1
|
Duignan KM, Luu H, Delgado JH, London S, Ratzan RM. Drowning incidents precipitated by unusual causes (DIPUCs): A narrative review of their diagnoses, evaluation and management. Resusc Plus 2024; 20:100770. [PMID: 39309751 PMCID: PMC11415818 DOI: 10.1016/j.resplu.2024.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Drowning is a cause of significant morbidity and mortality worldwide. In most circumstances, the proximate cause is attributable to human factors, such as inexperience, fatigue, intoxication, or hazardous water conditions. The phenomenon of drowning incidents precipitated by unusual circumstances (DIPUCs) - either fatal or nonfatal - involving otherwise healthy individuals under generally safe conditions has not been comprehensively addressed in the medical and drowning literature to date. In this review, we discuss etiologies of DIPUCs, diagnostic clues, suggested workup, suggested postmortem testing, and implications for surviving patients and families. Identifying the cause of a drowning incident can be extremely challenging for the initially treating physician, relying perforce on historical context, environmental clues, physical exam, medical history, eyewitness accounts or video recordings. If no clear explanation for a drowning incident emerges despite a thorough investigation, clinicians should consider some of the less common diagnoses we describe in this paper, and, when appropriate, refer for an autopsy with postmortem molecular genetic testing. While time-consuming, these efforts can prove life-saving for some non-fatal drowning victims and the families of all victims of DIPUCs.
Collapse
Affiliation(s)
- Kevin M. Duignan
- University of Connecticut School of Medicine, Emergency Medicine Residency, MC 1930, 263 Farmington Ave., Farmington, CT 06030-1930, United States
| | - Hannah Luu
- University of Connecticut School of Medicine, Emergency Medicine Residency, MC 1930, 263 Farmington Ave., Farmington, CT 06030-1930, United States
| | - João H. Delgado
- Hartford Hospital, 80 Seymour St, Hartford, CT 06102, United States
| | - Shawn London
- Hartford Hospital, 80 Seymour St, Hartford, CT 06102, United States
| | | |
Collapse
|
2
|
Langan Y, Lynn E. The incidence of sudden unexpected death in epilepsy (SUDEP) in the Republic of Ireland. Seizure 2024; 122:34-38. [PMID: 39316942 DOI: 10.1016/j.seizure.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND The incidence of sudden unexpected death in epilepsy (SUDEP) in Ireland has previously been studied in only a small geographical area. Our aim was to calculate an incidence rate for the whole of the Republic of Ireland in 2019. METHODS All deaths referred to the coroner in 2019 were examined. Those with a history of possible epilepsy were noted and subjected to a more detailed assessment. Cases fulfilling the definition of definite SUDEP were identified. The incidence of SUDEP was calculated using the population of the Republic of Ireland in 2019 and the known prevalence of epilepsy in Ireland. RESULTS Thirty-three cases of definite SUDEP were identified in the Republic of Ireland in 2019. The estimated incidence of SUDEP in the epilepsy population as a whole was 0.7/1000(0.46 - 0.94) person years. This may be a conservative estimate. More men than women were identified, and most individuals were found dead at home. SUDEP was mentioned on the death certificate in only 52 % of cases. CONCLUSION This is the first nationwide study of SUDEP incidence in Ireland and provides an incidence rate in keeping with other populations. This work demonstrates that the interrogation of coronial records is a useful way to monitor epilepsy mortality albeit with certain limitations.
Collapse
Affiliation(s)
- Yvonne Langan
- Department of Clinical Neurophysiology, St James's Hospital, Dublin 8, Ireland; Department of Clinical Medicine, Trinity College Dublin, Ireland.
| | - Ena Lynn
- Health Research Board, Dublin 2, Ireland.
| |
Collapse
|
3
|
Furia F, Rigby CS, Scheffer IE, Allen N, Baker K, Hengsbach C, Kegele J, Goss J, Gorman K, Mala MI, Nicita F, Allan T, Spalice A, Weber Y, Rubboli G, Møller RS, Gardella E. Early mortality in STXBP1-related disorders. Neurol Sci 2024:10.1007/s10072-024-07783-3. [PMID: 39392525 DOI: 10.1007/s10072-024-07783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Pathogenic variants in STXBP1 cause a spectrum of disorders mainly consisting of developmental and epileptic encephalopathy (DEE), often featuring drug-resistant epilepsy. An increased mortality risk occurs in individuals with drug-resistant epilepsy and DEE, with sudden unexpected death in epilepsy (SUDEP) often the major cause of death. This study aimed to identify the rate and causes of mortality in STXBP1-related disorders. METHODS Through an international call, we analyzed data on individuals with STXBP1 pathogenic variants, who passed away from causes related to their disease. RESULTS We estimated a mortality rate of 3.2% (31/966), based on the STXBP1 Foundation and the STXBP1 Global Connect registry. In total, we analyzed data on 40 individuals (23 males) harboring pathogenic STXBP1 variants, collected from different centers worldwide. They died at a median age of 13 years (range: 11 months-46 years). The most common cause of death was SUDEP (36%), followed by pulmonary infections and respiratory complications (33%). The incidence of SUDEP peaked in mid-childhood, while non-SUDEP causes were more frequent in early childhood or adulthood (p = 0.006). In the most severe phenotypes, death was related to non-SUDEP causes (p = 0.018). CONCLUSION We found a mortality rate in STXBP1-related disorders similar to other DEEs, with an early age at death and SUDEP as well as pulmonary infections as the main cause of death. These findings assist in prognostic evaluation and genetic counseling for the families. They help to define the mortality risk of STXBP1-related disorders and implement preventative strategies.
Collapse
Affiliation(s)
- Francesca Furia
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center, Member of the European Reference Network EpiCARE, University of Southern Denmark, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | | | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Florey Institute and Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Nicholas Allen
- Department of Paediatrics, University of Galway, Galway, Ireland
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K
| | - Christian Hengsbach
- Department of Neurology and Epileptology, Hertie Institute of Clinical Brain Research, University of Tubingen, Tubingen, Germany
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute of Clinical Brain Research, University of Tubingen, Tubingen, Germany
| | | | - Kathleen Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Misra-Isrie Mala
- Department of Human Genetics, Clinical Genetics Section, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Functional Genomics, Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam UMC, Amsterdam, Netherlands
| | - Francesco Nicita
- Unit of Neuromuscolar and Neurodegenerative Disorders, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Talia Allan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Florey Institute and Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Alberto Spalice
- Department of Maternal Sciences, Pediatric Division, Sapienza University, Rome, Italy
| | - Yvonne Weber
- Department of Epileptology, Neurology, University RWTH Aachen, Aachen, Germany
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center, Member of the European Reference Network EpiCARE, University of Southern Denmark, Dianalund, Denmark
- Department of Neurology, Danish Epilepsy Center, Member of the European Reference Network EpiCARE, Dianalund, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center, Member of the European Reference Network EpiCARE, University of Southern Denmark, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center, Member of the European Reference Network EpiCARE, University of Southern Denmark, Dianalund, Denmark.
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark.
- Department of Neurophysiology, Danish Epilepsy Center, Member of the European Reference Network EpiCARE, Dianalund, Denmark.
| |
Collapse
|
4
|
Vega JL, Karim N, Hall C. Sudden unexpected atraumatic arterial dissection-related death after seizures. Seizure 2024; 123:43-48. [PMID: 39490004 DOI: 10.1016/j.seizure.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND To date, it has been assumed that acute seizures which arise in the context of sudden, spontaneous, atraumatic, acute, arterial dissections (SAAADs) are downstream consequences of the dissections driven by syncope or focal brain lesions (FBLs). As this subject has not been formally investigated, likely due to its rarity, we reviewed published case reports (CRs) to examine the veracity of this assumption. METHODS We included CR describing patients diagnosed with both acute seizures and arterial dissections in order to ascertain the temporal sequence between acute seizures and typical SAAAD symptoms. In addition, we quantified the frequency with which hypotension, bradycardia, and FBLs are associated with acute seizures in such cases. RESULTS We found 45 published CRs, six (13.3%) of which involved traumatic arterial dissections and 39 (86.7%) which involved SAAADs. Of the latter, twenty-one (53.8%) described seizures that followed typical SAAAD symptoms (SAFO), and 18 (46.2%) that preceded all such symptoms (SATO). On average, blood pressure and heart rate for both groups exceeded the normal range. Of the CRs that included magnetic resonance imaging (MRI) scans, 8 (100%) SAFO but only 6 (54.5%) SATO patients demonstrated FBLs (p<0.03). A conspicuously large fraction of SATO patients had known epilepsy compared with SAFO patients, (33.3% vs 4.8%; p<0.02). In addition, SATO epilepsy patients' seizure semiologies frequently resembled their breakthrough seizures (BTS). The most common SAAAD associated with acute seizures was aortic dissection (AoD; 17/45; 37.8%). Nine CRs (20%) described patients who died soon after presentation, seven of which were associated with AoDs, including one epilepsy patient. Six of these seven AoDs occurred in patients who suffered from chronic hypertension (CHTN). All five deaths in the SATO group followed first ever seizures (FES) [four AoDs and one coronary artery dissection (CoAD)]. CONCLUSION Acute seizures arising in the context of SAAADs are not necessarily associated with hypotension or FBLs, and frequently appear to precede the associated dissections. These results suggest that seizures could act as triggers for SAAADs. In addition, sudden unexpected atraumatic acute arterial dissection-related death after seizure (SUADAS) might be a distinct cause of sudden death in epilepsy patients.
Collapse
Affiliation(s)
- Jose L Vega
- Teleneurología SAS, Carrera 43A 27A Sur 86, Suite 166, Envigado, Colombia; East Carolina University Medical Center, 2100 Stantonsburg Road, Greenville, NC 27834, United States.
| | - Nurose Karim
- East Carolina University Medical Center, 2100 Stantonsburg Road, Greenville, NC 27834, United States.
| | - Caroline Hall
- East Carolina University Medical Center, 2100 Stantonsburg Road, Greenville, NC 27834, United States
| |
Collapse
|
5
|
Shlobin NA, Thijs RD, Benditt DG, Zeppenfeld K, Sander JW. Sudden death in epilepsy: the overlap between cardiac and neurological factors. Brain Commun 2024; 6:fcae309. [PMID: 39355001 PMCID: PMC11443455 DOI: 10.1093/braincomms/fcae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
People with epilepsy are at risk of premature death, of which sudden unexpected death in epilepsy (SUDEP), sudden cardiac death (SCD) and sudden arrhythmic death syndrome (SADS) are the primary, partly overlapping, clinical scenarios. We discuss the epidemiologies, risk factors and pathophysiological mechanisms for these sudden death events. We reviewed the existing evidence on sudden death in epilepsy. Classification of sudden death depends on the presence of autopsy and expertise of the clinician determining aetiology. The definitions of SUDEP, SCD and SADS lead to substantial openings for overlap. Seizure-induced arrhythmias constitute a minority of SUDEP cases. Comorbid cardiovascular conditions are the primary determinants of increased SCD risk in chronic epilepsy. Genetic mutations overlap between the states, yet whether these are causative, associated or incidentally present is often unclear. Risk stratification for sudden death in people with epilepsy requires a multidisciplinary approach, including a review of clinical history, toxicological analysis and complete autopsy with histologic and, preferably, genetic examination. We recommend pursuing genetic testing of relatives of people with epilepsy who died suddenly, mainly if a post-mortem genetic test contained a Class IV/V (pathogenic/likely pathogenic) gene variant. Further research may allow more precise differentiation of SUDEP, SCD and SADS and the development of algorithms for risk stratification and preventative strategies.
Collapse
Affiliation(s)
- Nathan A Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- UCL Queen Square Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, London WC1N 3BG, UK
| | - David G Benditt
- Cardiac Arrhythmia and Syncope Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- UCL Queen Square Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Scheffer IE, Zuberi S, Mefford HC, Guerrini R, McTague A. Developmental and epileptic encephalopathies. Nat Rev Dis Primers 2024; 10:61. [PMID: 39237642 DOI: 10.1038/s41572-024-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Developmental and epileptic encephalopathies, the most severe group of epilepsies, are characterized by seizures and frequent epileptiform activity associated with developmental slowing or regression. Onset typically occurs in infancy or childhood and includes many well-defined epilepsy syndromes. Patients have wide-ranging comorbidities including intellectual disability, psychiatric features, such as autism spectrum disorder and behavioural problems, movement and musculoskeletal disorders, gastrointestinal and sleep problems, together with an increased mortality rate. Problems change with age and patients require substantial support throughout life, placing a high psychosocial burden on parents, carers and the community. In many patients, the aetiology can be identified, and a genetic cause is found in >50% of patients using next-generation sequencing technologies. More than 900 genes have been identified as monogenic causes of developmental and epileptic encephalopathies and many cell components and processes have been implicated in their pathophysiology, including ion channels and transporters, synaptic proteins, cell signalling and metabolism and epigenetic regulation. Polygenic risk score analyses have shown that common variants also contribute to phenotypic variability. Holistic management, which encompasses antiseizure therapies and care for multimorbidities, is determined both by epilepsy syndrome and aetiology. Identification of the underlying aetiology enables the development of precision medicines to improve the long-term outcome of patients with these devastating diseases.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
- Florey and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Sameer Zuberi
- Paediatric Neurosciences Research Group, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Paediatric Neurosciences, Royal Hospital for Children, Glasgow, UK
| | - Heather C Mefford
- Center for Paediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
7
|
Watkins L, Henning O, Bassett P, Ashby S, Tromans S, Shankar R. Epilepsy professionals' views on sudden unexpected death in epilepsy counselling: A tale of two countries. Eur J Neurol 2024; 31:e16375. [PMID: 38837829 PMCID: PMC11295158 DOI: 10.1111/ene.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/30/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND AND PURPOSE Sudden unexpected death in epilepsy (SUDEP) is a leading cause of epilepsy mortality. All international guidance strongly advocates for clinicians working with people with epilepsy (PWE) to discuss SUDEP. Clinician views working with PWE in the UK and Norway on SUDEP counselling are compared. METHODS A cross-sectional online mixed methodology survey of 17 Likert and free-text response questions using validated themes was circulated via International League against Epilepsy/Epilepsy Specialist Nurses Association in the UK and International League against Epilepsy/Epilepsinet in Norway using a non-discriminatory exponential snowballing technique leading to non-probability sampling. Quantitative data were analysed using descriptive statistics and Mann-Whitney, Kruskal-Wallis, chi-squared and Fisher's exact tests. Significance was accepted at p < 0.05. Thematic analysis was conducted on free-text responses. RESULTS Of 309 (UK 197, Norway 112) responses, UK clinicians were more likely to have experienced an SUDEP (p < 0.001), put greater importance on SUDEP communication (p < 0.001), discuss SUDEP with all PWE particularly new patients (p < 0.001), have access and refer to bereavement support (p < 0.001) and were less likely to never discuss SUDEP (p < 0.001). Significant differences existed between both countries' neurologists and nurses in SUDEP counselling with UK clinicians generally being more supportive. UK responders were more likely to be able to identify bereavement support (p < 0.001). Thematic analysis highlighted four shared themes and two specific to Norwegians. DISCUSSION Despite all international guidelines stating the need/importance to discuss SUDEP with all PWE there remain hesitation, avoidance and subjectivity in clinicians having SUDEP-related conversations, more so in Norway than the UK. Training and education are required to improve communication, engagement and decision making.
Collapse
Affiliation(s)
- Lance Watkins
- University of South WalesPontypriddUK
- Swansea Bay University Health BoardPort TalbotUK
- Cornwall Intellectual Disability Equitable Research (CIDER)University of Plymouth Peninsula School of MedicineTruroUK
| | - Oliver Henning
- National Epilepsy CenterOslo University HospitalOsloNorway
| | | | | | - Samuel Tromans
- SAPPHIRE Group, Department of Population Health SciencesUniversity of LeicesterLeicesterUK
- Adult Learning Disability ServiceLeicestershire Partnership NHS TrustLeicesterUK
| | - Rohit Shankar
- Cornwall Intellectual Disability Equitable Research (CIDER)University of Plymouth Peninsula School of MedicineTruroUK
- Cornwall Intellectual Disability Equitable Research (CIDER)Cornwall Partnership NHS Foundation TrustTruroUK
| |
Collapse
|
8
|
Gu J, Shao W, Liu L, Wang Y, Yang Y, Zhang Z, Wu Y, Xu Q, Gu L, Zhang Y, Shen Y, Zhao H, Zeng C, Zhang H. Challenges and future directions of SUDEP models. Lab Anim (NY) 2024; 53:226-243. [PMID: 39187733 DOI: 10.1038/s41684-024-01426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with epilepsy, causing a global public health burden. The underlying mechanisms of SUDEP remain elusive, and effective prevention or treatment strategies require further investigation. A major challenge in current SUDEP research is the lack of an ideal model that maximally mimics the human condition. Animal models are important for revealing the potential pathogenesis of SUDEP and preventing its occurrence; however, they have potential limitations due to species differences that prevent them from precisely replicating the intricate physiological and pathological processes of human disease. This Review provides a comprehensive overview of several available SUDEP animal models, highlighting their pros and cons. More importantly, we further propose the establishment of an ideal model based on brain-computer interfaces and artificial intelligence, hoping to offer new insights into potential advancements in SUDEP research. In doing so, we hope to provide valuable information for SUDEP researchers, offer new insights into the pathogenesis of SUDEP and open new avenues for the development of strategies to prevent SUDEP.
Collapse
Affiliation(s)
- JiaXuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - WeiHui Shao
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - LeYuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - YuanLi Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - HaiTing Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - HongHai Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Lin S, Schwartz TH, Pitt GS. Sudden Unexpected Death in Epilepsy: Respiratory vs. Cardiac Contributions. Cardiovasc Res 2024:cvae170. [PMID: 39110639 DOI: 10.1093/cvr/cvae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/08/2024] [Accepted: 08/06/2024] [Indexed: 10/20/2024] Open
Abstract
Sudden Unexpected Death in Epilepsy (SUDEP) poses a significant risk to life expectancy for individuals with epilepsy. Mechanistic insight, while incomplete, has advanced through clinical observational studies and animal models. Yet we lack preventative therapies, which will depend on understanding SUDEP mechanisms. Recurrent convulsive seizures are the major SUDEP risk factor. Cardiorespiratory dysfunction precedes SUDEP, but whether cardiac arrhythmias are major proximate culprits for SUDEP remains to be determined. Here, we highlight recent data from mouse models and clinical studies that provide increasing support for respiratory depression and decreasing evidence for tachyarrhythmia-induced SUDEP. Further, we review data from genetic and chemoconvulsant mouse models that have enabled a deeper understanding for how seizures initiated in the central nervous system propagate to the autonomic nervous system and drive seizure-induced respiratory depression and subsequent SUDEP, rather than supporting a proximate cardiac arrhythmia cause. Ongoing research will continue to identify predictive SUDEP biomarkers, improve animal models, and translate basic research into precision medicine approaches. Identifying and understanding the brainstem circuits vulnerable in seizure-induced apnea will enable therapeutic interventions, to enhance the quality of life and life expectancy for individuals with epilepsy.
Collapse
Affiliation(s)
- Susan Lin
- Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Theodore H Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York-Presbyterian Hospital, New York, New York, USA
| | - Geoffrey S Pitt
- Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021
| |
Collapse
|
10
|
Osmani WA, Gallo A, Tabor M, Eilbes M, Cook-Snyder DR, Hodges MR. Repeated seizure-induced brainstem neuroinflammation contributes to post-ictal ventilatory control dysfunction. Front Physiol 2024; 15:1413479. [PMID: 39175614 PMCID: PMC11339535 DOI: 10.3389/fphys.2024.1413479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Patients with epilepsy face heightened risk of post-ictal cardiorespiratory suppression and sudden unexpected death in epilepsy (SUDEP). Studies have shown that neuroinflammation, mediated by the activation of microglia and astrocytes, may be a cause or consequence of seizure disorders. Kcnj16 (Kir5.1) knockout rats (SS kcnj16-/- ) are susceptible to repeated audiogenic seizures and recapitulate features of human SUDEP, including post-ictal ventilatory suppression, which worsens with repeated seizures and seizure-induced mortality. In this study, we tested the hypothesis that repeated seizures cause neuroinflammation within key brainstem regions that contribute to the control of breathing. Audiogenic seizures were elicited once/day for up to 10 days in groups of adult male SS kcnj16-/- rats, from which frozen brainstem biopsies of the pre-Bötzinger complex/nucleus ambiguus (preBötC/NA), Bötzinger complex (BötC), and raphe magnus (RMg) regions were subjected to a cytokine array. Several cytokines/chemokines, including IL-1α and IL-1ß, were increased selectively in preBötC/NA after 3 or 5 days of seizures with fewer changes in other regions tested. In additional groups of male SS kcnj16-/- rats that underwent repeated seizures, we quantified microglial (IBA-1+) cell counts and morphology, specifically within the preBötC/NA region, and showed increased microglial cell counts, area, and volume consistent with microglial activation. To further test the role of inflammation in physiological responses to seizures and seizure-related mortality, additional groups of SS kcnj16-/- rats were treated with anakinra (IL-1R antagonist), ketoprofen (non-selective COX inhibitor), or saline for 3 days before and up to 10 days of seizures (1/day), and breathing was measured before, during, and after each seizure. Remarkably, IL-1R antagonism mitigated changes in post-ictal ventilatory suppression on days 7-10 but failed to prevent seizure-related mortality, whereas ketoprofen treatment exacerbated post-ictal ventilatory suppression compared to other treatment groups but prevented seizure-related mortality. These data demonstrate neuroinflammation and microglial activation within the key brainstem region of respiratory control following repeated seizures, which may functionally but differentially contribute to the pathophysiological consequences of repeated seizures.
Collapse
Affiliation(s)
- Wasif A. Osmani
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alexander Gallo
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Madeline Tabor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melissa Eilbes
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Denise R. Cook-Snyder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
11
|
Verrier RL, Schachter SC. The Epileptic Heart Syndrome: Epidemiology, pathophysiology and clinical detection. Epilepsy Behav Rep 2024; 27:100696. [PMID: 39184194 PMCID: PMC11342885 DOI: 10.1016/j.ebr.2024.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Population studies report elevated incidence of cardiovascular events in patients with chronic epilepsy. Multiple pathophysiologic processes have been implicated, including accelerated atherosclerosis, myocardial infarction, altered autonomic tone, heart failure, atrial and ventricular arrhythmias, and hyperlipidemia. These deleterious influences on the cardiovascular system have been attributed to seizure-induced surges in catecholamines and hypoxemic damage to the heart and coronary vasculature. Certain antiseizure medications can accelerate heart disease through enzyme-inducing increases in plasma lipids and/or increasing risk for life-threatening ventricular arrhythmias as a result of sodium channel blockade. In this review, we propose that this suite of pathophysiologic processes constitutes "The Epileptic Heart Syndrome." We further propose that this condition can be diagnosed using standard electrocardiography, echocardiography, and lipid panels. The ultimate goal of this syndromic approach is to evaluate cardiac risk in patients with chronic epilepsy and to promote improved diagnostic strategies to reduce premature cardiac death.
Collapse
Affiliation(s)
- Richard L. Verrier
- Departments of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Steven C. Schachter
- Departments of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, United States
- Department of Neurology, Massachusetts General Hospital, 125 Nashua Street, Suite #324, Boston, MA 02114, United States
| |
Collapse
|
12
|
Vilella L, Miyake CY, Chaitanya G, Hampson JP, Omidi SJ, Ochoa-Urrea M, Talavera B, Mancera O, Hupp NJ, Hampson JS, Rani MRS, Lacuey N, Tao S, Sainju RK, Friedman D, Nei M, Scott CA, Gehlbach B, Schuele SU, Ogren JA, Harper RM, Diehl B, Bateman LM, Devinsky O, Richerson GB, Zhang GQ, Lhatoo SD. Incidence and Types of Cardiac Arrhythmias in the Peri-Ictal Period in Patients Having a Generalized Convulsive Seizure. Neurology 2024; 103:e209501. [PMID: 38870452 DOI: 10.1212/wnl.0000000000209501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Generalized convulsive seizures (GCSs) are the main risk factor of sudden unexpected death in epilepsy (SUDEP), which is likely due to peri-ictal cardiorespiratory dysfunction. The incidence of GCS-induced cardiac arrhythmias, their relationship to seizure severity markers, and their role in SUDEP physiopathology are unknown. The aim of this study was to analyze the incidence of seizure-induced cardiac arrhythmias, their association with electroclinical features and seizure severity biomarkers, as well as their specific occurrences in SUDEP cases. METHODS This is an observational, prospective, multicenter study of patients with epilepsy aged 18 years and older with recorded GCS during inpatient video-EEG monitoring for epilepsy evaluation. Exclusion criteria were status epilepticus and an obscured video recording. We analyzed semiologic and cardiorespiratory features through video-EEG (VEEG), electrocardiogram, thoracoabdominal bands, and pulse oximetry. We investigated the presence of bradycardia, asystole, supraventricular tachyarrhythmias (SVTs), premature atrial beats, premature ventricular beats, nonsustained ventricular tachycardia (NSVT), atrial fibrillation (Afib), ventricular fibrillation (VF), atrioventricular block (AVB), exaggerated sinus arrhythmia (ESA), and exaggerated sinus arrhythmia with bradycardia (ESAWB). A board-certified cardiac electrophysiologist diagnosed and classified the arrhythmia types. Bradycardia, asystole, SVT, NSVT, Afib, VF, AVB, and ESAWB were classified as arrhythmias of interest because these were of SUDEP pathophysiology value. The main outcome was the occurrence of seizure-induced arrhythmias of interest during inpatient VEEG monitoring. Moreover, yearly follow-up was conducted to identify SUDEP cases. Binary logistic generalized estimating equations were used to determine clinical-demographic and peri-ictal variables that were predictive of the presence of seizure-induced arrhythmias of interest. The z-score test for 2 population proportions was used to test whether the proportion of seizures and patients with postconvulsive ESAWB or bradycardia differed between SUDEP cases and survivors. RESULTS This study includes data from 249 patients (mean age 37.2 ± 23.5 years, 55% female) who had 455 seizures. The most common arrhythmia was ESA, with an incidence of 137 of 382 seizures (35.9%) (106/224 patients [47.3%]). There were 50 of 352 seizure-induced arrhythmias of interest (14.2%) in 41 of 204 patients (20.1%). ESAWB was the commonest in 22 of 394 seizures (5.6%) (18/225 patients [8%]), followed by SVT in 18 of 397 seizures (4.5%) (17/228 patients [7.5%]). During follow-up (48.36 ± 31.34 months), 8 SUDEPs occurred. Seizure-induced bradycardia (3.8% vs 12.5%, z = -16.66, p < 0.01) and ESAWB (6.6% vs 25%; z = -3.03, p < 0.01) were over-represented in patients who later died of SUDEP. There was no association between arrhythmias of interest and seizure severity biomarkers (p > 0.05). DISCUSSION Markers of seizure severity are not related to seizure-induced arrhythmias of interest, suggesting that other factors such as occult cardiac abnormalities may be relevant for their occurrence. Seizure-induced ESAWB and bradycardia were more frequent in SUDEP cases, although this observation was based on a very limited number of SUDEP patients. Further case-control studies are needed to evaluate the yield of arrhythmias of interest along with respiratory changes as potential SUDEP biomarkers.
Collapse
Affiliation(s)
- Laura Vilella
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Christina Y Miyake
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Ganne Chaitanya
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Johnson P Hampson
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Shirin Jamal Omidi
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Manuela Ochoa-Urrea
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Blanca Talavera
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Oscar Mancera
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Norma J Hupp
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Jaison S Hampson
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - M R Sandhya Rani
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Nuria Lacuey
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Shiqiang Tao
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Rup K Sainju
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Daniel Friedman
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Maromi Nei
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Catherine A Scott
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Brian Gehlbach
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Stephan U Schuele
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Jennifer A Ogren
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Ronald M Harper
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Beate Diehl
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Lisa M Bateman
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Orrin Devinsky
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - George B Richerson
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Guo-Qiang Zhang
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Samden D Lhatoo
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| |
Collapse
|
13
|
Valdrighi A, Laze J, Farooque P, Friedman D, Devinsky O, Singhal N, Hegde M. The influence of risk factors, biomarkers and care settings on SUDEP counseling. Epilepsy Behav 2024; 156:109845. [PMID: 38788665 DOI: 10.1016/j.yebeh.2024.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Although sudden unexpected death in epilepsy (SUDEP) is the most feared epilepsy outcome, there is a dearth of SUDEP counseling provided by neurologists. This may reflect limited time, as well as the lack of guidance on the timing and structure for counseling. We evaluated records from SUDEP cases to examine frequency of inpatient and outpatient SUDEP counseling, and whether counseling practices were influenced by risk factors and biomarkers, such as post-ictal generalized EEG suppression (PGES). We found a striking lack of SUDEP counseling despite modifiable SUDEP risk factors; counseling was limited to outpatients despite many patients having inpatient visits within a year of SUDEP. PGES was inconsistently documented and was never included in counseling. There is an opportunity to greatly improve SUDEP counseling by utilizing inpatient settings and prompting algorithms incorporating risk factors and biomarkers.
Collapse
Affiliation(s)
- Alexandria Valdrighi
- Department of Neurology, University of California San Francisco, 505 Parnassus Ave Box 0114, San Francisco, CA 94143, United States.
| | - Juliana Laze
- Department of Neurology, NYU Langone Medical Center, 223 East 34th Street, New York, NY 10016, United States.
| | - Pue Farooque
- Department of Neurology, NYU Langone Medical Center, 223 East 34th Street, New York, NY 10016, United States.
| | - Daniel Friedman
- Department of Neurology, NYU Langone Medical Center, 223 East 34th Street, New York, NY 10016, United States.
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Medical Center, 223 East 34th Street, New York, NY 10016, United States.
| | - Nilika Singhal
- Department of Neurology, University of California San Francisco, 505 Parnassus Ave Box 0114, San Francisco, CA 94143, United States.
| | - Manu Hegde
- Department of Neurology, University of California San Francisco, 505 Parnassus Ave Box 0114, San Francisco, CA 94143, United States.
| |
Collapse
|
14
|
Makino Y, Kojima M, Inokuchi G, Motomura A, Arai N, Inoue H, Kabasawa H, Iwase H, Yajima D. Two medicolegal autopsy cases of multinodular and vacuolating neuronal tumor revealed by postmortem MRI. Leg Med (Tokyo) 2024; 69:102342. [PMID: 37914604 DOI: 10.1016/j.legalmed.2023.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
The multinodular and vacuolating neuronal tumor (MVNT) is a recently recognized brain lesion. MVNT has a characteristic appearance in MRI images and is potentially epileptogenic. To the best of our knowledge, no report has yet described this pathological entity in the forensic medicine literature. We present two medicolegal autopsy cases where postmortem MRI (PMMR) was useful to detect this lesion. Case 1: a man in his 30s, with about a 7-year history of intractable epilepsy and known MVNT died suddenly. Although MVNT was not detected in the initial morphological evaluation during autopsy, PMMR of the formalin-fixed brain revealed the lesion in the left frontal lobe. Histopathology confirmed it as a MVNT. Case 2: a man in his 20s hanged himself to death. PMMR prior to autopsy revealed MVNT in his brain, and the diagnosis was confirmed by a detailed histopathological evaluation. In both cases, postmortem CT was not useful for evaluation. The cases suggested that MVNT can cause sudden, unexpected epileptic death, and pre- or post-autopsy PMMR may be useful to detect it.
Collapse
Affiliation(s)
- Yohsuke Makino
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan; Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan.
| | - Masatoshi Kojima
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Go Inokuchi
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Ayumi Motomura
- Department of Forensic Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Japan
| | - Nobutaka Arai
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Hiroyuki Inoue
- Department of Forensic Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Japan
| | - Hiroyuki Kabasawa
- Department of Radiological Sciences, International University of Health and Welfare, 4-3 Kozunomori, Narita, Japan
| | - Hirotaro Iwase
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan; Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Daisuke Yajima
- Department of Forensic Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Japan
| |
Collapse
|
15
|
Chatterjee S, Singh S, Kumar Kar S, Shankar R. Knowledge, attitudes and practices of psychiatrists in India regarding sudden unexpected death in epilepsy (SUDEP) and seizure-related harm. Epilepsy Behav Rep 2024; 27:100686. [PMID: 39114442 PMCID: PMC11305211 DOI: 10.1016/j.ebr.2024.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024] Open
Abstract
Sudden unexpected death in Epilepsy (SUDEP) is one of the leading causes of death in people with epilepsy (PWE). Awareness and taking adequate preventive measures are pivotal to reducing SUDEP. Nearly 80% of PWE live in lower-middle-income countries (LMICs) such as India where for many, epilepsy management is by psychiatrists. To evaluate the knowledge, attitude and practices of Indian psychiatrists on SUDEP and seizure risk. A cross-sectional online survey of 12 Likert response questions using validated themes, was circulated among Indian Psychiatric Society members. Non-discriminatory exponential snowballing technique leading to convenience non-probability sampling was used. The inquiry involved SUDEP-related topics including the need for and importance of counselling. Descriptive statistics and the chi-square test were used for analysis. The psychiatrists responding (n = 134) were likely to be males (72.4 %), urban (94 %) and affiliated to academic institutions (76.1 %). Nearly all saw PWE monthly with over half (54 %) seeing more than 10. Nearly two-third (64.17 %) did not counsel PWE regarding SUDEP, due to fear of raising concerns in caregivers/family (33.3 %), patients (38.9 %) or lack of time (35.6 %), though 37 % had lost patients due to SUDEP. Over two-third (66.7 %) agreed risk counselling was important. Barriers included fear of raising concerns, limited time, and training. A strong need for national SUDEP guidelines (89 %) and suitable training (75.4 %) was expressed. Though epilepsy care is provided by a considerable number of psychiatrists, there is a poor understanding of SUDEP. Enhancing the awareness and understanding of SUDEP is likely to enhance epilepsy care.
Collapse
Affiliation(s)
- Surobhi Chatterjee
- Department of Psychiatry, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Shivangini Singh
- Cornwall Intellectual Disability Equitable Research (CIDER), University of Plymouth Peninsula School of Medicine, Truro, UK
| | - Sujita Kumar Kar
- Department of Psychiatry, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Rohit Shankar
- Cornwall Intellectual Disability Equitable Research (CIDER), University of Plymouth Peninsula School of Medicine, Truro, UK
- Cornwall Intellectual Disability Equitable Research (CIDER) Cornwall Partnership NHS Foundation Trust, Truro, UK
| |
Collapse
|
16
|
Shlobin NA, Sander JW, Thijs RD. The need for autopsy in all young people dying suddenly including those with epilepsy. Europace 2024; 26:euae163. [PMID: 38867571 PMCID: PMC11212307 DOI: 10.1093/europace/euae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024] Open
Affiliation(s)
- Nathan A Shlobin
- Department of Neurosurgery, Neurological Institute of New York, New York Presbyterian Hospital—Columbia University Irving Medical Center, New York, NY, USA
- Stichting Epilepsie Instellingen Nederland (SEIN), P.O. Box 540, 2130 AM Heemstede, Netherlands
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, London, UK
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), P.O. Box 540, 2130 AM Heemstede, Netherlands
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, London, UK
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), P.O. Box 540, 2130 AM Heemstede, Netherlands
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, London, UK
- Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| |
Collapse
|
17
|
Wartmann H, Effenberger T, Klähn H, Volmer T, Surges R. [Incidence of sudden death in epilepsy (SUDEP): update and limitations]. DER NERVENARZT 2024; 95:544-552. [PMID: 38252160 PMCID: PMC11178670 DOI: 10.1007/s00115-023-01595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Sudden unexpected death in epilepsy (SUDEP) is in most cases probably due to a fatal complication of tonic-clonic seizures and plays a significant role in the premature mortality of individuals with epilepsy. The reported risks of SUDEP vary considerably depending on the study population, so that an up-dated systematic review of SUDEP incidence including most recent studies is required to improve the estimated SUDEP risk and the counseling of individuals with epilepsy. OBJECTIVE To provide an overview of the current research landscape concerning SUDEP incidence across different patient populations and discuss potential conclusions and existing limitations. MATERIAL AND METHODS A systematic literature review on SUDEP incidence was conducted in MEDLINE and EMBASE, supplemented by a manual search in June 2023. Out of a total of 3324 publications, 50 were reviewed for this study. RESULTS The analyzed studies showed significant heterogeneity concerning cohorts, study design and data sources. Studies conducted without specific criteria and relying on comprehensive registers indicated an incidence of 0.78-1.2 per 1000 patient-years. Research providing incidences across various age groups predominantly show an increase with age, peaking in middle age. DISCUSSION Due to varying methods of data collection and incidence calculation, comparing between studies is challenging. The association with age might be due to an underrepresentation of children, adolescents and patients over 60 years. CONCLUSION Considering all age groups and types of epilepsy it is estimated that about 1 in 1000 individuals with epilepsy dies of SUDEP annually. With an assumed epilepsy prevalence of 0.6% in Germany, this could lead to more than one SUDEP case daily. Standardization of research methods is essential to gain more profound insights.
Collapse
Affiliation(s)
| | | | | | - Timm Volmer
- SmartStep Data Institute GmbH, Hamburg, Deutschland
| | - Rainer Surges
- Klinik und Poliklinik für Epileptologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland.
| |
Collapse
|
18
|
Vogrig A, Bellizzi F, Burini A, Gigli GL, Girardi L, Honnorat J, Valente M. Sudden unexpected death in epilepsy and ictal asystole in patients with autoimmune encephalitis: a systematic review. Neurol Sci 2024; 45:2811-2823. [PMID: 38194197 PMCID: PMC11081980 DOI: 10.1007/s10072-023-07280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE As autoimmune encephalitis (AE) often involves the mesial temporal structures which are known to be involved in both sudden unexpected death in epilepsy (SUDEP) and ictal asystole (IA), it may represent a good model to study the physiopathology of these phenomena. Herein, we systematically reviewed the occurrence of SUDEP and IA in AE. METHODS We searched 4 databases (MEDLINE, Scopus, Embase, and Web of Science) for studies published between database inception and December 20, 2022, according to the PRISMA guidelines. We selected articles reporting cases of definite/probable/possible/near-SUDEP or IA in patients with possible/definite AE, or with histopathological signs of AE. RESULTS Of 230 records assessed, we included 11 cases: 7 SUDEP/near-SUDEP and 4 IA. All patients with IA were female. The median age at AE onset was 30 years (range: 15-65), and the median delay between AE onset and SUDEP was 11 months; 0.9 months for IA. All the patients presented new-onset seizures, and 10/11 also manifested psychiatric, cognitive, or amnesic disorders. In patients with SUDEP, 2/7 were antibody-positive (1 anti-LGI1, 1 anti-GABABR); all IA cases were antibody-positive (3 anti-NMDAR, 1 anti-GAD65). Six patients received steroid bolus, 3 intravenous immunoglobulin, and 3 plasmapheresis. A pacemaker was implanted in 3 patients with IA. The 6 survivors improved after treatment. DISCUSSION SUDEP and IA can be linked to AE, suggesting a role of the limbic system in their pathogenesis. IA tends to manifest in female patients with temporal lobe seizures early in AE, highlighting the importance of early diagnosis and treatment.
Collapse
Affiliation(s)
- Alberto Vogrig
- Clinical Neurology, Department of Medicine (DAME), University of Udine, Udine, Italy.
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Piazzale Santa Maria della Misericordia, 15, 33010, Udine, Italy.
| | - Fabrizio Bellizzi
- Clinical Neurology, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Alessandra Burini
- Clinical Neurology, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gian Luigi Gigli
- Clinical Neurology, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Luca Girardi
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
| | - Jérôme Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospital for Neurology and Neurosurgery Pierre Wertheimer, Lyon University Hospital, Lyon, France
- MeLiS Institute - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Mariarosaria Valente
- Clinical Neurology, Department of Medicine (DAME), University of Udine, Udine, Italy
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Piazzale Santa Maria della Misericordia, 15, 33010, Udine, Italy
| |
Collapse
|
19
|
Abdullahi A, Etoom M, Badaru UM, Elibol N, Abuelsamen AA, Alawneh A, Zakari UU, Saeys W, Truijen S. Vagus nerve stimulation for the treatment of epilepsy: things to note on the protocols, the effects and the mechanisms of action. Int J Neurosci 2024; 134:560-569. [PMID: 36120993 DOI: 10.1080/00207454.2022.2126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Epilepsy is a chronic brain disorder that is characterized by repetitive un-triggered seizures that occur severally within 24 h or more. Non-pharmacological methods for the management of epilepsy were discussed. The non-pharmacological methods include the vagus nerve stimulation (VNS) which is subdivided into invasive and non-invasive techniques. For the non-invasive techniques, the auricular VNS, stimulation of the cervical branch of vagus nerve in the neck, manual massage of the neck, and respiratory vagal nerve stimulation were discussed. Similarly, the stimulation parameters used and the mechanisms of actions through which VNS improves seizures were also discussed. Use of VNS to reduce seizure frequency has come a long way. However, considering the cost and side effects of the invasive method, non-invasive techniques should be given a renewed attention. In particular, respiratory vagal nerve stimulation should be considered. In doing this, the patients should for instance carry out slow-deep breathing exercise 6 to 8 times every 3 h during the waking hours. Slow-deep breathing can be carried out by the patients on their own; therefore this can serve as a form of self-management.HIGHLIGHTSEpilepsy can interfere with the patients' ability to carry out their daily activities and ultimately affect their quality of life.Medications are used to manage epilepsy; but they often have their serious side effects.Vagus nerve stimulation (VNS) is gaining ground especially in the management of refractory epilepsy.The VNS is administered through either the invasive or the non-invasive methodsThe invasive method of VNS like the medication has potential side effects, and can be costly.The non-invasive method includes auricular VNS, stimulation of the neck muscles and skin and respiratory vagal nerve stimulation via slow-deep breathing exercises.The respiratory vagal nerve stimulation via slow-deep breathing exercises seems easy to administer even by the patients themselves.Consequently, it is our opinion that patients with epilepsy be made to carry out slow-deep breathing exercise 6-8 times every 3 h during the waking hours.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Physiotherapy, Bayero University Kano, Nigeria
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| | - Mohammad Etoom
- Department of Physiotherapy, Aqaba University of Technology, Aqaba, Jordan
| | | | - Nuray Elibol
- Department of Physiotherapy and Rehabilitation Sciences, Ege University, Izmir, Turkey
| | | | - Anoud Alawneh
- Department of Physiotherapy, Aqaba University of Technology, Aqaba, Jordan
| | - Usman Usman Zakari
- Department of Physiotherapy, Federal Medical Center, Birnin Kudu, Jigawa State, Nigeria
| | - Wim Saeys
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| | - Steven Truijen
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
20
|
Aschner A, Keller A, Williams A, Whitney R, Cunningham K, Hamilton RM, Pollanen M, Donner E. Cardiac arrhythmia and epilepsy genetic variants in sudden unexpected death in epilepsy. Front Neurol 2024; 15:1386730. [PMID: 38756210 PMCID: PMC11097959 DOI: 10.3389/fneur.2024.1386730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Sudden Unexpected Death in Epilepsy (SUDEP) is the leading epilepsy-related cause of death, affecting approximately 1 per 1,000 individuals with epilepsy per year. Genetic variants that affect autonomic function, such as genes associated with cardiac arrhythmias, may predispose people with epilepsy to greater risk of both sudden cardiac death and SUDEP. Advances in next generation sequencing allow for the exploration of gene variants as potential biomarkers. Methods Genetic testing for the presence of cardiac arrhythmia and epilepsy gene variants was performed via genetic panels in 39 cases of SUDEP identified via autopsy by the Ontario Forensic Pathology Service. Variants were summarized by in-silico evidence for pathogenicity from 4 algorithms (SIFT, PolyPhen-2, PROVEAN, Mutation Taster) and allele frequencies in the general population (GnomAD). A maximum credible population allele frequency of 0.00004 was calculated based on epilepsy prevalence and SUDEP incidence to assess whether a variant was compatible with a pathogenic interpretation. Results Median age at the time of death was 33.3 years (range: 2, 60). Fifty-nine percent (n=23) were male. Gene panels detected 62 unique variants in 45 genes: 19 on the arrhythmia panel and 26 on the epilepsy panel. At least one variant was identified in 28 (72%) of decedents. Missense mutations comprised 57 (92%) of the observed variants. At least three in silico models predicted 12 (46%) cardiac arrhythmia panel missense variants and 20 (65%) epilepsy panel missense variants were pathogenic. Population allele frequencies were <0.00004 for 11 (42%) of the cardiac variants and 10 (32%) of the epilepsy variants. Together, these metrics identified 13 SUDEP variants of interest. Discussion Nearly three-quarters of decedents in this SUDEP cohort carried variants in comprehensive epilepsy or cardiac arrhythmia gene panels, with more than a third having variants in both panels. The proportion of decedents with cardiac variants aligns with recent studies of the disproportionate cardiac burden the epilepsy community faces compared to the general population and suggests a possible cardiac contribution to epilepsy mortality. These results identified 13 priority targets for future functional studies of these genes potential role in sudden death and demonstrates the necessity for further exploration of potential genetic contributions to SUDEP.
Collapse
Affiliation(s)
- Amir Aschner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Anne Keller
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Andrew Williams
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robyn Whitney
- McMaster Children’s Hospital, McMaster University, Hamilton, ON, Canada
| | - Kris Cunningham
- Department of Pathology and Molecular Medicine, School of Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Robert M. Hamilton
- Division of Cardiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael Pollanen
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Donner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Shah RA, Chahal CAA, Ranjha S, Sharaf Dabbagh G, Asatryan B, Limongelli I, Khanji M, Ricci F, De Paoli F, Zucca S, Tristani-Firouzi M, St Louis EK, So EL, Somers VK. Cardiovascular Disease Burden, Mortality, and Sudden Death Risk in Epilepsy: A UK Biobank Study. Can J Cardiol 2024; 40:688-695. [PMID: 38013064 DOI: 10.1016/j.cjca.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Sudden death is the leading cause of mortality in medically refractory epilepsy. Middle-aged persons with epilepsy (PWE) are under investigated regarding their mortality risk and burden of cardiovascular disease (CVD). METHODS Using UK Biobank, we identified 7786 (1.6%) participants with diagnoses of epilepsy and 6,171,803 person-years of follow-up (mean 12.30 years, standard deviation 1.74); 566 patients with previous histories of stroke were excluded. The 7220 PWE comprised the study cohort with the remaining 494,676 without epilepsy as the comparator group. Prevalence of CVD was determined using validated diagnostic codes. Cox proportional hazards regression was used to assess all-cause mortality and sudden death risk. RESULTS Hypertension, coronary artery disease, heart failure, valvular heart disease, and congenital heart disease were more prevalent in PWE. Arrhythmias including atrial fibrillation/flutter (12.2% vs 6.9%; P < 0.01), bradyarrhythmias (7.7% vs 3.5%; P < 0.01), conduction defects (6.1% vs 2.6%; P < 0.01), and ventricular arrhythmias (2.3% vs 1.0%; P < 0.01), as well as cardiac implantable electric devices (4.6% vs 2.0%; P < 0.01) were more prevalent in PWE. PWE had higher adjusted all-cause mortality (hazard ratio [HR], 3.9; 95% confidence interval [CI], 3.01-3.39), and sudden death-specific mortality (HR, 6.65; 95% CI, 4.53-9.77); and were almost 2 years younger at death (68.1 vs 69.8; P < 0.001). CONCLUSIONS Middle-aged PWE have increased all-cause and sudden death-specific mortality and higher burden of CVD including arrhythmias and heart failure. Further work is required to elucidate mechanisms underlying all-cause mortality and sudden death risk in PWE of middle age, to identify prognostic biomarkers and develop preventative therapies in PWE.
Collapse
Affiliation(s)
- Ravi A Shah
- London North West University Healthcare NHS Trust, London, United Kingdom
| | - C Anwar A Chahal
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA; WellSpan Center for Inherited Cardiovascular Diseases, WellSpan Health, York, Pennsylvania, USA.
| | | | - Ghaith Sharaf Dabbagh
- WellSpan Center for Inherited Cardiovascular Diseases, WellSpan Health, York, Pennsylvania, USA; Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Babken Asatryan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Mohammed Khanji
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | | | | | - Erik K St Louis
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA; Mayo Center for Sleep Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Elson L So
- Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA; Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Ito Y, Hata N, Maesawa S, Tanei T, Ishizaki T, Mutoh M, Hashida M, Kobayashi Y, Saito R. Characteristics of deceased subjects transported to a postmortem imaging center due to unusual death related to epilepsy. Epilepsia Open 2024; 9:592-601. [PMID: 38173171 PMCID: PMC10984304 DOI: 10.1002/epi4.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Patients with epilepsy have high risk of experiencing uncommon causes of death. This study aimed to evaluate patients who underwent unusual deaths related to epilepsy and identify factors that may contribute to these deaths and may also include sudden unexpected death in epilepsy (SUDEP). METHODS We analyzed 5291 cases in which a postmortem imaging (PMI) study was performed using plane CT, because of an unexplained death. A rapid troponin T assay was performed using peripheral blood samples. Clinical information including the cause of death suspected by the attending physician, body position, place of death, medical history, and antiseizure medications was evaluated. RESULTS A total of 132 (2.6%) patients had an obvious history of epilepsy, while 5159 individuals had no history of epilepsy (97.4%). Cerebrovascular disease was the cause of death in 1.6% of patients in the group with epilepsy, and this was significantly lower than that in the non-epilepsy group. However, drowning was significantly higher (9.1% vs. 4.4%). Unspecified cause of death was significantly more frequent in the epilepsy group (78.0% vs. 57.8%). Furthermore, the proportion of patients who demonstrated elevation of troponin T levels without prior cardiac disease was significantly higher in the epilepsy group (37.9% vs. 31.1%). At discovery of death, prone position was dominant (30.3%), with deaths occurring most commonly in the bedroom (49.2%). No antiseizure medication had been prescribed in 12% of cases, while 29.5% of patients were taking multiple antiseizure medications. SIGNIFICANCE The prevalence of epilepsy in individuals experiencing unusual death was higher than in the general population. Despite PMI studies, no definitive cause of death was identified in a significant proportion of cases. The high troponin T levels may be explained by long intervals between death and examination or by higher incidence of myocardial damage at the time of death. PLAIN LANGUAGE SUMMARY This study investigated unusual deaths in epilepsy patients, analyzing 5291 postmortem imaging cases. The results showed that 132 cases (2.6%) had a clear history of epilepsy. In these cases, only 22% cases were explained after postmortem examination, which is less than in non-epilepsy group (42.2%). Cerebrovascular disease was less common in the epilepsy group, while drowning was more common. Elevated troponin T levels, which suggest possibility of myocardial damage or long intervals between death and examination, were also more frequent in the epilepsy group compared to non-epilepsy group.
Collapse
Affiliation(s)
- Yoshiki Ito
- Department of NeurosurgeryNagoya University School of MedicineNagoyaAichiJapan
- Department of Neurosurgery, Sakura General HospitalAichiJapan
| | - Nobuhiro Hata
- Department of Neurosurgery, Sakura General HospitalAichiJapan
| | - Satoshi Maesawa
- Department of NeurosurgeryNagoya University School of MedicineNagoyaAichiJapan
| | - Takafumi Tanei
- Department of NeurosurgeryNagoya University School of MedicineNagoyaAichiJapan
| | - Tomotaka Ishizaki
- Department of NeurosurgeryNagoya University School of MedicineNagoyaAichiJapan
| | - Manabu Mutoh
- Department of NeurosurgeryNagoya University School of MedicineNagoyaAichiJapan
| | - Miki Hashida
- Department of NeurosurgeryNagoya University School of MedicineNagoyaAichiJapan
| | | | - Ryuta Saito
- Department of NeurosurgeryNagoya University School of MedicineNagoyaAichiJapan
| |
Collapse
|
23
|
Granthon C, Tranberg AE, Malmgren K, Strandberg MC, Kumlien E, Redfors P. Reduced long-term mortality after successful resective epilepsy surgery: a population-based study. J Neurol Neurosurg Psychiatry 2024; 95:249-255. [PMID: 37734927 DOI: 10.1136/jnnp-2023-331417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND We investigated all-cause and epilepsy-related mortality in patients operated with resective epilepsy surgery and in non-operated patients with drug-resistant epilepsy. Our hypothesis was that patients who proceed to surgery have lower mortality over time compared with non-operated patients. METHOD Data from 1329 adults and children from the Swedish National Epilepsy Surgery Register and 666 patients with drug-resistant epilepsy who had undergone presurgical work-up but not been operated were analysed. The operated patients had follow-ups between 2 and 20 years. We used the Swedish Cause of Death Register to identify deaths. Autopsy reports were collected for patients with suspected sudden unexpected death in epilepsy (SUDEP). Kaplan-Meier and Cox regression analyses were performed to identify predictors for mortality and SUDEP. RESULTS SUDEP accounted for 30% of all deaths. Surgery was associated with lower all-cause mortality (HR 0.7, 95% CI 0.5 to 0.9), also when adjusted for age, sex and tonic-clonic seizures at inclusion. The benefit of surgery seemed to persist and possibly even increase after 15 years of follow-up. Risk factors of mortality for operated patients were persisting seizures and living alone. Of the operated patients, 37% had seizures, and these had a higher risk of mortality (HR 2.1, 95% CI 1.4 to 3.0) and SUDEP (HR 3.5, 95% CI 1.7 to 7.3) compared with patients with seizure freedom at last follow-up. CONCLUSIONS In this large population-based epilepsy surgery cohort, operated patients had a lower all-cause mortality compared with non-operated patients with drug-resistant epilepsy. Seizure freedom was the most important beneficial factor for both all-cause mortality and SUDEP among operated patients.
Collapse
Affiliation(s)
- Cecilia Granthon
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Member of the ERN EpiCARE, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Edelvik Tranberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Member of the ERN EpiCARE, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristina Malmgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Member of the ERN EpiCARE, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Eva Kumlien
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Petra Redfors
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Member of the ERN EpiCARE, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
24
|
Peltola J, Surges R, Voges B, von Oertzen TJ. Expert opinion on diagnosis and management of epilepsy-associated comorbidities. Epilepsia Open 2024; 9:15-32. [PMID: 37876310 PMCID: PMC10839328 DOI: 10.1002/epi4.12851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Apart from seizure freedom, the presence of comorbidities related to neurological, cardiovascular, or psychiatric disorders is the largest determinant of a reduced health-related quality of life in people with epilepsy (PwE). However, comorbidities are often underrecognized and undertreated, and clinical management of comorbid conditions can be challenging. The focus of a comprehensive treatment regimen should maximize seizure control while optimizing clinical management of treatable comorbidities to improve a person's quality of life and overall health. A panel of four European epileptologists with expertise in their respective fields of epilepsy-related comorbidities combined the latest available scientific evidence with clinical expertise and collaborated to provide consensus practical advice to improve the identification and management of comorbidities in PwE. This review provides a critical evaluation for the diagnosis and management of sleep-wake disorders, cardiovascular diseases, cognitive dysfunction, and depression in PwE. Whenever possible, clinical data have been provided. The PubMed database was the main search source for the literature review. The deleterious pathophysiological processes underlying neurological, cardiovascular, or psychiatric comorbidities in PwE interact with the processes responsible for generating seizures to increase cerebral and physiological dysfunction. This can increase the likelihood of developing drug-resistant epilepsy; therefore, early identification of comorbidities and intervention is imperative. The practical evidence-based advice presented in this article may help clinical neurologists and other specialist physicians responsible for the care and management of PwE.
Collapse
Affiliation(s)
- Jukka Peltola
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Department of NeurologyTampere University HospitalTampereFinland
| | - Rainer Surges
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Berthold Voges
- Department of Neurology, Epilepsy Center HamburgProtestant Hospital AlsterdorfHamburgGermany
| | - Tim J. von Oertzen
- Medical FacultyJohannes Kepler UniversityLinzAustria
- Department of Neurology 1, Neuromed CampusKepler University HospitalLinzAustria
| |
Collapse
|
25
|
Gargano MA, Matentzoglu N, Coleman B, Addo-Lartey EB, Anagnostopoulos A, Anderton J, Avillach P, Bagley AM, Bakštein E, Balhoff JP, Baynam G, Bello SM, Berk M, Bertram H, Bishop S, Blau H, Bodenstein DF, Botas P, Boztug K, Čady J, Callahan TJ, Cameron R, Carbon S, Castellanos F, Caufield JH, Chan LE, Chute C, Cruz-Rojo J, Dahan-Oliel N, Davids JR, de Dieuleveult M, de Souza V, de Vries BBA, de Vries E, DePaulo JR, Derfalvi B, Dhombres F, Diaz-Byrd C, Dingemans AJM, Donadille B, Duyzend M, Elfeky R, Essaid S, Fabrizzi C, Fico G, Firth HV, Freudenberg-Hua Y, Fullerton JM, Gabriel DL, Gilmour K, Giordano J, Goes FS, Moses RG, Green I, Griese M, Groza T, Gu W, Guthrie J, Gyori B, Hamosh A, Hanauer M, Hanušová K, He Y(O, Hegde H, Helbig I, Holasová K, Hoyt CT, Huang S, Hurwitz E, Jacobsen JOB, Jiang X, Joseph L, Keramatian K, King B, Knoflach K, Koolen DA, Kraus M, Kroll C, Kusters M, Ladewig MS, Lagorce D, Lai MC, Lapunzina P, Laraway B, Lewis-Smith D, Li X, Lucano C, Majd M, Marazita ML, Martinez-Glez V, McHenry TH, McInnis MG, McMurry JA, Mihulová M, Millett CE, Mitchell PB, Moslerová V, Narutomi K, Nematollahi S, Nevado J, Nierenberg AA, Čajbiková NN, Nurnberger JI, Ogishima S, Olson D, Ortiz A, Pachajoa H, Perez de Nanclares G, Peters A, Putman T, Rapp CK, Rath A, Reese J, Rekerle L, Roberts A, Roy S, Sanders SJ, Schuetz C, Schulte EC, Schulze TG, Schwarz M, Scott K, Seelow D, Seitz B, Shen Y, Similuk MN, Simon ES, Singh B, Smedley D, Smith CL, Smolinsky JT, Sperry S, Stafford E, Stefancsik R, Steinhaus R, Strawbridge R, Sundaramurthi JC, Talapova P, Tenorio Castano JA, Tesner P, Thomas RH, Thurm A, Turnovec M, van Gijn ME, Vasilevsky NA, Vlčková M, Walden A, Wang K, Wapner R, Ware JS, Wiafe AA, Wiafe SA, Wiggins LD, Williams AE, Wu C, Wyrwoll MJ, Xiong H, Yalin N, Yamamoto Y, Yatham LN, Yocum AK, Young AH, Yüksel Z, Zandi PP, Zankl A, Zarante I, Zvolský M, Toro S, Carmody LC, Harris NL, Munoz-Torres MC, Danis D, Mungall CJ, Köhler S, Haendel MA, Robinson PN. The Human Phenotype Ontology in 2024: phenotypes around the world. Nucleic Acids Res 2024; 52:D1333-D1346. [PMID: 37953324 PMCID: PMC10767975 DOI: 10.1093/nar/gkad1005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.
Collapse
Affiliation(s)
| | | | - Ben Coleman
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | | | - Joel Anderton
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Anita M Bagley
- Shriners Children's Northern California, Sacramento, CA, USA
| | - Eduard Bakštein
- National Institute of Mental Health, Klecany, Czech Republic
| | - James P Balhoff
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Gareth Baynam
- Rare Care Centre, Perth Children's Hospital, Perth, Australia
| | | | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Holli Bertram
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Somer Bishop
- Department of Psychiatry and Behavioral Sciences, UCSF Weil Institute for Neuroscience, San Francisco, CA, USA
| | - Hannah Blau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - David F Bodenstein
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Jolana Čady
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| | - Tiffany J Callahan
- Department of Biomedical Informatics, Columbia University Irving Medical Center, NY, NY, USA
| | | | - Seth J Carbon
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - J Harry Caufield
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lauren E Chan
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Christopher G Chute
- Schools of Medicine, Public Health, and Nursing, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jaime Cruz-Rojo
- UDISGEN (Dysmorphology and Genetics Unit), 12 de Octubre Hospital, Madrid, Spain
| | - Noémi Dahan-Oliel
- Department of Clinical Research, Shriners Hospitals for Children, Montreal, Quebec, Canada
| | - Jon R Davids
- Shriners Children's Northern California, Sacramento, CA, USA
| | - Maud de Dieuleveult
- Département I&D, AP-HP, Banque Nationale de Données Maladies Rares, Paris, France
| | - Vinicius de Souza
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Beata Derfalvi
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Ferdinand Dhombres
- Fetal Medicine Department, Armand Trousseau Hospital, Sorbonne University, GRC26, INSERM, Limics, Paris, France
| | - Claudia Diaz-Byrd
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bruno Donadille
- St Antoine Hospital, Reference Center for Rare Growth Endocrine Disorders, Sorbonne University, AP-HP, INSERM, US14 - Orphanet, Plateforme Maladies Rares, Paris, France
| | | | - Reem Elfeky
- Department of Immunology, GOS Hospital for Children NHS Foundation Trust, University College London, London, UK
| | - Shahim Essaid
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Giovanna Fico
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Helen V Firth
- Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Yun Freudenberg-Hua
- Department of Psychiatry, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | | | - Davera L Gabriel
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Jessica Giordano
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rachel Gore Moses
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian Green
- SNOMED International, London W2 6BD, UK
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, German center for Lung research (DZL), Munich, Germany
| | - Tudor Groza
- Rare Care Centre, Perth Children's Hospital, Perth, Australia
| | | | - Julia Guthrie
- Department of Structural and Computational Biology, University of Vienna; Max Perutz Labs, Vienna, Austria
| | - Benjamin Gyori
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Ada Hamosh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Marc Hanauer
- INSERM, US14 - Orphanet, Plateforme Maladies Rares, Paris, France
| | - Kateřina Hanušová
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| | | | - Harshad Hegde
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ingo Helbig
- Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kateřina Holasová
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| | - Charles Tapley Hoyt
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | | | - Eric Hurwitz
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julius O B Jacobsen
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Lisa Joseph
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, Bethesda, MD, USA
| | - Kamyar Keramatian
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Bryan King
- Department of Psychiatry and Behavioral Sciences, UCSF Weil Institute for Neuroscience, San Francisco, CA, USA
| | - Katrin Knoflach
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, German center for Lung research (DZL), Munich, Germany
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Megan L Kraus
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carlo Kroll
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Maaike Kusters
- Immunology, NIHR Great Ormond Street Hospital BRC, London, UK
| | - Markus S Ladewig
- Department of Ophthalmology, University Clinic Marburg - Campus Fulda, Fulda, Germany
| | - David Lagorce
- INSERM, US14 - Orphanet, Plateforme Maladies Rares, Paris, France
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Pablo Lapunzina
- Institute of Medical and Molecular Genetics, Hospital Univ. La Paz, Madrid, Spain
| | - Bryan Laraway
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Henry Wellcome Building, Framlington Place, Newcastle University, Newcastle-Upon-Tyne NE14LP, UK
| | | | - Caterina Lucano
- INSERM, US14 - Orphanet, Plateforme Maladies Rares, Paris, France
| | - Marzieh Majd
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor Martinez-Glez
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Toby H McHenry
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Julie A McMurry
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michaela Mihulová
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Caitlin E Millett
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Philip B Mitchell
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Veronika Moslerová
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Kenji Narutomi
- Okinawa Prefectural Nanbu Medical Center & Children's Medical Center
| | - Shahrzad Nematollahi
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | - Julian Nevado
- Institute of Medical and Molecular Genetics, Hospital Univ. La Paz, Madrid, Spain
| | - Andrew A Nierenberg
- Dauten Family Center for Bipolar Treatment Innovation, Massachusetts General Hospital, Boston, MA, USA
| | - Nikola Novák Čajbiková
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - John I Nurnberger
- Stark Neurosciences Research Institute, Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Daniel Olson
- Data Collaboration Center, Data Science, Critical Path Institute, Tucson, AZ, USA
| | - Abigail Ortiz
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Harry Pachajoa
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
| | - Guiomar Perez de Nanclares
- Molecular (epi) genetics lab, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Amy Peters
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Tim Putman
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christina K Rapp
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, German center for Lung research (DZL), Munich, Germany
| | - Ana Rath
- INSERM, US14 - Orphanet, Plateforme Maladies Rares, Paris, France
| | - Justin Reese
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lauren Rekerle
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Angharad M Roberts
- National Heart & Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, London W12 0HS, UK
| | - Suzy Roy
- SNOMED International, London W2 6BD, UK
| | - Stephan J Sanders
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Catharina Schuetz
- Universitätsklinikum Carl Gustav Carus, Medizinische Fakultät, TU, Dresden, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Thomas G Schulze
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Martin Schwarz
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Katie Scott
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Dominik Seelow
- Exploratory Diagnostic Sciences, Berliner Institut für Gesundheitsforschung - Charité, Berlin, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg/Saar, Germany
| | | | - Morgan N Similuk
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric S Simon
- Eisenberg Family Depression Center, University of Michigan, Ann Arbor, MI, USA
| | - Balwinder Singh
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Jake T Smolinsky
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Sarah Sperry
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | | - Ray Stefancsik
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Robin Steinhaus
- Exploratory Diagnostic Sciences, Berliner Institut für Gesundheitsforschung - Charité, Berlin, Germany
| | - Rebecca Strawbridge
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Polina Talapova
- Institute for Research and Health Policy Studies, Tufts Medicine, Boston, MA 2111, USA
| | | | - Pavel Tesner
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Henry Wellcome Building, Framlington Place, Newcastle University, Newcastle-Upon-Tyne NE14LP, UK
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, Bethesda, MD, USA
| | - Marek Turnovec
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marielle E van Gijn
- Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| | | | - Markéta Vlčková
- Department of Biology and Medical Genetics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Anita Walden
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kai Wang
- Chinese HPO Consortium, Beijing, China
| | - Ron Wapner
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - James S Ware
- National Heart & Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, London W12 0HS, UK
| | | | | | - Lisa D Wiggins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Andrew E Williams
- Institute for Research and Health Policy Studies, Tufts Medicine, Boston, MA 2111, USA
| | - Chen Wu
- Chinese HPO Consortium, Beijing, China
| | - Margot J Wyrwoll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Hui Xiong
- Chinese HPO Consortium, Beijing, China
| | - Nefize Yalin
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Yasunori Yamamoto
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Japan
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Anastasia K Yocum
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Allan H Young
- Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London & South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, London SE5 8AF, UK
| | - Zafer Yüksel
- Department of Human Genetics, Bioscientia Healthcare GmbH, Ingelheim, Germany
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andreas Zankl
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Ignacio Zarante
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Miroslav Zvolský
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| | - Sabrina Toro
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leigh C Carmody
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Nomi L Harris
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Monica C Munoz-Torres
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel Danis
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Christopher J Mungall
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Melissa A Haendel
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| |
Collapse
|
26
|
Smith J, Richerson G, Kouchi H, Duprat F, Mantegazza M, Bezin L, Rheims S. Are we there yet? A critical evaluation of sudden and unexpected death in epilepsy models. Epilepsia 2024; 65:9-25. [PMID: 37914406 DOI: 10.1111/epi.17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Although animal models have helped to elaborate meaningful hypotheses about the pathophysiology of sudden and unexpected death in epilepsy (SUDEP), specific prevention strategies are still lacking, potentially reflecting the limitations of these models and the intrinsic difficulties of investigating SUDEP. The interpretation of preclinical data and their translation to diagnostic and therapeutic developments in patients thus require a high level of confidence in their relevance to model the human situation. Preclinical models of SUDEP are heterogeneous and include rodent and nonrodent species. A critical aspect is whether the animals have isolated seizures exclusively induced by a specific trigger, such as models where seizures are elicited by electrical stimulation, pharmacological intervention, or DBA mouse strains, or whether they suffer from epilepsy with spontaneous seizures, with or without spontaneous SUDEP, either of nongenetic epilepsy etiology or from genetically based developmental and epileptic encephalopathies. All these models have advantages and potential disadvantages, but it is important to be aware of these limitations to interpret data appropriately in a translational perspective. The majority of models with spontaneous seizures are of a genetic basis, whereas SUDEP cases with a genetic basis represent only a small proportion of the total number. In almost all models, cardiorespiratory arrest occurs during the course of the seizure, contrary to that in patients observed at the time of death, potentially raising the issue of whether we are studying models of SUDEP or models of periseizure death. However, some of these limitations are impossible to avoid and can in part be dependent on specific features of SUDEP, which may be difficult to model. Several preclinical tools are available to address certain gaps in SUDEP pathophysiology, which can be used to further validate current preclinical models.
Collapse
Affiliation(s)
- Jonathon Smith
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - George Richerson
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Hayet Kouchi
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - Fabrice Duprat
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| | - Massimo Mantegazza
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| | - Laurent Bezin
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| |
Collapse
|
27
|
Misirocchi F, Vaudano AE, Florindo I, Zinno L, Zilioli A, Mannini E, Parrino L, Mutti C. Imaging biomarkers of sleep-related hypermotor epilepsy and sudden unexpected death in epilepsy: a review. Seizure 2024; 114:70-78. [PMID: 38088013 DOI: 10.1016/j.seizure.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, imaging has emerged as a promising source of several intriguing biomarkers in epilepsy, due to the impressive growth of imaging technology, supported by methodological advances and integrations of post-processing techniques. Bearing in mind the mutually influencing connection between sleep and epilepsy, we focused on sleep-related hypermotor epilepsy (SHE) and sudden unexpected death in epilepsy (SUDEP), aiming to make order and clarify possible clinical utility of emerging multimodal imaging biomarkers of these two epilepsy-related entities commonly occurring during sleep. Regarding SHE, advanced structural techniques might soon emerge as a promising source of diagnostic and predictive biomarkers, tailoring a targeted therapeutic (surgical) approach for MRI-negative subjects. Functional and metabolic imaging may instead unveil SHE's extensive and night-related altered brain networks, providing insights into distinctions and similarities with non-epileptic sleep phenomena, such as parasomnias. SUDEP is considered a storm that strikes without warning signals, but objective subtle structural and functional alterations in autonomic, cardiorespiratory, and arousal centers are present in patients eventually experiencing SUDEP. These alterations could be seen both as susceptibility and diagnostic biomarkers of the underlying pathological ongoing loop ultimately ending in death. Finally, given that SHE and SUDEP are rare phenomena, most evidence on the topic is derived from small single-center experiences with scarcely comparable results, hampering the possibility of performing any meta-analytic approach. Multicenter, longitudinal, well-designed studies are strongly encouraged.
Collapse
Affiliation(s)
| | - Anna Elisabetta Vaudano
- Neurology Unit, OCB Hospital, AOU Modena, Modena, Italy; Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Irene Florindo
- Neurology Unit, University Hospital of Parma, Parma, Italy
| | - Lucia Zinno
- Neurology Unit, University Hospital of Parma, Parma, Italy
| | | | - Elisa Mannini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Liborio Parrino
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Neurology Unit, University Hospital of Parma, Parma, Italy; Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy.
| | - Carlotta Mutti
- Neurology Unit, University Hospital of Parma, Parma, Italy; Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| |
Collapse
|
28
|
Buerki SE, Haas C, Neubauer J. Exome analysis focusing on epilepsy-related genes in children and adults with sudden unexplained death. Seizure 2023; 113:66-75. [PMID: 37995443 DOI: 10.1016/j.seizure.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
PURPOSE Genetic studies in sudden infant death syndrome (SIDS) and sudden unexplained death (SUD) cohorts have indicated that cardiovascular diseases might have contributed to sudden unexpected death in 20-35 % of autopsy-negative cases. Sudden unexpected death can also occur in people with epilepsy, termed as sudden unexpected death in epilepsy (SUDEP). The pathophysiological mechanisms of SUDEP are not well understood, but are likely multifactorial, including seizure-induced hypoventilation and arrhythmias as well as genetic risk factors. The sudden death of some of the SIDS/SUD victims might also be explained by genetic epilepsy, therefore this study aimed to expand the post-mortem genetic analysis of SIDS/SUD cases to epilepsy-related genes. METHODS Existing whole-exome sequencing data from our 155 SIDS and 45 SUD cases were analyzed, with a focus on 365 epilepsy-related genes. Nine of the SUD victims had a known medical history of epilepsy, seizures or other underlying neurological conditions and were therefore classified as SUDEP cases. RESULTS In our SIDS and SUD cohorts, we found epilepsy-related pathogenic/likely pathogenic variants in the genes OPA1, RAI1, SCN3A, SCN5A and TSC2. CONCLUSION Post-mortem analysis of epilepsy-related genes identified potentially disease-causing variants that might have contributed to the sudden death events in our SIDS/SUD cases. However, the interpretation of identified variants remains challenging and often changes over time as more data is gathered. Overall, this study contributes insight in potentially pathophysiological epilepsy-related mechanisms in SIDS, SUD and SUDEP victims and underlines the importance of sensible counselling on the risk and preventive measures in genetic epilepsy.
Collapse
Affiliation(s)
- Sarah E Buerki
- Department of Neuropediatrics, University Children's Hospital Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.
| | | |
Collapse
|
29
|
Brodovskaya A, Sun H, Adotevi N, Wenker IC, Mitchell KE, Clements RT, Kapur J. Neuronal plasticity contributes to postictal death. Prog Neurobiol 2023; 231:102531. [PMID: 37778436 PMCID: PMC10842614 DOI: 10.1016/j.pneurobio.2023.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/07/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Repeated generalized tonic-clonic seizures (GTCSs) are the most critical risk factor for sudden unexpected death in epilepsy (SUDEP). GTCSs can cause fatal apnea. We investigated neuronal plasticity mechanisms that precipitate postictal apnea and seizure-induced death. Repeated seizures worsened behavior, precipitated apnea, and enlarged active neuronal circuits, recruiting more neurons in such brainstem nuclei as periaqueductal gray (PAG) and dorsal raphe, indicative of brainstem plasticity. Seizure-activated neurons are more excitable and have enhanced AMPA-mediated excitatory transmission after a seizure. Global deletion of the GluA1 subunit of AMPA receptors abolishes postictal apnea and seizure-induced death. Treatment with a drug that blocks Ca2+-permeable AMPA receptors also renders mice apnea-free with five-fold better survival than untreated mice. Repeated seizures traffic the GluA1 subunit-containing AMPA receptors to synapses, and blocking this mechanism decreases the probability of postictal apnea and seizure-induced death.
Collapse
Affiliation(s)
| | - Huayu Sun
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Nadia Adotevi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ian C Wenker
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Keri E Mitchell
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Rachel T Clements
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA; UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
30
|
Finsterer J. Sudden Death Is More Likely to Result From SARS-COV-2 Infection Than Multiple Sclerosis. J Korean Med Sci 2023; 38:e393. [PMID: 37967883 PMCID: PMC10643249 DOI: 10.3346/jkms.2023.38.e393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/13/2023] [Indexed: 11/17/2023] Open
|
31
|
Iype M, Anish TS, Saradakutty G, Kunju PM, Sreedharan M, Ahamed SM. Long-term survival and factors associated with mortality among children with infantile epileptic spasms syndrome - A retrospective cohort study. Seizure 2023; 112:18-25. [PMID: 37729722 DOI: 10.1016/j.seizure.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The existing literature indicates a higher risk of mortality among children with Infantile epileptic spasms syndrome (IESS). Our aim was to find the mortality pattern and factors that affect survival among children with IESS. METHODS Children with IESS who had age of onset between one month and 24 months were included. The primary outcome was survival. We used Kaplan-Meier estimates for survival analysis and Cox regression analyses to evaluate possible factors associated with mortality. RESULTS During the follow-up period (120 months), 19/160 children (11.9%) expired. Three children expired in the first week after initiation of ACTH. There were six deaths (3.8%; 31.6% of deaths), within two years. Clinical findings and laboratory investigations revealed the cause of death to be severe pneumonia in ten children. Three died of severe sepsis. Four died due to metabolic crisis and two children died due to probable Sudden unexpected death in epilepsy (SUDEP). On multivariable analysis, mortality was predicted by 'presence of seizures other than spasms' and an inborn error of metabolism (IEM) as the underlying cause. None of the children in the idiopathic group died. CONCLUSION Survival in our single center cohort with IESS was good in comparison to previous studies. Considering that pneumonia and sepsis were the most common cause of mortality that we detected, steps for prevention of sepsis might be worth considering in these children. Presence of seizures other than epileptic spasms, and an IEM should prompt the physician to let the family know that risk of mortality is high.
Collapse
Affiliation(s)
- Mary Iype
- Department of Pediatric Neurology, Government Medical College Trivandrum, Kerala, India.
| | | | - Geetha Saradakutty
- Department of Pediatrics, Government Medical College Konni, Kerala, India
| | - Pa Mohammed Kunju
- Department of Pediatric Neurology, Government Medical College Trivandrum, Kerala, India; KIMS HEALTH, Trivandrum, Kerala, India
| | - Mini Sreedharan
- Department of Pediatric Neurology, Government Medical College Trivandrum, Kerala, India
| | - Shahanaz M Ahamed
- Department of Pediatric Neurology, Government Medical College Trivandrum, Kerala, India
| |
Collapse
|
32
|
Liu Q, Tan B, Zhang J, Jin Y, Lei P, Wang X, Li M, Jia X, Zhang Q. Premature mortality risk in individuals with convulsive epilepsy: Results from a longitudinal, prospective, population-based study. Epilepsy Res 2023; 197:107243. [PMID: 37839339 DOI: 10.1016/j.eplepsyres.2023.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/02/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE To assess premature mortality and identify associated risk factors among individuals with convulsive epilepsy in resource-poor settings using a longitudinal, prospective, population-based approach. METHOD The study recruited people with convulsive epilepsy who underwent assessment and management of epilepsy at primary healthcare centers in rural Northwest China, including newly diagnosed individuals and previously identified prevalent cases. All participants were confirmed to have epilepsy by neurologists according to strict criteria and were followed up monthly by primary care physicians. Demographic data and cause of death (COD) were obtained from death certificates or verbal autopsies conducted by neurologists, following the International Classification of Diseases, 10th Edition. The standardized mortality ratio (SMR) and proportionate mortality ratio (PMR) for each cause of death were estimated using the Cause-Of-Death Surveillance Dataset of China (2020). Survival analysis was used to identify risk factors associated with all-cause mortality and death directly due to epilepsy. RESULTS During 5.9 years of follow-up with 40,947 person-years, there were 781 (11.2%) deaths among 6967 participants. The risk of premature death in people with convulsive epilepsy was 2.7-fold higher than that in the general population. Young participants had a significantly higher risk (standardized mortality ratio 26.5-52.5) of premature death. The proportionate mortality ratio was higher for cerebrovascular disease (15%), sudden unexpected death in epilepsy (SUDEP) (13.4%), cardiovascular disease (11.7%), status epilepsy (SE) (11.3%), and epilepsy-related accidents (14.0%) than other premature mortality cause of deaths. Additionally, the highest standardized proportional mortality ratio (SPMR) was observed from drowning in all cause of death (10.4, 95% confidence interval [CI]: 7.6-13.8), followed by burning (9.0, 95% CI: 3.7-18.9). Factors that increased the risk of all-cause mortality included male sex, late age of onset, short disease duration, high body mass index, monotherapy, and the frequency of generalized tonic-clonic seizures (GTCS). High frequency of generalized tonic-clonic seizures (> 3 attacks in the last year) was an independent risk factor for premature death directly due to epilepsy (including sudden unexpected death in epilepsy, status epilepsy, and epilepsy-related accidents), while early age of onset (≤ 14 years) and long duration of epilepsy (> 20 years) were independent risk factors for sudden unexpected death in epilepsy. In addition, short duration of epilepsy (≤ 20 years) was an independent risk factor for status epilepsy. CONCLUSIONS This study demonstrated that individuals with poorly controlled seizures are more likely to experience premature death, with most deaths being epilepsy-related and preventable. These findings underline the importance of effective seizure treatment and the potential impact on reducing premature mortality among people with convulsive epilepsy.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan 750004, Ningxia Province, China; Graduate College of Ningxia Medical University, Yinchuan 750004, Ningxia Province, China
| | - Bofei Tan
- Graduate College of Ningxia Medical University, Yinchuan 750004, Ningxia Province, China
| | - Jie Zhang
- Graduate College of Ningxia Medical University, Yinchuan 750004, Ningxia Province, China
| | - Yanzi Jin
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan 750004, Ningxia Province, China
| | - Pingping Lei
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, Ningxia Province, China
| | - Xu Wang
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan 750004, Ningxia Province, China
| | - Mengyun Li
- Graduate College of Ningxia Medical University, Yinchuan 750004, Ningxia Province, China
| | - Xiaodan Jia
- Graduate College of Ningxia Medical University, Yinchuan 750004, Ningxia Province, China
| | - Qing Zhang
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan 750004, Ningxia Province, China.
| |
Collapse
|
33
|
Abstract
Transition of care is the planned, coordinated movement from a child and family environment of pediatrics to a patient centered adult care setting. Epilepsy is a common neurological condition. While seizures remit in a proportion of children, in around 50% of children seizures persist into adulthood. Also, with advances in diagnostics and therapeutics, more children with epilepsy survive into adulthood, and need services of adult neurologists. Clinical guidelines from the American Academy of Pediatrics, American College of Family Physicians and American College of Physicians called for "supporting the healthcare transition from adolescence to adulthood", but this occurs in a minority of patients. There are several challenges to implementing transition of care at the level of the patient and family, pediatric and adult neurologist and with systems of care. Transition needs vary based on the type of epilepsy and epilepsy syndrome and presence of co-morbidities. Transition clinics are essential to effective transfer of care, but implementation remains extremely variable, with a variety of clinics or program structures in countries around the world. There is a need to develop multidisciplinary transition clinics, enhance physician education and establish national guidelines for this important process to be put into practice. Further studies are also needed to develop best practices and assess outcomes of well executed transition programs on epilepsy.
Collapse
Affiliation(s)
- Sujata Kanhere
- Division of Pediatric Neurology, Department of Pediatrics, K.J. Somaiya Medical College, Hospital & Research Centre, Mumbai, Maharashtra, India.
| | - Sucheta M Joshi
- Division of Pediatric Neurology, Department of Pediatrics, University of Michigan, Ann Arbor, USA
| |
Collapse
|
34
|
Senapati SG, Bhanushali AK, Lahori S, Naagendran MS, Sriram S, Ganguly A, Pusa M, Damani DN, Kulkarni K, Arunachalam SP. Mapping of Neuro-Cardiac Electrophysiology: Interlinking Epilepsy and Arrhythmia. J Cardiovasc Dev Dis 2023; 10:433. [PMID: 37887880 PMCID: PMC10607576 DOI: 10.3390/jcdd10100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
The interplay between neurology and cardiology has gained significant attention in recent years, particularly regarding the shared pathophysiological mechanisms and clinical comorbidities observed in epilepsy and arrhythmias. Neuro-cardiac electrophysiology mapping involves the comprehensive assessment of both neural and cardiac electrical activity, aiming to unravel the intricate connections and potential cross-talk between the brain and the heart. The emergence of artificial intelligence (AI) has revolutionized the field by enabling the analysis of large-scale data sets, complex signal processing, and predictive modeling. AI algorithms have been applied to neuroimaging, electroencephalography (EEG), electrocardiography (ECG), and other diagnostic modalities to identify subtle patterns, classify disease subtypes, predict outcomes, and guide personalized treatment strategies. In this review, we highlight the potential clinical implications of neuro-cardiac mapping and AI in the management of epilepsy and arrhythmias. We address the challenges and limitations associated with these approaches, including data quality, interpretability, and ethical considerations. Further research and collaboration between neurologists, cardiologists, and AI experts are needed to fully unlock the potential of this interdisciplinary field.
Collapse
Affiliation(s)
- Sidhartha G. Senapati
- Department of Internal Medicine, Texas Tech University Health and Sciences Center, El Paso, TX 79905, USA; (S.G.S.); (D.N.D.)
| | - Aditi K. Bhanushali
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (A.K.B.); (S.L.)
| | - Simmy Lahori
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (A.K.B.); (S.L.)
| | | | - Shreya Sriram
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Arghyadeep Ganguly
- Department of Internal Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49007, USA;
| | - Mounika Pusa
- Mamata Medical College, Khammam 507002, Telangana, India;
| | - Devanshi N. Damani
- Department of Internal Medicine, Texas Tech University Health and Sciences Center, El Paso, TX 79905, USA; (S.G.S.); (D.N.D.)
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kanchan Kulkarni
- IHU-LIRYC, Heart Rhythm Disease Institute, Fondation Bordeaux Université, Pessac, 33600 Bordeaux, France;
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, U1045, 33000 Bordeaux, France
| | - Shivaram P. Arunachalam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (A.K.B.); (S.L.)
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Manis AD, Cook-Snyder DR, Duffy E, Osmani WA, Eilbes M, Dillard M, Palygin O, Staruschenko A, Hodges MR. Repeated seizures lead to progressive ventilatory dysfunction in SS Kcnj16-/- rats. J Appl Physiol (1985) 2023; 135:872-885. [PMID: 37535709 PMCID: PMC10642517 DOI: 10.1152/japplphysiol.00072.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
Patients with uncontrolled epilepsy experience repeated seizures putting them at increased risk for sudden unexpected death in epilepsy (SUDEP). Data from human patients have led to the hypothesis that SUDEP results from severe cardiorespiratory suppression after a seizure, which may involve pathological deficiencies in the brainstem serotonin (5-HT) system. Rats with a genomic Kcnj16 mutation (SSKcnj16-/- rats) are susceptible to sound-induced generalized tonic-clonic seizures (GTCS) which, when repeated once daily for up to 10 days (10-day seizure protocol), increased mortality, particularly in male rats. Here, we test the hypothesis that repeated seizures across the 10-day protocol will cause a progressive ventilatory dysfunction due to time-dependent 5-HT deficiency. Initial severe seizures led to ictal and postictal apneas and transient decreases in breathing frequency, ventilatory drive, breath-to-breath variability, and brief hypoventilation. These seizure-induced effects on ventilation were exacerbated with increasing seizures and ventilatory chemoreflexes became further impaired after repeated seizures. Tissue analyses of key brainstem regions controlling breathing showed time-dependent 5-HT system suppression and increased immunoreactivity for IBA-1 (microglial marker) without changes in overall cell counts at 3, 7, and 10 days of seizures. Fluoxetine treatment in SSKcnj16-/- rats prevented repeated seizure-induced progressive respiratory suppression but failed to prevent seizure-related mortality. We conclude that repeated seizures cause a progressive compromise of ventilatory control in the immediate postictal period largely mediated by serotonin system suppression in brainstem regions of respiratory control. However, other unknown factors contribute to overall survival following repeated seizures in this model.NEW & NOTEWORTHY This study demonstrated that repeated seizures in a novel rat model (SSKcnj16-/- rats) caused a progressively greater ventilatory dysfunction in the immediate postictal period associated with brainstem serotonin (5-HT) suppression. Augmenting brain 5-HT with a selective serotonin reuptake inhibitor prevented the progressive ventilatory dysfunction induced by repeated seizures but failed to prevent seizure-related mortality, suggesting that repeated seizures may lead to cardiorespiratory suppression and failure through multiple mechanisms.
Collapse
Affiliation(s)
- Anna D Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Denise R Cook-Snyder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Erin Duffy
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Wasif A Osmani
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Melissa Eilbes
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Matthew Dillard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida, United States
- James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
36
|
Liu Q, Tan B, Zhang J, Jin Y, Lei P, Wang X, Li M, Qin Y, Zhang Q. Derivation and validation of a new prediction model for sudden unexpected death in epilepsy based on a longitudinal prospective population-based cohort. Epilepsy Behav 2023; 147:109446. [PMID: 37757716 DOI: 10.1016/j.yebeh.2023.109446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVE We conducted a population-based, prospective cohort study with a large sample size in Ningxia Province of the Northwest, a rural area in China, by developing a model to specifically assess risk factors of sudden unexpected death in epilepsy (SUDEP) in people with convulsive epilepsy by clinical variables. METHODS Participants with convulsive epilepsy were recruited from January 1, 2008, to April 28, 2022, in rural Northwest China. They received regular assessments and management of epilepsy at the primary healthcare level and were followed up monthly. Information on the cause of death and relevant clinical details was obtained from death certificates or neurologist-conducted verbal autopsies. Survival analysis was employed to identify potential risk factors associated with SUDEP. RESULTS Five variables were independently associated with SUDEP: generalized tonic-clonic seizures (GTCS) with ≥1 attack during the preceding month, GTCS with >3 attacks during the preceding year, body mass index (BMI) ≥24, age of onset ≤14 years, and duration >20 years. The area under receiver operator characteristic (ROC) curve (AUC) value (95% CI) of the model was 0.789 (0.735-0.843) in the derivation dataset and 0.830 (0.758-0.902) in the validation dataset. There was agreement between the observed and predicted probabilities of SUDEP. CONCLUSIONS This study establishes that high GTCS frequency, early age of onset, long duration of epilepsy, and being overweight are associated with an increased risk of SUDEP in individuals with convulsive epilepsy. The study also developed and validated a personalized prediction model to accurately assess the risk of SUDEP.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan 750004, Ningxia Province, China; Graduate College of Ningxia Medical University, Yinchuan 750004, Ningxia Province, China
| | - Bofei Tan
- Graduate College of Ningxia Medical University, Yinchuan 750004, Ningxia Province, China
| | - Jie Zhang
- Graduate College of Ningxia Medical University, Yinchuan 750004, Ningxia Province, China
| | - Yanzi Jin
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan 750004, Ningxia Province, China
| | - Pingping Lei
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, Ningxia Province, China
| | - Xu Wang
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan 750004, Ningxia Province, China
| | - Mengyun Li
- Graduate College of Ningxia Medical University, Yinchuan 750004, Ningxia Province, China
| | - Yameng Qin
- Graduate College of Ningxia Medical University, Yinchuan 750004, Ningxia Province, China
| | - Qing Zhang
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan 750004, Ningxia Province, China.
| |
Collapse
|
37
|
Esmaeili B, Hakimian S, Ko AL, Hauptman JS, Ojemann JG, Miller JW, Tobochnik S. Epilepsy-Related Mortality After Laser Interstitial Thermal Therapy in Patients With Drug-Resistant Epilepsy. Neurology 2023; 101:e1359-e1363. [PMID: 37202163 PMCID: PMC10558163 DOI: 10.1212/wnl.0000000000207405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/28/2023] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVES The purpose of this report was to study the incidence of sudden unexpected death in epilepsy (SUDEP) after laser interstitial thermal therapy (LITT) for drug-resistant epilepsy (DRE). METHODS A prospective observational study of consecutive patients treated with LITT between 2013 and 2021 was conducted. The primary outcome was the occurrence of SUDEP during postoperative follow-up. Surgical outcome was classified according to the Engel scale. RESULTS There were 5 deaths, including 4 SUDEPs, among 135 patients with a median follow-up duration of 3.5 (range 0.1-9.0) years and a total of 501.3 person-years at risk. The estimated incidence of SUDEP was 8.0 (95% CI 2.2-20.4) per 1,000 person-years. Three SUDEPs occurred in patients with poor seizure outcomes, whereas 1 patient was seizure-free. Compared with pooled historical data, SUDEP occurred at a higher rate than in cohorts treated with resective surgery and at a rate similar to nonsurgical controls. DISCUSSION SUDEP occurred early and late after mesial temporal LITT. The SUDEP rate was comparable with rates reported in epilepsy surgery candidates who did not receive intervention. These findings reinforce targeting seizure freedom to decrease SUDEP risk, including early consideration for further intervention. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that LITT is not effective in reducing SUDEP incidence in patients with DRE.
Collapse
Affiliation(s)
- Behnaz Esmaeili
- From the Department of Neurology (B.E., S.H., J.W.M.), and Department of Neurosurgery (A.L.K., J.S.H., J.G.O.), University of Washington, Seattle; Department of Neurology (S.T.), Brigham and Women's Hospital, Boston; and Department of Neurology (S.T.), VA Boston Healthcare System, MA.
| | - Shahin Hakimian
- From the Department of Neurology (B.E., S.H., J.W.M.), and Department of Neurosurgery (A.L.K., J.S.H., J.G.O.), University of Washington, Seattle; Department of Neurology (S.T.), Brigham and Women's Hospital, Boston; and Department of Neurology (S.T.), VA Boston Healthcare System, MA
| | - Andrew L Ko
- From the Department of Neurology (B.E., S.H., J.W.M.), and Department of Neurosurgery (A.L.K., J.S.H., J.G.O.), University of Washington, Seattle; Department of Neurology (S.T.), Brigham and Women's Hospital, Boston; and Department of Neurology (S.T.), VA Boston Healthcare System, MA
| | - Jason Scott Hauptman
- From the Department of Neurology (B.E., S.H., J.W.M.), and Department of Neurosurgery (A.L.K., J.S.H., J.G.O.), University of Washington, Seattle; Department of Neurology (S.T.), Brigham and Women's Hospital, Boston; and Department of Neurology (S.T.), VA Boston Healthcare System, MA
| | - Jeffrey G Ojemann
- From the Department of Neurology (B.E., S.H., J.W.M.), and Department of Neurosurgery (A.L.K., J.S.H., J.G.O.), University of Washington, Seattle; Department of Neurology (S.T.), Brigham and Women's Hospital, Boston; and Department of Neurology (S.T.), VA Boston Healthcare System, MA
| | - John W Miller
- From the Department of Neurology (B.E., S.H., J.W.M.), and Department of Neurosurgery (A.L.K., J.S.H., J.G.O.), University of Washington, Seattle; Department of Neurology (S.T.), Brigham and Women's Hospital, Boston; and Department of Neurology (S.T.), VA Boston Healthcare System, MA
| | - Steven Tobochnik
- From the Department of Neurology (B.E., S.H., J.W.M.), and Department of Neurosurgery (A.L.K., J.S.H., J.G.O.), University of Washington, Seattle; Department of Neurology (S.T.), Brigham and Women's Hospital, Boston; and Department of Neurology (S.T.), VA Boston Healthcare System, MA
| |
Collapse
|
38
|
Nadeem MD, Memon S, Qureshi K, Farooq U, Memon UA, Aparna F, Kachhadia MP, Shahzeen F, Ali S, Varrassi G, Kumar L, Kumar S, Kumar S, Khatri M. Seizing the Connection: Exploring the Interplay Between Epilepsy and Glycemic Control in Diabetes Management. Cureus 2023; 15:e45606. [PMID: 37868449 PMCID: PMC10588297 DOI: 10.7759/cureus.45606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Epilepsy, a neurological disorder characterized by recurrent seizures, and diabetes, a metabolic disorder characterized by impaired regulation of glucose levels, are two distinct conditions that may appear unrelated at first glance. Nevertheless, recent scholarly investigations have revealed these entities' intricate and ever-evolving interplay. This review initially delves into the intricate interplay between epilepsy and its potential ramifications on glycemic control. Seizures, particularly those accompanied by convulsive manifestations, have the potential to induce acute perturbations in blood glucose levels via diverse mechanisms, encompassing the liberation of stress hormones, the emergence of insulin resistance, and the dysregulation of the autonomic nervous system. Comprehending these intricate mechanisms is paramount in customizing productive strategies for managing diabetes in individuals with epilepsy. On the contrary, it is worth noting that diabetes can substantially impact the trajectory and control of epilepsy. The correlation between hyperglycemia and an elevated susceptibility to seizures, as well as the potential for exacerbating the intensity of epilepsy, has been established. This narrative review offers a concise exposition of the intricate interplay between epilepsy and glycemic control within diabetes management. The objective of exploring reciprocal influences, underlying mechanisms, and common risk factors is to augment the clinical comprehension of this intricate interconnection. In essence, this acquired knowledge possesses the potential to serve as a guiding compass for healthcare professionals, enabling them to craft bespoke therapeutic approaches that enhance the holistic welfare of individuals grappling with the coexistence of epilepsy and diabetes.
Collapse
Affiliation(s)
| | - Siraj Memon
- Medicine, Liaquat University of Medical & Health Sciences, Jamshoro, PAK
| | - Kashifa Qureshi
- Medicine, Liaquat University of Medical & Health Sciences, Jamshoro, PAK
| | - Umer Farooq
- Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Unaib Ahmed Memon
- Neurology and Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| | - Fnu Aparna
- Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | | | - Fnu Shahzeen
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Sameer Ali
- Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| | | | - Lakshya Kumar
- General Medicine, Pandit Deendayal Upadhyay Medical College, Rajkot, IND
| | - Sumeet Kumar
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Satesh Kumar
- Medicine and Surgery, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, PAK
| | - Mahima Khatri
- Medicine and Surgery, Dow University of Health Sciences, Karachi, PAK
| |
Collapse
|
39
|
Giussani G, Falcicchio G, La Neve A, Costagliola G, Striano P, Scarabello A, Mostacci B, Beghi E. Sudden unexpected death in epilepsy: A critical view of the literature. Epilepsia Open 2023; 8:728-757. [PMID: 36896633 PMCID: PMC10472423 DOI: 10.1002/epi4.12722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a sudden, unexpected, witnessed or unwitnessed, non-traumatic and non-drowning death, occurring in benign circumstances, in an individual with epilepsy, with or without evidence for a seizure and excluding documented status epilepticus in which postmortem examination does not reveal other causes of death. Lower diagnostic levels are assigned when cases met most or all of these criteria, but data suggested more than one possible cause of death. The incidence of SUDEP ranged from 0.09 to 2.4 per 1000 person-years. Differences can be attributed to the age of the study populations (with peaks in the 20-40-year age group) and the severity of the disease. Young age, disease severity (in particular, a history of generalized TCS), having symptomatic epilepsy, and the response to antiseizure medications (ASMs) are possible independent predictors of SUDEP. The pathophysiological mechanisms are not fully known due to the limited data available and because SUDEP is not always witnessed and has been electrophysiologically monitored only in a few cases with simultaneous assessment of respiratory, cardiac, and brain activity. The pathophysiological basis of SUDEP may vary according to different circumstances that make that particular seizure, in that specific moment and in that patient, a fatal event. The main hypothesized mechanisms, which could contribute to a cascade of events, are cardiac dysfunction (included potential effects of ASMs, genetically determined channelopathies, acquired heart diseases), respiratory dysfunction (included postictal arousal deficit for the respiratory mechanism, acquired respiratory diseases), neuromodulator dysfunction, postictal EEG depression and genetic factors.
Collapse
Affiliation(s)
- Giorgia Giussani
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Giovanni Falcicchio
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | - Angela La Neve
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | | | - Pasquale Striano
- IRCCS Istituto “Giannina Gaslini”GenovaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenovaGenovaItaly
| | - Anna Scarabello
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Ettore Beghi
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| |
Collapse
|
40
|
Li B, Wang L, Tu B. Editorial: The mechanism of sudden unexpected death in epilepsy and the specific forensic diagnostic indicators in sudden death with a negative autopsy. Front Neurol 2023; 14:1265787. [PMID: 37662037 PMCID: PMC10471961 DOI: 10.3389/fneur.2023.1265787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai, China
- Shanghai Fenglin Forensic Center, Shanghai, China
| | - Likun Wang
- Emergency Department of Internal Medicine-Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Bin Tu
- Comprehensive Epilepsy Center, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
41
|
Aljumah TK, Al-Attas AA, Alqahtani AA, Masuadi EM, Aldahi AS, Alshammari MA, Heji AT, Alanazi A. Sudden unexpected death in epilepsy: What Saudi people with epilepsy want to know-A cross-sectional study. Epileptic Disord 2023; 25:528-533. [PMID: 37202837 DOI: 10.1002/epd2.20079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/27/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is a significant cause of mortality in people with epilepsy (PWE), with an incidence of 1 per 1000 members of the population. In Saudi Arabia, no data are available that inform local clinical practitioners about the attitudes of PWE regarding SUDEP. The aim of this study was to investigate the perspectives of Saudi PWE toward SUDEP and to assess their knowledge of SUDEP. METHODS A cross-sectional questionnaire-based study was conducted at the neurology clinics of King Abdul-Aziz Medical City, Riyadh and Prince Sultan Military Medical City, Riyadh. RESULTS Of the 377 patients who met the inclusion criteria, 325 completed the questionnaire. The mean age of the respondents was 32.9 ± 12.6 years. Of the study subjects, 50.5% were male. Only 41 patients (12.6%) had heard about SUDEP. Most patients (94.5%) wanted to know about SUDEP, of whom 313 (96.3%) wanted to receive this information from a neurologist. A total of 148 patients (45.5%) thought that the appropriate time to receive information about SUDEP was after the second visit, whereas only 75 (23.1%) wanted to learn about SUDEP during the first visit. However, 69 patients (21.2%) thought that the appropriate time to be informed about SUDEP was when seizure control had become more difficult. Almost half (172, 52.9%) of the patients thought that SUDEP could be prevented. SIGNIFICANCE Our findings suggest that most Saudi PWE do not know about SUDEP and want to be counseled about their risk of SUDEP by their physicians. Therefore, education of Saudi PWE about SUDEP must be improved.
Collapse
Affiliation(s)
- Talal K Aljumah
- Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | | | - Ahmed A Alqahtani
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Emad M Masuadi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmed S Aldahi
- Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mohammed A Alshammari
- Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Alaa T Heji
- Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ali Alanazi
- Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Bagnall RD, Perucca P. ILAE Genetic Literacy Series: Postmortem Genetic Testing in Sudden Unexpected Death in Epilepsy. Epileptic Disord 2023; 25:472-479. [PMID: 37340991 DOI: 10.1002/epd2.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023]
Abstract
A 24-year-old man with non-lesional bitemporal lobe epilepsy since age 16 years was found dead in bed around midday. He was last seen the previous night when he was witnessed to have a tonic-clonic seizure. Before his death, he was experiencing weekly focal impaired awareness seizures and up to two focal-to-bilateral tonic-clonic seizures each year. He had trialed several antiseizure medications and was on levetiracetam 1500 mg/day, lamotrigine 400 mg/day, and clobazam 10 mg/day at the time of death. Other than epilepsy, his medical history was unremarkable. Of note, he had an older brother with a history of febrile seizures and a paternal first cousin with epilepsy. No cause of death was identified following a comprehensive postmortem investigation. The coroner classified the death as "sudden unexpected death in epilepsy" (SUDEP), and it would qualify as "definite SUDEP" using the current definitions.1 This left the family with many questions unanswered; in particular, they wish to know what caused the death and whether it could happen to other family members. Could postmortem genetic testing identify a cause of death, provide closure to the family, and facilitate cascade genetic testing of first-degree family members who may be at risk of sudden death? While grieving family members struggle with uncertainty about the cause of death, we as clinicians also face similar uncertainties about genetic contributions to SUDEP, especially when the literature is sparse, and the utility of genetic testing is still being worked out. We aim to shed some light on this topic, highlighting areas where data is emerging but also areas where uncertainty remains, keeping our case in mind as we examine this clinically important area.
Collapse
Affiliation(s)
- Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), Epilepsy Research Centre, The University of Melbourne, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Rosenfeld WE, Ferrari L, Kerr WT, Sperling MR. Sudden unexpected death in epilepsy during cenobamate clinical development. Epilepsia 2023; 64:2108-2115. [PMID: 37219391 DOI: 10.1111/epi.17662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE We assessed mortality, sudden unexpected death in epilepsy (SUDEP), and standardized mortality ratio (SMR) among adults treated with cenobamate during the cenobamate clinical development program. METHODS We retrospectively analyzed deaths among all adults with uncontrolled focal (focal to bilateral tonic-clonic [FBTC], focal impaired awareness, focal aware) or primary generalized tonic-clonic (PGTC) seizures who received ≥1 dose of adjunctive cenobamate in completed and ongoing phase 2 and 3 clinical studies. In patients with focal seizures from completed studies, median baseline seizure frequencies ranged from 2.8 to 11 seizures per 28 days and median epilepsy duration ranged from 20 to 24 years. Total person-years included all days that a patient received cenobamate during completed studies or up to June 1, 2022, for ongoing studies. All deaths were evaluated by two epileptologists. All-cause mortality and SUDEP rates were expressed per 1000 person-years. RESULTS A total of 2132 patients (n = 2018 focal epilepsy; n = 114 idiopathic generalized epilepsy) were exposed to cenobamate for 5693 person-years. Approximately 60% of patients with focal seizures and all patients in the PGTC study had tonic-clonic seizures. A total of 23 deaths occurred (all in patients with focal epilepsy), for an all-cause mortality rate of 4.0 per 1000 person-years. Five cases of definite or probable SUDEP were identified, for a rate of .88 per 1000 person-years. Of the 23 overall deaths, 22 patients (96%) had FBTC seizures, and all 5 of the SUDEP patients had a history of FBTC seizures. The duration of exposure to cenobamate for patients with SUDEP ranged from 130 to 620 days. The SMR among cenobamate-treated patients in completed studies (5515 person-years of follow-up) was 1.32 (95% confidence interval [CI] .84-2.0), which was not significantly different from the general population. SIGNIFICANCE These data suggest that effective long-term medical treatment with cenobamate may reduce excess mortality associated with epilepsy.
Collapse
Affiliation(s)
- William E Rosenfeld
- Comprehensive Epilepsy Care Center for Children and Adults, St. Louis, Missouri, USA
| | | | - Wesley T Kerr
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Whitney R, Sharma S, Jones KC, RamachandranNair R. Genetics and SUDEP: Challenges and Future Directions. Seizure 2023; 110:188-193. [PMID: 37413779 DOI: 10.1016/j.seizure.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related deaths in children and adults with epilepsy. The incidence of SUDEP in children and adults is equal, approximately 1.2 per 1000-person years. Although inroads have been made in our understanding of SUDEP, its pathophysiology remains unknown. The most important risk factor for SUDEP is the presence of tonic-clonic seizures. Recently there has been growing interest in the contribution of genetic risk factors to SUDEP deaths. Pathogenic variants in epilepsy-related and cardiac genes have been found in some cases of SUDEP post-mortem. Pleiotropy may occur in which a single gene when altered may cause multiple phenotypes (i.e., epilepsy and cardiac arrhythmia). Recently it has been shown that some developmental and epileptic encephalopathies (DEEs) may also be at heightened risk of SUDEP. In addition, polygenic risk has been postulated to effect SUDEP risk with current models evaluating the additive effect of variants in multiple genes. However, the mechanisms underpinning polygenic risk in SUDEP are likely more complex than this. Some preliminary studies also highlight the feasibility of detecting genetic variants in brain tissue post-mortem. Despite the advances in the field of SUDEP genetics, the use of molecular autopsy remains underutilized in SUDEP cases. Several challenges exist concerning genetic testing post-mortem in SUDEP cases, such as interpretation, cost of testing, and availability. In this focused review, we highlight the current landscape of genetic testing in SUDEP cases, its challenges, and future directions.
Collapse
Affiliation(s)
- Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada.
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and associated Kalawati Saran Children Hospital, New Delhi, India
| | - Kevin C Jones
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Rajesh RamachandranNair
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
45
|
Brown RB. Phosphate toxicity and SERCA2a dysfunction in sudden cardiac arrest. FASEB J 2023; 37:e23030. [PMID: 37302010 DOI: 10.1096/fj.202300414r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Almost half of the people who die from sudden cardiac arrest have no detectable heart disease. Among children and young adults, the cause of approximately one-third of deaths from sudden cardiac arrest remains unexplained after thorough examination. Sudden cardiac arrest and related sudden cardiac death are attributed to dysfunctional cardiac ion-channels. The present perspective paper proposes a pathophysiological mechanism by which phosphate toxicity from cellular accumulation of dysregulated inorganic phosphate interferes with normal calcium handling in the heart, leading to sudden cardiac arrest. During cardiac muscle relaxation following contraction, SERCA2a pumps actively transport calcium ions into the sarcoplasmic reticulum, powered by ATP hydrolysis that produces ADP and inorganic phosphate end products. Reviewed evidence supports the proposal that end-product inhibition of SERCA2a occurs as increasing levels of inorganic phosphate drive up phosphate toxicity and bring cardiac function to a sudden and unexpected halt. The paper concludes that end-product inhibition from ATP hydrolysis is the mediating factor in the association of sudden cardiac arrest with phosphate toxicity. However, current technology lacks the ability to directly measure this pathophysiological mechanism in active myocardium, and further research is needed to confirm phosphate toxicity as a risk factor in individuals with sudden cardiac arrest. Moreover, phosphate toxicity may be reduced through modification of dietary phosphate intake, with potential for employing low-phosphate dietary interventions to reduce the risk of sudden cardiac arrest.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
46
|
Suresh H, Ibrahim GM. Medicate or operate: epilepsy surgery could save lives. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:442-443. [PMID: 37276876 DOI: 10.1016/s2352-4642(23)00129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023]
Affiliation(s)
- Hrishikesh Suresh
- Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, ON M5G 1X8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, ON M5G 1X8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 1X8, Canada; Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada.
| |
Collapse
|
47
|
Argo A, Puntarello M, Malta G, Buscemi R, Scalzo G, Triolo V, Albano GD, Zerbo S. The analysis of SUDEP forensic autopsies leading to preventable events. Front Neurol 2023; 14:1231515. [PMID: 37456625 PMCID: PMC10346851 DOI: 10.3389/fneur.2023.1231515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The diagnosis of unexpected death by excluding non-natural causes, particularly in subjects with epilepsy, is a topic of interest and it is difficult to identify in the forensic field. Health professionals sometimes are faced with cases of sudden death, generally in young adults with a long history of epilepsy that require, for judicial purposes, an explanation in terms of cause and means to determine the death. SUDEP is an entity diagnosed by the exclusion of other causes that may have led to death, and then for forensic purposes, it requires particular attention and knowledge, and there is difficulty in identifying it. Our contribution aims to illustrate the scientific community pathological findings, medical history, and circumstantial evidence of four cases of sudden death in epileptic subjects. Method We illustrated four cases of judicial autopsies from the Institute of Forensic Medicine of Palermo, Italy; the purpose was to exclude the criminal intervention in determining the death as non-natural. The study of victims' medical history, the toxicological investigations, and the autopsy findings analyzed both from macroscopic and microscopic aspects have made it possible to highlight some findings that can be traced back to SUDEP despite the small sample of subjects studied. Results These presented findings of four SUDEP cases could help forensic pathologists in recognizing this entity, by highlighting its characteristics, and allowing for a pathological classification, also in relation to the use of drugs for epilepsy treatment and circumstances of death. Discussion To obtain a definite diagnosis of SUDEP, a complex investigation process is required in a multidisciplinary approach. Considering the literature review with criticism, it could allow health professionals to select the characteristics of epileptic patients at risk of sudden death. Processing human behaviors, molecular and histopathological findings of the autopsies, but also the physiological, and pathological human body system functions thanks to Artificial Intelligence, could be the key to explaining SUDEP mechanisms and the future results to prevent it.
Collapse
Affiliation(s)
- Antonina Argo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Maria Puntarello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Ginevra Malta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Roberto Buscemi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Giovanni Scalzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | | | - Giuseppe Davide Albano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Stefania Zerbo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
48
|
Smith LA, Chen C, Lax NZ, Taylor RW, Erskine D, McFarland R. Astrocytic pathology in Alpers' syndrome. Acta Neuropathol Commun 2023; 11:86. [PMID: 37259148 DOI: 10.1186/s40478-023-01579-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Refractory epilepsy is the main neurological manifestation of Alpers' syndrome, a severe childhood-onset mitochondrial disease caused by bi-allelic pathogenic variants in the mitochondrial DNA (mtDNA) polymerase gamma gene (POLG). The pathophysiological mechanisms underpinning neuronal hyperexcitabilty leading to seizures in Alpers' syndrome remain unknown. However, pathological changes to reactive astrocytes are hypothesised to exacerbate neural dysfunction and seizure-associated cortical activity in POLG-related disease. Therefore, we sought to phenotypically characterise astrocytic pathology in Alpers' syndrome. We performed a detailed quantitative investigation of reactive astrocytes in post-mortem neocortical tissues from thirteen patients with Alpers' syndrome, eight neurologically normal controls and five sudden unexpected death in epilepsy (SUDEP) patients, to control for generalised epilepsy-associated astrocytic pathology. Immunohistochemistry to identify glial fibrillary acidic protein (GFAP)-reactive astrocytes revealed striking reactive astrogliosis localised to the primary visual cortex of Alpers' syndrome tissues, characterised by abnormal-appearing hypertrophic astrocytes. Phenotypic characterisation of individual GFAP-reactive astrocytes demonstrated decreased abundance of mitochondrial oxidative phosphorylation (OXPHOS) proteins and altered expression of key astrocytic proteins including Kir4.1 (subunit of the inwardly rectifying K+ ion channel), AQP4 (astrocytic water channel) and glutamine synthetase (enzyme that metabolises glutamate). These phenotypic astrocytic changes were typically different from the pathology observed in SUDEP tissues, suggesting alternative mechanisms of astrocytic dysfunction between these epilepsies. Crucially, our findings provide further evidence of occipital lobe involvement in Alpers' syndrome and support the involvement of reactive astrocytes in the pathogenesis of POLG-related disease.
Collapse
Affiliation(s)
- Laura A Smith
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Chun Chen
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nichola Z Lax
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle University, Newcastle Upon Tyne, Newcastle, NE2 4HH, UK
| | - Daniel Erskine
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle University, Newcastle Upon Tyne, Newcastle, NE2 4HH, UK.
| |
Collapse
|
49
|
Crone SA, Dlouhy BJ, Gross C, Ray RS. Editorial: Forebrain control of breathing and sudden death in epilepsy. Front Neural Circuits 2023; 17:1212172. [PMID: 37288286 PMCID: PMC10242160 DOI: 10.3389/fncir.2023.1212172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Affiliation(s)
- Steven A. Crone
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brian J. Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Russell S. Ray
- Memory Brain Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- McNair Medical Institute, Houston, TX, United States
| |
Collapse
|
50
|
Kassinopoulos M, Rolandi N, Alphan L, Harper RM, Oliveira J, Scott C, Kozák LR, Guye M, Lemieux L, Diehl B. Brain Connectivity Correlates of Breathing and Cardiac Irregularities in SUDEP: A Resting-State fMRI Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541412. [PMID: 37293113 PMCID: PMC10245782 DOI: 10.1101/2023.05.19.541412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of premature mortality among people with epilepsy. Evidence from witnessed and monitored SUDEP cases indicate seizure-induced cardiovascular and respiratory failures; yet, the underlying mechanisms remain obscure. SUDEP occurs often during the night and early morning hours, suggesting that sleep or circadian rhythm-induced changes in physiology contribute to the fatal event. Resting-state fMRI studies have found altered functional connectivity between brain structures involved in cardiorespiratory regulation in later SUDEP cases and in individuals at high-risk of SUDEP. However, those connectivity findings have not been related to changes in cardiovascular or respiratory patterns. Here, we compared fMRI patterns of brain connectivity associated with regular and irregular cardiorespiratory rhythms in SUDEP cases with those of living epilepsy patients of varying SUDEP risk, and healthy controls. We analysed resting-state fMRI data from 98 patients with epilepsy (9 who subsequently succumbed to SUDEP, 43 categorized as low SUDEP risk (no tonic-clonic seizures (TCS) in the year preceding the fMRI scan), and 46 as high SUDEP risk (>3 TCS in the year preceding the scan)) and 25 healthy controls. The global signal amplitude (GSA), defined as the moving standard deviation of the fMRI global signal, was used to identify periods with regular ('low state') and irregular ('high state') cardiorespiratory rhythms. Correlation maps were derived from seeds in twelve regions with a key role in autonomic or respiratory regulation, for the low and high states. Following principal component analysis, component weights were compared between the groups. We found widespread alterations in connectivity of precuneus/posterior cingulate cortex in epilepsy compared to controls, in the low state (regular cardiorespiratory activity). In the low state, and to a lesser degree in the high state, reduced anterior insula connectivity (mainly with anterior and posterior cingulate cortex) in epilepsy appeared, relative to healthy controls. For SUDEP cases, the insula connectivity differences were inversely related to the interval between the fMRI scan and death. The findings suggest that anterior insula connectivity measures may provide a biomarker of SUDEP risk. The neural correlates of autonomic brain structures associated with different cardiorespiratory rhythms may shed light on the mechanisms underlying terminal apnea observed in SUDEP.
Collapse
Affiliation(s)
- Michalis Kassinopoulos
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society, Chalfont St. Peter, Buckinghamshire, United Kingdom
| | - Nicolo Rolandi
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society, Chalfont St. Peter, Buckinghamshire, United Kingdom
| | - Laren Alphan
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ronald M. Harper
- UCLA Brain Research Institute, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Joana Oliveira
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, UCLH, London, United Kingdom
| | - Catherine Scott
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, UCLH, London, United Kingdom
| | - Lajos R. Kozák
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Louis Lemieux
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society, Chalfont St. Peter, Buckinghamshire, United Kingdom
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society, Chalfont St. Peter, Buckinghamshire, United Kingdom
| |
Collapse
|