1
|
Suárez-Suárez S, Cadaveira F, Barrós-Loscertales A, Pérez-García JM, Holguín SR, Blanco-Ramos J, Doallo S. Influence of binge drinking on the resting state functional connectivity of university Students: A follow-up study. Addict Behav Rep 2025; 21:100585. [PMID: 39898113 PMCID: PMC11787028 DOI: 10.1016/j.abrep.2025.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Binge Drinking (BD) is characterized by consuming large amounts of alcohol on one occasion, posing risks to brain function. Nonetheless, it remains the most prevalent consumption pattern among students. Cross-sectional studies have explored the relationship between BD and anomalies in resting-state functional connectivity (RS-FC), but the medium/long-term consequences of BD on RS-FC during developmental periods remain relatively unexplored. In this two-year follow-up study, the impact of sustained BD on RS-FC was investigated in 44 college students (16 binge-drinkers) via two fMRI sessions at ages 18-19 and 20-21. Using a seed-to-voxel approach, RS-FC differences were examined in nodes of the main brain functional networks vulnerable to alcohol misuse, according to previous studies. Group differences in RS-FC were observed in four of the explored brain regions. Binge drinkers, compared to the control group, exhibited, at the second assessment, decreased connectivity between the right SFG (executive control network) and right precentral gyrus, the ACC (salience network) and right postcentral gyrus, and the left amygdala (emotional network) and medial frontal gyrus/dorsal ACC. Conversely, binge drinkers showed increased connectivity between the right Nacc (reward network) and four clusters comprising bilateral middle frontal gyrus (MFG), right middle cingulate cortex, and right MFG extending to SFG. Maintaining a BD pattern during critical neurodevelopmental years impacts RS-FC, indicating mid-to-long-term alterations in functional brain organization. This study provides new insights into the neurotoxic effects of adolescent alcohol misuse, emphasizing the need for longitudinal studies addressing the lasting consequences on brain functional connectivity.
Collapse
Affiliation(s)
| | - Fernando Cadaveira
- Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Psicoloxía (IPsiUS), Universidade de Santiago de Compostela, Spain
| | - Alfonso Barrós-Loscertales
- Departamento de Psicología Básica, ClínicaSpain y Psicobiología, Universitat Jaume I, Castelló de la Plana, Spain
| | - José Manuel Pérez-García
- Department of Educational Psychology and Psychobiology, Faculty of Education, Universidad Internacional de La Rioja, Logroño, Spain
| | - Socorro Rodríguez Holguín
- Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Psicoloxía (IPsiUS), Universidade de Santiago de Compostela, Spain
| | - Javier Blanco-Ramos
- Department of Educational Psychology and Psychobiology, Faculty of Education, Universidad Internacional de La Rioja, Logroño, Spain
- Fundación Pública Andaluza para la Investigación Biosanitaria en Andalucía Oriental, FIBAO, Spain
| | - Sonia Doallo
- Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Psicoloxía (IPsiUS), Universidade de Santiago de Compostela, Spain
| |
Collapse
|
2
|
Rudroff T. Frontal-striatal glucose metabolism and fatigue in patients with multiple sclerosis, long COVID, and COVID-19 recovered controls. Exp Brain Res 2024; 242:2125-2136. [PMID: 38970653 DOI: 10.1007/s00221-024-06882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
This study compared brain glucose metabolism using FDG-PET in the caudate nucleus, putamen, globus pallidus, thalamus, and dorsolateral prefrontal cortex (DLPFC) among patients with Long COVID, patients with fatigue, people with multiple sclerosis (PwMS) patients with fatigue, and COVID recovered controls. PwMS exhibited greater hypometabolism compared to long COVID patients with fatigue and the COVID recovered control group in all studied brain areas except the globus pallidus (effect size range 0.7-1.5). The results showed no significant differences in glucose metabolism between patients with Long COVID and the COVID recovered control group in these regions. These findings suggest that long COVID fatigue may involve non-CNS systems, neurotransmitter imbalances, or psychological factors not captured by FDG-PET, while MS-related fatigue is associated with more severe frontal-striatal circuit dysfunction due to demyelination and neurodegeneration. Symmetrical standardized uptake values (SUVs) between hemispheres in all groups imply that fatigue in these conditions may be related to global or network-level alterations rather than hemisphere-specific changes. Future studies should employ fine-grained analysis methods, explore other brain regions, and control for confounding factors to better understand the pathophysiology of fatigue in MS and long COVID. Longitudinal studies tracking brain glucose metabolism in patients with Long COVID could provide insights into the evolution of metabolic patterns as the condition progresses.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, E432 Field House, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
3
|
Baldi S, Schuhmann T, Goossens L, Schruers KRJ. Individualized, connectome-based, non-invasive stimulation of OCD deep-brain targets: A proof-of-concept. Neuroimage 2024; 288:120527. [PMID: 38286272 DOI: 10.1016/j.neuroimage.2024.120527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/09/2023] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
Treatment-resistant obsessive-compulsive disorder (OCD) generally improves with deep-brain stimulation (DBS), thought to modulate neural activity at both the implantation site and in connected brain regions. However, its invasive nature, side-effects, and lack of customization, make non-invasive treatments preferable. Harnessing the established remote effects of cortical transcranial magnetic stimulation (TMS), connectivity-based approaches have emerged for depression that aim at influencing distant regions connected to the stimulation site. We here investigated whether effective OCD DBS targets (here subthalamic nucleus [STN] and nucleus accumbens [NAc]) could be modulated non-invasively with TMS. In a proof-of-concept study with nine healthy individuals, we used 7T magnetic resonance imaging (MRI) and probabilistic tractography to reconstruct the fiber tracts traversing manually segmented STN/NAc. Two TMS targets were individually selected based on the strength of their structural connectivity to either the STN, or both the STN and NAc. In a sham-controlled, within-subject cross-over design, TMS was administered over the personalized targets, located around the precentral and middle frontal gyrus. Resting-state functional 3T MRI was acquired before, and at 5 and 25 min after stimulation to investigate TMS-induced changes in the functional connectivity of the STN and NAc with other regions of the brain. Static and dynamic seed-to-voxel correlation analyses were conducted. TMS over both targets was able to modulate the functional connectivity of the STN and NAc, engaging both overlapping and distinct regions, and unfolding following different temporal dynamics. Given the relevance of the engaged connected regions to OCD pathology, we argue that a personalized, connectivity-based procedure is worth investigating as potential treatment for refractory OCD.
Collapse
Affiliation(s)
- Samantha Baldi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Centre, Maastricht, the Netherlands
| | - Liesbet Goossens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Koen R J Schruers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
4
|
Fontana HJ, Mazzucco J, Lescano S. The anterior perforated substance (APS) revisited: Commented anatomical and imagenological views. Brain Behav 2023; 13:e3029. [PMID: 38010896 PMCID: PMC10726791 DOI: 10.1002/brb3.3029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/10/2023] [Indexed: 11/29/2023] Open
Abstract
INTRODUCTION Since 2002, when we published our article about the anterior perforated substance (APS), the knowledge about the region has grown enormously. OBJECTIVE To make a better description of the anatomy of the zone with new dissection material added to the previous, to sustain the anatomical analysis of the MRI employing the SPACE sequence, interacting with our imagenology colleagues. Especially, we aim to identify and topographically localize by MRI the principal structures in APS-substantia innominata (SI). METHOD The presentation follows various steps: (1) location and boundaries of the zone and its neighboring areas; (2) schematic description of the region with simple outlines; (3) cursory revision of the SI and its three systems; (4) serial images of the dissections of the zone and its vessels, illustrated and completed when possible, by MRI images of a voluntary experimental subject (ES). RESULTS With this method, we could expose most of the structures of the region anatomically and imagenologically. DISCUSSION The zone can be approached for dissection with magnification and the habitual microsurgical instruments with satisfactory results. We think that fibers in this region should be followed by other anatomical methods in addition to tractography. The principal structures of ventral striopallidum and extended amygdala (EA) can be identified with the SPACE sequence. The amygdala and the basal ganglion of Meynert (BGM) are easily confused because of their similar signal. Anatomical clues can orient the clinician about the different clusters of the BGM in MRI. CONCLUSIONS The dissection requires a previous knowledge of the zone and a good amount of patience. The APS is a little space where concentrate essential vessels for the telencephalon, "en passage" or perforating, and neural structures of relevant functional import. From anatomical and MRI points of view, both neural and vascular structures follow a harmonious and topographically describable plan. The SPACE MRI sequence has proved to be a useful tool for identifying different structures in this area as the striatopallidal and EA. Anatomical knowledge of the fibers helps in the search of clusters of the basal ganglion.
Collapse
Affiliation(s)
| | - Juan Mazzucco
- Instituto ARGUS de Diagnóstico por ImágenesBuenos AiresArgentina
| | - Sebastián Lescano
- ARGUS Diagnóstico por Imágenes CNS imagenologistBuenos AiresArgentina
| |
Collapse
|
5
|
Spencer CN, Elton A, Dove S, Faulkner ML, Robinson DL, Boettiger CA. Naltrexone engages a brain reward network in the presence of reward-predictive distractor stimuli in males. ADDICTION NEUROSCIENCE 2023; 7:100085. [PMID: 37424633 PMCID: PMC10328541 DOI: 10.1016/j.addicn.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The non-selective opioid receptor antagonist, naltrexone is one of the most prescribed medications for treating alcohol and opioid addiction. Despite decades of clinical use, the mechanism(s) by which naltrexone reduces addictive behavior remains unclear. Pharmaco-fMRI studies to date have largely focused on naltrexone's impact on brain and behavioral responses to drug or alcohol cues or on decision-making circuitry. We hypothesized that naltrexone's effects on reward-associated brain regions would associate with reduced attentional bias (AB) to non-drug, reward-conditioned cues. Twenty-three adult males, including heavy and light drinkers, completed a two-session, placebo-controlled, double-blind study testing the effects of acute naltrexone (50 mg) on AB to reward-conditioned cues and neural correlates of such bias measured via fMRI during a reward-driven AB task. While we detected significant AB to reward-conditioned cues, naltrexone did not reduce this bias in all participants. A whole-brain analysis found that naltrexone significantly altered activity in regions associated with visuomotor control regardless of whether a reward-conditioned distractor was present. A region-of-interest analysis of reward-associated areas found that acute naltrexone increased BOLD signal in the striatum and pallidum. Moreover, naltrexone effects in the pallidum and putamen predicted individual reduction in AB to reward-conditioned distractors. These findings suggest that naltrexone's effects on AB primarily reflect not reward processing per se, but rather top-down control of attention. Our results suggest that the therapeutic actions of endogenous opioid blockade may reflect changes in basal ganglia function enabling resistance to distraction by attractive environmental cues, which could explain some variance in naltrexone's therapeutic efficacy.
Collapse
Affiliation(s)
- Cory N. Spencer
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amanda Elton
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina, USA
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Samantha Dove
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Monica L. Faulkner
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charlotte A. Boettiger
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina, USA
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Yan H, Shlobin NA, Jung Y, Zhang KK, Warsi N, Kulkarni AV, Ibrahim GM. Nucleus accumbens: a systematic review of neural circuitry and clinical studies in healthy and pathological states. J Neurosurg 2023; 138:337-346. [PMID: 35901682 DOI: 10.3171/2022.5.jns212548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The nucleus accumbens (NAcc) of the ventral striatum is critically involved in goal- and reward-based behavior. Structural and functional abnormalities of the NAcc or its associated neural systems are involved in neurological and psychiatric disorders. Studies of neural circuitry have shed light on the subtleties of the structural and functional derangements of the NAcc across various diseases. In this systematic review, the authors sought to identify human studies involving the NAcc and provide a synthesis of the literature on the known circuity of the NAcc in healthy and diseased states, as well as the clinical outcomes following neuromodulation. METHODS A systematic review was conducted using the PubMed, Embase, and Scopus databases. Neuroimaging studies that reported on neural circuitry related to the human NAcc with sample sizes greater than 5 patients were included. Demographic data, aim, design and duration, participants, and clinical and neurocircuitry details and outcomes of the studies were extracted. RESULTS Of 3591 resultant articles, 123 were included. The NAcc and its corticolimbic connections to other brain regions, such as the prefrontal cortex, are largely involved in reward and pain processes, with distinct functional circuitry between the shell and core in healthy patients. There is heterogeneity between clinical studies with regard to the NAcc indirect targeting coordinates, methods for postoperative confirmation, and blinded trial design. Neuromodulation studies provided promising clinical results in the context of addiction and substance misuse, obsessive-compulsive disorder, and mood disorders. The most common complications were impaired memory or concentration, and a notable serious complication was hypomania. CONCLUSIONS The functional diversity of the NAcc highlights the importance of studying the NAcc in healthy and pathological states. The results of this review suggest that NAcc neuromodulation has been attempted in the management of diverse psychiatric indications. There is promising, emerging evidence that the NAcc may be an effective target for specific reward- or pain-based pathologies with a reasonable risk profile.
Collapse
Affiliation(s)
- Han Yan
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,2Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario, Canada.,4McMaster Medical School, Hamilton, Ontario, Canada
| | - Nathan A Shlobin
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Kristina K Zhang
- 5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and.,6Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Nebras Warsi
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and
| | - Abhaya V Kulkarni
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,2Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario, Canada
| | - George M Ibrahim
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and.,6Institute of Medical Science, University of Toronto, Ontario, Canada
| |
Collapse
|
7
|
Abstract
Some have argued that the brain is so complex that it cannot be understood using current reductive approaches. Drawing on examples from decision neuroscience, we instead contend that combining new neuroscientific techniques with reductive approaches that consider central brain components in time and space has generated significant progress over the past 2 decades. This progress has allowed researchers to advance from the scientific goals of description and explanation to prediction and control. Resulting knowledge promises to improve human health and well-being. As an alternative to the extremes of reductive versus emergent approaches, however, we propose a middle way of "expansion." This expansionist approach promises to leverage the specific spatial localization, temporal precision, and directed connectivity of central neural components to ultimately link levels of analysis.
Collapse
|
8
|
Brun G, Testud B, Girard OM, Lehmann P, de Rochefort L, Besson P, Massire A, Ridley B, Girard N, Guye M, Ranjeva JP, Le Troter A. Automatic segmentation of Deep Grey Nuclei using a high-resolution 7T MRI Atlas - quantification of T1 values in healthy volunteers. Eur J Neurosci 2021; 55:438-460. [PMID: 34939245 DOI: 10.1111/ejn.15575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
We present a new consensus atlas of deep grey nuclei obtained by shape-based averaging of manual segmentation of two experienced neuroradiologists and optimized from 7T MP2RAGE images acquired at (0.6mm)3 in 60 healthy subjects. A group-wise normalization method was used to build a high-contrast and high-resolution T1 -weighted brain template (0.5mm)3 using data from 30 out of the 60 controls. Delineation of 24 deep grey nuclei per hemisphere, including the claustrum and twelve thalamic nuclei, was then performed by two expert neuroradiologists and reviewed by a third neuroradiologist according to tissue contrast and external references based on the Morel atlas. Corresponding deep grey matter structures were also extracted from the Morel and CIT168 atlases. The data-derived, Morel and CIT168 atlases were all applied at the individual level using non-linear registration to fit the subject reference and to extract absolute mean quantitative T1 values derived from the 3D-MP2RAGE volumes, after correction for residual B1 + biases. Three metrics (The Dice and the volumetric similarity coefficients, and a novel Hausdorff distance) were used to estimate the inter-rater agreement of manual MRI segmentation and inter-atlas variability, and these metrics were measured to quantify biases due to image registration and their impact on the measurements of the quantitative T1 values was highlighted. This represents a fully-automated segmentation process permitting the extraction of unbiased normative T1 values in a population of young healthy controls as a reference for characterizing subtle structural alterations of deep grey nuclei relevant to a range of neurological diseases.
Collapse
Affiliation(s)
- Gilles Brun
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, Service de Neuroradiologie, Marseille, France
| | - Benoit Testud
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, Service de Neuroradiologie, Marseille, France
| | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Pierre Lehmann
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, Service de Neuroradiologie, Marseille, France
| | - Ludovic de Rochefort
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Pierre Besson
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Aurélien Massire
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Ben Ridley
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Nadine Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, Service de Neuroradiologie, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| |
Collapse
|
9
|
Rusche T, Kaufmann J, Voges J. Nucleus accumbens projections: Validity and reliability of fiber reconstructions based on high-resolution diffusion-weighted MRI. Hum Brain Mapp 2021; 42:5888-5910. [PMID: 34528323 PMCID: PMC8596959 DOI: 10.1002/hbm.25657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/02/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical effects of deep brain stimulation are largely mediated by the activation of myelinated axons. Hence, increasing attention has been paid in the past on targeting white matter tracts in addition to gray matter. Aims of the present study were: (i) visualization of discrete afferences and efferences of the nucleus accumbens (NAc), supposed to be a major hub of neural networks relating to mental disorders, using probabilistic fiber tractography and a data driven approach, and (ii) validation of the applied methodology for standardized routine clinical applications. MR‐data from 11 healthy subjects and 7 measurement sessions each were acquired on a 3T MRI‐scanner. For probabilistic fiber tracking the NAc as a seed region and the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), amygdala (AMY), hippocampus (HPC), dorsomedial thalamus (dmT) and ventral tegmental area (VTA) as target regions were segmented for each subject and both hemispheres. To quantitatively assess the reliability and stability of the reconstructions, we filtered and clustered the individual fiber‐tracts (NAc to target) for each session and subject and performed a point‐by‐point calculation of the maximum cluster distances for intra‐subject comparison. The connectivity patterns formed by the obtained fibers were in good concordance with published data from tracer and/or fiber‐dissection studies. Furthermore, the reliability assessment of the (NAc to target)‐fiber‐tracts yielded to high correlations between the obtained clustered‐tracts. Using DBS with directional lead technology, the workflow elaborated in this study may guide selective electrical stimulation of NAc projections.
Collapse
Affiliation(s)
- Thilo Rusche
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Radiology, Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University Basel, Basel, Switzerland
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
Engeli EJE, Zoelch N, Hock A, Nordt C, Hulka LM, Kirschner M, Scheidegger M, Esposito F, Baumgartner MR, Henning A, Seifritz E, Quednow BB, Herdener M. Impaired glutamate homeostasis in the nucleus accumbens in human cocaine addiction. Mol Psychiatry 2021; 26:5277-5285. [PMID: 32601455 DOI: 10.1038/s41380-020-0828-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
Cocaine addiction is characterized by overwhelming craving for the substance, which drives its escalating use despite adverse consequences. Animal models suggest a disrupted glutamate homeostasis in the nucleus accumbens to underlie addiction-like behavior. After chronic administration of cocaine, rodents show decreased levels of accumbal glutamate, whereas drug-seeking reinstatement is associated with enhanced glutamatergic transmission. However, due to technical obstacles, the role of disturbed glutamate homeostasis for cocaine addiction in humans remains only partially understood, and accordingly, no approved pharmacotherapy exists. Here, we applied a tailored proton magnetic resonance spectroscopy protocol that allows glutamate quantification within the human nucleus accumbens. We found significantly reduced basal glutamate concentrations in the nucleus accumbens in cocaine-addicted (N = 26) compared with healthy individuals (N = 30), and increased glutamate levels during cue-induced craving in cocaine-addicted individuals compared with baseline. These glutamatergic alterations, however, could not be significantly modulated by a short-term challenge of N-acetylcysteine (2400 mg/day on 2 days). Taken together, our findings reveal a disturbed accumbal glutamate homeostasis as a key neurometabolic feature of cocaine addiction also in humans. Therefore, we suggest the glutamatergic system as a promising target for the development of novel pharmacotherapies, and in addition, as a potential biomarker for a personalized medicine approach in addiction.
Collapse
Affiliation(s)
- Etna J E Engeli
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| | - Niklaus Zoelch
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Andreas Hock
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Carlos Nordt
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Lea M Hulka
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Matthias Kirschner
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Markus R Baumgartner
- Centre for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Max-Planck-Institute for Biological Cybernetics, Tuebingen, Germany.,Institute of Physics, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Marcus Herdener
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
The brain mechanism of awakening dysfunction in children with primary nocturnal enuresis based on PVT-NAc neural pathway: a resting-state fMRI study. Sci Rep 2021; 11:17079. [PMID: 34429478 PMCID: PMC8385036 DOI: 10.1038/s41598-021-96519-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 08/11/2021] [Indexed: 11/08/2022] Open
Abstract
Primary nocturnal enuresis (PNE) affects children's physical and mental health with a high rate. However, its neural mechanism is still unclear. Studies have found that the paraventricular thalamus (PVT) is among the key brain regions implicated with awakening regulation and its control of the transition between sleep and wakening is dependent on signaling through the PVT-nucleus accumbens (NAc) pathway. So this study analyzed the function of brain regions and their connectivity of PVT and NAc. A total of twenty-six PNE and typically developing (TD) children were involved in the study and the methods of amplitude of low frequency fluctuation (ALFF), degree centrality (DC) and functional connectivity (FC) based on resting-state functional magnetic resonance imaging (rs-fMRI) were used to analyze the brain functions. Results showed that there was no statistical significant difference in ALFF and DC between PNE and TD children in bilateral PVT and NAc. And there was statistical significant difference of the comparison of the FC of left PVT (lPVT) and left NAc (lNAc) between PNE and TD children. Meanwhile, there was negative correlation between awakening score and the FC of rPVT and lNAc, and no obvious correlation between awakening score and the FC of lPVT and lNAc in PNE children. Meanwhile, there was both negative correlation between awakening score and the FC of lPVT, rPTV and lNAc in TD children. Therefore, the FC between rPVT and lNAc was more reliable in assessing the degree of awakening ability in PNE children. This finding could help establish the evaluation index of PNE.
Collapse
|
12
|
Lee J, Lee JY, Oh SW, Chung MS, Park JE, Moon Y, Jeon HJ, Moon WJ. Evaluation of Reproducibility of Brain Volumetry between Commercial Software, Inbrain and Established Research Purpose Method, FreeSurfer. J Clin Neurol 2021; 17:307-316. [PMID: 33835753 PMCID: PMC8053534 DOI: 10.3988/jcn.2021.17.2.307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/18/2023] Open
Abstract
Background and Purpose We aimed to determine the intermethod reproducibility between the commercial software Inbrain (MIDAS IT) and the established research-purpose method FreeSurfer, as well as the effect of MRI resolution and the pathological condition of subjects on their intermethod reproducibility. Methods This study included 45 healthy volunteers and 85 patients with mild cognitive impairment (MCI). In 43 of the 85 patients with MCI, three-dimensional, T1-weighted MRI data were obtained at an in-plane resolution of 1.2 mm. The data of the remaining 42 patients with MCI and the healthy volunteers were obtained at an in-plane resolution of 1.0 mm. The within-subject coefficient of variation (CoV), intraclass correlation coefficient (ICC), and effect size were calculated, and means were compared using paired t-tests. The parameters obtained at 1.0-mm and 1.2-mm resolutions in patients with MCI were compared to evaluate the effect of the in-plane resolution on the intermethod reproducibility. The parameters obtained at a 1.0-mm in-plane resolution in patients with MCI and healthy volunteers were used to analyze the effect of subject condition on intermethod reproducibility. Results Overall the two methods showed excellent reproducibility across all regions of the brain (CoV=0.5–3.9, ICC=0.93 to >0.99). In the subgroup of healthy volunteers, the intermethod reliability was only good in some regions (frontal, temporal, cingulate, and insular). The intermethod reproducibility was better in the 1.0-mm group than the 1.2-mm group in all regions other than the nucleus accumbens. Conclusions Inbrain and FreeSurfer showed good-to-excellent intermethod reproducibility for volumetric measurements. Nevertheless, some noticeable differences were found based on subject condition, image resolution, and brain region.
Collapse
Affiliation(s)
- Jungbin Lee
- Department of Radiology, Soonchunghyang University Bucheon Hospital, Bucheon, Korea
| | - Ji Young Lee
- Department of Radiology, Hanyang University Medical Center, Seoul, Korea
| | - Se Won Oh
- Department of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Mi Sun Chung
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology, Asan Medical Center, Seoul, Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Hong Jun Jeon
- Department of Psychiatry, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Won Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Elibol R, Şengör NS. Modeling nucleus accumbens : A Computational Model from Single Cell to Circuit Level. J Comput Neurosci 2020; 49:21-35. [PMID: 33165797 DOI: 10.1007/s10827-020-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022]
Abstract
Nucleus accumbens is part of the neural structures required for reward based learning and cognitive processing of motivation. Understanding its cellular dynamics and its role in basal ganglia circuits is important not only in diagnosing behavioral disorders and psychiatric problems as addiction and depression but also for developing therapeutic treatments for them. Building a computational model would expand our comprehension of nucleus accumbens. In this work, we are focusing on establishing a model of nucleus accumbens which has not been considered as much as dorsal striatum in computational neuroscience. We will begin by modeling the behavior of single cells and then build a holistic model of nucleus accumbens considering the effect of synaptic currents. We will verify the validity of the model by showing the consistency of simulation results with the empirical data. Furthermore, the simulation results reveal the joint effect of cortical stimulation and dopaminergic modulation on the activity of medium spiny neurons. This effect differentiates with the type of dopamine receptors.
Collapse
Affiliation(s)
- Rahmi Elibol
- Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey. .,Engineering Faculty, Erzincan University, Erzincan, Turkey.
| | - Neslihan Serap Şengör
- Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
14
|
Strasser A, Luksys G, Xin L, Pessiglione M, Gruetter R, Sandi C. Glutamine-to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans. Neuropsychopharmacology 2020; 45:2048-2057. [PMID: 32688366 PMCID: PMC7547698 DOI: 10.1038/s41386-020-0760-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Substantial evidence implicates the nucleus accumbens in motivated performance, but very little is known about the neurochemical underpinnings of individual differences in motivation. Here, we applied 1H magnetic resonance spectroscopy (1H-MRS) at ultra-high-field in the nucleus accumbens and inquired whether levels of glutamate (Glu), glutamine (Gln), GABA or their ratios predict interindividual differences in effort-based motivated task performance. Given the incentive value of social competition, we also examined differences in performance under self-motivated or competition settings. Our results indicate that higher accumbal Gln-to-Glu ratio predicts better overall performance and reduced effort perception. As performance is the outcome of multiple cognitive, motor and physiological processes, we applied computational modeling to estimate best-fitting individual parameters related to specific processes modeled with utility, effort and performance functions. This model-based analysis revealed that accumbal Gln-to-Glu ratio specifically relates to stamina; i.e., the capacity to maintain performance over long periods. It also indicated that competition boosts performance from task onset, particularly for low Gln-to-Glu individuals. In conclusion, our findings provide novel insights implicating accumbal Gln and Glu balance on the prediction of specific computational components of motivated performance. This approach and findings can help developing therapeutic strategies based on targeting metabolism to ameliorate deficits in effort engagement.
Collapse
Affiliation(s)
- Alina Strasser
- grid.5333.60000000121839049Laboratory of Behavioral Genetics (LGC), Brain Mind Institute (BMI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gediminas Luksys
- Centre for Discovery Brain Sciences (CDBS), University of Edinburgh, Edinburgh, UK. .,ZJU-UoE Institute, Zhejiang University International Campus, Haining, China.
| | - Lijing Xin
- grid.5333.60000000121839049Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mathias Pessiglione
- grid.411439.a0000 0001 2150 9058Motivation, Brain and Behavior Team, Brain and Spine Institute (ICM), Paris, France
| | - Rolf Gruetter
- grid.5333.60000000121839049Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ,grid.9851.50000 0001 2165 4204Department of Radiology, University of Lausanne (UNIL), Lausanne, Switzerland ,grid.8591.50000 0001 2322 4988Department of Radiology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute (BMI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
15
|
Wang J, Zhang Y, Zhang H, Wang K, Wang H, Qian D, Qi S, Yang K, Long H. Nucleus accumbens shell: A potential target for drug-resistant epilepsy with neuropsychiatric disorders. Epilepsy Res 2020; 164:106365. [PMID: 32460115 DOI: 10.1016/j.eplepsyres.2020.106365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
The nucleus accumbens (NAc) is an important component of the ventral striatum, involving motivational and emotional processes, limbic-motor interfaces. Recently, experimental and clinical data have shown that NAc, particularly NAc shell (NAcs), participates in ictogenesis and epileptogensis in drug-resistant epilepsy (DRE). Therefore, we summarize the existing literature on NAcs and potential role in epilepsy, from the bench to the clinic. Connection abnormalities between NAcs and remainings, degeneration of NAc neurons, and an aberrant distribution of neuroactive substances have been reported in patients with DRE. These changes may be underlying the pathophysiological mechanism of the involvement of NAcs in DRE. Furthermore, alterations in NAcs may also be involved in neuropsychiatric disorders in patients with DRE. These observational studies demonstrate the multiple properties of NAcs and the complex relationship between the limbic system and DRE with neuropsychiatric disorders. NAcs can be a potential target for DBS and stereotactic lesioning to manage DRE with neuropsychiatric disorders. Future studies are warranted to further clarify the role of NAcs in epilepsy.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China; Neural Networks Surgery Team, Southern Medical University, China.
| | - Yuzhen Zhang
- The First Clinical Medicine College, Southern Medical University, China; Neural Networks Surgery Team, Southern Medical University, China
| | - Henghui Zhang
- The First Clinical Medicine College, Southern Medical University, China; Neural Networks Surgery Team, Southern Medical University, China
| | - Kewan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China
| | - Hongxiao Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China
| | - Dadi Qian
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China
| | - Kaijun Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China.
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China.
| |
Collapse
|
16
|
Gearhardt AN, Yokum S, Harris JL, Epstein LH, Lumeng JC. Neural response to fast food commercials in adolescents predicts intake. Am J Clin Nutr 2020; 111:493-502. [PMID: 31940031 PMCID: PMC7049532 DOI: 10.1093/ajcn/nqz305] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/14/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Food advertising is a major contributor to obesity, and fast food (FF) restaurants are top advertisers. Research on the impact of food advertising in adolescents is lacking and no prior research has investigated neural predictors of food intake in adolescents. Neural systems implicated in reward could be key to understanding how food advertising drives food intake. OBJECTIVES To investigate how neural responses to both unhealthy and healthier FF commercials predict food intake in adolescents. METHODS A cross-sectional sample of 171 adolescents (aged 13-16 y) who ranged from normal weight to obese completed an fMRI paradigm where they viewed unhealthy and healthier FF and nonfood commercials. Adolescents then consumed a meal in a simulated FF restaurant where foods of varying nutritional profiles (unhealthy compared with healthier) were available. RESULTS Greater neural activation in reward-related regions (nucleus accumbens, r = 0.29; caudate nucleus, r = 0.27) to unhealthy FF commercials predicted greater total food intake. Greater responses to healthier FF relative to nonfood commercials in regions associated with reward (i.e., nucleus accumbens, r = 0.24), memory (i.e., hippocampus, r = 0.32), and sensorimotor processes (i.e., anterior cerebellum, r = 0.33) predicted greater total food and unhealthier food intake, but not healthier food intake. Lower activation in neural regions associated with visual attention and salience (e.g., precuneus, r = -0.35) to unhealthy relative to healthier FF commercials predicted healthier food intake. CONCLUSIONS These findings suggest that FF commercials contribute to overeating in adolescents through reward mechanisms. The addition of healthier commercials from FF restaurants is unlikely to encourage healthier food intake, but interventions that reduce the ability of unhealthy FF commercials to capture attention could be beneficial. However, an overall reduction in the amount of FF commercials exposure for adolescents is likely to be the most effective approach.
Collapse
Affiliation(s)
- Ashley N Gearhardt
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA,Address correspondence to ANG (e-mail: )
| | | | - Jennifer L Harris
- Rudd Center for Food Policy and Obesity, University of Connecticut, Hartford, CT, USA
| | - Leonard H Epstein
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Julie C Lumeng
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Kardos J, Dobolyi Á, Szabó Z, Simon Á, Lourmet G, Palkovits M, Héja L. Molecular Plasticity of the Nucleus Accumbens Revisited-Astrocytic Waves Shall Rise. Mol Neurobiol 2019; 56:7950-7965. [PMID: 31134458 PMCID: PMC6834761 DOI: 10.1007/s12035-019-1641-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Part of the ventral striatal division, the nucleus accumbens (NAc) drives the circuit activity of an entire macrosystem about reward like a "flagship," signaling and leading diverse conducts. Accordingly, NAc neurons feature complex inhibitory phenotypes that assemble to process circuit inputs and generate outputs by exploiting specific arrays of opposite and/or parallel neurotransmitters, neuromodulatory peptides. The resulting complex combinations enable versatile yet specific forms of accumbal circuit plasticity, including maladaptive behaviors. Although reward signaling and behavior are elaborately linked to neuronal circuit activities, it is plausible to propose whether these neuronal ensembles and synaptic islands can be directly controlled by astrocytes, a powerful modulator of neuronal activity. Pioneering studies showed that astrocytes in the NAc sense citrate cycle metabolites and/or ATP and may induce recurrent activation. We argue that the astrocytic calcium, GABA, and Glu signaling and altered sodium and chloride dynamics fundamentally shape metaplasticity by providing active regulatory roles in the synapse- and network-level flexibility of the NAc.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary.
| | - Árpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Üllői út 26, Budapest, 1086, Hungary
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Pázmány Péter sétány 1C, Budapest, 1117, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Guillaume Lourmet
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Üllői út 26, Budapest, 1086, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Tűzoltó utca 58, Budapest, H-1094, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| |
Collapse
|
18
|
Morys F, Janssen LK, Cesnaite E, Beyer F, Garcia-Garcia I, Kube J, Kumral D, Liem F, Mehl N, Mahjoory K, Schrimpf A, Gaebler M, Margulies D, Villringer A, Neumann J, Nikulin VV, Horstmann A. Hemispheric asymmetries in resting-state EEG and fMRI are related to approach and avoidance behaviour, but not to eating behaviour or BMI. Hum Brain Mapp 2019; 41:1136-1152. [PMID: 31750607 PMCID: PMC7267939 DOI: 10.1002/hbm.24864] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Much of our behaviour is driven by two motivational dimensions—approach and avoidance. These have been related to frontal hemispheric asymmetries in clinical and resting‐state EEG studies: Approach was linked to higher activity of the left relative to the right hemisphere, while avoidance was related to the opposite pattern. Increased approach behaviour, specifically towards unhealthy foods, is also observed in obesity and has been linked to asymmetry in the framework of the right‐brain hypothesis of obesity. Here, we aimed to replicate previous EEG findings of hemispheric asymmetries for self‐reported approach/avoidance behaviour and to relate them to eating behaviour. Further, we assessed whether resting fMRI hemispheric asymmetries can be detected and whether they are related to approach/avoidance, eating behaviour and BMI. We analysed three samples: Sample 1 (n = 117) containing EEG and fMRI data from lean participants, and Samples 2 (n = 89) and 3 (n = 152) containing fMRI data from lean, overweight and obese participants. In Sample 1, approach behaviour in women was related to EEG, but not to fMRI hemispheric asymmetries. In Sample 2, approach/avoidance behaviours were related to fMRI hemispheric asymmetries. Finally, hemispheric asymmetries were not related to either BMI or eating behaviour in any of the samples. Our study partly replicates previous EEG findings regarding hemispheric asymmetries and indicates that this relationship could also be captured using fMRI. Our findings suggest that eating behaviour and obesity are likely to be mediated by mechanisms not directly relating to frontal asymmetries in neuronal activation quantified with EEG and fMRI.
Collapse
Affiliation(s)
- Filip Morys
- Leipzig University Medical Centre, IFB Adiposity Diseases, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Lieneke K Janssen
- Leipzig University Medical Centre, IFB Adiposity Diseases, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Elena Cesnaite
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Subproject A1/A5, CRC1052 "Obesity Mechanisms", University of Leipzig, Leipzig, Germany
| | | | - Jana Kube
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Deniz Kumral
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Franziskus Liem
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland.,Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nora Mehl
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Faculty of Psychology, Technical University Dresden, Dresden, Germany
| | - Keyvan Mahjoory
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,University of Muenster, Institute for Biomagnetism and Biosignal Analysis, Muenster, Germany
| | - Anne Schrimpf
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Gaebler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Daniel Margulies
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Brain and Spine Institute, Paris, France
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Jane Neumann
- Leipzig University Medical Centre, IFB Adiposity Diseases, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Ernst-Abbe-Hochschule - University of Applied Sciences, Jena, Germany
| | - Vadim V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia.,Department of Neurology, Charité - Medical University Berlin, Berlin, Germany
| | - Annette Horstmann
- Leipzig University Medical Centre, IFB Adiposity Diseases, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Subproject A1/A5, CRC1052 "Obesity Mechanisms", University of Leipzig, Leipzig, Germany.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Doppler CEJ, Meyer L, Dovern A, Stühmer-Beckh J, Weiss PH, Fink GR. Differential Impact of Social and Monetary Reward on Procedural Learning and Consolidation in Aging and Its Structural Correlates. Front Aging Neurosci 2019; 11:188. [PMID: 31417395 PMCID: PMC6682642 DOI: 10.3389/fnagi.2019.00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 07/10/2019] [Indexed: 01/22/2023] Open
Abstract
In young (n = 36, mean ± SD: 24.8 ± 4.5 years) and older (n = 34, mean ± SD: 65.1 ± 6.5 years) healthy participants, we employed a modified version of the Serial Reaction Time task to measure procedural learning (PL) and consolidation while providing monetary and social reward. Using voxel-based morphometry (VBM), we additionally determined the structural correlates of reward-related motor performance (RMP) and PL. Monetary reward had a beneficial effect on PL in the older subjects only. In contrast, social reward significantly enhanced PL in the older and consolidation in the young participants. VBM analyses revealed that motor performance related to monetary reward was associated with larger grey matter volume (GMV) of the left striatum in the young, and motor performance related to social reward with larger GMV of the medial orbitofrontal cortex in the older group. The differential effects of social reward in young (improved consolidation) and both social and monetary rewards in older (enhanced PL) healthy subjects point to the potential of rewards for interventions targeting aging-associated motor decline or stroke-induced motor deficits.
Collapse
Affiliation(s)
- Christopher E J Doppler
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany.,Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Linda Meyer
- Department of Neurology, Klinikum Leverkusen, Leverkusen, Germany
| | - Anna Dovern
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
| | - Jaro Stühmer-Beckh
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany.,Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany.,Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Xia X, Fan L, Hou B, Zhang B, Zhang D, Cheng C, Deng H, Dong Y, Zhao X, Li H, Jiang T. Fine-Grained Parcellation of the Macaque Nucleus Accumbens by High-Resolution Diffusion Tensor Tractography. Front Neurosci 2019; 13:709. [PMID: 31354418 PMCID: PMC6635473 DOI: 10.3389/fnins.2019.00709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
Limited in part by the spatial resolution of typical in vivo magnetic resonance imaging (MRI) data, recent neuroimaging studies have only identified a connectivity-based shell-core-like partitioning of the nucleus accumbens (Acb) in humans. This has hindered the process of making a more refined description of the Acb using non-invasive neuroimaging technologies and approaches. In this study, high-resolution ex vivo macaque brain diffusion MRI data were acquired to investigate the tractography-based parcellation of the Acb. Our results identified a shell-core-like partitioning in macaques that is similar to that in humans as well as an alternative solution that subdivided the Acb into four parcels, the medial shell, the lateral shell, the ventral core, and the dorsal core. Furthermore, we characterized the specific anatomical and functional connectivity profiles of these Acb subregions and generalized their specialized functions to establish a fine-grained macaque Acb brainnetome atlas. This atlas should be helpful in neuroimaging, stereotactic surgery, and comparative neuroimaging studies to reveal the neurophysiological substrates of various diseases and cognitive functions associated with the Acb.
Collapse
Affiliation(s)
- Xiaoluan Xia
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Hou
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- Core Facility, Center of Biomedical Analysis, Tsinghua University, Beijing, China
| | - Chen Cheng
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hongxia Deng
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China
| | - Yunyun Dong
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China
| | - Xudong Zhao
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haifang Li
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Laukkanen V, Kärkkäinen O, Kautiainen H, Tiihonen J, Storvik M. Increased [³H]quisqualic acid binding density in the dorsal striatum and anterior insula of alcoholics: A post-mortem whole-hemisphere autoradiography study. Psychiatry Res Neuroimaging 2019; 287:63-69. [PMID: 30991250 DOI: 10.1016/j.pscychresns.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 01/28/2023]
Abstract
The function of group I metabotropic glutamate receptors mGluR1 and mGluR5 is involved in the hyperglutamatergic state caused by chronic alcohol. Preclinical studies suggest that group I mGluR modulation could serve as a novel treatment of alcoholism. Considering the wide role of glutamatergic neurochemistry in addiction, group I mGluR binding was studied in brain areas involved in decision-making, learning and memory. Post-mortem whole hemisphere autoradiography was used to study the binding density of [³H]quisqualic acid, a potent group I mGluR agonist, in 9 Cloninger type 1 alcoholics, 8 Cloninger type 2 alcoholics and 10 controls. Binding was studied in the dorsal striatum, hippocampus and cortex. Alcoholics displayed a trend towards increased [³H]quisqualic acid binding in all brain areas. The most robust findings were in the putamen (p = 0.006) and anterior insula (p = 0.005), where both alcoholic subtypes displayed increased binding compared to the controls. These findings suggest altered group I mGluR function in alcoholic subjects in the dorsal striatum, which is involved in habitual learning, and in the anterior insula, which has a pivotal role in the perception of bodily sensations. Increased [³H]quisqualic acid binding might suggest a beneficial impact of mGluR1/5 modulators in the treatment of alcoholism.
Collapse
Affiliation(s)
- Virpi Laukkanen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240 Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland.
| | - Olli Kärkkäinen
- Department of Pharmacology and Toxicology, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Hannu Kautiainen
- Unit of Primary Health Care, Helsinki University Central Hospital, P.O. Box 705, FI-00029 HUS, Helsinki, Finland; Department of General Practice, Helsinki University, P.O. Box 20, FI-00014 Helsinki, Finland
| | - Jari Tiihonen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240 Kuopio, Finland; Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Hospital, 17176 Stockholm, Sweden
| | - Markus Storvik
- Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| |
Collapse
|
22
|
Strasser A, Xin L, Gruetter R, Sandi C. Nucleus accumbens neurochemistry in human anxiety: A 7 T 1H-MRS study. Eur Neuropsychopharmacol 2019; 29:365-375. [PMID: 30600114 DOI: 10.1016/j.euroneuro.2018.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
Abstract
Individual differences in anxiety provide a differential predisposition to develop neuropsychiatric disorders. The neurochemical underpinnings of anxiety remain elusive, particularly in deep structures, such as the nucleus accumbens (NAc) whose involvement in anxiety is being increasingly recognized. We examined the associations between the neurochemical profile of human NAc metabolites involved in neural excitation and inhibition and inter-individual variation in temperamental and situational anxiety. Twenty-seven healthy 20-30 years-old human males were phenotyped with questionnaires for state and trait anxiety (State-Trait Anxiety Inventory, STAI), social anxiety (Liebowitz Social Anxiety Scale), negative mood (Beck Depression Inventory, BDI) and fatigue (Mental and Physical State Energy and Fatigue Scales, SEF). Using proton magnetic resonance spectroscopy (1H-MRS) at 7 Tesla (7T), we measured metabolite levels for glutamate, glutamine, GABA and taurine in the NAc. Salivary cortisol was also measured. Strikingly, trait anxiety was negatively associated with NAc taurine content. Perceived situational stress was negatively associated with NAc GABA, while positively with the Glu/GABA ratio. No correlation was observed between NAc taurine or GABA and other phenotypic variables examined (i.e., state anxiety, social anxiety, negative mood, or cortisol), except for a negative correlation between taurine and state physical fatigue. This first 7T study of NAc neurochemistry shows relevant metabolite associations with individual variation in anxiety traits and situational stress and state anxiety measurements. The novel identified association between NAc taurine levels and trait anxiety may pave the way for clinical studies aimed at identifying new treatments for anxiety and related disorders.
Collapse
Affiliation(s)
- Alina Strasser
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Lijing Xin
- Animal Imaging and Technology Core, Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Radiology, University of Lausanne, Lausanne, Switzerland; Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
23
|
Doshi PK, Hegde A, Desai A. Nucleus Accumbens Deep Brain Stimulation for Obsessive-Compulsive Disorder and Aggression in an Autistic Patient: A Case Report and Hypothesis of the Role of Nucleus Accumbens in Autism and Comorbid Symptoms. World Neurosurg 2019; 125:387-391. [PMID: 30797934 DOI: 10.1016/j.wneu.2019.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Autism spectrum disorder represents a set of developmental disorders characterized by lack of social interaction and verbal and nonverbal communication in the first 3 years of life. It is also associated with several comorbidities, including epilepsy, aggression, self-mutilating behavior, and obsessive-compulsive behavior. In some cases, obsessive-compulsive disorder (OCD) develops. The nucleus accumbens (NAc) plays a key role in reward circuitry and is involved in the control of OCD and aggression. CASE DESCRIPTION A 42-year-old woman with autism was offered NAc deep brain stimulation for her comorbidities of OCD and aggression. The NAc was targeted using standard stereotactic methods, and postoperative scans confirmed the position of the active electrode to be within the NAc. The patient experienced significant symptom relief. At 1-year follow-up, the Yale-Brown Obsessive Compulsive Scale score for OCD, excluding items 1-5 of the scale, improved from 19 to 5. Hamilton Depression Scale and Hamilton Anxiety Scale scores similarly improved from 20 to 15 and from 30 to 18, respectively. Social Communication Questionnaire Current version for autism score improved from 26 to 16. Subscores for reciprocal social interactionimproved from 13 to 8; for communication improved from 5 to 4; and for restricted, repetitive, and stereotyped patterns of behavior improved from 6 to 3. CONCLUSIONS This case report illustrated the role of the NAc in OCD and aggression in an autistic patient. We discussed the role of the NAc as a target to explain the outcome of this case.
Collapse
Affiliation(s)
- Paresh K Doshi
- Department of Neurosurgery, Jaslok Hospital and Research Centre, Mumbai, India.
| | - Anaita Hegde
- Department of Pediatrics, Jaslok Hospital and Research Centre, Mumbai, India
| | - Amit Desai
- Department of Psychiatry, Jaslok Hospital and Research Centre, Mumbai, India
| |
Collapse
|
24
|
Park YS, Sammartino F, Young NA, Corrigan J, Krishna V, Rezai AR. Anatomic Review of the Ventral Capsule/Ventral Striatum and the Nucleus Accumbens to Guide Target Selection for Deep Brain Stimulation for Obsessive-Compulsive Disorder. World Neurosurg 2019; 126:1-10. [PMID: 30790738 DOI: 10.1016/j.wneu.2019.01.254] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Disturbances in the reward network of the brain underlie addiction, depression, and obsessive-compulsive disorder. The ventral capsule/ventral striatum and nucleus accumbens (NAc) region is a clinically approved target for deep brain stimulation for obsessive-compulsive disorder. METHODS We performed a comprehensive literature review to define clinically relevant anatomy and connectivity of the ventral capsule/ventral striatum and NAc region to guide target selection for deep brain stimulation. RESULTS Architecturally and functionally, the NAc is divided into the core and the shell, with each area having different connections. The shell primarily receives limbic information, and the core typically receives information from the motor system. In general, afferents from the prefrontal cortex, hippocampus, and amygdala are excitatory. The dopaminergic projections to the NAc from the ventral tegmental area modulate the balance of these excitatory inputs. Several important inputs to the NAc converge at the junction of the internal capsule (IC) and the anterior commissure (AC): the ventral amygdalofugal pathways that run parallel to and underneath the AC, the precommissural fornical fibers that run anterior to the AC, axons from the ventral prefrontal cortex and medial orbitofrontal cortex that occupy the most ventral part of the IC and embedding within the NAc and AC, and the superolateral branch of the medial forebrain bundle located parallel to the anterior thalamic radiation in the IC. CONCLUSIONS The caudal part of the NAc passing through the IC-AC junction may be an effective target for deep brain stimulation to improve behavioral symptoms associated with obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Yong-Sook Park
- Department of Neurosurgery, Chung-Ang University Hospital, Seoul, Korea
| | | | - Nicole A Young
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - John Corrigan
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA.
| | - Ali R Rezai
- Department of Neurosurgery, West Virginia University Hospital, Morgantown, West Virginia, USA
| |
Collapse
|
25
|
Drummen M, Dorenbos E, Vreugdenhil ACE, Raben A, Westerterp-Plantenga MS, Adam TC. Insulin resistance, weight, and behavioral variables as determinants of brain reactivity to food cues: a Prevention of Diabetes through Lifestyle Intervention and Population Studies in Europe and around the World - a PREVIEW study. Am J Clin Nutr 2019; 109:315-321. [PMID: 30590423 DOI: 10.1093/ajcn/nqy252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/23/2018] [Indexed: 12/23/2022] Open
Abstract
Background Obesity and type 2 diabetes have been linked to alterations in food reward processing, which may be linked to insulin resistance. Objectives In this clinical study, we investigated the respective contribution of insulin resistance, anthropometric measurements, and behavioral factors to brain reward activation in response to visual stimuli. Design Food reward-related brain reward activation was assessed with functional magnetic resonance imaging in 39 overweight or obese individuals with impaired fasting glucose, impaired glucose tolerance, or both [22 women, 17 men; mean ± SD insulin sensitivity index (ISI): 2.7 ± 1.3; body mass index (BMI; kg/m2): 32.3 ± 3.7; body fat percentage: 40.5% ± 7.9%; fasting glucose: 6.3 ± 0.6 mmol/L]. Food and nonfood images were shown in a randomized block design. Brain activation (food compared with nonfood images) was correlated with anthropometric and behavioral variables. Behavioral variables included eating behavior [Three-Factor Eating Questionnaire (TFEQ)] and habitual physical activity (Baecke). Glucose and insulin concentrations, determined during an oral-glucose challenge, were used to assess the homeostatic model assessment for insulin resistance (HOMA-IR) and Matsuda ISI. Results Food compared with nonfood brain activation was positively associated with HOMA-IR in the nucleus accumbens, right and left insula, and right cingulate gyrus (P < 0.005, corrected for multiple comparisons). TFEQ factor 2 was positively related to food compared with nonfood brain activation in the supramarginal gyrus (P < 0.005, corrected for multiple comparisons). Habitual physical activity during leisure time was negatively associated with food compared with nonfood brain activation in multiple regions associated with the attention and reward network (P < 0.005, corrected for multiple comparisons). Conclusions Individuals with increased insulin resistance and emotional eating or disinhibition showed higher brain reactivity to food cues, which may imply changes in food preference and hyperphagia. Individuals with higher habitual physical activity showed less food reward-related brain activation.
Collapse
Affiliation(s)
- Mathijs Drummen
- Department of Nutrition and Movement Sciences.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Elke Dorenbos
- Center for Overweight Adolescent and Children's Health Care (COACH), Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Anita C E Vreugdenhil
- Center for Overweight Adolescent and Children's Health Care (COACH), Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Anne Raben
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Tanja C Adam
- Department of Nutrition and Movement Sciences.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
26
|
Senova S, Clair AH, Palfi S, Yelnik J, Domenech P, Mallet L. Deep Brain Stimulation for Refractory Obsessive-Compulsive Disorder: Towards an Individualized Approach. Front Psychiatry 2019; 10:905. [PMID: 31920754 PMCID: PMC6923766 DOI: 10.3389/fpsyt.2019.00905] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder featuring repetitive intrusive thoughts and behaviors associated with a significant handicap. Of patients, 20% are refractory to medication and cognitive behavioral therapy. Refractory OCD is associated with suicidal behavior and significant degradation of social and professional functioning, with high health costs. Deep brain stimulation (DBS) has been proposed as a reversible and controllable method to treat refractory patients, with meta-analyses showing 60% response rate following DBS, whatever the target: anterior limb of the internal capsule (ALIC), ventral capsule/ventral striatum (VC/VS), nucleus accumbens (NAcc), anteromedial subthalamic nucleus (amSTN), or inferior thalamic peduncle (ITP). But how do we choose the "best" target? Functional neuroimaging studies have shown that ALIC-DBS requires the modulation of the fiber tract within the ventral ALIC via the ventral striatum, bordering the bed nucleus of the stria terminalis and connecting the medial prefrontal cortex with the thalamus to be successful. VC/VS effective sites of stimulation were found within the VC and primarily connected to the medial orbitofrontal cortex (OFC) dorsomedial thalamus, amygdala, and the habenula. NAcc-DBS has been found to reduce OCD symptoms by decreasing excessive fronto-striatal connectivity between NAcc and the lateral and medial prefrontal cortex. The amSTN effective stimulation sites are located at the inferior medial border of the STN, primarily connected to lateral OFC, dorsal anterior cingulate, and dorsolateral prefrontal cortex. Finally, ITP-DBS recruits a bidirectional fiber pathway between the OFC and the thalamus. Thus, these functional connectivity studies show that the various DBS targets lie within the same diseased neural network. They share similar efficacy profiles on OCD symptoms as estimated on the Y-BOCS, the amSTN being the target supported by the strongest evidence in the literature. VC/VS-DBS, amSTN-DBS, and ALIC-DBS were also found to improve mood, behavioral adaptability and potentially both, respectively. Because OCD is such a heterogeneous disease with many different symptom dimensions, the ultimate aim should be to find the most appropriate DBS target for a given refractory patient. This quest will benefit from further investigation and understanding of the individual functional connectivity of OCD patients.
Collapse
Affiliation(s)
- Suhan Senova
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,IMRB UPEC/INSERM U 955 Team 14, Créteil, France
| | - Anne-Hélène Clair
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Stéphane Palfi
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,IMRB UPEC/INSERM U 955 Team 14, Créteil, France
| | - Jérôme Yelnik
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Philippe Domenech
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Luc Mallet
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France.,Department of Mental Health and Psychiatry, Global Health Institute, University of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Nagy GA, Cernasov P, Pisoni A, Walsh E, Dichter GS, Smoski MJ. Reward Network Modulation as a Mechanism of Change in Behavioral Activation. Behav Modif 2018; 44:186-213. [PMID: 30317863 DOI: 10.1177/0145445518805682] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Behavioral Activation (BA) is a contemporary third-wave psychosocial treatment approach that emphasizes helping individuals become more active in ways that are meaningful to them as a means of improving mood and quality of life. BA has been designated as a well-established, validated treatment for depression by the American Psychological Association following several decades of accumulated empirical support demonstrating that BA techniques successfully reduce depression symptoms and produce other desirable outcomes across a variety of populations and contexts. The purported mechanism of change underlying BA treatment lies in increasing activation, which in turn increases contact with positive reinforcement thereby reversing the cycle of depression. Current studies are further investigating how increasing activation and subsequent contact with mood reinforcers can influence mood and behavior. Specifically, there is growing evidence that BA modifies function of reward-related networks in the brain, and that these changes are associated with clinical improvement. Herein, we provide a brief history of BA, describe the primary components of BA treatment, and describe BA's purported mechanisms of change at behavioral, neural, and subjective activation levels. We present limitations as well as gaps in the current state of knowledge regarding mechanisms of action of BA.
Collapse
Affiliation(s)
| | - Paul Cernasov
- The University of North Carolina at Chapel Hill, NC, USA
| | | | - Erin Walsh
- The University of North Carolina at Chapel Hill, NC, USA
| | | | | |
Collapse
|
28
|
Oterdoom DLM, van Dijk G, Verhagen MHP, Jiawan VCR, Drost G, Emous M, van Beek AP, van Dijk JMC. Therapeutic potential of deep brain stimulation of the nucleus accumbens in morbid obesity. Neurosurg Focus 2018; 45:E10. [DOI: 10.3171/2018.4.focus18148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVEMorbid obesity is a growing problem worldwide. The current treatment options have limitations regarding effectiveness and complication rates. New treatment modalities are therefore warranted. One of the options is deep brain stimulation (DBS) of the nucleus accumbens (NAC). This review aims to summarize the current knowledge on NAC-DBS for the treatment of morbid obesity.METHODSStudies were obtained from multiple electronic bibliographic databases, supplemented with searches of reference lists. All animal and human studies reporting on the effects of NAC-DBS on body weight in morbidly obese patients were included. Articles found during the search were screened by 2 reviewers, and when deemed applicable, the relevant data were extracted.RESULTSFive relevant animal experimental papers were identified, pointing toward a beneficial effect of high-frequency stimulation of the lateral shell of the NAC. Three human case reports show a beneficial effect of NAC-DBS on body weight in morbidly obese patients.CONCLUSIONSThe available literature supports NAC-DBS to treat morbid obesity. The number of well-conducted animal studies, however, is very limited. Also, the optimal anatomical position of the DBS electrode within the NAC, as well as the optimal stimulation parameters, has not yet been established. These matters need to be addressed before this strategy can be considered for human clinical trials.
Collapse
Affiliation(s)
| | - Gertjan van Dijk
- 2Department of Behavioral Neurosciences, University of Groningen, Groningen Institute for Evolutionary Life Sciences (GELIFES), Cluster Neurobiology, Groningen
| | - Martijn H. P. Verhagen
- Departments of 1Neurosurgery,
- 3Department of Neurosurgery, Noordwest Ziekenhuisgroep, Alkmaar; and
| | | | | | - Marloes Emous
- 6Department of Bariatric and Metabolic Surgery, Medical Center Leeuwarden, The Netherlands
| | - André P. van Beek
- 7Endocrinology, University of Groningen, University Medical Center Groningen
| | | |
Collapse
|
29
|
Isaacs BR, Forstmann BU, Temel Y, Keuken MC. The Connectivity Fingerprint of the Human Frontal Cortex, Subthalamic Nucleus, and Striatum. Front Neuroanat 2018; 12:60. [PMID: 30072875 PMCID: PMC6060372 DOI: 10.3389/fnana.2018.00060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/02/2018] [Indexed: 11/13/2022] Open
Abstract
Within the cortico basal ganglia (BG)-thalamic network, the direct and indirect pathways comprise of projections from the cortex to the striatum (STR), whereas the hyperdirect pathway(s) consist of cortical projections toward the subthalamic nucleus (STN). Each pathway possesses a functionally distinct role for action selection. The current study quantified and compared the structural connectivity between 17 distinct cortical areas with the STN and STR using 7 Tesla diffusion weighted magnetic resonance imaging (dMRI) and resting-state functional MRI (rs-fMRI) in healthy young subjects. The selection of these cortical areas was based on a literature search focusing on animal tracer studies. The results indicate that, relative to other cortical areas, both the STN and STR showed markedly weaker structural connections to areas assumed to be essential for action inhibition such as the inferior frontal cortex pars opercularis. Additionally, the cortical connectivity fingerprint of the STN and STR indicated relatively strong connections to areas related to voluntary motor initiation such as the cingulate motor area and supplementary motor area. Overall the results indicated that the cortical-STN connections were sparser compared to the STR. There were two notable exceptions, namely for the orbitofrontal cortex and ventral medial prefrontal cortex, where a higher tract strength was found for the STN. These two areas are thought to be involved in reward processing and action bias.
Collapse
Affiliation(s)
- Bethany R. Isaacs
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Birte U. Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Max C. Keuken
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Oldoni C, Luz Veronez DAD, Piedade GS, Santos ECD, Almeida DBD, Meneses MSD. Morphometric Analysis of the Nucleus Accumbens Using the Mulligan Staining Method. World Neurosurg 2018; 118:e223-e228. [PMID: 29966792 DOI: 10.1016/j.wneu.2018.06.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND There is a need to further anatomically describe the nucleus accumbens (NA), as there is a growing neurosurgical interest in this locus but a limited understanding of its structure. In this study, we evaluated quantitative NA parameters and spatial relationships with adjacent structures found in the telencephalon. METHODS A total of 155 NA specimens from coronal sections and 3 NA specimens from transverse sections were stained using the Mulligan technique as modified by Barnard et al. The distance from the NA to other structures was then measured. RESULTS The mean radius of the 155 NAs in the coronal sections was 6.23 ± 0.964 mm, averaging 8.99 ± 2.02 mm from midline (coordinate x), 27.09 ± 3.15 mm from the insula, 12.95 ± 3.21 mm from the outer border of the putamen, 10.52 ± 2.66 mm from the upper border of the caudate, and 8.84 ± 2.93 mm from the midline of the lateral ventricle. The mean distance from the NA center of gravity to the middle of the intercommissural line parallel to the midline (coordinate y) was 17.08 ±3.61 mm, and the mean vertical distance from the intercommissural line to the NA was 8.12 ± 1.265 mm. CONCLUSIONS We obtained the stereotactic coordinates of (x, y, z) = (8, 17, -8) for the NA. From this and other delineations of the described position of the NA, it is possible to contribute to stereotactic surgical atlases, improving neurosurgical interventions in this structure.
Collapse
Affiliation(s)
- Carolina Oldoni
- Department of Anatomy, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Guilherme Santos Piedade
- Department of Neurosurgery, Düsseldorf University Hospital, Düsseldorf, Nordrhein-Westfalen, Germany
| | | | | | | |
Collapse
|
31
|
Müller-Oehring EM, Kwon D, Nagel BJ, Sullivan EV, Chu W, Rohlfing T, Prouty D, Nichols BN, Poline JB, Tapert SF, Brown SA, Cummins K, Brumback T, Colrain IM, Baker FC, De Bellis MD, Voyvodic JT, Clark DB, Pfefferbaum A, Pohl KM. Influences of Age, Sex, and Moderate Alcohol Drinking on the Intrinsic Functional Architecture of Adolescent Brains. Cereb Cortex 2018; 28:1049-1063. [PMID: 28168274 PMCID: PMC6059181 DOI: 10.1093/cercor/bhx014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/16/2016] [Indexed: 12/11/2022] Open
Abstract
The transition from adolescent to adult cognition and emotional control requires neurodevelopmental maturation likely involving intrinsic functional networks (IFNs). Normal neurodevelopment may be vulnerable to disruption from environmental insult such as alcohol consumption commonly initiated during adolescence. To test potential disruption to IFN maturation, we used resting-state functional magnetic resonance imaging (rs-fMRI) in 581 no-to-low alcohol-consuming and 117 moderate-to-high-drinking youth. Functional seed-to-voxel connectivity analysis assessed age, sex, and moderate alcohol drinking on default-mode, executive-control, salience, reward, and emotion networks and tested cognitive and motor coordination correlates of network connectivity. Among no-to-low alcohol-consuming adolescents, executive-control frontolimbicstriatal connectivity was stronger in older than younger adolescents, particularly boys, and predicted better ability in balance, memory, and impulse control. Connectivity patterns in moderate-to-high-drinking youth were tested mainly in late adolescence when drinking was initiated. Implicated was the emotion network with attenuated connectivity to default-mode network regions. Our cross-sectional rs-fMRI findings from this large cohort of adolescents show sexual dimorphism in connectivity and suggest neurodevelopmental rewiring toward stronger and spatially more distributed executive-control networking in older than younger adolescents. Functional network rewiring in moderate-to-high-drinking adolescents may impede maturation of affective and self-reflection systems and obscure maturation of complex social and emotional behaviors.
Collapse
Affiliation(s)
- Eva M Müller-Oehring
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dongjin Kwon
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bonnie J Nagel
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR 97239, USA
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weiwei Chu
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Torsten Rohlfing
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Devin Prouty
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - B Nolan Nichols
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jean-Baptiste Poline
- Henry H. Wheeler, Jr. Brain Imaging Center, Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Susan F Tapert
- Department of Psychiatry, University of California, La Jolla, San Diego, CA 92093, USA
| | - Sandra A Brown
- Department of Psychiatry, University of California, La Jolla, San Diego, CA 92093, USA
| | - Kevin Cummins
- Department of Psychiatry, University of California, La Jolla, San Diego, CA 92093, USA
| | - Ty Brumback
- Department of Psychiatry, University of California, La Jolla, San Diego, CA 92093, USA
| | - Ian M Colrain
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Michael D De Bellis
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - James T Voyvodic
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kilian M Pohl
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| |
Collapse
|
32
|
Bétry C, Thobois S, Laville M, Disse E. Deep brain stimulation as a therapeutic option for obesity: A critical review. Obes Res Clin Pract 2018; 12:260-269. [PMID: 29475604 DOI: 10.1016/j.orcp.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
Despite a better understanding of obesity pathophysiology, treating this disease remains a challenge. New therapeutic options are needed. Targeting the brain is a promising way, considering both the brain abnormalities in obesity and the effects of bariatric surgery on the gut-brain axis. Deep brain stimulation could be an alternative treatment for obesity since this safe and reversible neurosurgical procedure modulates neural circuits for therapeutic purposes. We aimed to provide a critical review of published clinical and preclinical studies in this field. Owing to the physiology of eating and brain alterations in people with obesity, two brain areas, namely the hypothalamus and the nucleus accumbens are putative targets. Preclinical studies with animal models of obesity showed that deep brain stimulation of hypothalamus or nucleus accumbens induces weight loss. The mechanisms of action remain to be fully elucidated. Preclinical data suggest that stimulation of nucleus accumbens reduces food intake, while stimulation of hypothalamus could increase resting energy expenditure. Clinical experience with deep brain stimulation for obesity remains limited to six patients with mixed results, but some clinical trials are ongoing. Thus, drawing clear conclusions about the effectiveness of this treatment is not yet possible, even if the results of preclinical studies are encouraging. Future clinical studies should examine its efficacy and safety, while preclinical studies could help understand its mechanisms of action. We hope that our review will provide ways to design further studies.
Collapse
Affiliation(s)
- Cécile Bétry
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France; The Medical School, University of Nottingham, Nottingham, UK.
| | - Stéphane Thobois
- Hospices Civils de Lyon, Hopital Neurologique Pierre Wertheimer, Service de neurologie C, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon Sud Charles Merieux, Lyon, France; CNRS, Institut des Sciences Cognitives Marc Jeannerot, UMR 5229, Bron, France
| | - Martine Laville
- Service d'Endocrinologie-Diabétologie-Maladies de la nutrition, Centre Intégré de l'Obésité, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France; Unité INSERM 1060, Laboratoire CARMEN, CENS-Centre Européen pour la Nutrition et la Santé, Centre de Recherche en Nutrition Humaine Rhône-Alpes., Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - Emmanuel Disse
- Service d'Endocrinologie-Diabétologie-Maladies de la nutrition, Centre Intégré de l'Obésité, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France; Unité INSERM 1060, Laboratoire CARMEN, CENS-Centre Européen pour la Nutrition et la Santé, Centre de Recherche en Nutrition Humaine Rhône-Alpes., Université Claude Bernard Lyon 1, Pierre Bénite, France
| |
Collapse
|
33
|
Liu XL, Li L, Li JN, Rong JH, Liu B, Hu ZX. Reliability of Glutamate Quantification in Human Nucleus Accumbens Using Proton Magnetic Resonance Spectroscopy at a 70-cm Wide-Bore Clinical 3T MRI System. Front Neurosci 2017; 11:686. [PMID: 29259538 PMCID: PMC5723319 DOI: 10.3389/fnins.2017.00686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022] Open
Abstract
The human nucleus accumbens is a challenging region to study using proton magnetic resonance spectroscopy (1H-MRS) on a 70-cm wide-bore clinical 3T MRI system. The aim of this study was to investigate the reliability for quantitative measurement of glutamate concentration in the nucleus accumbens using a 70-cm wide-bore clinical 3T MRI. 1H-MRS of the nucleus accumbens was acquired using the Point-Resolved Spectroscopic Sequence (PRESS) with echo time of 40 ms from 10 healthy volunteers (5 female; age range: 18–30 years) on two separate visits (a baseline, and 1-month time point). The Java-based Magnetic Resonance User Interface (jMRUI) software package was used to quantitatively measure the absolute metabolite concentrations. The test-retest reliability and reproducibility were assessed using intraclass correlations coefficients (ICC), and coefficients of variation (CV). Glutamate concentrations were similar across visits (P = 0.832). Reproducibility measures for all metabolites were good with CV ranging from 7.8 to 14.0%. The ICC values of all metabolites for the intra-class measures were excellent (ICC > 0.8), except that the reliability for Glx (glutamate + glutamine) was good (ICC = 0.768). Pearson correlations for all metabolites were all highly significant (r = 0.636–0.788, P < 0.05). In conclusion, the short-echo-time PRESS can reliably obtain high quality glutamate spectrum from a ~3.4 cm3 voxel of the nucleus accumbens using a 70-cm wide-bore clinical 3T MRI.
Collapse
Affiliation(s)
- Xi-Long Liu
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Long Li
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Jian-Neng Li
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Jia-Hui Rong
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Bo Liu
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Ze-Xuan Hu
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
34
|
Liu XL, Li L, Li JN, Tang JH, Rong JH, Liu B, Hu ZX. Quantifying absolute glutamate concentrations in nucleus accumbens of prescription opioid addicts by using 1H MRS. Brain Behav 2017; 7:e00769. [PMID: 28828225 PMCID: PMC5561325 DOI: 10.1002/brb3.769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The diagnosis of psychoactive substance use disorders has been based primarily on descriptive, symptomatic checklist criteria. In opioid addiction, there are no objective biological indicators specific enough to guide diagnosis, monitor disease status, and evaluate efficacy of therapeutic interventions. Proton magnetic resonance spectroscopy (1H MRS) of the brain has potential to identify and quantify biomarkers for the diagnosis of opioid dependence. The purpose of this study was to detect the absolute glutamate concentration in the nucleus accumbens (NAc) of patients with prescription opioid dependence using 1H MRS, and to analyze its clinical associations. METHODS Twenty patients with clinically diagnosed definitive prescription opioid dependent (mean age = 26.5 ± 4.3 years) and 20 matched healthy controls (mean age = 26.1 ± 3.8 years) participated in this study. Patients were evaluated with the Barratt Impulsiveness Scale (BIS-11), the Self-Rating Anxiety Scale (SAS), and the opiate Addiction Severity Inventory (ASI). We used point-resolved spectroscopy to quantify the absolute concentrations of metabolites (glutamate, choline, N-acetylaspartate, glutamine, creatine) within the NAc. The difference between metabolite levels of groups and Pearson's correlation between glutamate levels and psychometric scores in patients were analyzed statistically. RESULTS Glutamate concentrations in the NAc were significantly higher in prescription opiate addicts than in controls (t = 3.84, p = .001). None of the other metabolites differed significantly between the two groups (all ps > .05). The glutamate concentrations correlated positively with BIS-11 scores in prescription opiate addicts (r = .671, p = .001), but not with SAS score and ASI index. CONCLUSIONS Glutamate levels in the NAc measured quantitatively with in vivo 1H MRS could be used as a biomarker to evaluate disease condition in opioid-dependent patients.
Collapse
Affiliation(s)
- Xi-Long Liu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Long Li
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Jian-Neng Li
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Ji-Hua Tang
- Department of Psychology and Addiction Medicine Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Jia-Hui Rong
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Bo Liu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Ze-Xuan Hu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| |
Collapse
|
35
|
Keuken MC, Bazin PL, Backhouse K, Beekhuizen S, Himmer L, Kandola A, Lafeber JJ, Prochazkova L, Trutti A, Schäfer A, Turner R, Forstmann BU. Effects of aging on T₁, T₂*, and QSM MRI values in the subcortex. Brain Struct Funct 2017; 222:2487-2505. [PMID: 28168364 PMCID: PMC5541117 DOI: 10.1007/s00429-016-1352-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/16/2016] [Indexed: 11/14/2022]
Abstract
The aging brain undergoes several anatomical changes that can be measured with Magnetic Resonance Imaging (MRI). Early studies using lower field strengths have assessed changes in tissue properties mainly qualitatively, using [Formula: see text]- or [Formula: see text]- weighted images to provide image contrast. With the development of higher field strengths (7 T and above) and more advanced MRI contrasts, quantitative measures can be acquired even of small subcortical structures. This study investigates volumetric, spatial, and quantitative MRI parameter changes associated with healthy aging in a range of subcortical nuclei, including the basal ganglia, red nucleus, and the periaqueductal grey. The results show that aging has a heterogenous effects across regions. Across the subcortical areas an increase of [Formula: see text] values is observed, most likely indicating a loss of myelin. Only for a number of areas, a decrease of [Formula: see text] and increase of QSM is found, indicating an increase of iron. Aging also results in a location shift for a number of structures indicating the need for visualization of the anatomy of individual brains.
Collapse
Affiliation(s)
- M C Keuken
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands.
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - P-L Bazin
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - K Backhouse
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - S Beekhuizen
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - L Himmer
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - A Kandola
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - J J Lafeber
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - L Prochazkova
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - A Trutti
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - A Schäfer
- Siemens Healthcare GmbH, Diagnostic Imaging, Magnetic Resonance, Research and Development, Erlangen, Germany
| | - R Turner
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - B U Forstmann
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Xia X, Fan L, Cheng C, Eickhoff SB, Chen J, Li H, Jiang T. Multimodal connectivity-based parcellation reveals a shell-core dichotomy of the human nucleus accumbens. Hum Brain Mapp 2017; 38:3878-3898. [PMID: 28548226 DOI: 10.1002/hbm.23636] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/14/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The subdifferentiation of the nucleus accumbens (NAc) has been extensively studied using neuroanatomy and histochemistry, yielding a well-accepted dichotomic shell/core architecture that reflects dissociable roles, such as in reward and aversion, respectively. However, in vivo parcellation of these structures in humans has been rare, potentially impairing future research into the structural and functional characteristics and alterations of putative NAc subregions. Here, we used three complementary parcellation schemes based on tractography, task-independent functional connectivity, and task-dependent co-activation to investigate the regional differentiation within the NAc. We found that a 2-cluster solution with shell-like and core-like subdivisions provided the best description of the data and was consistent with the earlier anatomical shell/core architecture. The consensus clusters from this optimal solution, which was based on the three schemes, were used as the final parcels for the subsequent connection analyses. The resulting connectivity patterns presented inter-hemispheric symmetry, convergence and divergence across the modalities, and, most importantly, clearly distinct patterns between the two subregions. This convergent connectivity patterns also confirmed the connections in animal models, supporting views that the two subregions could have antagonistic roles in some circumstances. Finally, the identified parcels should be helpful in further neuroimaging studies of the NAc. Hum Brain Mapp 38:3878-3898, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoluan Xia
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Cheng
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52425 Juelich, Germany.,Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Junjie Chen
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Haifang Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,The Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
37
|
Kawagoe T, Onoda K, Yamaguchi S. Apathy and Executive Function in Healthy Elderly-Resting State fMRI Study. Front Aging Neurosci 2017; 9:124. [PMID: 28536519 PMCID: PMC5422524 DOI: 10.3389/fnagi.2017.00124] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/13/2017] [Indexed: 01/02/2023] Open
Abstract
Apathy is a quantitative reduction in goal-directed behaviors, having three subtypes. Despite executive deterioration in healthy aging, researchers have not investigated the “cognitive-deficit” subtype of apathy in healthy populations, which would result from executive dysfunction. We hypothesized that a relationship between apathy and executive function (EF) would be found in healthy older adults, accompanied with neural deterioration with functional dysconnectivity between the striatum and frontal region as suggested by previous studies. A total of 100 healthy adults in a health examination system database were analyzed. The present study indicates that apathy is substantially associated with executive deterioration, which can be partially ascribed to decreased functional connectivity between the frontal and ventral striatum. Despite some limitations, our findings may contribute to research on healthy psychological aging.
Collapse
Affiliation(s)
| | - Keiichi Onoda
- Department of Neurology, Shimane UniversityIzumo, Japan
| | | |
Collapse
|
38
|
Zhang S, Hu S, Chao HH, Li CSR. Hemispheric lateralization of resting-state functional connectivity of the ventral striatum: an exploratory study. Brain Struct Funct 2017; 222:2573-2583. [PMID: 28110447 DOI: 10.1007/s00429-016-1358-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023]
Abstract
Resting-state functional connectivity (rsFC) is widely used to examine cerebral functional organization. The ventral striatum (VS) is critical to motivated behavior, with extant studies suggesting functional hemispheric asymmetry. The current work investigated differences in rsFC between the left (L) and right (R) VS and explored gender differences in the extent of functional lateralization. In 106 adults, we computed a laterality index (fcLI) to query whether a target region shows greater or less connectivity to the L vs R VS. A total of 45 target regions with hemispheric masks were examined from the Automated Anatomic Labeling atlas. One-sample t test was performed to explore significant laterality in the whole sample and in men and women separately. Two-sample t test was performed to examine gender differences in fcLI. At a corrected threshold (p < 0.05/45 = 0.0011), the dorsomedial prefrontal cortex (dmPFC) and posterior cingulate cortex (pCC) showed L lateralization and the intraparietal sulcus (IPS) and supramarginal gyrus (SMG) showed R lateralization in VS connectivity. Except for the pCC, these findings were replicated in a different data set (n = 97) from the Human Connectome Project. Furthermore, the fcLI of VS-pCC was negatively correlated with a novelty seeking trait in women but not in men. Together, the findings may suggest a more important role of the L VS in linking saliency response to self control and other internally directed processes. Right lateralization of VS connectivity to the SMG and IPS may support attention and action directed to external behavioral contingencies.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, CMHC S112, 34 Park Street, New Haven, CT, 06519-1109, USA
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine, CMHC S112, 34 Park Street, New Haven, CT, 06519-1109, USA
| | - Herta H Chao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Veterans Administration Medical Center, West Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, CMHC S112, 34 Park Street, New Haven, CT, 06519-1109, USA. .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA. .,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
39
|
Aberg KC, Doell KC, Schwartz S. The “Creative Right Brain” Revisited: Individual Creativity and Associative Priming in the Right Hemisphere Relate to Hemispheric Asymmetries in Reward Brain Function. Cereb Cortex 2016; 27:4946-4959. [DOI: 10.1093/cercor/bhw288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022] Open
|
40
|
Baydin S, Yagmurlu K, Tanriover N, Gungor A, Rhoton AL. Microsurgical and Fiber Tract Anatomy of the Nucleus Accumbens. Oper Neurosurg (Hagerstown) 2016; 12:269-288. [DOI: 10.1227/neu.0000000000001133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/04/2015] [Indexed: 11/19/2022] Open
|
41
|
Hanlon CA, Dowdle LT, Jones JL. Biomarkers for Success: Using Neuroimaging to Predict Relapse and Develop Brain Stimulation Treatments for Cocaine-Dependent Individuals. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 129:125-56. [PMID: 27503451 DOI: 10.1016/bs.irn.2016.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cocaine dependence is one of the most difficult substance use disorders to treat. While the powerful effects of cocaine use on behavior were documented in the 19th century, it was not until the late 20th century that we realized cocaine use was affecting brain tissue and function. Following a brief introduction (Section 1), this chapter will summarize our current knowledge regarding alterations in neural circuit function typically observed in chronic cocaine users (Section 2) and highlight an emerging body of literature which suggests that pretreatment limbic circuit activity may be a reliable predictor of clinical outcomes among individuals seeking treatment for cocaine (Section 3). Finally, as the field of addiction research strives to translate this neuroimaging data into something clinically meaningful, we will highlight several new brain stimulation approaches which utilize functional brain imaging data to design noninvasive brain stimulation interventions for individuals seeking treatment for substance dependence disorders (Section 4).
Collapse
Affiliation(s)
- C A Hanlon
- Medical University of South Carolina, Charleston, SC, United States.
| | - L T Dowdle
- Medical University of South Carolina, Charleston, SC, United States
| | - J L Jones
- Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
42
|
Gonçalves-Ferreira A, do Couto FS, Rainha Campos A, Lucas Neto LP, Gonçalves-Ferreira D, Teixeira J. Deep Brain Stimulation for Refractory Cocaine Dependence. Biol Psychiatry 2016; 79:e87-9. [PMID: 26235303 DOI: 10.1016/j.biopsych.2015.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Affiliation(s)
| | | | | | | | | | - Joana Teixeira
- Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal
| |
Collapse
|
43
|
The left hemisphere learns what is right: Hemispatial reward learning depends on reinforcement learning processes in the contralateral hemisphere. Neuropsychologia 2016; 89:1-13. [PMID: 27221149 DOI: 10.1016/j.neuropsychologia.2016.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/19/2016] [Accepted: 05/21/2016] [Indexed: 11/22/2022]
Abstract
Orienting biases refer to consistent, trait-like direction of attention or locomotion toward one side of space. Recent studies suggest that such hemispatial biases may determine how well people memorize information presented in the left or right hemifield. Moreover, lesion studies indicate that learning rewarded stimuli in one hemispace depends on the integrity of the contralateral striatum. However, the exact neural and computational mechanisms underlying the influence of individual orienting biases on reward learning remain unclear. Because reward-based behavioural adaptation depends on the dopaminergic system and prediction error (PE) encoding in the ventral striatum, we hypothesized that hemispheric asymmetries in dopamine (DA) function may determine individual spatial biases in reward learning. To test this prediction, we acquired fMRI in 33 healthy human participants while they performed a lateralized reward task. Learning differences between hemispaces were assessed by presenting stimuli, assigned to different reward probabilities, to the left or right of central fixation, i.e. presented in the left or right visual hemifield. Hemispheric differences in DA function were estimated through differential fMRI responses to positive vs. negative feedback in the left vs. right ventral striatum, and a computational approach was used to identify the neural correlates of PEs. Our results show that spatial biases favoring reward learning in the right (vs. left) hemifield were associated with increased reward responses in the left hemisphere and relatively better neural encoding of PEs for stimuli presented in the right (vs. left) hemifield. These findings demonstrate that trait-like spatial biases implicate hemisphere-specific learning mechanisms, with individual differences between hemispheres contributing to reinforcing spatial biases.
Collapse
|
44
|
Sugimoto H, Shigemune Y, Tsukiura T. Competing against a familiar friend: Interactive mechanism of the temporo-parietal junction with the reward-related regions during episodic encoding. Neuroimage 2016; 130:261-272. [PMID: 26892860 DOI: 10.1016/j.neuroimage.2016.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/04/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022] Open
Abstract
Competition enhances learning under certain circumstances. However, little is known about how the neural mechanisms involved in a competition during the episodic encoding are modulated by the social distance of personal relationships with opponents. To investigate this issue, using functional magnetic resonance imaging (fMRI), we scanned healthy young adults during a competition with their familiar friends and unfamiliar others in the episodic encoding. Three major findings emerged from this study. First, activations in the right temporo-parietal junction (rTPJ) were significantly greater in the competition with familiar friends than with unfamiliar others, and the activations in this region were significantly correlated with the subjective ratings of motivation. Second, striatum and amygdala activations increased by the competition with familiar friends were significantly correlated with the increased ratings of pleasantness, which reflected emotionally positive feelings in victory for the competition with familiar opponents. Third, the functional connectivity between the rTPJ and reward-related regions, including the striatum and substantia nigra, was higher in the competition with familiar friends than with unfamiliar others. Taken together with our behavioral findings, in which memories encoded by competing with familiar friends were remembered more accurately than those with unfamiliar others, the interacting mechanisms between the rTPJ that is involved in social motivation and the reward-related regions that are involved in social reward could contribute to the enhancement of memories encoded in the competition with familiar others.
Collapse
Affiliation(s)
- Hikaru Sugimoto
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Yayoi Shigemune
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Tsukiura
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
45
|
Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions. J Neurosci 2016; 35:14491-500. [PMID: 26511241 DOI: 10.1523/jneurosci.1859-15.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world.
Collapse
|
46
|
Howard-Jones PA, Jay T, Mason A, Jones H. Gamification of Learning Deactivates the Default Mode Network. Front Psychol 2016; 6:1891. [PMID: 26779054 PMCID: PMC4705349 DOI: 10.3389/fpsyg.2015.01891] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 11/28/2022] Open
Abstract
We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.
Collapse
Affiliation(s)
| | - Tim Jay
- Sheffield Institute of Education, Sheffield Hallam UniversitySheffield, UK
| | - Alice Mason
- School of Experimental Psychology, University of BristolBristol, UK
| | - Harvey Jones
- Graduate School of Education, University of BristolBristol, UK
| |
Collapse
|
47
|
Wong JE, Cao J, Dorris DM, Meitzen J. Genetic sex and the volumes of the caudate-putamen, nucleus accumbens core and shell: original data and a review. Brain Struct Funct 2015; 221:4257-4267. [PMID: 26666530 DOI: 10.1007/s00429-015-1158-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022]
Abstract
Sex differences are widespread across vertebrate nervous systems. Such differences are sometimes reflected in the neural substrate via neuroanatomical differences in brain region volume. One brain region that displays sex differences in its associated functions and pathologies is the striatum, including the caudate-putamen (dorsal striatum), nucleus accumbens core and shell (ventral striatum). The extent to which these differences can be attributed to alterations in volume is unclear. We thus tested whether the volumes of the caudate-putamen, nucleus accumbens core, and nucleus accumbens shell differed by region, sex, and hemisphere in adult Sprague-Dawley rats. As a positive control for detecting sex differences in brain region volume, we measured the sexually dimorphic nucleus of the medial preoptic area (SDN-POA). As expected, SDN-POA volume was larger in males than in females. No sex differences were detected in the volumes of the caudate-putamen, nucleus accumbens core or shell. Nucleus accumbens core volume was larger in the right than left hemisphere across males and females. These findings complement previous reports of lateralized nucleus accumbens volume in humans, and suggest that this may possibly be driven via hemispheric differences in nucleus accumbens core volume. In contrast, striatal sex differences seem to be mediated by factors other than striatal region volume. This conclusion is presented within the context of a detailed review of studies addressing sex differences and similarities in striatal neuroanatomy.
Collapse
Affiliation(s)
- Jordan E Wong
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA
| | - Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - David M Dorris
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695-7617, USA. .,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA. .,Center for Human Health and the Environment, Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
48
|
Abstract
Chronic alcohol consumption affects multiple cognitive processes supported by far-reaching cerebral networks. To identify neurofunctional mechanisms underlying selective deficits, 27 sober alcoholics and 26 age-matched controls underwent resting-state functional magnetic resonance imaging and neuropsychological testing. Functional connectivity analysis assessed the default mode network (DMN); integrative executive control (EC), salience (SA), and attention (AT) networks; primary somatosensory, auditory, and visual (VI) input networks; and subcortical reward (RW) and emotion (EM) networks. The groups showed an extensive overlap of intrinsic connectivity in all brain networks examined, suggesting overall integrity of large-scale functional networks. Despite these similar patterns, connectivity analyses identified network-specific differences of weaker within-network connectivity and expanded connectivity to regions outside the main networks in alcoholics compared with controls. For AT and VI networks, better task performance was related to expanded connectivity in alcoholism, supporting the concept of network expansion as a neural mechanism for functional compensation. For default mode, SA, RW, and EC networks, both weaker within-network and expanded outside-network connectivity correlated with poorer performance and mood. Current smoking contributed to some of these abnormalities in connectivity. The observed pattern of resting-state connectivity might reflect neural vulnerability of intrinsic networking in alcoholics and suggests a mechanism to explain signature impairments in EM, RW evaluation, and EC ability.
Collapse
Affiliation(s)
- Eva M. Müller-Oehring
- Neurosci Program, Center for Health Sciences, SRI International, Menlo Park, CA
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA
| | - Young-Chul Jung
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| | - Adolf Pfefferbaum
- Neurosci Program, Center for Health Sciences, SRI International, Menlo Park, CA
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA
| | - Edith V. Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA
| | - Tilman Schulte
- Neurosci Program, Center for Health Sciences, SRI International, Menlo Park, CA
| |
Collapse
|
49
|
Eiler WJ, Džemidžić M, Case KR, Soeurt CM, Armstrong CL, Mattes RD, O'Connor SJ, Harezlak J, Acton AJ, Considine RV, Kareken DA. The apéritif effect: Alcohol's effects on the brain's response to food aromas in women. Obesity (Silver Spring) 2015; 23:1386-93. [PMID: 26110891 PMCID: PMC4493764 DOI: 10.1002/oby.21109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Consuming alcohol prior to a meal (an apéritif) increases food consumption. This greater food consumption may result from increased activity in brain regions that mediate reward and regulate feeding behavior. Using functional magnetic resonance imaging, we evaluated the blood oxygenation level dependent (BOLD) response to the food aromas of either roast beef or Italian meat sauce following pharmacokinetically controlled intravenous infusion of alcohol. METHODS BOLD activation to food aromas in non-obese women (n = 35) was evaluated once during intravenous infusion of 6% v/v EtOH, clamped at a steady-state breath alcohol concentration of 50 mg%, and once during infusion of saline using matching pump rates. Ad libitum intake of roast beef with noodles or Italian meat sauce with pasta following imaging was recorded. RESULTS BOLD activation to food relative to non-food odors in the hypothalamic area was increased during alcohol pre-load when compared to saline. Food consumption was significantly greater, and levels of ghrelin were reduced, following alcohol. CONCLUSIONS An alcohol pre-load increased food consumption and potentiated differences between food and non-food BOLD responses in the region of the hypothalamus. The hypothalamus may mediate the interplay of alcohol and responses to food cues, thus playing a role in the apéritif phenomenon.
Collapse
Affiliation(s)
- William J.A. Eiler
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mario Džemidžić
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - K. Rose Case
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christina M. Soeurt
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Richard D. Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Sean J. O'Connor
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jaroslaw Harezlak
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anthony J. Acton
- Department of Medicine (Endocrinology), Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert V. Considine
- Department of Medicine (Endocrinology), Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - David A. Kareken
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Corresponding Author: David A. Kareken, Ph.D. Neuropsychology Section (GH 4700) Department of Neurology Indiana University School of Medicine 355 West 16 Street Indianapolis, IN 46202 (317) 963-7212
| |
Collapse
|
50
|
Lucas-Neto L, Reimão S, Oliveira E, Rainha-Campos A, Sousa J, Nunes RG, Gonçalves-Ferreira A, Campos JG. Advanced MR Imaging of the Human Nucleus Accumbens-Additional Guiding Tool for Deep Brain Stimulation. Neuromodulation 2015; 18:341-8. [DOI: 10.1111/ner.12289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/24/2015] [Accepted: 02/13/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Lia Lucas-Neto
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neuroradiology Department; North Lisbon Medical Center; Lisboa Portugal
| | - Sofia Reimão
- Neuroradiology Department; North Lisbon Medical Center; Lisboa Portugal
| | - Edson Oliveira
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neurosurgery Department; North Lisbon Medical Center; Lisboa Portugal
| | - Alexandre Rainha-Campos
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neurosurgery Department; North Lisbon Medical Center; Lisboa Portugal
| | - João Sousa
- Instituto de Biofísica e Engenharia Biomédica; Faculdade de Ciências; University of Lisbon; Lisboa Portugal
| | - Rita G. Nunes
- Instituto de Biofísica e Engenharia Biomédica; Faculdade de Ciências; University of Lisbon; Lisboa Portugal
| | - António Gonçalves-Ferreira
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neurosurgery Department; North Lisbon Medical Center; Lisboa Portugal
| | - Jorge G. Campos
- Neuroradiology Department; North Lisbon Medical Center; Lisboa Portugal
| |
Collapse
|