1
|
Feng Z, Zheng Y, Pei J, Huang L. Potential mechanism of Laportea bulbifera on treating inflammation and tumor via metabolomics, network pharmacology and molecular docking. J Biomol Struct Dyn 2024:1-17. [PMID: 39522167 DOI: 10.1080/07391102.2024.2426077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/26/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to utilize metabolomics, network pharmacology, and molecular docking techniques to identify the major active components of Laportea bulbifera and investigate their anti-inflammatory and potential anti-tumor mechanisms. The metabolic constituents of L. bulbifera were examined utilizing UPLC-ESI-MS/MS. PPI networks and compound-target-pathway networks were established using resources such as TCMSP, Swiss Target Prediction, DAVID, STRING database, and Cytoscape software. Molecular docking analysis of the most important compounds and targets was conducted using Autodock4, followed by validation of the molecular docking results' stability using GROMACS. The UPLC-ESI-MS/MS analysis identified a total of 798 compounds. A network pharmacology-based analysis was conducted, revealing that eight compounds and four molecular targets-namely, TNF, IL6, PIK3CA, and HDAC1-were enriched in the network. Pathway analysis of the identified targets demonstrated enrichment in 217 KEGG pathways. Molecular docking analysis and molecular dynamics simulations demonstrated strong therapeutic potential of N-feruloyltyramine, N-feruloylagmatine, and Ellagic acid against various inflammatory and tumor diseases. This study, for the first time, employed an integrated strategy of metabolomics, network pharmacology, molecular docking, and molecular dynamics, elucidating the mechanisms underlying the anti-inflammatory and potential anti-tumor effects of L. bulbifera, laying the foundation for subsequent drug development endeavors.
Collapse
Affiliation(s)
- Zhan Feng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Zheng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Lee CY, Chooi WH, Ng S, Chew SY. Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury. Bioeng Transl Med 2023; 8:e10389. [PMID: 36925680 PMCID: PMC10013833 DOI: 10.1002/btm2.10389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022] Open
Abstract
The neuroinflammatory response that is elicited after spinal cord injury contributes to both tissue damage and reparative processes. The complex and dynamic cellular and molecular changes within the spinal cord microenvironment result in a functional imbalance of immune cells and their modulatory factors. To facilitate wound healing and repair, it is necessary to manipulate the immunological pathways during neuroinflammation to achieve successful therapeutic interventions. In this review, recent advancements and fresh perspectives on the consequences of neuroinflammation after SCI and modulation of the inflammatory responses through the use of molecular-, cellular-, and biomaterial-based therapies to promote tissue regeneration and functional recovery will be discussed.
Collapse
Affiliation(s)
- Cheryl Yi‐Pin Lee
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Shi‐Yan Ng
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Sing Yian Chew
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
3
|
Sex Differences in Neuropathy: The Paradigmatic Case of MetFormin. Int J Mol Sci 2022; 23:ijms232314503. [PMID: 36498830 PMCID: PMC9738696 DOI: 10.3390/ijms232314503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
As a widely prescribed anti-diabetic drug, metformin has been receiving novel attention for its analgesic potential. In the study of the complex etiology of neuropathic pain (NeP), male and female individuals exhibit quite different responses characterized by higher pain sensitivity and greater NeP incidence in women. This "gender gap" in our knowledge of sex differences in pain processing strongly limits the sex-oriented treatment of patients suffering from NeP. Besides, the current investigation of the analgesic potential of metformin has not addressed the "gender gap" problem. Hence, this study focuses on metformin and sex-dependent analgesia in a murine model of NeP induced by chronic constriction injury of the sciatic nerve. We investigated sexual dimorphism in signaling pathways involved by 7 days of metformin administration, such as changes in AMP-activated protein kinase and the positive regulation of autophagy machinery, discovering that metformin affected in a sexually dimorphic manner the immunological and inflammatory response to nerve lesion. These effects were complemented by morphological and adaptive changes occurring after peripheral nerve injury. Altogether these data can contribute to explaining a number of potential mechanisms responsible for the complete recovery from NeP found in male mice, as opposed to the failure of long-lasting recovery in female animals.
Collapse
|
4
|
Sadri M, Hirosawa N, Le J, Romero H, Martellucci S, Kwon HJ, Pizzo D, Ohtori S, Gonias SL, Campana WM. Tumor necrosis factor receptor-1 is selectively sequestered into Schwann cell extracellular vesicles where it functions as a TNFα decoy. Glia 2022; 70:256-272. [PMID: 34559433 PMCID: PMC10656730 DOI: 10.1002/glia.24098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Schwann cells (SCs) are known to produce extracellular vesicles (EV) that participate in cell-cell communication by transferring cargo to target cells, including mRNAs, microRNAs, and biologically active proteins. Herein, we report a novel mechanism whereby SC EVs may regulate PNS physiology, especially in injury, by controlling the activity of TNFα. SCs actively sequester tumor necrosis factor receptor-1 (TNFR1) into EVs at high density, accounting for about 2% of the total protein in SC EVs (~1000 copies TNFR1/EV). Although TNFR2 was robustly expressed by SCs in culture, TNFR2 was excluded from SC EVs. SC EV TNFR1 bound TNFα, decreasing the concentration of free TNFα available to bind to cells and thus served as a TNFα decoy. SC EV TNFR1 significantly inhibited TNFα-induced p38 MAPK phosphorylation in cultured SCs. When TNFR1 was proteolytically removed from SC EVs using tumor necrosis factor-α converting enzyme (TACE) or neutralized with antibody, the ability of TNFα to activate p38 MAPK in the presence of these EVs was restored. As further evidence of its decoy activity, SC EV TNFR1 modified TNFα activities in vitro including: (1) regulation of expression of other cytokines; (2) effects on SC morphology; and (3) effects on SC viability. SC EVs also modified the effects of TNFα on sciatic nerve morphology and neuropathic pain-related behavior in vivo. By sequestering TNFR1 in EVs, SCs may buffer against the potentially toxic effects of TNFα. SC EVs provide a novel mechanism for the spatial and temporal regulation of neuro-inflammation.
Collapse
Affiliation(s)
- Mahrou Sadri
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Naoya Hirosawa
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Department of Orthopaedic Surgery and Graduate School in Medicine, Chiba University, Chiba, Japan
| | - Jasmine Le
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Veterans Administration San Diego Healthcare System, San Diego, California, USA
| | - Haylie Romero
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Program in Neuroscience, University of California, San Diego, La Jolla, California, USA
| | - Stefano Martellucci
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Hyo Jun Kwon
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Donald Pizzo
- Department of Pathology, University of California, San Diego, California, USA
| | - Seiji Ohtori
- Department of Orthopaedic Surgery and Graduate School in Medicine, Chiba University, Chiba, Japan
| | - Steven L. Gonias
- Department of Pathology, University of California, San Diego, California, USA
| | - Wendy M. Campana
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Veterans Administration San Diego Healthcare System, San Diego, California, USA
- Program in Neuroscience, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
TNF-α-Mediated RIPK1 Pathway Participates in the Development of Trigeminal Neuropathic Pain in Rats. Int J Mol Sci 2022; 23:ijms23010506. [PMID: 35008931 PMCID: PMC8745573 DOI: 10.3390/ijms23010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/05/2023] Open
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) participates in the regulation of cellular stress and inflammatory responses, but its function in neuropathic pain remains poorly understood. This study evaluated the role of RIPK1 in neuropathic pain following inferior alveolar nerve injury. We developed a model using malpositioned dental implants in male Sprague Dawley rats. This model resulted in significant mechanical allodynia and upregulated RIPK1 expression in the trigeminal subnucleus caudalis (TSC). The intracisternal administration of Necrosatin-1 (Nec-1), an RIPK1 inhibitor, blocked the mechanical allodynia produced by inferior alveolar nerve injury The intracisternal administration of recombinant rat tumor necrosis factor-α (rrTNF-α) protein in naive rats produced mechanical allodynia and upregulated RIPK1 expression in the TSC. Moreover, an intracisternal pretreatment with Nec-1 inhibited the mechanical allodynia produced by rrTNF-α protein. Nerve injury caused elevated TNF-α concentration in the TSC and a TNF-α block had anti-allodynic effects, thereby attenuating RIPK1 expression in the TSC. Finally, double immunofluorescence analyses revealed the colocalization of TNF receptor and RIPK1 with astrocytes. Hence, we have identified that astroglial RIPK1, activated by the TNF-α pathway, is a central driver of neuropathic pain and that the TNF-α-mediated RIPK1 pathway is a potential therapeutic target for reducing neuropathic pain following nerve injury.
Collapse
|
6
|
Jin Y, Wei S, Liu TT, Qiu CY, Hu WP. Acute P38-Mediated Enhancement of P2X3 Receptor Currents by TNF-α in Rat Dorsal Root Ganglion Neurons. J Inflamm Res 2021; 14:2841-2850. [PMID: 34234509 PMCID: PMC8254564 DOI: 10.2147/jir.s315774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/05/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine and involves in a variety of pain conditions. Some findings suggest that TNF-α may act directly on primary afferent neurons to induce acute pain hypersensitivity through non-transcriptional regulation. This study investigated whether TNF-α had an effect on functional activity of P2X3 receptors in primary sensory neurons. Herein, we report that a brief (5 min) application of TNF-α rapidly enhanced the electrophysiological activity of P2X3 receptors in rat dorsal root ganglia (DRG) neurons. Methods Electrophysiological recordings were carried out on rat DRG neurons, and nociceptive behavior was quantified in rats. Results A brief (5 min) exposure of TNF-α rapidly increased P2X3 receptor-mediated and α,β-methylene-ATP (α,β-meATP)-evoked inward currents in a dose-dependent manner. The potentiation of P2X3 receptor-mediated ATP currents by TNF-α was voltage-independent. TNF-α shifted the concentration-response curve for α,β-meATP upwards, with an increase of 31.57 ± 6.81% in the maximal current response to α,β-meATP. This acute potentiation of ATP currents by TNF-α was blocked by p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190, but not by non-selective cyclooxygenase inhibitor indomethacin, suggesting involvement of p38 MAPK, but not cyclooxygenase. Moreover, intraplantar injection of TNF-α and α,β-meATP produced a synergistic effect on mechanical allodynia in rats. TNF-α-induced mechanical allodynia was also alleviated after local P2X3 receptors were blocked. Conclusion These results suggested that TNF-α rapidly sensitized P2X3 receptors in primary sensory neurons via a p38 MAPK dependent pathway, which revealed a novel peripheral mechanism underlying acute mechanical hypersensitivity by peripheral administration of TNF-α.
Collapse
Affiliation(s)
- Ying Jin
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, 437100, People's Republic of China
| | - Shuang Wei
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, 437100, People's Republic of China
| | - Ting-Ting Liu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, 437100, People's Republic of China
| | - Chun-Yu Qiu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, 437100, People's Republic of China
| | - Wang-Ping Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, 437100, People's Republic of China
| |
Collapse
|
7
|
Fischer R, Kontermann RE, Pfizenmaier K. Selective Targeting of TNF Receptors as a Novel Therapeutic Approach. Front Cell Dev Biol 2020; 8:401. [PMID: 32528961 PMCID: PMC7264106 DOI: 10.3389/fcell.2020.00401] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is a central regulator of immunity. Due to its dominant pro-inflammatory effects, drugs that neutralize TNF were developed and are clinically used to treat inflammatory and autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. However, despite their clinical success the use of anti-TNF drugs is limited, in part due to unwanted, severe side effects and in some diseases its use even is contraindicative. With gaining knowledge about the signaling mechanisms of TNF and the differential role of the two TNF receptors (TNFR), alternative therapeutic concepts based on receptor selective intervention have led to the development of novel protein therapeutics targeting TNFR1 with antagonists and TNFR2 with agonists. These antibodies and bio-engineered ligands are currently in preclinical and early clinical stages of development. Preclinical data obtained in different disease models show that selective targeting of TNFRs has therapeutic potential and may be superior to global TNF blockade in several disease indications.
Collapse
Affiliation(s)
- Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
8
|
Tumor necrosis factor receptor 1 inhibition is therapeutic for neuropathic pain in males but not in females. Pain 2019; 160:922-931. [PMID: 30586024 DOI: 10.1097/j.pain.0000000000001470] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor (TNF) is a proinflammatory cytokine, which is involved in physiological and pathological processes and has been found to be crucial for pain development. In the current study, we were interested in the effects of blocking Tumor necrosis factor receptor 1 (TNFR1) signaling on neuropathic pain after peripheral nerve injury with the use of transgenic mice and pharmacological inhibition. We have previously shown that TNFR1 mice failed to develop neuropathic pain and depressive symptoms after chronic constriction injury (CCI). To investigate the therapeutic effects of inhibiting TNFR1 signaling after injury, we delivered a drug that inactivates soluble TNF (XPro1595). Inhibition of solTNF signaling resulted in an accelerated recovery from neuropathic pain in males, but not in females. To begin exploring a mechanism, we investigated changes in N-methyl-D-aspartate (NMDA) receptors because neuropathic pain has been shown to invoke an increase in glutamatergic signaling. In male mice, XPro1595 treatment reduces elevated NMDA receptor levels in the brain after injury, whereas in female mice, NMDA receptor levels decrease after CCI. We further show that estrogen inhibits the therapeutic response of XPro1595 in females. Our results suggest that TNFR1 signaling plays an essential role in pain induction after CCI in males but not in females.
Collapse
|
9
|
Brifault C, Kwon H, Campana WM, Gonias SL. LRP1 deficiency in microglia blocks neuro-inflammation in the spinal dorsal horn and neuropathic pain processing. Glia 2019; 67:1210-1224. [PMID: 30746765 DOI: 10.1002/glia.23599] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 01/29/2023]
Abstract
Following injury to the peripheral nervous system (PNS), microglia in the spinal dorsal horn (SDH) become activated and contribute to the development of local neuro-inflammation, which may regulate neuropathic pain processing. The molecular mechanisms that control microglial activation and its effects on neuropathic pain remain incompletely understood. We deleted the gene encoding the plasma membrane receptor, LDL Receptor-related Protein-1 (LRP1), conditionally in microglia using two distinct promoter-Cre recombinase systems in mice. LRP1 deletion in microglia blocked development of tactile allodynia, a neuropathic pain-related behavior, after partial sciatic nerve ligation (PNL). LRP1 deletion also substantially attenuated microglial activation and pro-inflammatory cytokine expression in the SDH following PNL. Because LRP1 shedding from microglial plasma membranes generates a highly pro-inflammatory soluble product, we demonstrated that factors which activate spinal cord microglia, including lipopolysaccharide (LPS) and colony-stimulating factor-1, promote LRP1 shedding. Proteinases known to mediate LRP1 shedding, including ADAM10 and ADAM17, were expressed at increased levels in the SDH after PNL. Furthermore, LRP1-deficient microglia in cell culture expressed significantly decreased levels of interleukin-1β and interleukin-6 when treated with LPS. We conclude that in the SDH, microglial LRP1 plays an important role in establishing and/or amplifying local neuro-inflammation and neuropathic pain following PNS injury. The responsible mechanism most likely involves proteolytic release of LRP1 from the plasma membrane to generate a soluble product that functions similarly to pro-inflammatory cytokines in mediating crosstalk between cells in the SDH and in regulating neuropathic pain.
Collapse
Affiliation(s)
- Coralie Brifault
- Department of Pathology, University of California San Diego, La Jolla, California.,Department of Anesthesiology, University of California San Diego, La Jolla, California
| | - HyoJun Kwon
- Department of Anesthesiology, University of California San Diego, La Jolla, California
| | - Wendy M Campana
- Department of Anesthesiology, University of California San Diego, La Jolla, California.,Department of Anesthesiology, Veterans Administration San Diego HealthCare System, San Diego, California
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California
| |
Collapse
|
10
|
Martin SL, Reid AJ, Verkhratsky A, Magnaghi V, Faroni A. Gene expression changes in dorsal root ganglia following peripheral nerve injury: roles in inflammation, cell death and nociception. Neural Regen Res 2019; 14:939-947. [PMID: 30761997 PMCID: PMC6404509 DOI: 10.4103/1673-5374.250566] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Subsequent to a peripheral nerve injury, there are changes in gene expression within the dorsal root ganglia in response to the damage. This review selects factors which are well-known to be vital for inflammation, cell death and nociception, and highlights how alterations in their gene expression within the dorsal root ganglia can affect functional recovery. The majority of studies used polymerase chain reaction within animal models to analyse the dynamic changes following peripheral nerve injuries. This review aims to highlight the factors at the gene expression level that impede functional recovery and are hence are potential targets for therapeutic approaches. Where possible the experimental model, specific time-points and cellular location of expression levels are reported.
Collapse
Affiliation(s)
- Sarah L Martin
- Blond McIndoe Laboratories, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Adam J Reid
- Blond McIndoe Laboratories, School of Biological Sciences, University of Manchester; University Hospital of South Manchester, Department of Plastic and Burns, Manchester, Manchester, UK
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Faroni
- Blond McIndoe Laboratories, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
A New Venue of TNF Targeting. Int J Mol Sci 2018; 19:ijms19051442. [PMID: 29751683 PMCID: PMC5983675 DOI: 10.3390/ijms19051442] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The first Food and Drug Administration-(FDA)-approved drugs were small, chemically-manufactured and highly active molecules with possible off-target effects, followed by protein-based medicines such as antibodies. Conventional antibodies bind a specific protein and are becoming increasingly important in the therapeutic landscape. A very prominent class of biologicals are the anti-tumor necrosis factor (TNF) drugs that are applied in several inflammatory diseases that are characterized by dysregulated TNF levels. Marketing of TNF inhibitors revolutionized the treatment of diseases such as Crohn’s disease. However, these inhibitors also have undesired effects, some of them directly associated with the inherent nature of this drug class, whereas others are linked with their mechanism of action, being pan-TNF inhibition. The effects of TNF can diverge at the level of TNF format or receptor, and we discuss the consequences of this in sepsis, autoimmunity and neurodegeneration. Recently, researchers tried to design drugs with reduced side effects. These include molecules with more specificity targeting one specific TNF format or receptor, or that neutralize TNF in specific cells. Alternatively, TNF-directed biologicals without the typical antibody structure are manufactured. Here, we review the complications related to the use of conventional TNF inhibitors, together with the anti-TNF alternatives and the benefits of selective approaches in different diseases.
Collapse
|
12
|
Jo J, Im SH, Babcock DT, Iyer SC, Gunawan F, Cox DN, Galko MJ. Drosophila caspase activity is required independently of apoptosis to produce active TNF/Eiger during nociceptive sensitization. Cell Death Dis 2017; 8:e2786. [PMID: 28492538 PMCID: PMC5520682 DOI: 10.1038/cddis.2016.474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
Abstract
Tumor necrosis factor (TNF) signaling is required for inflammatory nociceptive (pain) sensitization in Drosophila and vertebrates. Nociceptive sensitization in Drosophila larvae following UV-induced tissue damage is accompanied by epidermal apoptosis and requires epidermal-derived TNF/Eiger and the initiator caspase, Dronc. Major gaps remain regarding TNF function in sensitization, including the relationship between apoptosis/tissue damage and TNF production, the downstream signaling in this context, and the target genes that modulate nociceptive behaviors. Here, apoptotic cell death and thermal nociceptive sensitization are genetically and procedurally separable in a Drosophila model of UV-induced nociceptive sensitization. Activation of epidermal Dronc induces TNF-dependent but effector caspase-independent nociceptive sensitization in the absence of UV. In addition, knockdown of Dronc attenuated nociceptive sensitization induced by full-length TNF/Eiger but not by a constitutively soluble form. UV irradiation induced TNF production in both in vitro and in vivo, but TNF secretion into hemolymph was not sufficient to induce thermal nociceptive sensitization. Downstream mediators of TNF-induced sensitization included two TNF receptor-associated factors, a p38 kinase, and the transcription factor nuclear factor kappa B. Finally, sensory neuron-specific microarray analysis revealed downstream TNF target genes induced during thermal nociceptive sensitization. One of these, enhancer of zeste (E(z)), functions downstream of TNF during thermal nociceptive sensitization. Our findings suggest that an initiator caspase is involved in TNF processing/secretion during nociceptive sensitization, and that TNF activation leads to a specific downstream signaling cascade and gene transcription required for sensitization. These findings have implications for both the evolution of inflammatory caspase function following tissue damage signals and the action of TNF during sensitization in vertebrates.
Collapse
Affiliation(s)
- Juyeon Jo
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genes and Development Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seol Hee Im
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel T Babcock
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srividya C Iyer
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Felona Gunawan
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Michael J Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genes and Development Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Miao X, Huang Y, Liu TT, Guo R, Wang B, Wang XL, Chen LH, Zhou Y, Ji RR, Liu T. TNF-α/TNFR1 Signaling is Required for the Full Expression of Acute and Chronic Itch in Mice via Peripheral and Central Mechanisms. Neurosci Bull 2017; 34:42-53. [PMID: 28365861 DOI: 10.1007/s12264-017-0124-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/09/2017] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that cytokines and chemokines play crucial roles in chronic itch. In the present study, we evaluated the roles of tumor necrosis factor-alpha (TNF-α) and its receptors TNF receptor subtype-1 (TNFR1) and TNFR2 in acute and chronic itch in mice. Compared to wild-type (WT) mice, TNFR1-knockout (TNFR1-KO) and TNFR1/R2 double-KO (DKO), but not TNFR2-KO mice, exhibited reduced acute itch induced by compound 48/80 and chloroquine (CQ). Application of the TNF-synthesis inhibitor thalidomide and the TNF-α antagonist etanercept dose-dependently suppressed acute itch. Intradermal injection of TNF-α was not sufficient to evoke scratching, but potentiated itch induced by compound 48/80, but not CQ. In addition, compound 48/80 induced TNF-α mRNA expression in the skin, while CQ induced its expression in the dorsal root ganglia (DRG) and spinal cord. Furthermore, chronic itch induced by dry skin was reduced by administration of thalidomide and etanercept and in TNFR1/R2 DKO mice. Dry skin induced TNF-α expression in the skin, DRG, and spinal cord and TNFR1 expression only in the spinal cord. Thus, our findings suggest that TNF-α/TNFR1 signaling is required for the full expression of acute and chronic itch via peripheral and central mechanisms, and targeting TNFR1 may be beneficial for chronic itch treatment.
Collapse
MESH Headings
- Animals
- Chloroquine/toxicity
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Etanercept/therapeutic use
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Pruritus/chemically induced
- Pruritus/drug therapy
- Pruritus/metabolism
- Pruritus/pathology
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Signal Transduction/drug effects
- Skin/drug effects
- Skin/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Thalidomide/therapeutic use
- Time Factors
- Tumor Necrosis Factor-alpha/adverse effects
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- p-Methoxy-N-methylphenethylamine/toxicity
Collapse
Affiliation(s)
- Xiuhua Miao
- The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China
| | - Ya Huang
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Teng-Teng Liu
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Ran Guo
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Bing Wang
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Xue-Long Wang
- Capital Medical University Electric Power Teaching Hospital, Beijing, 100073, China
| | - Li-Hua Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Yan Zhou
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Tong Liu
- The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China.
- Institute of Neuroscience, Soochow University, Suzhou, 215021, China.
| |
Collapse
|
14
|
Vicario N, Parenti R, Arico' G, Turnaturi R, Scoto GM, Chiechio S, Parenti C. Repeated activation of delta opiod receptors counteracts nerve injury-induced TNF-α up-regulation in the sciatic nerve of rats with neuropathic pain: A possible correlation with delta opiod receptors-mediated antiallodinic effect. Mol Pain 2016; 12:12/0/1744806916667949. [PMID: 27590071 PMCID: PMC5024981 DOI: 10.1177/1744806916667949] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite mu opioid receptor agonists are the cornerstones of moderate-to-severe acute pain treatment, their effectiveness in chronic pain conditions is controversial. In contrast to mu opioid receptor agonists, a number of studies have reported the effectiveness of delta opioid receptor agonists on neuropathic pain strengthening the idea that delta opioid receptors gain importance when chronic pain develops. Among other effects, it has been shown that delta opioid receptor activation in optic nerve astrocytes inhibits tumor necrosis factor-α-mediated inflammation in response to severe hypoxia. Considering the involvement of tumor necrosis factor-α in the development and maintenance of neuropathic pain, with this study we sought to correlate the effect of delta opioid receptor agonist on the development of mechanical allodynia to tumor necrosis factor-α expression at the site of nerve injury in rats subjected to chronic constriction injury of the sciatic nerve. To this aim, we measured the levels of tumor necrosis factor-α in the sciatic nerve of rats with neuropathic pain after repeated injections with a delta opioid receptor agonist. Results obtained demonstrated that repeated administrations of the delta opioid receptor agonist SNC80 (10 mg/kg, i.p. for seven consecutive days) significantly inhibited the development of mechanical allodynia in rats with neuropathic pain and that the improvement of neuropathic symptom was timely related to the reduced expression of tumor necrosis factor-α in the rat sciatic nerve. We demonstrated also that when treatment with the delta opioid receptor agonist was suspended both allodynia and tumor necrosis factor-α up-regulation in the sciatic nerve of rats with neuropathic pain were restored. These results show that persistent delta opioid receptor activation significantly attenuates neuropathic pain and negatively regulates sciatic nerve tumor necrosis factor-α expression in chronic constriction injury rats.
Collapse
Affiliation(s)
| | | | | | | | | | - Santina Chiechio
- University of CataniaUniversity of CataniaUniversity of CataniaUniversity of CataniaUniversity of Catania
| | - Carmela Parenti
- University of CataniaUniversity of CataniaUniversity of CataniaUniversity of CataniaUniversity of Catania
| |
Collapse
|
15
|
Enhanced spinal neuronal responses as a mechanism for the increased nociceptive sensitivity of interleukin-4 deficient mice. Exp Neurol 2015; 271:198-204. [DOI: 10.1016/j.expneurol.2015.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/22/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
|
16
|
Gong K, Zou X, Fuchs PN, Lin Q. Minocycline inhibits neurogenic inflammation by blocking the effects of tumor necrosis factor-α. Clin Exp Pharmacol Physiol 2015; 42:940-949. [DOI: 10.1111/1440-1681.12444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/19/2015] [Accepted: 06/27/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Kerui Gong
- Department of Psychology; College of Science; University of Texas at Arlington; Arlington TX USA
- Department of Neurobiology; Tai Shan Medical University; Tai'an Shan Dong Province China
| | - Xiaoju Zou
- Department of Psychology; College of Science; University of Texas at Arlington; Arlington TX USA
| | - Perry N Fuchs
- Department of Psychology; College of Science; University of Texas at Arlington; Arlington TX USA
| | - Qing Lin
- Department of Psychology; College of Science; University of Texas at Arlington; Arlington TX USA
| |
Collapse
|
17
|
Yamacita-Borin FY, Zarpelon AC, Pinho-Ribeiro FA, Fattori V, Alves-Filho JC, Cunha FQ, Cunha TM, Casagrande R, Verri WA. Superoxide anion-induced pain and inflammation depends on TNFα/TNFR1 signaling in mice. Neurosci Lett 2015; 605:53-8. [PMID: 26291484 DOI: 10.1016/j.neulet.2015.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 11/27/2022]
Abstract
Inhibition of tumor necrosis factor-alpha (TNFα) and superoxide anion production reduces inflammation and pain. The present study investigated whether superoxide anion-induced pain depends on TNFα signaling and the role of superoxide anion in TNFα-induced hyperalgesia to clarify the interrelation between these two mediators in the context of pain. Intraplantar injection of a superoxide anion donor (potassium superoxide) induced mechanical hyperalgesia (0.5-5h after injection), neutrophil recruitment (myeloperoxidase activity), and overt pain-like behaviors (paw flinching, paw licking, and abdominal writhings) in wild-type mice. Tumor necrosis factor receptor 1 deficiency (TNFR1-/-) and treatment of wild-type mice with etanercept (a soluble TNFR2 receptor that inhibits TNFα actions) inhibited superoxide anion-induced pain-like behaviors. TNFR1(-/-) mice were also protected from superoxide anion donor-induced oxidative stress, suggesting the role of this pathway in the maintenance of oxidative stress. Finally, we demonstrated that Apocynin (an NADPH oxidase inhibitor) or Tempol (a superoxide dismutase mimetic) treatment inhibited TNFα-induced paw mechanical hyperalgesia and neutrophil recruitment (myeloperoxidase activity). These results demonstrate that TNFα/TNFR1 signaling is important in superoxide anion-triggered pain and that TNFα/TNFR1 signaling amplifies the oxidative stress triggered by superoxide anion, which contributes to sustaining pain and inflammation.
Collapse
Affiliation(s)
- Fabiane Y Yamacita-Borin
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM380 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil; Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Av. Robert Koch 60, Londrina, Paraná, CEP 86038-350, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM380 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM380 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM380 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, CEP 14049-900, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, CEP 14049-900, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, CEP 14049-900, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Av. Robert Koch 60, Londrina, Paraná, CEP 86038-350, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM380 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.
| |
Collapse
|
18
|
Gerard E, Spengler RN, Bonoiu AC, Mahajan SD, Davidson BA, Ding H, Kumar R, Prasad PN, Knight PR, Ignatowski TA. Chronic constriction injury-induced nociception is relieved by nanomedicine-mediated decrease of rat hippocampal tumor necrosis factor. Pain 2015; 156:1320-1333. [PMID: 25851457 PMCID: PMC4474806 DOI: 10.1097/j.pain.0000000000000181] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a chronic pain syndrome that arises from nerve injury. Current treatments only offer limited relief, clearly indicating the need for more effective therapeutic strategies. Previously, we demonstrated that proinflammatory tumor necrosis factor-alpha (TNF) is a key mediator of neuropathic pain pathogenesis; TNF is elevated at sites of neuronal injury, in the spinal cord, and supraspinally during the initial development of pain. The inhibition of TNF action along pain pathways outside higher brain centers results in transient decreases in pain perception. The objective of this study was to determine whether specific blockade of TNF in the hippocampus, a site of pain integration, could prove efficacious in reducing sciatic nerve chronic constriction injury (CCI)-induced pain behavior. Small inhibitory RNA directed against TNF mRNA was complexed to gold nanorods (GNR-TNF siRNA; TNF nanoplexes) and injected into the contralateral hippocampus of rats 4 days after unilateral CCI. Withdrawal latencies to a noxious thermal stimulus (hyperalgesia) and withdrawal to innocuous forces (allodynia) were recorded up to 10 days and compared with baseline values and sham-operated rats. Thermal hyperalgesia was dramatically decreased in CCI rats receiving hippocampal TNF nanoplexes; and mechanical allodynia was transiently relieved. TNF levels (bioactive protein, TNF immunoreactivity) in hippocampal tissue were decreased. The observation that TNF nanoplex injection into the hippocampus alleviated neuropathic pain-like behavior advances our previous findings that hippocampal TNF levels modulate pain perception. These data provide evidence that targeting TNF in the brain using nanoparticle-protected siRNA may be an effective strategy for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Elizabeth Gerard
- Department of Pathology and Anatomical Sciences, University at Buffalo, The State University of New York
| | | | - Adela C. Bonoiu
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University at Buffalo, The State University of New York
| | - Bruce A. Davidson
- Department of Pathology and Anatomical Sciences, University at Buffalo, The State University of New York
- NanoAxis, LLC, Clarence, New York 14031
- Department of Anesthesiology, University at Buffalo, The State University of New York
- Veterans Administration Western New York Healthcare System
| | - Hong Ding
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
| | - Rajiv Kumar
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
| | - Paras N. Prasad
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
- Department of Chemistry, University at Buffalo, The State University of New York
| | - Paul R. Knight
- NanoAxis, LLC, Clarence, New York 14031
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
- Department of Anesthesiology, University at Buffalo, The State University of New York
- Veterans Administration Western New York Healthcare System
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York
| | - Tracey A. Ignatowski
- Department of Pathology and Anatomical Sciences, University at Buffalo, The State University of New York
- NanoAxis, LLC, Clarence, New York 14031
- Program for Neuroscience, University at Buffalo, The State University of New York
| |
Collapse
|
19
|
Ma F, Zhang L, Oz HS, Mashni M, Westlund KN. Dysregulated TNFα promotes cytokine proteome profile increases and bilateral orofacial hypersensitivity. Neuroscience 2015; 300:493-507. [PMID: 26033565 DOI: 10.1016/j.neuroscience.2015.05.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tumor necrosis factor alpha (TNFα) is increased in patients with headache, neuropathic pain, periodontal and temporomandibular disease. This study and others have utilized TNF receptor 1/2 (TNFR1/2) knockout (KO) animals to investigate the effect of TNFα dysregulation in generation and maintenance of chronic neuropathic pain. The present study determined the impact of TNFα dysregulation in a trigeminal inflammatory compression (TIC) nerve injury model comparing wild-type (WT) and TNFR1/2 KO mice. METHODS Chromic gut suture was inserted adjacent to the infraorbital nerve to induce the TIC model mechanical hypersensitivity. Cytokine proteome profiles demonstrated serology, and morphology explored microglial activation in trigeminal nucleus 10weeks post. RESULTS TIC injury induced ipsilateral whisker pad mechanical allodynia persisting throughout the 10-week study in both TNFR1/2 KO and WT mice. Delayed mechanical allodynia developed on the contralateral whisker pad in TNFR1/2 KO mice but not in WT mice. Proteomic profiling 10weeks after chronic TIC injury revealed TNFα, interleukin-1alpha (IL-1α), interleukin-5 (IL-5), interleukin-23 (IL-23), macrophage inflammatory protein-1β (MIP-1β), and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased more than 2-fold in TNFR1/2 KO mice compared to WT mice with TIC. Bilateral microglial activation in spinal trigeminal nucleus was detected only in TNFR1/2 KO mice. p38 mitogen-activated protein kinase (MAPK) inhibitor and microglial inhibitor minocycline reduced hypersensitivity. CONCLUSIONS The results suggest the dysregulated serum cytokine proteome profile and bilateral spinal trigeminal nucleus microglial activation are contributory to the bilateral mechanical hypersensitization in this chronic trigeminal neuropathic pain model in the mice with TNFα dysregulation. Data support involvement of both neurogenic and humoral influences in chronic neuropathic pain.
Collapse
Affiliation(s)
- F Ma
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - L Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - H S Oz
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - M Mashni
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - K N Westlund
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| |
Collapse
|
20
|
Möser CV, Stephan H, Altenrath K, Kynast KL, Russe OQ, Olbrich K, Geisslinger G, Niederberger E. TANK-binding kinase 1 (TBK1) modulates inflammatory hyperalgesia by regulating MAP kinases and NF-κB dependent genes. J Neuroinflammation 2015; 12:100. [PMID: 25997745 PMCID: PMC4449530 DOI: 10.1186/s12974-015-0319-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TANK-binding kinase (TBK1) is a non-canonical IκB kinase (IKK) involved in the regulation of type I interferons and of NF-κB signal transduction. It is activated by viral infections and inflammatory mediators and has therefore been associated with viral diseases, obesity, and rheumatoid arthritis. Its role in pain has not been investigated so far. Due to the important roles of NF-κB, classical IκB Kinases and the IKK-related kinase, IKKε, in inflammatory nociception, we hypothesized that TBK1, which is suggested to form a complex with IKKε under certain conditions, might also alter the inflammatory nociceptive response. METHODS We investigated TBK1 expression and regulation in "pain-relevant" tissues of C57BL/6 mice by immunofluorescence, quantitative PCR, and Western blot analysis. Furthermore, nociceptive responses and the underlying signal transduction pathways were assessed using TBK1(-/-) mice in two models of inflammatory nociception. RESULTS Our data show that TBK1 is expressed and regulated in the spinal cord after peripheral nociceptive stimulation and that a deletion of TBK1 alleviated the inflammatory hyperalgesia in mice while motor function and acute nociception were not altered. TBK1-mediated effects are at least partially mediated by regulation of NF-κB dependent COX-2 induction but also by alteration of expression of c-fos via modulation of MAP kinases as shown in the spinal cord of mice and in cell culture experiments. CONCLUSION We suggest that TBK1 exerts pronociceptive effects in inflammatory nociception which are due to both modulation of NF-κB dependent genes and regulation of MAPKs and c-fos. Inhibition of TBK1 might therefore constitute a novel effective tool for analgesic therapy.
Collapse
Affiliation(s)
- Christine V Möser
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Heike Stephan
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Katharina Altenrath
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Katharina L Kynast
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Otto Q Russe
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Katrin Olbrich
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Ellen Niederberger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Tilley DM, Vallejo R, Kelley CA, Benyamin R, Cedeño DL. A continuous spinal cord stimulation model attenuates pain-related behavior in vivo following induction of a peripheral nerve injury. Neuromodulation 2015; 18:171-6; discussion 176. [PMID: 25683886 DOI: 10.1111/ner.12280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/17/2014] [Accepted: 12/31/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Models that simulate clinical conditions are needed to gain an understanding of the mechanism involved during spinal cord stimulation (SCS) treatment of chronic neuropathic pain. An animal model has been developed for continuous SCS in which animals that have been injured to develop neuropathic pain behavior were allowed to carry on with regular daily activities while being stimulated for 72 hours. MATERIAL AND METHODS Sprague-Dawley rats were randomized into each of six different groups (N = 10-13). Three groups included animals in which the spared nerve injury (SNI) was induced. Animals in two of these groups were implanted with a four-contact electrode in the epidural space. Animals in one of these groups received stimulation for 72 hours continuously. Three corresponding sham groups (no SNI) were included. Mechanical and cold-thermal allodynia were evaluated using von Frey filaments and acetone drops, respectively. Mean withdrawal thresholds were compared. Statistical significance was established using one-way ANOVAs followed by Holm-Sidak post hoc analysis. RESULTS Continuous SCS attenuates mechanical allodynia in animals with neuropathic pain behavior. Mechanical withdrawal threshold increases significantly in SNI animals after 24 and 72 hours stimulation vs. SNI no stimulation (p = 0.007 and p < 0.001, respectively). SCS for 24 and 72 hours provides significant increase in mechanical withdrawal thresholds relative to values before stimulation (p = 0.001 and p < 0.001, respectively). Stimulation did not provide recovery to baseline values. SCS did not seem to attenuate cold-thermal allodynia. CONCLUSION A continuous SCS model has been developed. Animals with neuropathic pain behavior that were continuously stimulated showed significant increase in withdrawal thresholds proportional to stimulation time.
Collapse
Affiliation(s)
- Dana M Tilley
- Basic Science, Millennium Pain Center, Bloomington, IL, USA; School of Biological Sciences, Illinois State University, Normal, IL, USA
| | | | | | | | | |
Collapse
|
22
|
Neuropathic pain-induced depressive-like behavior and hippocampal neurogenesis and plasticity are dependent on TNFR1 signaling. Brain Behav Immun 2014; 41:65-81. [PMID: 24938671 PMCID: PMC4167189 DOI: 10.1016/j.bbi.2014.04.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
Patients suffering from neuropathic pain have a higher incidence of mood disorders such as depression. Increased expression of tumor necrosis factor (TNF) has been reported in neuropathic pain and depressive-like conditions and most of the pro-inflammatory effects of TNF are mediated by the TNF receptor 1 (TNFR1). Here we sought to investigate: (1) the occurrence of depressive-like behavior in chronic neuropathic pain and the associated forms of hippocampal plasticity, and (2) the involvement of TNFR1-mediated TNF signaling as a possible regulator of such events. Neuropathic pain was induced by chronic constriction injury of the sciatic nerve in wild-type and TNFR1(-/-) mice. Anhedonia, weight loss and physical state were measured as symptoms of depression. Hippocampal neurogenesis, neuroplasticity, myelin remodeling and TNF/TNFRs expression were analyzed by immunohistochemical analysis and western blot assay. We found that neuropathic pain resulted in the development of depressive symptoms in a time dependent manner and was associated with profound hippocampal alterations such as impaired neurogenesis, reduced expression of neuroplasticity markers and myelin proteins. The onset of depressive-like behavior also coincided with increased hippocampal levels of TNF, and decreased expression of TNF receptor 2 (TNFR2), which were all fully restored after mice spontaneously recovered from pain. Notably, TNFR1(-/-) mice did not develop depressive-like symptoms after injury, nor were there changes in hippocampal neurogenesis and plasticity. Our data show that neuropathic pain induces a cluster of depressive-like symptoms and profound hippocampal plasticity that are dependent on TNF signaling through TNFR1.
Collapse
|
23
|
Bas DB, Abdelmoaty S, Sandor K, Codeluppi S, Fitzsimmons B, Steinauer J, Hua XY, Yaksh TL, Svensson CI. Spinal release of tumour necrosis factor activates c-Jun N-terminal kinase and mediates inflammation-induced hypersensitivity. Eur J Pain 2014; 19:260-70. [PMID: 24942612 PMCID: PMC4270961 DOI: 10.1002/ejp.544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2014] [Indexed: 12/12/2022]
Abstract
Background Mounting evidence points to individual contributions of tumour necrosis factor-alpha (TNF) and the c-Jun N-terminal kinase (JNK) pathway to the induction and maintenance of various pain states. Here we explore the role of spinal TNF and JNK in carrageenan-induced hypersensitivity. As links between TNF and JNK have been demonstrated in vitro, we investigated if TNF regulates spinal JNK activity in vivo. Methods TNF levels in lumbar cerebrospinal fluid (CSF) were measured by enzyme-linked immunosorbent assay, spinal TNF gene expression by real-time polymerase chain reaction and TNF protein expression, JNK and c-Jun phosphorylation by western blotting. The role of spinal TNF and JNK in inflammation-induced mechanical and thermal hypersensitivity was assessed by injecting the TNF inhibitor etanercept and the JNK inhibitors SP600125 and JIP-1 intrathecally (i.t.). TNF-mediated regulation of JNK activity was examined by assessing the effect of i.t. etanercept on inflammation-induced spinal JNK activity. Results TNF levels were increased in CSF and spinal cord following carrageenan-induced inflammation. While JNK phosphorylation followed the same temporal pattern as TNF, c-jun was only activated at later time points. Intrathecal injection of TNF and JNK inhibitors attenuated carrageenan-induced mechanical and thermal hypersensitivity. TNF stimulation induced JNK phosphorylation in cultured spinal astrocytes and blocking the spinal actions of TNF in vivo by i.t. injection of etanercept reduced inflammation-induced spinal JNK activity. Conclusions Here we show that spinal JNK activity is dependent on TNF and that both TNF and the JNK signalling pathways modulate pain-like behaviour induced by peripheral inflammation.
Collapse
Affiliation(s)
- D B Bas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zeng XY, Zhang Q, Wang J, Yu J, Han SP, Wang JY. Distinct role of tumor necrosis factor receptor subtypes 1 and 2 in the red nucleus in the development of neuropathic pain. Neurosci Lett 2014; 569:43-8. [DOI: 10.1016/j.neulet.2014.03.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/09/2014] [Accepted: 03/18/2014] [Indexed: 01/11/2023]
|
25
|
Zhang J, Su YM, Li D, Cui Y, Huang ZZ, Wei JY, Xue Z, Pang RP, Liu XG, Xin WJ. TNF-α-mediated JNK activation in the dorsal root ganglion neurons contributes to Bortezomib-induced peripheral neuropathy. Brain Behav Immun 2014; 38:185-91. [PMID: 24530998 DOI: 10.1016/j.bbi.2014.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 01/30/2023] Open
Abstract
Bortezomib (BTZ) is a frequently used chemotherapeutic drug for the treatment of refractory multiple myeloma and hematological neoplasms. The mechanism by which the administration of BTZ leads to painful peripheral neuropathy remains unclear. In the present study, we first determined that the administration of BTZ upregulated the expression of TNF-α and phosphorylated JNK1/2 in the dorsal root ganglion (DRG) of rat. Furthermore, the TNF-α synthesis inhibitor thalidomide significantly blocked the activation of both isoforms JNK1 and JNK2 in the DRG and attenuated mechanical allodynia following BTZ treatment. Knockout of the expression of TNF-α receptor TNFR1 (TNFR1 KO mice) or TNFR2 (TNFR2 KO mice) inhibited JNK1 and JNK2 activation and decreased mechanical allodynia induced by BTZ. These results suggest that upregulated TNF-α expression may activate JNK signaling via TNFR1 or TNFR2 to mediate mechanical allodynia following BTZ treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Yi-Min Su
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Dai Li
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Yu Cui
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Zhen-Zhen Huang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Jia-You Wei
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Zi Xue
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Rui-Ping Pang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| |
Collapse
|
26
|
Huckans M, Fuller BE, Olavarria H, Sasaki AW, Chang M, Flora KD, Kolessar M, Kriz D, Anderson JR, Vandenbark AA, Loftis JM. Multi-analyte profile analysis of plasma immune proteins: altered expression of peripheral immune factors is associated with neuropsychiatric symptom severity in adults with and without chronic hepatitis C virus infection. Brain Behav 2014; 4:123-42. [PMID: 24683507 PMCID: PMC3967530 DOI: 10.1002/brb3.200] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 11/01/2013] [Accepted: 11/10/2013] [Indexed: 12/15/2022] Open
Abstract
BackgroundThe purpose of this study was to characterize hepatitis C virus (HCV)-associated differences in the expression of 47 inflammatory factors and to evaluate the potential role of peripheral immune activation in HCV-associated neuropsychiatric symptoms-depression, anxiety, fatigue, and pain. An additional objective was to evaluate the role of immune factor dysregulation in the expression of specific neuropsychiatric symptoms to identify biomarkers that may be relevant to the treatment of these neuropsychiatric symptoms in adults with or without HCV. MethodsBlood samples and neuropsychiatric symptom severity scales were collected from HCV-infected adults (HCV+, n = 39) and demographically similar noninfected controls (HCV-, n = 40). Multi-analyte profile analysis was used to evaluate plasma biomarkers. ResultsCompared with HCV- controls, HCV+ adults reported significantly (P < 0.050) greater depression, anxiety, fatigue, and pain, and they were more likely to present with an increased inflammatory profile as indicated by significantly higher plasma levels of 40% (19/47) of the factors assessed (21%, after correcting for multiple comparisons). Within the HCV+ group, but not within the HCV- group, an increased inflammatory profile (indicated by the number of immune factors > the LDC) significantly correlated with depression, anxiety, and pain. Within the total sample, neuropsychiatric symptom severity was significantly predicted by protein signatures consisting of 4-10 plasma immune factors; protein signatures significantly accounted for 19-40% of the variance in depression, anxiety, fatigue, and pain. ConclusionsOverall, the results demonstrate that altered expression of a network of plasma immune factors contributes to neuropsychiatric symptom severity. These findings offer new biomarkers to potentially facilitate pharmacotherapeutic development and to increase our understanding of the molecular pathways associated with neuropsychiatric symptoms in adults with or without HCV.
Collapse
Affiliation(s)
- Marilyn Huckans
- Research & Development Service, Portland VA Medical Center3710 SW U.S. Veterans Hospital Rd., Portland, Oregon, 97239, USA
- Mental Health and Clinical Neurosciences Division, Portland VA Medical Center3710 SW U.S. Veterans Hospital Rd., Portland, Oregon, 97239, USA
- Department of Psychiatry, Oregon Health & Science University3181 SW Sam Jackson Park Rd., Portland, Oregon, 97239, USA
| | - Bret E Fuller
- Research & Development Service, Portland VA Medical Center3710 SW U.S. Veterans Hospital Rd., Portland, Oregon, 97239, USA
- Mental Health and Clinical Neurosciences Division, Portland VA Medical Center3710 SW U.S. Veterans Hospital Rd., Portland, Oregon, 97239, USA
| | - Hannah Olavarria
- Research & Development Service, Portland VA Medical Center3710 SW U.S. Veterans Hospital Rd., Portland, Oregon, 97239, USA
| | - Anna W Sasaki
- Gastroenterology Service, Portland VA Medical Center3710 SW US Veterans Hospital Rd., Portland, Oregon, 97239, USA
- Department of Internal Medicine, Oregon Health & Science University3181 SW Sam Jackson Park Rd., Portland, Oregon, 97239, USA
| | - Michael Chang
- Gastroenterology Service, Portland VA Medical Center3710 SW US Veterans Hospital Rd., Portland, Oregon, 97239, USA
- Department of Internal Medicine, Oregon Health & Science University3181 SW Sam Jackson Park Rd., Portland, Oregon, 97239, USA
| | - Kenneth D Flora
- Portland Gastroenterology Division, Oregon Clinic9280 SE Sunnybrook Blvd., Clackamas, Oregon, 97015, USA
| | - Michael Kolessar
- School of Professional Psychology, Pacific University190 SE 8th Ave., Hillsboro, Oregon, 97123, USA
| | - Daniel Kriz
- School of Professional Psychology, Pacific University190 SE 8th Ave., Hillsboro, Oregon, 97123, USA
| | - Jeanne R Anderson
- School of Professional Psychology, Pacific University190 SE 8th Ave., Hillsboro, Oregon, 97123, USA
| | - Arthur A Vandenbark
- Research & Development Service, Portland VA Medical Center3710 SW U.S. Veterans Hospital Rd., Portland, Oregon, 97239, USA
- Department of Neurology, Oregon Health & Science University3181 SW Sam Jackson Park Rd., Portland, Oregon, 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University3181 SW Sam Jackson Park Rd., Portland, Oregon, 97239, USA
| | - Jennifer M Loftis
- Research & Development Service, Portland VA Medical Center3710 SW U.S. Veterans Hospital Rd., Portland, Oregon, 97239, USA
- Department of Psychiatry, Oregon Health & Science University3181 SW Sam Jackson Park Rd., Portland, Oregon, 97239, USA
| |
Collapse
|
27
|
Coelho S, Bastos-Pereira A, Fraga D, Chichorro J, Zampronio A. Etanercept reduces thermal and mechanical orofacial hyperalgesia following inflammation and neuropathic injury. Eur J Pain 2014; 18:957-67. [DOI: 10.1002/j.1532-2149.2013.00441.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2013] [Indexed: 12/31/2022]
Affiliation(s)
- S.C. Coelho
- Department of Pharmacology; Federal University of Paraná; Curitiba Brazil
| | | | - D. Fraga
- Department of Pharmacology; Federal University of Paraná; Curitiba Brazil
| | - J.G. Chichorro
- Department of Pharmacology; Federal University of Paraná; Curitiba Brazil
| | - A.R. Zampronio
- Department of Pharmacology; Federal University of Paraná; Curitiba Brazil
| |
Collapse
|
28
|
Gómez-Soriano J, Goiriena E, Florensa-Vila J, Gómez-Arguelles JM, Mauderli A, Vierck CJ, Albu S, Simón-Martinez C, Taylor J. Sensory function after cavernous haemangioma: a case report of thermal hypersensitivity at and below an incomplete spinal cord injury. Spinal Cord 2012; 50:711-5. [PMID: 22733175 DOI: 10.1038/sc.2012.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Case report of a 42-year-old woman with non-evoked pain diagnosed with a cavernous C7-Th6 spinal haemangioma. OBJECTIVES To assess the effect of intramedullary haemorrhage (IH) on nociception and neuropathic pain (NP) at and below an incomplete spinal cord injury (SCI). SETTING Sensorimotor Function Group, Hospital Nacional de Parapléjicos de Toledo (HNPT). METHODS T2*-susceptibility weighted image (SWI) magnetic resonance imaging (MRI) of spinal haemosiderin and a complete pain history were performed 8 months following initial dysaesthesia complaint. Thermal pain thresholds were assessed with short 1 s stimuli, while evidence for central sensitization was obtained with psychophysical electronic Visual Analogue Scale rating of tonic 10 s 3 °C and 48 °C stimuli, applied at and below the IH. Control data were obtained from 10 healthy volunteers recruited from the HNPT. RESULTS Non-evoked pain was present within the Th6 dermatome and lower legs. T2*-SWI MRI imaging detected extensive haemosiderin-rich IH (C7-Th5/6 spinal level). Cold allodynia was detected below the IH (left L5 dermatome) with short thermal stimuli. Tonic thermal stimuli applied to the Th6, Th10 and C7 dermatomes revealed widespread heat and cold allodynia. CONCLUSION NP was diagnosed following IH, corroborated by an increase in below-level cold pain threshold with at- and below-level cold and heat allodynia. Psychophysical evidence for at- and below-level SCI central sensitization was obtained with tonic thermal stimuli. Early detection of IH could lead to better management of specific NP symptoms, an appreciation of the role of haemorrhage as an aggravating SCI physical factor, and the identification of specific spinal pathophysiological pain mechanisms.
Collapse
Affiliation(s)
- J Gómez-Soriano
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Myers RR, Shubayev VI. The ology of neuropathy: an integrative review of the role of neuroinflammation and TNF-α axonal transport in neuropathic pain. J Peripher Nerv Syst 2012; 16:277-86. [PMID: 22176142 DOI: 10.1111/j.1529-8027.2011.00362.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This 2011 Peripheral Nerve Society plenary lecture reviews the role of axonal transport in neuroimmune communication following peripheral nerve injury, linking focal changes in Schwann cell activation and release of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α) with subsequent activation and sensitization of ascending sensory neurons and glia which culminate in the neuropathic pain state. New data demonstrate that axonally transported (biotinylated) TNF-α activates and localizes with dorsal horn astrocytes within 96 h after injection into sciatic nerve, and that glial fibrillary acidic protein (GFAP) activation in these glial cells is diminished in TNF receptor 1 knockout mice. The pathophysiology, neuropathology and molecular biology of Wallerian degeneration are also reviewed from a perspective that links it to upregulation of proinflammatory cytokines and the development of neuropathic pain states. Finally, insights into neuroimmune communication provide rationale for new therapy based on interference with the processes of Wallerian degeneration, cytokine signaling and TNF-α protein sequestration.
Collapse
Affiliation(s)
- Robert R Myers
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093-0629, USA.
| | | |
Collapse
|
30
|
Spicarova D, Nerandzic V, Palecek J. Modulation of spinal cord synaptic activity by tumor necrosis factor α in a model of peripheral neuropathy. J Neuroinflammation 2011; 8:177. [PMID: 22189061 PMCID: PMC3264538 DOI: 10.1186/1742-2094-8-177] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cytokine tumor necrosis factor α (TNFα) is an established pain modulator in both the peripheral and central nervous systems. Modulation of nociceptive synaptic transmission in the spinal cord dorsal horn (DH) is thought to be involved in the development and maintenance of several pathological pain states. Increased levels of TNFα and its receptors (TNFR) in dorsal root ganglion (DRG) cells and in the spinal cord DH have been shown to play an essential role in neuropathic pain processing. In the present experiments the effect of TNFα incubation on modulation of primary afferent synaptic activity was investigated in a model of peripheral neuropathy. METHODS Spontaneous and miniature excitatory postsynaptic currents (sEPSC and mEPSCs) were recorded in superficial DH neurons in acute spinal cord slices prepared from animals 5 days after sciatic nerve transection and in controls. RESULTS In slices after axotomy the sEPSC frequency was 2.8 ± 0.8 Hz, while neurons recorded from slices after TNFα incubation had significantly higher sEPSC frequency (7.9 ± 2.2 Hz). The effect of TNFα treatment was smaller in the slices from the control animals, where sEPSC frequency was 1.2 ± 0.2 Hz in slices without and 2.0 ± 0.5 Hz with TNFα incubation. Tetrodotoxin (TTX) application in slices from axotomized animals and after TNFα incubation decreased the mEPSC frequency to only 37.4 ± 6.9% of the sEPSC frequency. This decrease was significantly higher than in the slices without the TNFα treatment (64.4 ± 6.4%). TTX application in the control slices reduced the sEPSC frequency to about 80% in both TNFα untreated and treated slices. Application of low concentration TRPV1 receptors endogenous agonist N-oleoyldopamine (OLDA, 0.2 μM) in slices after axotomy induced a significant increase in mEPSC frequency (175.9 ± 17.3%), similar to the group with TNFα pretreatment (158.1 ± 19.5%). CONCLUSIONS Our results indicate that TNFα may enhance spontaneous transmitter release from primary afferent fibres in the spinal cord DH by modulation of TTX-sensitive sodium channels following sciatic nerve transection. This nerve injury also leads to enhanced sensitivity of presynaptic TRPV1 receptors to endogenous agonist. Modulation of presynaptic receptor activity on primary sensory terminals by TNFα may play an important role in neuropathic pain development.
Collapse
Affiliation(s)
- Diana Spicarova
- Department of Functional Morphology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
31
|
Üçeyler N, Topuzoğlu T, Schiesser P, Hahnenkamp S, Sommer C. IL-4 deficiency is associated with mechanical hypersensitivity in mice. PLoS One 2011; 6:e28205. [PMID: 22164245 PMCID: PMC3229527 DOI: 10.1371/journal.pone.0028205] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/03/2011] [Indexed: 12/27/2022] Open
Abstract
Interleukin-4 (IL-4) is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko) mice to characterize their pain behavior before and after chronic constriction injury (CCI) of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS) of IL-4 ko mice in comparison with wildtype (wt) mice. Naïve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001), while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF), IL-1β, IL-10, and IL-13 were found in the PNS and CNS of naïve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001) 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014). Remarkably, CCI induced TNF (p<0.01), IL-1β (p<0.05), IL-10 (p<0.05), and IL-13 (p<0.001) gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion.
Collapse
Affiliation(s)
- Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
32
|
Andrade P, Visser-Vandewalle V, Hoffmann C, Steinbusch HWM, Daemen MA, Hoogland G. Role of TNF-alpha during central sensitization in preclinical studies. Neurol Sci 2011; 32:757-71. [PMID: 21559854 PMCID: PMC3171667 DOI: 10.1007/s10072-011-0599-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 04/20/2011] [Indexed: 12/31/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) is a principal mediator in pro-inflammatory processes that involve necrosis, apoptosis and proliferation. Experimental and clinical evidence demonstrate that peripheral nerve injury results in activation and morphological changes of microglial cells in the spinal cord. These adjustments occur in order to initiate an inflammatory cascade in response to the damage. Between the agents involved in this reaction, TNF-α is recognized as a key player in this process as it not only modulates lesion formation, but also because it is suggested to induce nociceptive signals. Nowadays, even though the function of TNF-α in inflammation and pain production seems to be generally accepted, diverse sources of literature point to different pathways and outcomes. In this review, we systematically searched and reviewed original articles from the past 10 years on animal models of peripheral nervous injury describing TNF-α expression in neural tissue and pain behavior.
Collapse
Affiliation(s)
- Pablo Andrade
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, Box 38, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
33
|
Dubový P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat 2011; 193:267-75. [PMID: 21458249 DOI: 10.1016/j.aanat.2011.02.011] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 12/29/2022]
Abstract
Wallerian degeneration is a cascade of stereotypical events in reaction to injury of nerve fibres. These events consist of cellular and molecular alterations, including macrophage invasion, activation of Schwann cells, as well as neurotrophin and cytokine upregulation. This review focuses on cellular and molecular changes distal to various types of peripheral nerve injury which simultaneously contribute to axonal regeneration and neuropathic pain induction. In addition to the stereotypical events of Wallerian degeneration, various types of nerve damage provide different conditions for both axonal regeneration and neuropathic pain induction. Wallerian degeneration of injured peripheral nerve is associated with an inflammatory response including rapid upregulation of the immune signal molecules like cytokines, chemokines and transcription factors with both beneficial and detrimental effects on nerve regeneration or neuropathic pain induction. A better understanding of the molecular interactions between the immune system and peripheral nerve injury would open the possibility for targeting these inflammatory mediators in therapeutic interventions. Understanding the pleiotropic effects of cytokines/chemokines, however, requires investigating their highly specific pathways and precise points of action.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine and Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, Brno, Czech Republic.
| |
Collapse
|
34
|
TNF-α contributes to spinal cord synaptic plasticity and inflammatory pain: distinct role of TNF receptor subtypes 1 and 2. Pain 2010; 152:419-427. [PMID: 21159431 DOI: 10.1016/j.pain.2010.11.014] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/19/2010] [Accepted: 11/16/2010] [Indexed: 12/30/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) is a key proinflammatory cytokine. It is generally believed that TNF-α exerts its effects primarily via TNF receptor subtype-1 (TNFR1). We investigated the distinct roles of TNFR1 and TNFR2 in spinal cord synaptic transmission and inflammatory pain. Compared to wild-type (WT) mice, TNFR1- and TNFR2-knockout (KO) mice exhibited normal heat sensitivity and unaltered excitatory synaptic transmission in the spinal cord, as revealed by spontaneous excitatory postsynaptic currents in lamina II neurons of spinal cord slices. However, heat hyperalgesia after intrathecal TNF-α and the second-phase spontaneous pain in the formalin test were reduced in both TNFR1- and TNFR2-KO mice. In particular, heat hyperalgesia after intraplantar injection of complete Freund's adjuvant (CFA) was decreased in the early phase in TNFR2-KO mice but reduced in both the early and later phase in TNFR1-KO mice. Consistently, CFA elicited a transient increase of TNFR2 mRNA levels in the spinal cord on day 1. Notably, TNF-α evoked a drastic increase in spontaneous excitatory postsynaptic current frequency in lamina II neurons, which was abolished in TNFR1-KO mice and reduced in TNFR2-KO mice. TNF-α also increased N-methyl-d-aspartate (NMDA) currents in lamina II neurons, and this increase was abolished in TNFR1-KO mice but retained in TNFR2-KO mice. Finally, intrathecal injection of the NMDA receptor antagonist MK-801 prevented heat hyperalgesia elicited by intrathecal TNF-α. Our findings support a central role of TNF-α in regulating synaptic plasticity (central sensitization) and inflammatory pain via both TNFR1 and TNFR2. Our data also uncover a unique role of TNFR2 in mediating early-phase inflammatory pain. TNF-α is shown to play a critical role in regulating spinal cord synaptic plasticity and central sensitization, and TNFR1 and TNFR2 play a distinct role in regulating different phases of inflammatory pain.
Collapse
|
35
|
The Interface of Pain and Mood Disturbances in the Rheumatic Diseases. Semin Arthritis Rheum 2010; 40:15-31. [DOI: 10.1016/j.semarthrit.2008.11.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 11/11/2008] [Accepted: 11/24/2008] [Indexed: 12/28/2022]
|
36
|
Evoked pain behavior and spinal glia activation is dependent on tumor necrosis factor receptor 1 and 2 in a mouse model of bone cancer pain. Neuroscience 2010; 169:463-74. [PMID: 20417692 DOI: 10.1016/j.neuroscience.2010.04.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 11/21/2022]
Abstract
Bone-cancer-related pain is one of the most disabling factors in patients suffering from primary bone cancer or bone metastases. Recent studies point toward an important role of proinflammatory cytokines, example tumor necrosis factor-alpha (TNF), for tumor growth and bone-cancer-associated pain. Mechanisms by which TNF, through its receptor subtypes, TNF receptor 1 (TNFR1) and -2 (TNFR2), elicits altered sensation and pain behavior, are still incompletely understood. To look for a potential role of TNF in bone cancer pain, cancer-related pain was analyzed in fibrosarcoma-bearing C57Bl/6J wild type mice after systemic antagonism of TNF. To further clarify the role of TNF receptor (TNFR) in bone-cancer pain, naive and fibrosarcoma-bearing C57Bl/ 6J wild type and transgenic mice with a deficiency of TNFR1 (TNFR1ko), TNFR2 (TNFR2ko), and TNFR1+2 (TNFR1+2ko) were compared regarding cancer-related pain and hyperalgesia, tumor growth, osteoclast activation, and spinal astrogliosis. Systemic antagonism of TNF significantly alleviated tactile hypersensitivity and spontaneous bone-cancer-related pain behavior. Most interestingly, combined deletion of the TNFR1 and TNFR2, but not of either gene alone, almost completely inhibited the development of tactile hypersensitivity, whereas spontaneous pain behavior was transiently increased. Accordingly, spinal astrogliosis was markedly reduced, whereas tumor growth was significantly increased in TNFR1+2ko mice. In contrast, deletion of the TNFR1 or TNFR2 gene alone did not change tumor growth or spinal astrogliosis. Our findings suggest that the combined absence of TNFR1 and TNFR2 is necessary for the attenuation of cancer-related tactile hypersensitivity and concomitant spinal astrogliosis, whereas tumor growth seems to be inhibited by combined TNFR activation. These findings support the hypothesis of cytokine-dependent pain development in cancer pain. Differential targeting of TNFR activation could be an interesting strategy in bone-cancer-related pain conditions.
Collapse
|
37
|
Babcock DT, Landry C, Galko MJ. Cytokine signaling mediates UV-induced nociceptive sensitization in Drosophila larvae. Curr Biol 2009; 19:799-806. [PMID: 19375319 DOI: 10.1016/j.cub.2009.03.062] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 11/29/2022]
Abstract
BACKGROUND Heightened nociceptive (pain) sensitivity is an adaptive response to tissue damage and serves to protect the site of injury. Multiple mediators of nociceptive sensitization have been identified in vertebrates, but the complexity of the vertebrate nervous system and tissue-repair responses has hindered identification of the precise roles of these factors. RESULTS Here we establish a new model of nociceptive sensitization in Drosophila larvae, in which UV-induced tissue damage alters an aversive withdrawal behavior. We find that UV-treated larvae develop both thermal hyperalgesia, manifested as an exaggerated response to noxious thermal stimuli, and thermal allodynia, a responsiveness to subthreshold thermal stimuli that are not normally perceived as noxious. Allodynia is dependent upon a tumor necrosis factor (TNF) homolog, Eiger, released from apoptotic epidermal cells, and the TNF receptor, Wengen, expressed on nociceptive sensory neurons. CONCLUSIONS These results demonstrate that cytokine-mediated nociceptive sensitization is conserved across animal phyla and set the stage for a sophisticated genetic dissection of the cellular and molecular alterations responsible for development of nociceptive sensitization in sensory neurons.
Collapse
Affiliation(s)
- Daniel T Babcock
- Department of Biochemistry and Molecular Biology, University of Texas Graduate School of Biomedical Sciences, USA
| | | | | |
Collapse
|
38
|
Alexander JK, Popovich PG. Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration. PROGRESS IN BRAIN RESEARCH 2009; 175:125-37. [DOI: 10.1016/s0079-6123(09)17508-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Khan AA, Diogenes A, Jeske NA, Henry MA, Akopian A, Hargreaves KM. Tumor necrosis factor alpha enhances the sensitivity of rat trigeminal neurons to capsaicin. Neuroscience 2008; 155:503-9. [PMID: 18582539 DOI: 10.1016/j.neuroscience.2008.05.036] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 05/05/2008] [Accepted: 05/07/2008] [Indexed: 01/12/2023]
Abstract
Tumor necrosis factor alpha (TNFalpha), a pro-inflammatory cytokine, enhances the development of pain and hyperalgesia, although the molecular mechanisms are not well understood. This study evaluated the hypothesis that TNFalpha increases the sensitivity of rat trigeminal neurons to capsaicin via two different mechanisms triggered by either brief or sustained exposure to the cytokine. A brief (5 min) application of TNFalpha significantly sensitized capsaicin-evoked accumulation of intracellular calcium ([Ca2+]i) (226.4+/-37.7 nM vs. 167.5+/-31.3 nM) and increased capsaicin-evoked nocifensive behavior (78.3+/-9.7 vs. 30.9+/-3.6 s) as compared with vehicle pretreatment (P<0.01 for both). Sustained (30 min to 4 h) exposure of cultured neurons to TNFalpha evoked a twofold increase in mRNA transcript (P<0.05) and protein levels (P<0.01) of transient potential receptor vanilloid type 1 (TRPV1). This long-term up-regulation of TRPV1 expression by TNFalpha correlated with enhancement in capsaicin-induced calcitonin gene-related peptide release (P<0.05). Demonstration of colocalization of TNFalpha receptor subtypes I and II with TRPV1 in almost all (>90%) TRPV1 expressing neurons provides evidence consistent with a direct interaction on the same subpopulation of sensory neurons. In summary, our data demonstrate that TNFalpha directly enhances the sensitivity of rat trigeminal neurons to capsaicin via both rapid, non-genomic mechanisms as well as sustained genomic regulation in TRPV1 expression. Thus, increased sensitization and up-regulation of TRPV1 constitutes a potential mechanism by which TNFalpha mediates inflammatory hyperalgesia and pain.
Collapse
Affiliation(s)
- A A Khan
- Department of Endodontics, MC 7892, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Sacerdote P, Franchi S, Trovato AE, Valsecchi AE, Panerai AE, Colleoni M. Transient early expression of TNF-α in sciatic nerve and dorsal root ganglia in a mouse model of painful peripheral neuropathy. Neurosci Lett 2008; 436:210-3. [DOI: 10.1016/j.neulet.2008.03.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 12/30/2022]
|
41
|
Wang XM, Hamza M, Gordon SM, Wahl SM, Dionne RA. COX Inhibitors Downregulate PDE4D Expression in a Clinical Model of Inflammatory Pain. Clin Pharmacol Ther 2008; 84:39-42. [DOI: 10.1038/sj.clpt.6100501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Abstract
In inflammation, resident cells and infiltrating leukocytes produce proalgesic mediators. Although these mediators induce pain, the role of specific cell populations is still controversial. In addition, resident cells and leukocytes also generate analgesic mediators that counteract inflammatory pain, including anti-inflammatory cytokines, endocannabinoids, and opioid peptides. Chemokines and adhesion molecules orchestrate the migration of opioid peptide-containing leukocytes to inflamed tissue. Leukocytes secrete opioid peptides under stressful conditions or in response to releasing agents (eg, corticotropin-releasing factor and chemokines). Secretion requires intracellular calcium mobilization and activation of phosphinositol-3 kinase and p38 mitogen activated kinase. Following release, opioid peptides bind to receptors on peripheral sensory neurons and produce analgesia in animal models and humans. This review presents recent findings on the role of leukocytes in the generation and inhibition of inflammatory pain.
Collapse
|
43
|
Abstract
Cytokine activation or dysregulation is implied in a variety of painful disease states. Numerous experimental studies provide evidence that proinflammatory cytokines induce or facilitate neuropathic pain. Cytokine levels are rapidly and markedly upregulated in the peripheral nerves, dorsal root ganglia, spinal cord and in particular regions of the brain, after peripheral nerve injuries. Direct receptor-mediated actions on afferent nerve fibers as well as cytokine effects involving further mediators have been reported. Whereas direct application of exogenous proinflammatory cytokines induces pain, blockade of these cytokines or application of anti-inflammatory cytokines reduces pain behavior in most experimental paradigms. Cytokine measurements may identify patients at risk of developing chronic pain associated with their neuropathic conditions, as in the examples of peripheral neuropathies and postherpetic neuralgia. Anticytokine agents currently on the market are effective for the treatment of mostly inflammatory pain conditions, and are starting to be introduced for neuropathic pain states; however, their use is limited by potential life-threatening complications. Owing to the pleiotropy and redundancy of the cytokine system, the successful approach may not be inhibition of one particular cytokine but strategies shifting the balance between pro- and anti-inflammatory cytokines in properly selected patients. Agents that specifically target downstream signaling molecules may provide hope for safer and more specific therapies.
Collapse
Affiliation(s)
- Maria Schäfers
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55,45147 Essen, Germany.
| | | |
Collapse
|
44
|
TNF signaling contributes to the development of nociceptive sensitization in a tibia fracture model of complex regional pain syndrome type I. Pain 2007; 137:507-519. [PMID: 18035493 DOI: 10.1016/j.pain.2007.10.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/27/2007] [Accepted: 10/08/2007] [Indexed: 11/22/2022]
Abstract
Tibia fracture in rats initiates a cascade of nociceptive, vascular, and bone changes resembling complex regional pain syndrome type I (CRPS I). Previous studies suggest that the pathogenesis of these changes is attributable to an exaggerated regional inflammatory response to injury. We postulated that the pro-inflammatory cytokine tumor necrosis factor alpha (TNF) might mediate the development of CRPS-like changes after fracture. RT-PCR and EIA assays were used to evaluate changes in TNF expression and content in skin, nerve, and bone after fracture. Bilateral hindpaw thickness, temperature, and nociceptive thresholds were determined, and bone microarchitecture was measured using microcomputed tomography. Lumbar spinal cord Fos immunostaining was performed for quantification of Fos positive neurons. After baseline testing, the distal tibia was fractured and the hindlimb casted for 4 weeks. The rats were subcutaneously injected either with a soluble TNF receptor type 1 (sTNF-R1, 5mg/kg/d) or saline every 3 days over 28 days and then were retested at 4 weeks post-fracture. Tibia fracture chronically upregulated TNF expression and protein levels in the hindpaw skin and sciatic nerve. After fracture the rats developed hindpaw mechanical allodynia and unweighting, which were reversed by sTNF-R1 treatment. Consistent with the behavioral data, spinal Fos increased after fracture and this effect was inhibited by sTNF-R1 treatment. Collectively, these data suggest that facilitated TNF signaling in the hindlimb is an important mediator of chronic regional nociceptive sensitization after fracture, but does not contribute to the hindlimb warmth, edema, and bone loss observed in this CRPS I model.
Collapse
|