1
|
Wyatt TA, Warren KJ, Wetzel TJ, Suwondo T, Rensch GP, DeVasure JM, Mosley DD, Kharbanda KK, Thiele GM, Burnham EL, Bailey KL, Yeligar SM. Malondialdehyde-Acetaldehyde Adduct Formation Decreases Immunoglobulin A Transport across Airway Epithelium in Smokers Who Abuse Alcohol. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1732-1742. [PMID: 34186073 PMCID: PMC8485061 DOI: 10.1016/j.ajpath.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
Alcohol misuse and smoking are risk factors for pneumonia, yet the impact of combined cigarette smoke and alcohol on pneumonia remains understudied. Smokers who misuse alcohol form lung malondialdehyde-acetaldehyde (MAA) protein adducts and have decreased levels of anti-MAA secretory IgA (sIgA). Transforming growth factor-β (TGF-β) down-regulates polymeric Ig receptor (pIgR) on mucosal epithelium, resulting in decreased sIgA transcytosis to the mucosa. It is hypothesized that MAA-adducted lung protein increases TGF-β, preventing expression of epithelial cell pIgR and decreasing sIgA. Cigarette smoke and alcohol co-exposure on sIgA and TGF-β in human bronchoalveolar lavage fluid and in mice instilled with MAA-adducted surfactant protein D (SPD-MAA) were studied herein. Human bronchial epithelial cells (HBECs) and mouse tracheal epithelial cells were treated with SPD-MAA and sIgA and TGF-β was measured. Decreased sIgA and increased TGF-β were observed in bronchoalveolar lavage from combined alcohol and smoking groups in humans and mice. CD204 (MAA receptor) knockout mice showed no changes in sIgA. SPD-MAA decreased pIgR in HBECs. Conversely, SPD-MAA stimulated TGF-β release in both HBECs and mouse tracheal epithelial cells, but not in CD204 knockout mice. SPD-MAA stimulated TGF-β in alveolar macrophage cells. These data show that MAA-adducted surfactant protein stimulates lung epithelial cell TGF-β, down-regulates pIgR, and decreases sIgA transcytosis. These data provide a mechanism for the decreased levels of sIgA observed in smokers who misuse alcohol.
Collapse
Affiliation(s)
- Todd A Wyatt
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Kristi J Warren
- Department of Medicine-Pulmonary Division, University of Utah/VA Salt Lake Health Care System, Salt Lake City, Utah
| | - Tanner J Wetzel
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Troy Suwondo
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gage P Rensch
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jane M DeVasure
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Deanna D Mosley
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Geoffrey M Thiele
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Kristina L Bailey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Samantha M Yeligar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Research Service, Atlanta VA Health Care System, Decatur, Georgia
| |
Collapse
|
2
|
Reichler MR, Hirsch C, Yuan Y, Khan A, Dorman SE, Schluger N, Sterling TR. Predictive value of TNF-α, IFN-γ, and IL-10 for tuberculosis among recently exposed contacts in the United States and Canada. BMC Infect Dis 2020; 20:553. [PMID: 32736606 PMCID: PMC7394686 DOI: 10.1186/s12879-020-05185-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We examined cytokine immune response profiles among contacts to tuberculosis patients to identify immunologic and epidemiologic correlates of tuberculosis. METHODS We prospectively enrolled 1272 contacts of culture-confirmed pulmonary tuberculosis patients at 9 United States and Canadian sites. Epidemiologic characteristics were recorded. Blood was collected and stimulated with Mycobacterium tuberculosis culture filtrate protein, and tumor necrosis factor (TNF-α), interferon gamma (IFN-γ), and interleukin 10 (IL-10) concentrations were determined using immunoassays. RESULTS Of 1272 contacts, 41 (3.2%) were diagnosed with tuberculosis before or < 30 days after blood collection (co-prevalent tuberculosis) and 19 (1.5%) during subsequent four-year follow-up (incident tuberculosis). Compared with contacts without tuberculosis, those with co-prevalent tuberculosis had higher median baseline TNF-α and IFN-γ concentrations (in pg/mL, TNF-α 129 versus 71, P < .01; IFN-γ 231 versus 27, P < .001), and those who subsequently developed incident tuberculosis had higher median baseline TNF-α concentrations (in pg/mL, 257 vs. 71, P < .05). In multivariate analysis, contact age < 15 years, US/Canadian birth, and IFN or TNF concentrations > the median were associated with co-prevalent tuberculosis (P < .01 for each); female sex (P = .03) and smoking (P < .01) were associated with incident tuberculosis. In algorithms combining young age, positive skin test results, and elevated CFPS TNF-α, IFN-γ, and IL-10 responses, the positive predictive values for co-prevalent and incident tuberculosis were 40 and 25%, respectively. CONCLUSIONS Cytokine concentrations and epidemiologic factors at the time of contact investigation may predict co-prevalent and incident tuberculosis.
Collapse
Affiliation(s)
- Mary R Reichler
- National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Mailstop E-10, 1600 Clifton Road NE, 30329-4027, Atlanta, GA, USA.
| | - Christina Hirsch
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yan Yuan
- National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Mailstop E-10, 1600 Clifton Road NE, 30329-4027, Atlanta, GA, USA
| | - Awal Khan
- National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Mailstop E-10, 1600 Clifton Road NE, 30329-4027, Atlanta, GA, USA
| | - Susan E Dorman
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Neil Schluger
- Department of Medicine, Columbia University, New York, NY, USA
| | | |
Collapse
|
3
|
Koeken VACM, van der Pasch ES, Leijte GP, Mourits VP, de Bree LCJ, Moorlag SJCFM, Budnick I, Idh N, Lerm M, Kox M, van Laarhoven A, Netea MG, van Crevel R. The effect of BCG vaccination on alveolar macrophages obtained from induced sputum from healthy volunteers. Cytokine 2020; 133:155135. [PMID: 32534356 DOI: 10.1016/j.cyto.2020.155135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
The anti-tuberculosis vaccine Bacillus Calmette-Guérin (BCG) is able to boost innate immune responses through a process called 'trained immunity'. It is hypothesized that BCG-induced trained immunity contributes to protection against Mycobacterium tuberculosis infection. Since alveolar macrophages are the first cell type to encounter M. tuberculosis upon infection, we aimed to investigate the immunomodulatory effects of BCG vaccination on alveolar macrophages. Searching for a less-invasive method than bronchoalveolar lavage, we optimized the isolation of alveolar macrophages from induced sputum of healthy volunteers. Viable alveolar macrophages could be successfully isolated from induced sputum and showed signs of activation already upon retrieval. Further flow cytometric analyses revealed that at baseline, higher expression levels of activation markers were observed on the alveolar macrophages of smokers compared to non-smokers. In addition, BCG vaccination resulted in decreased expression of the activation markers CD11b and HLA-DR on alveolar macrophages. Future studies should evaluate the functional consequences of this reduced activation of alveolar macrophages after BCG vaccination.
Collapse
Affiliation(s)
- Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Eva S van der Pasch
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Guus P Leijte
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark; Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Isadore Budnick
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nina Idh
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Maria Lerm
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arjan van Laarhoven
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Fox HC, Milivojevic V, Angarita GA, Stowe R, Sinha R. Peripheral immune system suppression in early abstinent alcohol-dependent individuals: Links to stress and cue-related craving. J Psychopharmacol 2017; 31:883-892. [PMID: 28675117 PMCID: PMC5660633 DOI: 10.1177/0269881117691455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Peripheral immune system cytokines may play an integral role in the underlying sensitized stress response and alcohol craving during early alcohol withdrawal. To date, the nature of these immune changes during early abstinence have not been examined. METHODS A total of 39 early abstinent, treatment-seeking, alcohol-dependent individuals and 46 socially drinking controls were exposed to three guided imageries: stress, alcohol cue and neutral. These were presented randomly across consecutive days. Plasma measures of tumor necrosis factor alpha (TNFα), tumor necrosis factor receptor 1 (TNFR1), interleukin-6 (IL-6), and interleukin-10 (IL-10), were collected at baseline, immediately after imagery and at various recovery time-points. Ratings of alcohol craving, negative mood and anxiety were also obtained at the same time-points. RESULTS The alcohol group demonstrated decreased basal IL-10 compared with controls particularly following exposure to alcohol cue. They also showed a dampened TNFα and TNFR1 response to stress and cue, respectively, and a generalized suppression of IL-6. In the alcohol group, these immune system adaptations occurred alongside significant elevations in anxiety, negative mood and alcohol craving. CONCLUSIONS Findings demonstrate that broad immunosuppression is still observed in alcohol-dependent individuals after 3 weeks of abstinence and may be linked to motivation for alcohol.
Collapse
Affiliation(s)
- Helen C Fox
- 1 School of Medicine, Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Verica Milivojevic
- 2 Department of Psychiatry, The Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT, USA
- 3 Department of Psychiatry, 2 Church Street South, The Yale Stress Center, Yale University School of Medicine, New Haven, CT, USA
| | - Gustavo A Angarita
- 2 Department of Psychiatry, The Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT, USA
| | | | - Rajita Sinha
- 2 Department of Psychiatry, The Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT, USA
- 3 Department of Psychiatry, 2 Church Street South, The Yale Stress Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Yeligar SM, Chen MM, Kovacs EJ, Sisson JH, Burnham EL, Brown LAS. Alcohol and lung injury and immunity. Alcohol 2016; 55:51-59. [PMID: 27788778 DOI: 10.1016/j.alcohol.2016.08.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/07/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023]
Abstract
Annually, excessive alcohol use accounts for more than $220 billion in economic costs and 80,000 deaths, making excessive alcohol use the third leading lifestyle-related cause of death in the US. Patients with an alcohol-use disorder (AUD) also have an increased susceptibility to respiratory pathogens and lung injury, including a 2-4-fold increased risk of acute respiratory distress syndrome (ARDS). This review investigates some of the potential mechanisms by which alcohol causes lung injury and impairs lung immunity. In intoxicated individuals with burn injuries, activation of the gut-liver axis drives pulmonary inflammation, thereby negatively impacting morbidity and mortality. In the lung, the upper airway is the first checkpoint to fail in microbe clearance during alcohol-induced lung immune dysfunction. Brief and prolonged alcohol exposure drive different post-translational modifications of novel proteins that control cilia function. Proteomic approaches are needed to identify novel alcohol targets and post-translational modifications in airway cilia that are involved in alcohol-dependent signal transduction pathways. When the upper airway fails to clear inhaled pathogens, they enter the alveolar space where they are primarily cleared by alveolar macrophages (AM). With chronic alcohol ingestion, oxidative stress pathways in the AMs are stimulated, thereby impairing AM immune capacity and pathogen clearance. The epidemiology of pneumococcal pneumonia and AUDs is well established, as both increased predisposition and illness severity have been reported. AUD subjects have increased susceptibility to pneumococcal pneumonia infections, which may be due to the pro-inflammatory response of AMs, leading to increased oxidative stress.
Collapse
Affiliation(s)
- Samantha M Yeligar
- Department of Medicine, Emory University and Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Michael M Chen
- Burn and Shock Trauma Research Institute, Alcohol Research Program, Integrative Cell Biology Program, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - Elizabeth J Kovacs
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joseph H Sisson
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ellen L Burnham
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lou Ann S Brown
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
O'Halloran EB, Curtis BJ, Afshar M, Chen MM, Kovacs EJ, Burnham EL. Alveolar macrophage inflammatory mediator expression is elevated in the setting of alcohol use disorders. Alcohol 2016; 50:43-50. [PMID: 26781212 DOI: 10.1016/j.alcohol.2015.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/21/2022]
Abstract
Alcohol use disorders (AUDs) are associated with increased susceptibility to pulmonary diseases, including bacterial pneumonia and acute respiratory distress syndrome (ARDS). Alveolar macrophages (AMs) play a vital role in the clearance of pathogens and regulation of inflammation, but these functions may be impaired in the setting of alcohol exposure. We examined the effect of AUDs on profiles of cytokines, chemokines, and growth factors in human AMs isolated from bronchoalveolar lavage (BAL) samples from 19 AUD subjects and 20 age-, sex-, and smoking-matched control subjects. By multiplex bead array, the lysates of AMs from subjects with AUDs had significant elevation in the cytokine tumor necrosis factor α (TNF-α), as well as chemokine (C-X-C motif) ligand 8 (CXCL8), CXCL10, and chemokine (C-C motif) ligand 5 (CCL5) (p < 0.05). Additionally, a 1.8-fold increase in IL-1β, 2.0-fold increase in IL-6, 2.3-fold increase in interferon gamma (IFN-γ), 1.4-fold increase in CCL3, and a 2.3-fold increase in CCL4 was observed in the AUD group as compared to the control group. We also observed compensatory increases in the anti-inflammatory cytokine IL-1RA (p < 0.05). AUD subjects had 5-fold higher levels of CXCL11 mRNA expression (p < 0.05) and a 2.4-fold increase in IL-6 mRNA expression by RT-PCR as well. In these investigations, alcohol use disorders were associated with functional changes in human AMs, suggesting that chronic alcohol exposure portends a chronically pro-inflammatory profile in these cells.
Collapse
|
7
|
Potential Role of the Gut/Liver/Lung Axis in Alcohol-Induced Tissue Pathology. Biomolecules 2015; 5:2477-503. [PMID: 26437442 PMCID: PMC4693244 DOI: 10.3390/biom5042477] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023] Open
Abstract
Both Alcoholic Liver Disease (ALD) and alcohol-related susceptibility to acute lung injury are estimated to account for the highest morbidity and mortality related to chronic alcohol abuse and, thus, represent a focus of intense investigation. In general, alcohol-induced derangements to both organs are considered to be independent and are often evaluated separately. However, the liver and lung share many general responses to damage, and specific responses to alcohol exposure. For example, both organs possess resident macrophages that play key roles in mediating the immune/inflammatory response. Additionally, alcohol-induced damage to both organs appears to involve oxidative stress that favors tissue injury. Another mechanism that appears to be shared between the organs is that inflammatory injury to both organs is enhanced by alcohol exposure. Lastly, altered extracellular matrix (ECM) deposition appears to be a key step in disease progression in both organs. Indeed, recent studies suggest that early subtle changes in the ECM may predispose the target organ to an inflammatory insult. The purpose of this chapter is to review the parallel mechanisms of liver and lung injury in response to alcohol consumption. This chapter will also explore the potential that these mechanisms are interdependent, as part of a gut-liver-lung axis.
Collapse
|
8
|
Ward RJ, Lallemand F, de Witte P. Influence of adolescent heavy session drinking on the systemic and brain innate immune system. Alcohol Alcohol 2014; 49:193-7. [PMID: 24532587 DOI: 10.1093/alcalc/agu002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The aim of the study was to evaluate rat models of intermittent alcohol abuse (heavy session/'heavy session' drinking) in relation to inflammatory changes in specific brain regions as well as in the periphery. Furthermore, the study was aimed to assess whether there are inflammatory changes in the blood of human intermittent alcohol abusers who might be associated with changes in neuronal circuitry in the brain, as assessed by functional magnetic resonance imaging (fMRI), which cause adverse effects on memory and learning. METHODS Various regimes of intermittent alcohol administration have been used in rat models, which vary with respect to the dose and duration of ethanol administration as well as the time of abstinence. Immunohistological methods were used to identify activated microglia in specific brain regions. The response of isolated alveolar macrophages to in vitro stimuli was assessed by the assay of nitric oxide and the pro-inflammatory cytokines IL-6 and TNFα. Blood samples were collected from university students who had been heavy session drinkers for 2 years to assess whether there was an inflammatory cytokine profile that correlated with cognitive test scores as well as fMRI findings. RESULTS The extent of microglia activation appears to depend on the doses and duration of ethanol administration. In addition, there is activation of phagocytic cells in the periphery, e.g. alveolar macrophages, in the rat models of heavy session drinking. Changes in the plasma levels of pro- and anti-inflammatory cytokines were present in heavy session drinking students, although no changes were identified in specific cognitive tests (which may be because of compensatory changes in the prefrontal cortex, as identified by fMRI). CONCLUSION Changes in the cytokine levels induced by intermittent ethanol abuse may provoke inflammatory pathways in specific brain regions, such as hippocampus and prefrontal cortex (particularly during the stage of active neurogenesis in the adolescent brain), which might induce cognitive impairment in susceptible individuals.
Collapse
Affiliation(s)
- Roberta J Ward
- Corresponding author: Biologie du Comportement, Université Catholique de Louvain, Croix du Sud, 1 - box L7.04.03, 1348 Louvain-la-Neuve, Belgium.
| | | | | |
Collapse
|
9
|
Burnham EL, Kovacs EJ, Davis CS. Pulmonary cytokine composition differs in the setting of alcohol use disorders and cigarette smoking. Am J Physiol Lung Cell Mol Physiol 2013; 304:L873-82. [PMID: 23605000 DOI: 10.1152/ajplung.00385.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alcohol use disorders (AUDs), including alcohol abuse and dependence, and cigarette smoking are widely acknowledged and common risk factors for pneumococcal pneumonia. Reasons for these associations are likely complex but may involve an imbalance in pro- and anti-inflammatory cytokines within the lung. Delineating the specific effects of alcohol, smoking, and their combination on pulmonary cytokines may help unravel mechanisms that predispose these individuals to pneumococcal pneumonia. We hypothesized that the combination of AUD and cigarette smoking would be associated with increased bronchoalveolar lavage (BAL) proinflammatory cytokines and diminished anti-inflammatory cytokines, compared with either AUDs or cigarette smoking alone. Acellular BAL fluid was obtained from 20 subjects with AUDs, who were identified using a validated questionnaire, and 19 control subjects, matched on the basis of age, sex, and smoking history. Half were current cigarette smokers; baseline pulmonary function tests and chest radiographs were normal. A positive relationship between regulated and normal T cell expressed and secreted (RANTES) with increasing severity of alcohol dependence was observed, independent of cigarette smoking (P = 0.0001). Cigarette smoking duration was associated with higher IL-1β (P = 0.0009) but lower VEGF (P = 0.0007); cigarette smoking intensity was characterized by higher IL-1β and lower VEGF and diminished IL-12 (P = 0.0004). No synergistic effects of AUDs and cigarette smoking were observed. Collectively, our work suggests that AUDs and cigarette smoking each contribute to a proinflammatory pulmonary milieu in human subjects through independent effects on BAL RANTES and IL-1β. Furthermore, cigarette smoking additionally influences BAL IL-12 and VEGF that may be relevant to the pulmonary immune response.
Collapse
Affiliation(s)
- Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
10
|
Bhatty M, Pruett SB, Swiatlo E, Nanduri B. Alcohol abuse and Streptococcus pneumoniae infections: consideration of virulence factors and impaired immune responses. Alcohol 2011; 45:523-39. [PMID: 21827928 DOI: 10.1016/j.alcohol.2011.02.305] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/26/2011] [Accepted: 02/16/2011] [Indexed: 01/01/2023]
Abstract
Alcohol is the most frequently abused substance in the world. Both acute and chronic alcohol consumption have diverse and well-documented effects on the human immune system, leading to increased susceptibility to infections like bacterial pneumonia. Streptococcus pneumoniae is the most common bacterial etiology of community-acquired pneumonia worldwide. The frequency and severity of pneumococcal infections in individuals with a history of alcohol abuse is much higher than the general population. Despite this obvious epidemiological relevance, very few experimental studies have focused on the interaction of pneumococci with the immune system of a host acutely or chronically exposed to alcohol. Understanding these host-pathogen interactions is imperative for designing effective prophylactic and therapeutic interventions for such populations. Recent advances in pneumococcal research have greatly improved our understanding of pneumococcal pathogenesis and virulence mechanisms. Additionally, a large body of data is available on the effect of alcohol on the physiology of the lungs and the innate and adaptive immune system of the host. The purpose of this review is to integrate the available knowledge in these diverse areas of for a better understanding of the how the compromised immune system derived from alcohol exposure responds to pneumococcal infections.
Collapse
Affiliation(s)
- Minny Bhatty
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA
| | | | | | | |
Collapse
|
11
|
Burnham EL, Gaydos J, Hess E, House R, Cooper J. Alcohol use disorders affect antimicrobial proteins and anti-pneumococcal activity in epithelial lining fluid obtained via bronchoalveolar lavage. Alcohol Alcohol 2010; 45:414-21. [PMID: 20729531 PMCID: PMC2930253 DOI: 10.1093/alcalc/agq045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 06/21/2010] [Accepted: 07/15/2010] [Indexed: 11/13/2022] Open
Abstract
AIMS Our overall objective was to examine whether characteristics of epithelial lining fluid (ELF) from subjects with alcohol use disorders (AUDs) obtained via bronchoalveolar lavage (BAL) contribute to their predisposition to pneumococcal pneumonia. We sought to compare the anti-pneumococcal activity of acellular human BAL from subjects with AUDs to matched controls. Further, differences in BAL lysozyme activity and lactoferrin concentrations between these two groups were examined to determine the effect of AUDs on these antimicrobial proteins. METHODS BAL was performed in subjects with AUDs and matched controls. Acellular BAL was used at varying concentrations in an in vitro killing assay of Streptococcus pneumoniae, type 2, and the percent kill of organisms per microgram per milliliter total BAL protein was ascertained. Lysozyme activity and lactoferrin concentrations were measured in BAL from subjects and controls at measured concentrations of BAL protein. RESULTS AUD subjects (n = 15) and controls (n = 10) were enrolled in these investigations who were balanced in terms of smoking history. Using a mixed effect model, across the range of BAL protein concentrations, killing of pneumococcus tended to be less potent with BAL fluid from AUD subjects. Additionally, lysozyme activity and lactoferrin concentrations were significantly lower in the AUD group. CONCLUSIONS The predisposition for pneumococcal pneumonia among those with AUDs may be in part mediated through effects of alcohol on substances within ELF that include antimicrobial proteins. Clarifying the composition and activity of ELF antimicrobial proteins in the setting of AUDs via investigations with human BAL fluid can help establish their contribution to the susceptibility for pulmonary infections in these individuals.
Collapse
Affiliation(s)
- Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Denver, CO, USA.
| | | | | | | | | |
Collapse
|
12
|
Dai Q, Pruett SB. Different effects of acute and chronic ethanol on LPS-induced cytokine production and TLR4 receptor behavior in mouse peritoneal macrophages. J Immunotoxicol 2009; 3:217-25. [PMID: 18958703 DOI: 10.1080/15476910601080156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Both binge and chronic heavy drinking can adversely affect the immune system, but the effects seem to be at least partly dependent on the manner of ethanol (EtOH) consumption. Previous study results from several labs have clearly demonstrated that acute administration of EtOH interferes with innate immune responses. Specifically, EtOH has a general inhibitory effect on cytokine and chemokine production induced by various Toll-like receptor (TLR) ligands, and it suppresses signaling on several levels along the TLR signaling pathways. However, it is not clear whether chronic exposure to ethanol has the same effects or not. The purpose of this study was to investigate the difference between the effect of chronic versus acute EtOH exposure on LPS-induced cytokine production and clustering of components of the TLR4 complex, which is an important early signaling event. Some groups of mice received acute EtOH by oral gavage using our binge drinking model and/or chronic administration of EtOH at 20% (w/v) in the drinking water as the sole liquid source for 4 wk. The cellular distribution of CD14 and TLR4 were studied by confocal microscopy following exposure of peritoneal cells to LPS locally in vivo, and cytokine production in peritoneal fluid and serum was measured by ELISA after LPS injection via a tail vein. Chronic EtOH exposure did not consistently cause significant changes in LPS-induced cytokine production. However, mice previously exposed to chronic EtOH treatment became partially resistant to the suppressive effects of acute EtOH administration with regard to cytokine production. As we have reported previously, acute EtOH treatment suppressed the LPS-induced clustering of TLR4 and CD14 in peritoneal macrophages. However, peritoneal cells from mice treated with chronic EtOH exhibited a greater amount of intracellular expression of CD14 instead of CD14/TLR4 clustering on the membrane following LPS exposure. The results demonstrate different effects of chronic versus acute EtOH treatment on LPS-induced cytokine production in mice. Partial tolerance to the effect of acute EtOH administration caused by chronic EtOH treatment suggests a compensatory mechanism is induced by chronic EtOH administration. Acute EtOH exposure acts probably by disrupting the receptor clustering following LPS recognition, whereas adaptations induced by chronic EtOH treatment seem to involve alteration of LPS receptor expression.
Collapse
Affiliation(s)
- Qun Dai
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
13
|
Balamayooran G, Batra S, Fessler MB, Happel KI, Jeyaseelan S. Mechanisms of neutrophil accumulation in the lungs against bacteria. Am J Respir Cell Mol Biol 2009; 43:5-16. [PMID: 19738160 DOI: 10.1165/rcmb.2009-0047tr] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bacterial lung diseases are a major cause of morbidity and mortality both in immunocompromised and in immunocompetent individuals. Neutrophil accumulation, a pathological hallmark of bacterial diseases, is critical to host defense, but may also cause acute lung injury/acute respiratory distress syndrome. Toll-like receptors, nucleotide-binding oligomerization domain (NOD)-like receptors, transcription factors, cytokines, and chemokines play essential roles in neutrophil sequestration in the lungs. This review highlights our current understanding of the role of these molecules in the lungs during bacterial infection and their therapeutic potential. We also discuss emerging data on cholesterol and ethanol as environmentally modifiable factors that may impact neutrophil-mediated pulmonary innate host defense. Understanding the precise molecular mechanisms leading to neutrophil influx in the lungs during bacterial infection is critical for the development of more effective therapeutic and prophylactic strategies to control the excessive host response to infection.
Collapse
Affiliation(s)
- Gayathriy Balamayooran
- D.V.M., Pathobiolgical Sciences and Center for Experimental Infectious Disease Research, LSU, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
14
|
Mandrekar P, Bala S, Catalano D, Kodys K, Szabo G. The opposite effects of acute and chronic alcohol on lipopolysaccharide-induced inflammation are linked to IRAK-M in human monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1320-7. [PMID: 19561104 PMCID: PMC3845821 DOI: 10.4049/jimmunol.0803206] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Impaired host defense after alcohol use is linked to altered cytokine production, however, acute and chronic alcohol differently modulate monocyte/macrophage activation. We hypothesized that in human monocytes, acute alcohol induces hyporesponsiveness to LPS, resulting in decreased TNF-alpha, whereas chronic alcohol increases TNF-alpha by sensitization to LPS. We found that acute alcohol increased IL-1R-associated kinase-monocyte (IRAK-M), a negative regulator of IRAK-1, in human monocytes. This was associated with decreased IkappaB alpha kinase activity, NFkappaB DNA binding, and NFkappaB-driven reporter activity after LPS stimulation. In contrast, chronic alcohol decreased IRAK-M expression but increased IRAK-1 and IKK kinase activities, NFkappaB DNA binding, and NFkappaB-reporter activity. Inhibition of IRAK-M in acute alcohol-exposed monocytes using small interfering RNA restored the LPS-induced TNF-alpha production whereas over-expression of IRAK-M in chronic alcohol macrophages prevented the increase in TNF-alpha production. Addition of inhibitors of alcohol metabolism did not alter LPS signaling and TNF-alpha production during chronic alcohol exposure. IRAK-1 activation induces MAPKs that play an important role in TNF-alpha induction. We determined that acute alcohol decreased but chronic alcohol increased activation of ERK in monocytes and ERK inhibitor, PD98059, prevented the chronic alcohol-induced increase in TNF-alpha. In summary, inhibition of LPS-induced NFkappaB and ERK activation by acute alcohol leads to hyporesponsiveness of monocytes to LPS due to increased IRAK-M. In contrast, chronic alcohol sensitizes monocytes to LPS through decreased IRAK-M expression and activation of NFkappaB and ERK kinases. Our data indicate that IRAK-M is a central player in the opposite regulation of LPS signaling by different lengths of alcohol exposure in monocytes.
Collapse
Affiliation(s)
- Pranoti Mandrekar
- University of Massachusetts Medical School, Department of Medicine, Worcester, MA 01605
| | - Shashi Bala
- University of Massachusetts Medical School, Department of Medicine, Worcester, MA 01605
| | - Donna Catalano
- University of Massachusetts Medical School, Department of Medicine, Worcester, MA 01605
| | - Karen Kodys
- University of Massachusetts Medical School, Department of Medicine, Worcester, MA 01605
| | - Gyongyi Szabo
- University of Massachusetts Medical School, Department of Medicine, Worcester, MA 01605
| |
Collapse
|
15
|
Gauthier TW, Young PA, Gabelaia L, Tang SM, Ping XD, Harris FL, Brown LAS. In utero ethanol exposure impairs defenses against experimental group B streptococcus in the term Guinea pig lung. Alcohol Clin Exp Res 2008; 33:300-6. [PMID: 19032578 DOI: 10.1111/j.1530-0277.2008.00833.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The effects of fetal alcohol exposure on the risks of neonatal lung injury and infection remain under investigation. The resident alveolar macrophage (AM) is the first line of immune defense against pulmonary infections. In utero ethanol (ETOH) exposure deranges the function of both premature and term guinea pig AM. We hypothesized that fetal ETOH exposure would increase the risk of pulmonary infection in vivo. METHODS We developed a novel in vivo model of group B Streptococcus (GBS) pneumonia using our established guinea pig model of fetal ETOH exposure. Timed-pregnant guinea pigs were pair fed +/-ETOH and some were supplemented with the glutathione (GSH) precursor S-adenosyl-methionine (SAM-e). Term pups were given GBS intratracheally while some were pretreated with inhaled GSH prior to the experimental GBS. Neonatal lung and whole blood were evaluated for GBS while isolated AM were evaluated using fluorescent microscopy for GBS phagocytosis. RESULTS Ethanol-exposed pups demonstrated increased lung infection and sepsis while AM phagocytosis of GBS was deficient compared with control. When SAM-e was added to the maternal diet containing ETOH, neonatal lung and systemic infection from GBS was attenuated and AM phagocytosis was improved. Inhaled GSH therapy prior to GBS similarly protected the ETOH-exposed pup from lung and systemic infection. CONCLUSIONS In utero ETOH exposure impaired the neonatal lung's defense against experimental GBS, while maintaining GSH availability protected the ETOH-exposed lung. This study suggested that fetal alcohol exposure deranges the neonatal lung's defense against bacterial infection, and support further investigations into the potential therapeutic role for exogenous GSH to augment neonatal AM function.
Collapse
Affiliation(s)
- Theresa W Gauthier
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen J. Comment on "Chronic alcohol consumption increases the severity of murine influenza virus infections". THE JOURNAL OF IMMUNOLOGY 2008; 181:5813; author reply 5813-4. [PMID: 18941167 DOI: 10.4049/jimmunol.181.9.5813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Laso FJ, Vaquero JM, Almeida J, Marcos M, Orfao A. Production of inflammatory cytokines by peripheral blood monocytes in chronic alcoholism: relationship with ethanol intake and liver disease. CYTOMETRY PART B-CLINICAL CYTOMETRY 2007; 72:408-15. [PMID: 17266151 DOI: 10.1002/cyto.b.20169] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Controversial results have been reported about the effects of alcoholism on the functionality of monocytes. In the present study we analyze the effects of chronic alcoholism on the intracellular production of inflammatory cytokines by peripheral blood (PB) monocytes. METHODS Spontaneous and in vitro-stimulated production of interleukin (IL) 1alpha (TNFalpha) by PB monocytes was analyzed at the single level by flow cytometry in chronic alcoholics without liver disease and active ethanol (EtOH) intake (AWLD group), as well as in patients with alcohol liver cirrhosis (ALC group), who were either actively drinking (ALCET group) or with alcohol withdrawal (ALCAW group). RESULTS A significantly increased spontaneous production of IL1beta, IL6, IL12, and TNFalpha was observed on PB monocytes among AWLD individuals. Conversely, circulating monocytes form ALCET patients showed an abnormally low spontaneous and stimulated production of inflammatory cytokines. No significant changes were observed in ALCAW group as regards production of IL1beta, IL6, IL12, and TNFalpha. CONCLUSION Our results show an altered pattern of production of inflammatory cytokines in PB monocytes from chronic alcoholic patients, the exact abnormalities observed depending on both the status of EtOH intake and the existence of alcoholic liver disease.
Collapse
Affiliation(s)
- Francisco Javier Laso
- Unidad de Alcoholismo, Servicio de Medicina Interna II, Hospital Universitario, Salamanca, Spain.
| | | | | | | | | |
Collapse
|
18
|
Abstract
The annual incidences of severe sepsis in several industrialized nations have recently been reported to be 50-100 cases per 100,000 persons. These numbers exceed the estimated rates for other diseases that hold a heightened public awareness, including breast cancer and acquired immune deficiency syndrome. There are also sex and race differences in the incidence of sepsis. Men are more likely than women to develop sepsis, with a mean annual relative risk of 1.28. Nonwhites are nearly twice as likely to develop sepsis as whites. These race and sex disparities in the incidence of sepsis are likely explained by differences in a variety of factors, including the presence of comorbid conditions. For example, chronic alcohol abuse is associated with a persistent fever, delayed resolution of symptoms, increased rates of bacteremia, increased use of intensive care, prolonged duration of hospital stay, and increased cost of hospitalization for infected patients.
Collapse
Affiliation(s)
- Marc Moss
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
19
|
Burnham EL, Moss M, Ritzenthaler JD, Roman J. Increased fibronectin expression in lung in the setting of chronic alcohol abuse. Alcohol Clin Exp Res 2007; 31:675-83. [PMID: 17374047 DOI: 10.1111/j.1530-0277.2007.00352.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RATIONALE The incidence and severity of the acute respiratory distress syndrome (ARDS) is increased in individuals who abuse alcohol. One possible mechanism by which alcohol increases susceptibility to acute lung injury is through alterations in alveolar macrophage function and induction of tissue remodeling activity. Our objective was to determine whether alcohol abuse, independent of other comorbidities, alters fibronectin and metalloproteinase gene expression in alveolar macrophages and in epithelial lining fluid (ELF) of the lung. METHODS Otherwise healthy subjects with alcohol abuse (n=21) and smoking-matched controls (n=17) underwent bronchoalveolar lavage. Alveolar macrophage fibronectin and matrix metalloproteinase (MMP) mRNA expression were measured via reverse transcription-polymerase chain reaction. The supernatant from cultured alveolar macrophages and lung ELF were tested for their ability to induce fibronectin and MMP-9 gene transcription in cell-based assays. RESULTS Alveolar macrophages from subjects with alcohol abuse demonstrated increased fibronectin mRNA expression (p<0.001), and their ELF also elicited more fibronectin gene transcription in lung fibroblasts compared with controls (p<0.001). In contrast, alveolar macrophages from subjects with alcohol abuse had decreased MMP-9 and MMP-2 mRNA expression (p<0.03 and p<0.005, respectively). Similarly, the supernatant (p<0.001) and ELF (p<0.01) from these subjects induced less MMP-9 gene transcription in THP-1 cells. DISCUSSION Alcohol abuse is associated with increased fibronectin mRNA expression in alveolar macrophages and increased fibronectin-inducing activity in the ELF. This appears to be a specific effect as other tissue remodeling genes, such as MMPs, were not equally affected. These findings suggest activation of tissue remodeling that may contribute to the increased susceptibility for the ARDS observed in alcoholism.
Collapse
Affiliation(s)
- Ellen L Burnham
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|
20
|
Ping XD, Harris FL, Brown LAS, Gauthier TW. In Vivo Dysfunction of the Term Alveolar Macrophage After in Utero Ethanol Exposure. Alcohol Clin Exp Res 2007; 31:308-16. [PMID: 17250624 DOI: 10.1111/j.1530-0277.2006.00306.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The effects of in utero alcohol exposure on the immune function of the newborn remain under investigation. Fetal ethanol (ETOH) exposure increases oxidative stress in the developing lung, in part due to decreased availability of the antioxidant glutathione (GSH). We have previously shown that in utero ETOH impairs alveolar macrophage phagocytosis and viability in the premature pup, while maintaining GSH availability with maternal supplementation of S-adenosyl-methionine (SAM) during ETOH ingestion improves macrophage function and viability. We hypothesized that dysfunction of the neonatal alveolar macrophage exposed to ETOH in utero would persist at term gestation. METHODS Using a guinea-pig model of fetal ETOH exposure, timed-pregnant guinea-pigs were pair-fed ETOH+/-the GSH precursor SAM and the diet continued until spontaneous delivery. Term alveolar macrophages were evaluated using fluorescent microscopy for phagocytosis and apoptosis after in vitro incubation with Staphalococcus aureus. Using an in vivo model of intranasal Staph. aureus inoculation, the in vivo function of the term alveolar macrophage was also investigated using confocal fluorescent analysis. RESULTS In utero ETOH exposure increased oxidant stress in the alveolar macrophage and decreased phagocytosis and viability in vitro and in vivo. Confocal analysis of phagocytosis in vivo demonstrated a marked impairment of internalization of the bacteria by the ETOH-exposed alveolar macrophage. The addition of SAM during maternal ETOH ingestion prevented loss of alveolar macrophage function and viability in vitro and in vivo. CONCLUSIONS In utero ETOH exposure impairs alveolar macrophage function and viability in vitro and in vivo even at term gestation. The ETOH-induced changes in macrophage function and viability can be ablated with maternal SAM supplementation. Further investigations are required to identify the mechanisms of ETOH-induced derangement of phagocytosis in the neonatal alveolar macrophage and the clinical ramifications of altered immune function after in utero alcohol exposure for the newborn.
Collapse
Affiliation(s)
- Xiao-Du Ping
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
21
|
Joshi PC, Guidot DM. The alcoholic lung: epidemiology, pathophysiology, and potential therapies. Am J Physiol Lung Cell Mol Physiol 2007; 292:L813-23. [PMID: 17220370 DOI: 10.1152/ajplung.00348.2006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epidemiological evidence gathered only in the past decade reveals that alcohol abuse independently increases the risk of developing the acute respiratory distress syndrome by as much as three- to fourfold. Experimental models and clinical studies are beginning to elucidate the mechanisms underlying this previously unrecognized association and are revealing for the first time that chronic alcohol abuse causes discrete changes, particularly within the alveolar epithelium, that render the lung susceptible to acute edematous injury in response to sepsis, trauma, and other inflammatory insults. Recent studies in relevant animal models as well as in human subjects are identifying common mechanisms by which alcohol abuse targets both the alveolar epithelium and the alveolar macrophage, such that the risks for acute lung injury and pulmonary infections are inextricably linked. Specifically, chronic alcohol ingestion decreases the levels of the antioxidant glutathione within the alveolar space by as much as 80-90%, and, as a consequence, impairs alveolar epithelial surfactant production and barrier integrity, decreases alveolar macrophage function, and renders the lung susceptible to oxidant-mediated injury. These changes are often subclinical and may not manifest as detectable lung impairment until challenged by an acute insult such as sepsis or trauma. However, even otherwise healthy alcoholics have evidence of severe oxidant stress in the alveolar space that correlates with alveolar epithelial and macrophage dysfunction. This review focuses on the epidemiology and the pathophysiology of alcohol-induced lung dysfunction and discusses potential new treatments suggested by recent experimental findings.
Collapse
Affiliation(s)
- Pratibha C Joshi
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia GA 30033, USA.
| | | |
Collapse
|
22
|
Brown LAS, Ping XD, Harris FL, Gauthier TW. Glutathione availability modulates alveolar macrophage function in the chronic ethanol-fed rat. Am J Physiol Lung Cell Mol Physiol 2006; 292:L824-32. [PMID: 17122355 DOI: 10.1152/ajplung.00346.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have previously demonstrated that chronic alcohol exposure decreases glutathione in the alveolar space. Although alcohol use is associated with decreased alveolar macrophage function, the mechanism by which alcohol impairs macrophage phagocytosis is unknown. In the current study, we examined the possibility that ethanol-induced alveolar macrophage dysfunction was secondary to decreased glutathione and subsequent chronic oxidative stress in the alveolar space. After 6 wk of ethanol ingestion, oxidant stress in the alveolar macrophages was evidenced by a 30-mV oxidation of the GSH/GSSG redox potential (P <or= 0.05). For control macrophages, approximately 80% internalized fluorescent Staphylococcus aureus were added in vitro. In contrast, only 20% of the macrophages from the ethanol-fed rats were able to bind and internalize fluorescent S. aureus. This ethanol-induced decreased capacity for phagocytosis was paralleled by increased apoptosis. When added to the ethanol diet, the glutathione precursors procysteine or N-acetyl cysteine normalized glutathione and oxidant stress in the epithelial lining fluid as well as the alveolar macrophages to control values. This attenuation of oxidant stress was associated with normalization of macrophage phagocytosis and viability. These results suggested that decreased glutathione availability in the alcoholic lung contribute to alveolar macrophage dysfunction via oxidative stress, resulting in not only decreased function but decreased viability.
Collapse
Affiliation(s)
- Lou Ann S Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
23
|
Brown LAS, Cook RT, Jerrells TR, Kolls JK, Nagy LE, Szabo G, Wands JR, Kovacs EJ. Acute and chronic alcohol abuse modulate immunity. Alcohol Clin Exp Res 2006; 30:1624-31. [PMID: 16930226 DOI: 10.1111/j.1530-0277.2006.00195.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article represents the proceedings of the Alcohol and Immunology Research Interest Group (AIRIG) meeting, a satellite workshop held at the 37th Annual Meeting of the Society for Leukocyte Biology. The meeting was sponsored by the AIRIG and the National Institute on Alcohol Abuse and Alcoholism. The presentations were as follows: (1) Effects of Ethanol on Immune Response to Hepatitis C Virus by Jack R. Wands, (2) Alcohol and Alveolar Macrophage Dysfunction: The Role of Chronic Oxidant Stress by Lou Ann S. Brown, (3) T Cell Responses to Listeria monocytogenes in Mice on a Chronic Ethanol Exposure Protocol by Robert T. Cook, (4) Mechanisms of Acute and Chronic Alcohol Consumption on Severity of Viral Infections by the Liver and Pancreas by Thomas R. Jerrells, (5) Acute and Chronic Effects on Macrophage Ectodomain Shedding: Implications for Lung Host Defenses by Jay K. Kolls, (6) Increased Susceptibility to Pseudomonas Infection of Burn-Injured Mice Given Alcohol Before Injury by Elizabeth J. Kovacs, (7) Regulation of Tumor Necrosis Factor alpha Expression in Macrophages by Chronic Ethanol by Laura E. Nagy, and (8) Hepatitis C Virus Infection and Alcohol Use by Gyongyi Szabo. Meeting coorganizers were Elizabeth J. Kovacs, Lou Ann S. Brown, Thomas R. Jerrells, and Robert T. Cook.
Collapse
Affiliation(s)
- Lou Ann S Brown
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
de Roux A, Cavalcanti M, Marcos MA, Garcia E, Ewig S, Mensa J, Torres A. Impact of alcohol abuse in the etiology and severity of community-acquired pneumonia. Chest 2006; 129:1219-25. [PMID: 16685012 DOI: 10.1378/chest.129.5.1219] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND STUDY OBJECTIVES Alcohol consumption is known to affect both systemic and pulmonary immunity, predisposing the patient to pulmonary infections. The aim of this study was to compare the etiology of disease, the antibiotic resistance of Streptococcus pneumoniae, the severity of disease, and the outcome of patients with alcohol abuse to those of nonalcoholic (NA) patients who have been hospitalized for community-acquired pneumonia (CAP). METHODS From 1997 to 2001, clinical, microbiological, radiographic, and laboratory data, and follow-up variables of all consecutive patients who had been hospitalized with CAP were recorded. Patients were classified as alcoholic (A) [n = 128] or ex-alcoholic (EA) patients (n = 54) and were compared to NA patients (n = 1,165). RESULTS S pneumoniae was found significantly more frequently in all patients with alcohol misuse. As regards the rates of antibiotic resistance, invasive pneumococcal disease, and other microorganisms, no differences were found. The severity criteria for CAP according to the American Thoracic Society were more frequent in A patients, but mortality did not differ significantly. Multivariate analysis showed an independent association between pneumococcal CAP and alcoholism (A patients: odds ratio [OR], 1.6; p = 0.033; EA patients: OR, 2.1; p = 0.016). CONCLUSIONS We found an independent association between pneumococcal infection and alcoholism. Current alcohol abuse was associated with severe CAP. No significant differences were found in mortality, antibiotic resistance of S pneumoniae, and other etiologies.
Collapse
Affiliation(s)
- Andrés de Roux
- Servei de Pneumologia, Hospital Clinic, Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Crews FT, Bechara R, Brown LA, Guidot DM, Mandrekar P, Oak S, Qin L, Szabo G, Wheeler M, Zou J. Cytokines and alcohol. Alcohol Clin Exp Res 2006; 30:720-30. [PMID: 16573591 DOI: 10.1111/j.1530-0277.2006.00084.x] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytokines are multifunctional proteins that play a critical role in cellular communication and activation. Cytokines have been classified as being proinflammatory (T helper 1, Th1) or anti-inflammatory (T helper 2, Th2) depending on their effects on the immune system. However, cytokines impact a variety of tissues in a complex manner that regulates inflammation, cell death, and cell proliferation and migration as well as healing mechanisms. Ethanol (alcohol) is known to alter cytokine levels in a variety of tissues including plasma, lung, liver, and brain. Studies on human monocyte responses to pathogens reveal ethanol disruption of cytokine production depending upon the pathogen and duration of alcohol consumption, with multiple pathogens and chronic ethanol promoting inflammatory cytokine production. In lung, cytokine production is disrupted by ethanol exacerbating respiratory distress syndrome with greatly increased expression of transforming growth factor beta (TGFbeta). Alcoholic liver disease involves an inflammatory hepatitis and an exaggerated Th1 response with increases in tumor necrosis factor alpha (TNFalpha). Recent studies suggest that the transition from Th1 to Th2 cytokines contribute to hepatic fibrosis and cirrhosis. Cytokines affect the brain and likely contribute to changes in the central nervous system that contribute to long-term changes in behavior and neurodegeneration. Together these studies suggest that ethanol disruption of cytokines and inflammation contribute in multiple ways to a diversity of alcoholic pathologies.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina 27599-7178, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sperner-Unterweger B. Immunological aetiology of major psychiatric disorders: evidence and therapeutic implications. Drugs 2005; 65:1493-520. [PMID: 16033289 DOI: 10.2165/00003495-200565110-00004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Historically, immunological research in psychiatry was based on empirical findings and early epidemiological studies indicating a possible relationship between psychiatric symptoms and acute infectious diseases. However, aetiopathological explanations for psychiatric disorders are no longer closely related to acute infection. Nevertheless, immune hypotheses have been discussed in schizophrenia, affective disorders and infantile autism in the last decades. Although the variability between the results of the epidemiological studies conducted to date is strikingly high, there is still some evidence that the immune system might play a role in the aetiopathogenesis of these three psychiatric diseases, at least in subgroups of patients. In anxiety disorders immunological research is still very much in its infancy, and the few and inconsistent data of immune changes in these patients are believed to reflect the influence of short- or long-term stress exposure. Nevertheless, there are also some hints raising the possibility that autoimmune mechanisms could interrupt neurotransmission, which would be of significance in certain patients with anxiety and panic disorders. Drug and alcohol (ethanol) dependence are not believed to be primarily influenced by an immunological aetiology. On the other hand, immune reactions due to different drugs of abuse and alcohol may directly or indirectly influence the course of concomitant somatic diseases. In different organic brain disorders the underlying somatic disease is defined as a primary immune or autoimmune disorder, for instance HIV infection or systemic lupus erythematosus (SLE). For other neurodegenerative disorders, such as Alzheimer's disease, immunoaetiopathological mechanisms are supported by experimental and clinical studies. Treatment strategies based on immune mechanisms have been investigated in patients with schizophrenia and affective disorders. Furthermore, some antipsychotics and most antidepressants are known to have direct or indirect effects on the immune system. Different immunotherapies have been used in autism, including transfer factor, pentoxifylline, intravenous immunoglobulins and corticosteroids. Immunosuppressive and/or immunomodulating agents are well established methods for treating the neuropsychiatric sequelae of immune or autoimmune disorders, for example AIDS and SLE. Therapeutic approaches in Alzheimer's disease also apply immunological methods such as strategies of active/passive immunisation and NSAIDs. Considering the comprehensive interactive network between mind and body, future research should focus on approaches linking targets of the different involved systems.
Collapse
|
27
|
Abstract
CONTEXT Tuberculosis (TB) rates among US homeless persons cannot be calculated because they are not included in the US Census. However, homelessness is often associated with TB. OBJECTIVES To describe homeless persons with TB and to compare risk factors and disease characteristics between homeless and nonhomeless persons with TB. DESIGN AND SETTING Cross-sectional analysis of all verified TB cases reported into the National TB Surveillance System from the 50 states and the District of Columbia from 1994 through 2003. MAIN OUTCOME MEASURES Number and proportion of TB cases associated with homelessness, demographic characteristics, risk factors, disease characteristics, treatment, and outcomes. RESULTS Of 185,870 cases of TB disease reported between 1994 and 2003, 11,369 were among persons classified as homeless during the 12 months before diagnosis. The annual proportion of cases associated with homelessness was stable (6.1%-6.7%). Regional differences occurred with a higher proportion of TB cases associated with homelessness in western and some southern states. Most homeless persons with TB were male (87%) and aged 30 to 59 years. Black individuals represented the highest proportion of TB cases among the homeless and nonhomeless. The proportion of homeless persons with TB who were born outside the United States (18%) was lower than that for nonhomeless persons with TB (44%). At the time of TB diagnosis, 9% of homeless persons were incarcerated, usually in a local jail; 3% of nonhomeless persons with TB were incarcerated. Compared with nonhomeless persons, homeless persons with TB had a higher prevalence of substance use (54% alcohol abuse, 29.5% noninjected drug use, and 14% injected drug use), and 34% of those tested had coinfection with human immunodeficiency virus. Compared with nonhomeless persons, TB disease in homeless persons was more likely to be infectious but not more likely to be drug resistant. Health departments managed 81% of TB cases in homeless persons. Directly observed therapy, used for 86% of homeless patients, was associated with timely completion of therapy. A similar proportion in both groups (9%) died from any cause during therapy. CONCLUSIONS Individual TB risk factors often overlap with risk factors for homelessness, and the social contexts in which TB occurs are often complex and important to consider in planning TB treatment. Nevertheless, given good case management, homeless persons with TB can achieve excellent treatment outcomes.
Collapse
Affiliation(s)
- Maryam B Haddad
- Surveillance, Epidemiology, and Outbreak Investigations Branch, Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Ga 30333, USA.
| | | | | | | | | |
Collapse
|
28
|
Gauthier TW, Drews-Botsch C, Falek A, Coles C, Brown LAS. Maternal Alcohol Abuse and Neonatal Infection. Alcohol Clin Exp Res 2005; 29:1035-43. [PMID: 15976530 DOI: 10.1097/01.alc.0000167956.28160.5e] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Since chronic alcohol use suppresses the adult immune system, we tested the hypothesis that maternal alcohol ingestion increases the risk of infection in term newborns. METHODS Analysis of a large case-control study of birth weight for gestational age was performed focusing on maternal alcohol ingestion and the development of infection in term newborns > or =36 weeks gestation. After delivery, mothers were asked about alcohol and tobacco use in the 3 months prior to conception, the 1st, 2nd, and 3rd trimester of pregnancy. RESULTS Eight hundred and seventy-two singleton newborns (872) > or = 36 weeks gestation were identified for analysis. A total of 51 (5.8%) had newborn infections. Gestational age, sex, and small for gestational age (SGA) were similar in the newborns with and without infection (p = NS). Infants whose mothers reported alcohol use, excessive drinking or smoking in pregnancy were more likely to have a newborn diagnosed with an infection than were mothers who reported abstaining from alcohol or cigarettes (p < 0.05). When controlling for race and smoking, SGA infants whose mothers used any alcohol had a 2.5-fold increase risk of infection, while excessive alcohol use increased the risk 3-4-fold. In a multivariable logistic regression analysis controlling for low maternal income, smoking, and SGA, excessive alcohol use during the 2 trimester increased the risk of newborn infection (OR 3.7 [1.1,12.8], p < 0.05). CONCLUSIONS Excessive maternal alcohol use is associated with an increased risk of newborn infection in this patient sample. Increased awareness and further clinical investigations are warranted to address the detrimental effects of fetal alcohol exposure on the developing immune system.
Collapse
Affiliation(s)
- Theresa W Gauthier
- Department of Pediatrics, Division of Neonatology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
29
|
Szabo G, Catalano D, White B, Mandrekar P. Acute alcohol consumption inhibits accessory cell function of monocytes and dendritic cells. Alcohol Clin Exp Res 2004; 28:824-8. [PMID: 15166660 DOI: 10.1097/01.alc.0000127104.80398.9b] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Alcohol affects both innate and acquired immune responses. Chronic alcoholics have reduced delayed-type hypersensitivity response and increased susceptibility to infections. In contrast, recent studies suggest that acute, moderate alcohol consumption has protective effects on mortality. Monocytes and dendritic cells (DC) play a central role in coordination of innate and adaptive immune responses and are pivotal in activation of T lymphocytes in an antigen-specific manner. In this study, we investigated the effects of acute, moderate alcohol consumption on antigen presenting cell function of blood monocytes and monocyte-derived myeloid dendritic cells. METHODS Accessory cell function of human blood monocytes was tested before and after acute alcohol intake (2 ml vodka/kg body weight) by measuring T cell activation with alloantigen (mixed lymphocyte reaction, MLR), superantigen (staphylococcal enterotoxin B) and recall antigen (tetanus toxoid). Myeloid DCs were generated in vitro from monocytes obtained from these individuals using IL-4 and GM-CSF and their allostimulatory function was tested in an MLR. RESULTS We found significantly reduced T cell proliferation in the presence of monocytes obtained 2 or 18 hr after alcohol consumption whether alloantigen, superantigen, or recall antigen was the stimuli (p < 0.01). The reduced T cell proliferation was due to the effects of acute alcohol on monocytes rather than on T cells as we found decreased proliferation only in the presence of alcohol-exposed accessory cells but not when T cells were exposed to alcohol. In addition, monocyte-derived dendritic cells showed significantly reduced allostimulatory capacity after alcohol consumption (p < 0.005). CONCLUSION Acute alcohol consumption inhibits accessory cell function of both monocytes and myeloid dendritic cells. Impaired function of these key antigen-presenting cells may contribute to reduced adaptive immune responses and increased susceptibility to infections when acute alcohol intake coincides with exposure to pathogens.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, USA.
| | | | | | | |
Collapse
|
30
|
Altered immune parameters in chronic alcoholic patients at the onset of infection and of septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2004; 8:R312-21. [PMID: 15469574 PMCID: PMC1065020 DOI: 10.1186/cc2911] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 05/24/2004] [Accepted: 06/15/2004] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Chronic alcoholic patients have a threefold to fourfold increased risk for developing a severe infection or septic shock after surgery, which might be due to altered immune response. The aim of this outcome matched study was to investigate proinflammatory and anti-inflammatory immune parameters during the course of infection and subsequent septic shock in chronic alcoholic patients, and to compare these parameters with those in nonalcoholic patients. METHODS Twenty-eight patients from a cohort of fifty-six with either pneumonia or peritonitis and subsequent septic shock were selected. Fourteen patients were chronic alcoholics whereas fourteen were nonalcoholic patients. Chronic alcoholic patients met criteria (Diagnostic and Statistical Manual of Mental Disorders IV, of the American Psychiatric Association) for alcohol abuse or dependence. Measurements were performed during the onset of infection (within 24 hours after the onset of infection), in early septic shock (within 12 hours after onset of septic shock) and in late septic shock (72 hours after the onset). Blood measurements included proinflammatory and anti-inflammatory cytokines. RESULTS Chronic alcoholic patients exhibited significantly lower plasma levels of IL-8 (P < 0.010) during the onset of infection than did matched nonalcoholic patients. In early septic shock, chronic alcoholic patients had significantly decreased levels of IL-1beta (P < 0.015), IL-6 (P < 0.016) and IL-8 (P < 0.010). The anti-inflammatory parameters IL-10 and tumour necrosis factor receptors I and II did not differ between alcoholic and nonalcoholic patients. CONCLUSION At the onset of infection and during early septic shock, chronic alcoholic patients had lower levels of proinflammatory immune parameters than did nonalcoholic patients. Therefore, immunomodulatory therapy administered early may be considered in chronic alcoholic patients at the onset of an infection because of their altered proinflammatory immune response.
Collapse
|
31
|
Brown LAS, Harris FL, Ping XD, Gauthier TW. Chronic ethanol ingestion and the risk of acute lung injury: a role for glutathione availability? Alcohol 2004; 33:191-7. [PMID: 15596087 DOI: 10.1016/j.alcohol.2004.08.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 07/30/2004] [Accepted: 08/05/2004] [Indexed: 11/29/2022]
Abstract
Although pulmonary function is not altered, a history of alcohol abuse is an independent outcome variable in the development of acute respiratory distress syndrome. In the absence of cirrhosis, alcohol abuse decreased glutathione, the key antioxidant lining the alveolar space, by 80% and is associated with alveolar barrier leak. Neither the glutathione pool nor barrier leak was corrected by abstinence for 1 week. This aberrant glutathione homeostasis may contribute to enhanced alveolar permeability, thereby increasing susceptibility to the development of acute respiratory distress syndrome. In a rat model, chronic ingestion of ethanol decreased pulmonary glutathione concentration, increased alveolar barrier permeability, and increased the risk of acute lung injury. In alveolar type II cells, chronic ingestion of ethanol altered cellular functions such as decreased surfactant processing, decreased barrier integrity, and increased sensitivity to cytotoxin-induced apoptosis in vitro and in vivo. In alveolar macrophages, chronic ingestion of ethanol decreased phagocytosis of microorganisms and decreased cell viability, events that would increase the risk of pneumonia. A central role for glutathione availability was demonstrated by the normalization of cellular function and viability of type II cells and macrophages as well as decreased sensitivity to endotoxemia-induced acute lung injury when glutathione precursors were added to the ethanol diet. These results support the suggestion that chronic ingestion of ethanol increased the risk of acute lung injury not through ethanol per se but through the chronic oxidative stress that resulted from ethanol-induced glutathione depletion. Because chronic oxidative stress alters cellular functions and viability, the lung becomes more susceptible when a second hit such as sepsis occurs.
Collapse
Affiliation(s)
- Lou Ann S Brown
- Department of Pediatrics, Emory University, 2015 Uppergate Drive, NE, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
32
|
Powell JL, Strauss KA, Wiley C, Zhan M, Morris JG. Inflammatory cytokine response to Vibrio vulnificus elicited by peripheral blood mononuclear cells from chronic alcohol users is associated with biomarkers of cellular oxidative stress. Infect Immun 2003; 71:4212-6. [PMID: 12819121 PMCID: PMC161976 DOI: 10.1128/iai.71.7.4212-4216.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is the leading cause of death in the United States associated with the consumption of raw seafood, particularly oysters. In epidemiological studies, primary septicemia and inflammation-mediated septic shock caused by V. vulnificus is strongly associated with liver disease, often in the context of chronic alcohol abuse. The present study was undertaken to determine whether clinical biomarkers of liver function or cellular oxidative stress are associated with peripheral blood mononuclear cell inflammatory cytokine responses to V. vulnificus. Levels of interleukin-1 beta (IL-1 beta), IL-6, IL-8, and tumor necrosis factor alpha elicited in response to V. vulnificus and measured in cell supernatants were not associated with the liver biomarkers aspartate aminotransferase (AST) or alanine aminotransferase (ALT) or the AST/ALT ratio. In contrast, reduced glutathione (GSH) levels were associated with the release of all four cytokines (IL-1 beta [R(2) = 0.382; P = 0.006], IL-6 [R(2) = 0.393; P = 0.005], IL-8 [R(2) = 0.487; P = 0.001], and TNF-alpha [R(2) = 0.292; P = 0.021]). Those individuals with below-normal GSH levels produced significantly less proinflammatory cytokines in response to V. vulnificus. We hypothesize that persons with markers for cellular oxidative stress have increased susceptibility to V. vulnificus septicemia.
Collapse
Affiliation(s)
- Jan L Powell
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | |
Collapse
|
33
|
The Effect of Alcohol Consumption on Risk for Sepsis and ARDS. Intensive Care Med 2003. [DOI: 10.1007/978-1-4757-5548-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Irwin M, Miller C. Decreased Natural Killer Cell Responses and Altered Interleukin-6 and Interleukin-10 Production in Alcoholism: An Interaction Between Alcohol Dependence and African-American Ethnicity. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb02025.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Abstract
Chronic alcohol abuse exacts a major social and medical toll in the United States and other Western countries. One of the least appreciated medical complications of alcohol abuse is altered immune regulation leading to immunodeficiency and autoimmunity. The consequences of the immunodeficiency include increased susceptibility to bacterial pneumonia, tuberculosis, and other infectious diseases. In addition, the chronic alcoholic often has circulating autoantibodies, and recent investigations indicate that the most destructive complications of alcoholism, such as liver disease and liver failure, may have a component of autoimmunity. Current research on altered cytokine balance produced by alcohol is leading to new insights on the regulation of the immune system in the chronic alcoholic. There is also recent development of exciting new techniques designed to improve or restore immune function by manipulation of cytokine balance. Although much remains to be learned, both in the abnormalities produced by alcohol and in the techniques to reverse those abnormalities, current progress reflects a rapidly improving understanding of the basic immune disorders of the alcoholic.
Collapse
Affiliation(s)
- R T Cook
- Department of Pathology, Veterans Administration Medical Center, and the University of Iowa, Iowa City 52246, USA
| |
Collapse
|