1
|
Ock SA, Kim SY, Ju WS, Kim YI, Wi HY, Lee P. Adipose Tissue-Derived Mesenchymal Stem Cells Extend the Lifespan and Enhance Liver Function in Hepatocyte Organoids. Int J Mol Sci 2023; 24:15429. [PMID: 37895114 PMCID: PMC10607770 DOI: 10.3390/ijms242015429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we generated hepatocyte organoids (HOs) using frozen-thawed primary hepatocytes (PHs) within a three-dimensional (3D) Matrigel dome culture in a porcine model. Previously studied hepatocyte organoid analogs, spheroids, or hepatocyte aggregates created using PHs in 3D culture systems have limitations in their in vitro lifespans. By co-culturing adipose tissue-derived mesenchymal stem cells (A-MSCs) with HOs within a 3D Matrigel dome culture, we achieved a 3.5-fold increase in the in vitro lifespan and enhanced liver function compared to a conventional two-dimensional (2D) monolayer culture, i.e., more than twice that of the HO group cultured alone, reaching up to 126 d. Although PHs were used to generate HOs, we identified markers associated with cholangiocyte organoids such as cytokeratin 19 and epithelial cellular adhesion molecule (EPCAM). Co-culturing A-MSCs with HOs increased the secretion of albumin and urea and glucose consumption compared to HOs cultured alone. After more than 100 d, we observed the upregulation of tumor protein P53 (TP53)-P21 and downregulation of EPCAM, albumin (ALB), and cytochrome P450 family 3 subfamily A member 29 (CYP3A29). Therefore, HOs with function and longevity improved through co-culturing with A-MSCs can be used to create large-scale human hepatotoxicity testing models and precise livestock nutrition assessment tools.
Collapse
Affiliation(s)
- Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea
| | | | | | | | | | | |
Collapse
|
2
|
Ren Z, Harriot AD, Mair DB, Chung MK, Lee PHU, Kim DH. Biomanufacturing of 3D Tissue Constructs in Microgravity and their Applications in Human Pathophysiological Studies. Adv Healthc Mater 2023; 12:e2300157. [PMID: 37483106 DOI: 10.1002/adhm.202300157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/27/2023] [Indexed: 07/25/2023]
Abstract
The growing interest in bioengineering in-vivo-like 3D functional tissues has led to novel approaches to the biomanufacturing process as well as expanded applications for these unique tissue constructs. Microgravity, as seen in spaceflight, is a unique environment that may be beneficial to the tissue-engineering process but cannot be completely replicated on Earth. Additionally, the expense and practical challenges of conducting human and animal research in space make bioengineered microphysiological systems an attractive research model. In this review, published research that exploits real and simulated microgravity to improve the biomanufacturing of a wide range of tissue types as well as those studies that use microphysiological systems, such as organ/tissue chips and multicellular organoids, for modeling human diseases in space are summarized. This review discusses real and simulated microgravity platforms and applications in tissue-engineered microphysiological systems across three topics: 1) application of microgravity to improve the biomanufacturing of tissue constructs, 2) use of tissue constructs fabricated in microgravity as models for human diseases on Earth, and 3) investigating the effects of microgravity on human tissues using biofabricated in vitro models. These current achievements represent important progress in understanding the physiological effects of microgravity and exploiting their advantages for tissue biomanufacturing.
Collapse
Affiliation(s)
- Zhanping Ren
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Anicca D Harriot
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | | | - Peter H U Lee
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, 02720, USA
| | - Deok-Ho Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21218, USA
| |
Collapse
|
3
|
Kar SK, Wells JM, Ellen ED, Te Pas MFW, Madsen O, Groenen MAM, Woelders H. Organoids: a promising new in vitro platform in livestock and veterinary research. Vet Res 2021; 52:43. [PMID: 33691792 PMCID: PMC7943711 DOI: 10.1186/s13567-021-00904-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Organoids are self-organizing, self-renewing three-dimensional cellular structures that resemble organs in structure and function. They can be derived from adult stem cells, embryonic stem cells, or induced pluripotent stem cells. They contain most of the relevant cell types with a topology and cell-to-cell interactions resembling that of the in vivo tissue. The widespread and increasing adoption of organoid-based technologies in human biomedical research is testament to their enormous potential in basic, translational- and applied-research. In a similar fashion there appear to be ample possibilities for research applications of organoids from livestock and companion animals. Furthermore, organoids as in vitro models offer a great possibility to reduce the use of experimental animals. Here, we provide an overview of studies on organoids in livestock and companion animal species, with focus on the methods developed for organoids from a variety of tissues/organs from various animal species and on the applications in veterinary research. Current limitations, and ongoing research to address these limitations, are discussed. Further, we elaborate on a number of fields of research in animal nutrition, host-microbe interactions, animal breeding and genomics, and animal biotechnology, in which organoids may have great potential as an in vitro research tool.
Collapse
Affiliation(s)
- Soumya K Kar
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands.
| | - Jerry M Wells
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Esther D Ellen
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Marinus F W Te Pas
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Henri Woelders
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
In vivo-like 3-D model for sodium nitrite- and acrylamide-induced hepatotoxicity tests utilizing HepG2 cells entrapped in micro-hollow fibers. Sci Rep 2017; 7:14837. [PMID: 29093461 PMCID: PMC5665964 DOI: 10.1038/s41598-017-13147-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 09/11/2017] [Indexed: 12/15/2022] Open
Abstract
To address the need for a high throughput toxicity test in the modern food industry, an in vivo-like 3-D cell model was constructed in this study to provide an alternative to controversial long-term animal models and to improve the sensitivity and accuracy of the traditional monolayer model. The model formed cell cylindroids within polyvinylidene fluoride (PVDF) hollow fibers and therefore mimicked the microenvironment of liver tissue. Microscopy methods were used, and liver-specific functions were measured to demonstrate the superiority of the model compared to the monolayer model, as well as to optimize the model for best cell performances. Later, toxicity tests of sodium nitrite and acrylamide were conducted in both the 3-D model and the monolayer model to study the sensitivity of the 3-D model in toxicity responses. As expected, HepG2 cells within the 3-D model responded at lower concentrations and shorter exposure times compared to cells within the monolayer model. Furthermore, western blot analysis of apoptosis pathways also supported the argument.
Collapse
|
5
|
Xue L, Li Y, Chen J. Duration of simulated microgravity affects the differentiation of mesenchymal stem cells. Mol Med Rep 2017; 15:3011-3018. [PMID: 28339035 PMCID: PMC5428749 DOI: 10.3892/mmr.2017.6357] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/09/2017] [Indexed: 02/07/2023] Open
Abstract
Previous evidence has suggested that physical microenvironments and mechanical stresses, independent of soluble factors, influence mesenchymal stem cell (MSC) fate. In the present study, simulated microgravity (SMG) was demonstrated to regulate the differentiation of mesenchymal stem cells. This may be a novel strategy for tissue engineering and regenerative medicine. Rat MSCs were cultured for 72 h or 10 days in either normal gravity or a clinostat to model microgravity, followed with culture in diverse differential media. A short period of stimulation (72 h) promoted MSCs to undergo endothelial, neuronal and adipogenic differentiation. In comparison, extended microgravity (10 days) promoted MSCs to differentiate into osteoblasts. A short period of exposure to SMG significantly decreased ras homolog family member A (RhoA) activity. However, RhoA activity significantly increased following prolonged exposure to SMG. When RhoA activity was inhibited, the effects of prolonged exposure to SMG were reversed. These results demonstrated that the duration of SMG regulates the differentiation fate of MSCs via the RhoA‑associated pathway.
Collapse
Affiliation(s)
- Li Xue
- Department of Urology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710014, P.R. China
| | - Yaohui Li
- Department of Pneumology, Traditional Chinese Medicine Hospital of Shaanxi, Xi'an, Shaanxi 710014, P.R. China
| | - Jun Chen
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Shaanxi, Xi'an, Shaanxi 710014, P.R. China
| |
Collapse
|
6
|
Grimm D, Pietsch J, Wehland M, Richter P, Strauch SM, Lebert M, Magnusson NE, Wise P, Bauer J. The impact of microgravity-based proteomics research. Expert Rev Proteomics 2014; 11:465-76. [DOI: 10.1586/14789450.2014.926221] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniela Grimm
- Institute of Biomedicine, Pharmacology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jessica Pietsch
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Peter Richter
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sebastian M Strauch
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Michael Lebert
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Nils Erik Magnusson
- Medical Research Laboratories, Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Petra Wise
- Hematology/Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Johann Bauer
- Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
7
|
|
8
|
Han B, Shi XL, Xiao JQ, Zhang Y, Chu XH, Gu JY, Tan JJ, Gu ZZ, Ding YT. Influence of chitosan nanofiber scaffold on porcine endogenous retroviral expression and infectivity in pig hepatocytes. World J Gastroenterol 2011; 17:2774-80. [PMID: 21734784 PMCID: PMC3122264 DOI: 10.3748/wjg.v17.i22.2774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/15/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the influence of chitosan nanofiber scaffold on the production and infectivity of porcine endogenous retrovirus (PERV) expressed by porcine hepatocytes.
METHODS: Freshly isolated porcine hepatocytes were cultured with or without chitosan nanofiber scaffold (defined as Nano group and Hep group) for 7 d. The daily collection of culture medium was used to detect reverse transcriptase (RT) activity with RT activity assay kits and PERV RNA by reverse transcription-polymerase chain reaction (PCR) and real time PCR with the PERV specific primers. And Western blotting was performed with the lysates of daily retrieved cells to determine the PERV protein gag p30. Besides, the in-vitro infectivity of the supernatant was tested by incubating the human embryo kidney 293 (HEK293) cells.
RESULTS: The similar changing trends between two groups were observed in real time PCR, RT activity assay and Western blotting. Two peaks of PERV expression at 10H and Day 2 were found and followed by a regular decline. No significant difference was found between two groups except the significantly high level of PERV RNA at Day 6 and PERV protein at Day 5 in Nano group than that in Hep group. And in the in-vitro infection experiment, no HEK293 cell was infected by the supernatant.
CONCLUSION: Chitosan nanofiber scaffold might prolong the PERV secreting time in pig hepatocytes but would not obviously influence its productive amount and infectivity, so it could be applied in the bioartificial liver without the increased risk of the virus transmission.
Collapse
|
9
|
Bioartificial liver devices: Perspectives on the state of the art. Front Med 2010; 5:15-9. [PMID: 21088931 DOI: 10.1007/s11684-010-0110-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/12/2010] [Indexed: 01/28/2023]
Abstract
Acute liver failure remains a significant cause of morbidity and mortality. Bioartificial liver (BAL) devices have been in development for more than 20 years. Such devices aim to temporarily take over the metabolic and excretory functions of the liver until the patients' own liver has recovered or a donor liver becomes available for transplant. The important issues include the choice of cell materials and the design of the bioreactor. Ideal BAL cell materials should be of good viability and functionality, easy to access, and exclude immunoreactive and tumorigenic cell materials. Unfortunately, the current cells in use in BAL do not meet these requirements. One of the challenges in BAL development is the improvement of current materials; another key point concerning cell materials is the coculture of different cells. The bioreactor is an important component of BAL, because it determines the viability and function of the hepatocytes within it. From the perspective of bioengineering, a successful and clinically effective bioreactor should mimic the structure of the liver and provide an in vivo-like microenvironment for the growth of hepatocytes, thereby maintaining the cells' viability and function to the maximum extent. One future trend in the development of the bioreactor is to improve the oxygen supply system. Another direction for future research on bioreactors is the application of biomedical materials. In conclusion, BAL is, in principle, an important therapeutic strategy for patients with acute liver failure, and may also be a bridge to liver transplantation. It requires further research and development, however, before it can enter clinical practice.
Collapse
|
10
|
Grimm D, Bauer J, Ulbrich C, Westphal K, Wehland M, Infanger M, Aleshcheva G, Pietsch J, Ghardi M, Beck M, El-Saghire H, de Saint-Georges L, Baatout S. Different responsiveness of endothelial cells to vascular endothelial growth factor and basic fibroblast growth factor added to culture media under gravity and simulated microgravity. Tissue Eng Part A 2010; 16:1559-73. [PMID: 20001221 DOI: 10.1089/ten.tea.2009.0524] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
When incubated under simulated microgravity (s-microg), endothelial cells (EC) form tubular structures that resemble vascular intimas. This delayed formation of 3D EC structures begins between the 5th and 7th day of culturing EC under conditions of s-microg, when double-row cell assemblies become visible. With the aim of learning about this initial phase of tubular structure formation, we found that NFkappaBp65 protein content was similar in all cell populations, but gene and protein expression of phosphokinase A catalytic subunit, phosphokinase Calpha, and extracellular signal-regulated kinases 1 and 2 was altered in cells cultured under s-microg. Apoptosis remained below 30% in all EC cultures. In contrast to controls, the 7-day-old s-microg cultures contained 3D aggregates with proliferating cells, enhanced numbers of necrotic cells, and osteopontin-negative EC as well as supernatants with reduced quantities of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), soluble TNFRSF5, TNFSF5, intercellular adhesion molecule-1, tumor necrosis factor receptor 2, IL-18, complement C3, and von Willebrand factor. VEGF and/or bFGF (10 ng/mL) application influenced the accumulation of proteins in supernatants more profoundly under 1 g than under s-microg. These findings provide evidence that phosphokinase Calpha plays a key role in tube formation. Improving the interaction of VEGF and/or bFGF with EC under s-microg could enhance the engineering of vascular intimas.
Collapse
Affiliation(s)
- Daniela Grimm
- Department of Pharmacology, Aarhus University, Bartholin Building, Wilhelm Meyers Allé 4, Building 1240, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wurm M, Woess C, Libiseller K, Beer B, Pavlic M. Challenging Small Human Hepatocytes with Opiates: Further Characterization of a Novel Prototype Bioartificial Liver. Tissue Eng Part A 2010; 16:807-13. [DOI: 10.1089/ten.tea.2009.0420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Martin Wurm
- Department of General and Transplant Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Woess
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Kathrin Libiseller
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Beate Beer
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Marion Pavlic
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
12
|
Grimm D, Infanger M, Westphal K, Ulbrich C, Pietsch J, Kossmehl P, Vadrucci S, Baatout S, Flick B, Paul M, Bauer J. A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness. Tissue Eng Part A 2009; 15:2267-75. [PMID: 19226201 DOI: 10.1089/ten.tea.2008.0576] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelial cells (ECs) form three-dimensional (3D) aggregates without any scaffold when they are exposed to microgravity simulated by a random positioning machine (RPM) but not under static conditions at gravity. Here we describe a delayed type of formation of 3D structures of ECs that was initiated when ECs cultured on a desktop RPM remained adherent for the first 5 days but spread over neighboring adherent cells, forming little colonies. After 2 weeks, tube-like structures (TSs) became visible in these cultures. They included a lumen, and they elongated during another 2 weeks of culturing. The walls of these TSs consisted mainly of single-layered ECs, which had produced significantly more beta(1)-integrin, laminin, fibronectin, and alpha-tubulin than ECs simultaneously grown adhering to the culture dishes under microgravity or normal gravity. The amount of actin protein was similar in ECs incorporated in TSs and in ECs growing at gravity. The ratio of tissue inhibitor of metalloproteinases-1 to matrix metalloproteinase-2 found in the supernatants was lower at the seventh than at the 28th day of culturing. These results suggest that culturing ECs under conditions of modeled gravitational unloading represents a new technique for studying the formation of tubes that resemble vascular intimas.
Collapse
Affiliation(s)
- Daniela Grimm
- Institute of Clinical Pharmacology and Toxicology, CBF/CCM, Charité-Universitätsmedizin , Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Cell transplantation to restore liver function as an alternative to whole liver transplantation has thus far not been successful in humans. RECENT FINDINGS Adult mature hepatocytes and various populations of liver progenitors and stem cells are being studied for their regenerative capabilities. Hepatocyte transplantation to treat metabolic deficiencies has shown promising early improvement in liver function; however, long-term success has not been achieved. Liver progenitor cells can now be identified and were shown to be capable to differentiate into a hepatocyte-like phenotype. Despite evidence of mesenchymal stem cell fusion in animal models of liver regeneration, encouraging results were seen in a small group of patients receiving autologous transplantation of CD133 mesenchymal stem cells to repopulate the liver after extensive hepatectomy for liver masses. Ethical issues, availability, potential rejection and limited understanding of the totipotent capabilities of embryonic stem cells are the limitations that prevent their use for restoration of liver function. The effectiveness of embryonic stem cells to support liver function has been proven with their application in the bioartificial liver model in rodents. SUMMARY There is ongoing research to restore liver function in cell biology, animal models and clinical trials using mature hepatocytes, liver progenitor cells, mesenchymal stem cells and embryonic stem cells.
Collapse
Affiliation(s)
- Tanya R Flohr
- Department of Surgery, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
14
|
Consolo F, Fiore GB, Truscello S, Caronna M, Morbiducci U, Montevecchi FM, Redaelli A. A Computational Model for the Optimization of Transport Phenomena in a Rotating Hollow-Fiber Bioreactor for Artificial Liver. Tissue Eng Part A 2008. [DOI: 10.1089/ten.tea.2008.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Curcio E, Salerno S, Barbieri G, De Bartolo L, Drioli E, Bader A. Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials 2007; 28:5487-97. [PMID: 17881050 DOI: 10.1016/j.biomaterials.2007.08.033] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
Abstract
Isolated hepatocytes in spheroid configuration exhibit a high degree of cell-cell contacts, which are important in the maintenance of viability and liver specific functions. In the absence of a vascular network, the cells in a large spheroid size experience mass transfer limitations of metabolites and oxygen in the core of aggregates. In this paper transport phenomena related to the diffusion and reaction of oxygen, glucose and lactate are mathematically described and experimentally verified for hepatocyte spheroids cultured in a rotating-wall polystyrene system (RWPS) not permeable for gases and in a rotating-wall membrane system (RWMS) with oxygen-permeable membrane. The concentration profiles of glucose, oxygen and lactate in the hepatocyte spheroids were estimated for different diameters of aggregates by solving the mass transfer equations for simultaneous diffusion and reaction, by finite element method. Simulation results evidenced that, for aggregates with size lower than 300 microm cultured in both RWPS and RWMS systems, the concentration profiles of glucose and lactate towards the core of spheroids (effective diffusion coefficients in the order of 10(-11)m(2)/s) are not significantly affected by the metabolic rate (c.a 10(-6)microg/mm(3)/s for glucose and about one order of magnitude less for lactate). On the contrary, the transport of oxygen (diffusion coefficient: 3.4 x 10(-10)m(2)/s, reaction rate: 1.5 x 10(-5)microg/mm(3)/s) is critically affected by the size of the multicellular spheroids and significant gradients in oxygen concentration may develop in spheroids. Aggregates with a size greater than 200 microm suffer severe oxygen limitation in the most part of its size attaining the lowest partial pressure in the centre. The improved viability predicted by the model culturing hepatocyte spheroids in the RWMS, characterized by a higher O(2) permeability with respect to RWPS, was experimentally confirmed. The results demonstrated that the mathematical model used in this study represents a useful support to experimental procedures in order to obtain hepatocyte spheroids with optimal size.
Collapse
Affiliation(s)
- Efrem Curcio
- Department of Chemical Engineering and Materials University of Calabria, via P. Bucci, Rende (CS), Italy
| | | | | | | | | | | |
Collapse
|
16
|
Chen J, Chen R, Gao S. Morphological characteristics and proliferation of keratocytes cultured under simulated microgravity. Artif Organs 2007; 31:722-31. [PMID: 17725700 DOI: 10.1111/j.1525-1594.2007.00440.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study probed the changes of keratocytes cultured under simulated microgravity. Keratocytes were isolated from rabbit corneas using collagenase digestion method. Cells were seeded in a 55-mL capacity high-aspect-ratio vessel (HARV) of rotary cell culture system (RCCS) at a density of 1 x 10(4) cells/mL. Dehydrated bovine acellular corneal stroma (5 x 5 x 1 mm, n = 30) was used as a carrier for keratocyte culture. Rotational speed was set at 15, 20, and 30 rpm in the first, second, and third week of culture, respectively. Histological evaluation showed that keratocytes in simulated microgravity culture grew into carriers, but those under conventional gravity grew on the surface of carriers. Scanning electron microscopic evaluation showed that after 19 days in culture, keratocytes on the carriers were spherical and spread in the spaces among the collagen fibers. Cells were dendritic or spindle shaped, and they developed many foot processes linked with surrounding cells. The absorbance values of the simulated microgravity group were significantly higher (P < 0.01) than that of the conventional group from 10 to 19 days of culture. The RCCS obviously enhanced the proliferation of rabbit keratocytes and facilitated the cells' growth into or on the dehydrated bovine acellular corneal stroma. Cells showed more natural morphology.
Collapse
Affiliation(s)
- Jiansu Chen
- Ophthalmology Department, Medical College, Jinan University, Guangzhou, China.
| | | | | |
Collapse
|
17
|
Pavlic M, Libiseller K, Hermann M, Hengster P, Margreiter R, Wurm M. Small human hepatocytes in rotary culture for treatment of alcohol addicts? A pilot study. Alcohol Clin Exp Res 2007; 31:729-36. [PMID: 17378920 DOI: 10.1111/j.1530-0277.2007.00357.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Current approaches to support alcohol addict and/or benzodiazepine-treated patients with liver failure include culturing human cells to take over basic metabolic functions for a certain time. METHODS Small human hepatocytes (SH) were grown in a rotary cell culture system, and their potential to metabolize alcohol and the benzodiazepines oxazepam and diazepam was evaluated. Control experiments were performed with SV40-immortalized HEP cells and cell respective drug-free media. RESULTS Our results show that SH in rotary culture are able to metabolize ethanol in reasonable amounts compared with evaporation controls (p<0.01). Moreover, SH are also able to metabolize oxazepam and diazepam which proves their ability to perform conjugation and the presence of functional cytochrome P450 enzymes. Basic metabolic activities such as glucose consumption, albumin and urea production are not significantly influenced by the drugs used, which is a precondition for clinical use of these cells. Significantly increased lactate dehydrogenase release indicates enhanced cell death in cultures of SH incubated with either ethanol (p<0.05) or diazepam (p<0.005), but stable viability at or above 90% suggests that cell proliferation is able to keep up with drug-induced cell death. CONCLUSION Our preliminary study provides evidence that SH are basically suited to support alcohol-abusing and/or benzodiazepine-treated patients undergoing liver failure.
Collapse
Affiliation(s)
- Marion Pavlic
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
18
|
Hochleitner B, Hengster P, Bucher H, Ladurner R, Schneeberger S, Krismer A, Kleinsasser A, Barnas U, Klima G, Margreiter R. Significant survival prolongation in pigs with fulminant hepatic failure treated with a novel microgravity-based bioartificial liver. Artif Organs 2007; 30:906-14. [PMID: 17181831 DOI: 10.1111/j.1525-1594.2006.00323.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of this study was to evaluate the efficacy and safety of our novel Innsbruck Bioartificial Liver (IBAL; US patent no. 10/641275), which contains aggregates of porcine hepatocytes grown under simulated microgravity, in a porcine model of fulminant hepatic failure (FHF). FHF was induced by a combination of 75-80% liver resection and ischemia of the remnant segments for 60 min in 12 pigs. Two experimental groups were studied: the control group (n = 5) received standard intensive care and the study group (n = 5) received IBAL treatment. The survival of pigs with FHF was significantly prolonged by about 150% with IBAL treatment as compared to controls (controls: 20.4 +/- 2.8 h, IBAL: 51.0 +/- 2.2 h; P = 0.00184). In addition, intracranial pressure, blood ammonia, lactate, aspartate aminotransferase, and alkaline phosphatase levels were lower in the IBAL group than in controls, indicating metabolic activity of porcine hepatocytes in the bioreactor. No adverse effects were observed.
Collapse
Affiliation(s)
- Boris Hochleitner
- Department of General and Transplant Surgery, Innsbruck University Hospital, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bilodeau K, Mantovani D. Bioreactors for Tissue Engineering: Focus on Mechanical Constraints. A Comparative Review. ACTA ACUST UNITED AC 2006; 12:2367-83. [PMID: 16968176 DOI: 10.1089/ten.2006.12.2367] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Considering the current techniques in cell culture, the stimulation of cellular proliferation and the formation of bidimensional tissues such as skin are widely performed in academic and industrial research laboratories. However, the formation of cohesive, organized, and functional tissues by three-dimensional (3D) cell culture is complex. A suitable environment is required, which is achieved and maintained in a specific bioreactor, a device that reproduces the physiological environment (including biochemical and mechanical functions) specific to the tissue that is to be regenerated. Bioreactors can also be used to apply mechanical constraints during maturation of the regenerating tissue for studying and understanding the mechanical factors influencing tissue regeneration. In this work, the main types of bioreactors used for tissue engineering and regeneration, as well as their most common applications, were reviewed and compared. The importance of the mechanical properties applied to the scaffolds and the regenerating constructs has been often neglected. This review focused on the influence of mechanical stresses and strains during the culture period that leads to the final mechanical properties of the construct.
Collapse
Affiliation(s)
- Katia Bilodeau
- Laboratory for Biomaterials and Bioengineering, Department of Materials Engineering, Laval University & Research Center, Quebec University Hospital Center, Quebec City, Canada
| | | |
Collapse
|
20
|
Jasmund I, Schwientek S, Acikgöz A, Langsch A, Machens HG, Bader A. The influence of medium composition and matrix on long-term cultivation of primary porcine and human hepatocytes. ACTA ACUST UNITED AC 2006; 24:59-69. [PMID: 16870503 DOI: 10.1016/j.bioeng.2006.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The differentiated hepatocyte phenotype remains difficult to maintain in culture. The duration over which phenotypically stable hepatocytes can be cultured ranges from a couple of days to a few weeks. Shortcomings in medium formulation may be a factor in this lack of success. We have investigated effects of medium formulation on primary porcine and human hepatocyte cultures. We tested seven culture medium compositions (DMEM, ExCell 400, HepatoZYME-SFM, L-15 Leibovitz, SF-3, Waymouth, and Williams' E) and the effects of serum, fibronectin and biomatrix in a sandwich culture configuration. Albumin, urea, cholesterol, GOT, GPT, LDH and triglyceride concentrations were measured over 14 days. For both human and porcine cultures, the best results were obtained with SF-3 medium. Cells cultivated with Williams' E medium and FCS had good morphology and synthetic function during the first days of culture. However, continued addition of serum, was associated with a subsequent loss of differentiated phenotype. Addition of fibronectin was associated with improved function in cultures maintained in SF-3 medium whilst biomatrix had no effect. In contrast, addition of fibronectin did not influence cultures maintained in Williams' E medium, but cultures with biomatrix were associated with improved function at longer time points.
Collapse
|
21
|
Maguire T, Novik E, Schloss R, Yarmush M. Alginate-PLL microencapsulation: effect on the differentiation of embryonic stem cells into hepatocytes. Biotechnol Bioeng 2006; 93:581-91. [PMID: 16345081 DOI: 10.1002/bit.20748] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The emergence of hepatocyte based clinical and pharmaceutical technologies, has been limited by the absence of a stable hepatocyte cell source. Embryonic stem cells may represent a potential solution to this cell source limitation problem since they are highly proliferative, renewable, and pluripotent. Although many investigators have described techniques to effectively differentiate stem cells into a variety of mature cell lineages, their practicality is limited by: (1) low yields of fully differentiated cells, (2) absence of large scale processing considerations, and (3) ineffective downstream enrichment protocols. Thus, a differentiation platform that may be modified to induce and sustain differentiated cell function and scaled to increase differentiated cell yield would improve current stem cell differentiation strategies. Microencapsulation provides a vehicle for the discrete control of key cell culture parameters such as the diffusion of growth factors, metabolites, and wastes. In addition, both cell seeding density and bead composition may be manipulated. In order to assess the feasibility of directing stem cell differentiation via microenvironment regulation, we have developed a murine embryonic stem cell (ES) alginate poly-l-lysine microencapsulation hepatocyte differentiation system. Our results indicate that the alginate microenvironment maintains cell viability, is conducive to ES cell differentiation, and maintains differentiated cellular function. This system may ultimately assist in developing scalable stem cell differentiation strategies.
Collapse
Affiliation(s)
- Tim Maguire
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
22
|
|