Laboratory for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|