1
|
Evaluation of the metabolomic profile through 1H-NMR spectroscopy in ewes affected by postpartum hyperketonemia. Sci Rep 2022; 12:16463. [PMID: 36183000 PMCID: PMC9526738 DOI: 10.1038/s41598-022-20371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Ketosis is one of the most important health problems in dairy sheep. The aim of this study was to evaluate the metabolic alterations in hyperketonemic (HYK) ewes. Forty-six adult Sardinian ewes were enrolled between 7 ± 3 days post-partum. Blood samples were collected from the jugular vein using Venosafe tubes containing clot activator from jugular vein after clinical examination. The concentration of β-hydroxybutyrate (BHB) was determined in serum and used to divide ewes into assign ewes into: Non-HYK (serum BHB < 0.80 mmol/L) and HYK (serum BHB ≥ 0.80 mmol/L) groups. Animal data and biochemical parameters of groups were examined with one-way ANOVA, and metabolite differences were tested using a t-test. A robust principal component analysis model and a heatmap were used to highlight common trends among metabolites. Over-representation analysis was performed to investigate metabolic pathways potentially altered in connection with BHB alterations. The metabolomic analysis identified 54 metabolites with 14 different between groups. These metabolites indicate altered ruminal microbial populations and fermentations; an interruption of the tricarboxylic acid cycle; initial lack of glucogenic substrates; mobilization of body reserves; the potential alteration of electron transport chain; influence on urea synthesis; alteration of nervous system, inflammatory response, and immune cell function.
Collapse
|
2
|
Differences in the serum metabolome profile of dairy cows according to the BHB concentration revealed by proton nuclear magnetic resonance spectroscopy ( 1H-NMR). Sci Rep 2022; 12:2525. [PMID: 35169190 PMCID: PMC8847571 DOI: 10.1038/s41598-022-06507-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
The mobilization of body reserves during the transition from pregnancy to lactation might predispose dairy cows to develop metabolic disorders such as subclinical ketosis or hyperketonemia. These conditions are not easily identifiable and are frequently related to other diseases that cause economic loss. The aim of this study was to evaluate the serum metabolome differences according to the β-hydroxybutyrate (BHB) concentration. Forty-nine Holstein Friesian dairy cows were enrolled between 15 and 30 days in milk. According to their serum BHB concentration, the animals were divided into three groups: Group 0 (G0; 12 healthy animals; BHB ≤ 0.50 mmol/L); Group 1 (G1; 19 healthy animals; 0.51 ≤ BHB < 1.0 mmol/L); and Group 2 (G2; 18 hyperketonemic animals; BHB ≥ 1.0 mmol/L). Animal data and biochemical parameters were examined with one-way ANOVA, and metabolite significant differences were examined by t-tests. Fifty-seven metabolites were identified in the serum samples. Thirteen metabolites showed significant effects and seemed to be related to the mobilization of body reserves, lipids, amino acid and carbohydrate metabolism, and ruminal fermentation.
Collapse
|
3
|
Lamy C, Mansard C, Blondel L, Mercier L, Paci A, Broutin S. Quantification of succinic acid levels, linked to succinate dehydrogenase (SDH) dysfunctions, by an automated and fully validated liquid chromatography tandem mass spectrometry method suitable for multi-matrix applications. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1189:123085. [PMID: 34974318 DOI: 10.1016/j.jchromb.2021.123085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/06/2021] [Accepted: 12/12/2021] [Indexed: 11/24/2022]
Abstract
The hallmarks of cancer include metabolism with deregulating cellular energetics. Dysfunctions in succinate dehydrogenase (SDH) metabolic enzyme activity, leading to an abnormal accumulation of succinic acid has been described in solid tumors but also in inflammation and ischemia reperfusion injury. Succinic acid is a potential biomarker of SDH related pathologies for diagnostic, evaluation of treatment response and follow-up of the disease. We developed a liquid chromatography tandem mass spectrometry (LC-MS/MS) method allowing a rapid, accurate and precise quantification of succinic acid levels in clinical (serum, urine) and preclinical (cellular pellets, supernatants) samples. 13C4 succinic acid disodium salt was used as internal standard and added to samples before a solid phase extraction (SPE) on Phenomenex STRATATM XL-A (200 mg - 3 mL) 33 µm cartridges. This method is automated by a Freedom EVO® platform from TECAN and succinic acid is separated on a C18 column combined to a Xevo® TQ-S micro Waters mass spectrometer with electrospray ionization (ESI) source. This biomedical analysis allows standard curves to be linear over the range 1.0-135.5 µM with r2 values > 0.999 and low matrix effects (<9.1 %). This method, which is validated according updated European Medicine Agency (EMA) guidelines, is accurate between-run (<11.0 %) and within-run (<7.8 %), precise between-run (<14.4 CV %) and within-run (<3.7 CV %), and is suitable for clinical and preclinical applications.
Collapse
Affiliation(s)
- Constance Lamy
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM1030, Radiothérapie moléculaire et innovation thérapeutique, F-94805 Villejuif, France
| | - Clémence Mansard
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France
| | - Louis Blondel
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France
| | - Lionel Mercier
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France
| | - Angelo Paci
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM1030, Radiothérapie moléculaire et innovation thérapeutique, F-94805 Villejuif, France; Service de pharmacocinétique, Faculté de pharmacie, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Sophie Broutin
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM1030, Radiothérapie moléculaire et innovation thérapeutique, F-94805 Villejuif, France.
| |
Collapse
|
4
|
Tanabe J, Neff S, Sutton B, Ellis S, Patten L, Brown MS, Hoffman PL, Tabakoff B, Burnham EL. Effects of acetate on cerebral blood flow, systemic inflammation, and behavior in alcohol use disorder. Alcohol Clin Exp Res 2021; 45:922-933. [PMID: 33682145 PMCID: PMC8496991 DOI: 10.1111/acer.14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcohol use disorders (AUDs) are associated with altered regulation of physiological processes in the brain. Acetate, a metabolite of ethanol, has been implicated in several processes that are disrupted in AUDs including transcriptional regulation, metabolism, inflammation, and neurotransmission. To further understand the effects of acetate on brain function in AUDs, we investigated the effects of acetate on cerebral blood flow (CBF), systemic inflammatory cytokines, and behavior in AUD. METHODS Sixteen participants with AUD were recruited from a nonmedical, clinically managed detoxification center. Each participant received acetate and placebo in a randomly assigned order of infusion and underwent 3T MR scanning using quantitative pseudo-continuous arterial spin labeling. Participants and the study team were blinded to the infusion. CBF values (ml/100 g/min) extracted from thalamus were compared between placebo and acetate using a mixed effect linear regression model accounting for infusion order. Voxel-wise CBF comparisons were set at threshold of p < 0.05 cluster-corrected for multiple comparisons, voxel-level p < 0.0001. Plasma cytokine levels and behavior were also assessed between infusions. RESULTS Fifteen men and 1 woman were enrolled with Alcohol Use Disorders Identification Test (AUDIT) scores between 13 and 38 with a mean of 28.3 ± 9.1. Compared to placebo, acetate administration increased CBF in the thalamus bilaterally (Left: 51.2 vs. 68.8, p < 0.001; Right: 53.7 vs. 69.6, p = 0.001), as well as the cerebellum, brainstem, and cortex. Older age and higher AUDIT scores were associated with increases in acetate-induced thalamic blood flow. Cytokine levels and behavioral measures did not differ between placebo and acetate infusions. CONCLUSIONS This pilot study in AUD suggests that during the first week of abstinence from alcohol, the brain's response to acetate differs by brain region and this response may be associated with the severity of alcohol dependence.
Collapse
Affiliation(s)
- Jody Tanabe
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Sarah Neff
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Brianne Sutton
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Sam Ellis
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Luke Patten
- Department of Biostatistics and Informatics, School of Public Health; University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mark S. Brown
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Paula L. Hoffman
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Ellen L. Burnham
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| |
Collapse
|
5
|
Jin S, Cao Q, Yang F, Zhu H, Xu S, Chen Q, Wang Z, Lin Y, Cinar R, Pawlosky RJ, Zhang Y, Xiong W, Gao B, Koob GF, Lovinger DM, Zhang L. Brain ethanol metabolism by astrocytic ALDH2 drives the behavioural effects of ethanol intoxication. Nat Metab 2021; 3:337-351. [PMID: 33758417 PMCID: PMC8294184 DOI: 10.1038/s42255-021-00357-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
Alcohol is among the most widely used psychoactive substances worldwide. Ethanol metabolites such as acetate, thought to be primarily the result of ethanol breakdown by hepatic aldehyde dehydrogenase 2 (ALDH2), contribute to alcohol's behavioural effects and alcoholism. Here, we show that ALDH2 is expressed in astrocytes in the mouse cerebellum and that ethanol metabolism by astrocytic ALDH2 mediates behavioural effects associated with ethanol intoxication. We show that ALDH2 is expressed in astrocytes in specific brain regions and that astrocytic, but not hepatocytic, ALDH2 is required to produce ethanol-derived acetate in the mouse cerebellum. Cerebellar astrocytic ALDH2 mediates low-dose ethanol-induced elevation of GABA levels, enhancement of tonic inhibition and impairment of balance and coordination skills. Thus, astrocytic ALDH2 controls the production, cellular and behavioural effects of alcohol metabolites in a brain-region-specific manner. Our data indicate that astrocytic ALDH2 is an important, but previously under-recognized, target in the brain to alter alcohol pharmacokinetics and potentially treat alcohol use disorder.
Collapse
Affiliation(s)
- Shiyun Jin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Department of Anesthesiology, Second Affiliated Hospital, Anhui Medical University, Hefei, PR China
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Fanghan Yang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hongying Zhu
- Department of Neuroscience, University of Science and Technology of China, Hefei, PR China
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Qi Chen
- Department of Neuroscience, University of Science and Technology of China, Hefei, PR China
| | - Ziyi Wang
- Department of Neuroscience, University of Science and Technology of China, Hefei, PR China
| | - Yuhong Lin
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Pawlosky
- Laboratory for Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ye Zhang
- Department of Anesthesiology, Second Affiliated Hospital, Anhui Medical University, Hefei, PR China
| | - Wei Xiong
- Department of Neuroscience, University of Science and Technology of China, Hefei, PR China
| | - Bin Gao
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - George F Koob
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Effects of ketogenic diet and ketone monoester supplement on acute alcohol withdrawal symptoms in male mice. Psychopharmacology (Berl) 2021; 238:833-844. [PMID: 33410985 PMCID: PMC7914216 DOI: 10.1007/s00213-020-05735-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE After alcohol ingestion, the brain partly switches from consumption of glucose to consumption of the alcohol metabolite acetate. In heavy drinkers, the switch persists after abrupt abstinence, leading to the hypothesis that the resting brain may be "starved" when acetate levels suddenly drop during abstinence, despite normal blood glucose, contributing to withdrawal symptoms. We hypothesized that ketone bodies, like acetate, could act as alternative fuels in the brain and alleviate withdrawal symptoms. OBJECTIVES We previously reported that a ketogenic diet during alcohol exposure reduced acute withdrawal symptoms in rats. Here, our goals were to test whether (1) we could reproduce our findings, in mice and with longer alcohol exposure; (2) ketone bodies alone are sufficient to reduce withdrawal symptoms (clarifying mechanism); (3) introduction of ketogenic diets at abstinence (a clinically more practical implementation) would also be effective. METHODS Male C57BL/6NTac mice had intermittent alcohol exposure for 3 weeks using liquid diet. Somatic alcohol withdrawal symptoms were measured as handling-induced convulsions; anxiety-like behavior was measured using the light-dark transition test. We tested a ketogenic diet, and a ketone monoester supplement with a regular carbohydrate-containing diet. RESULTS The regular diet with ketone monoester was sufficient to reduce handling-induced convulsions and anxiety-like behaviors in early withdrawal. Only the ketone monoester reduced handling-induced convulsions when given during abstinence, consistent with faster elevation of blood ketones, relative to ketogenic diet. CONCLUSIONS These findings support the potential utility of therapeutic ketosis as an adjunctive treatment in early detoxification in alcohol-dependent patients seeking to become abstinent. TRIAL REGISTRATION clinicaltrials.gov NCT03878225, NCT03255031.
Collapse
|
7
|
Bordia T, Zahr NM. The Inferior Colliculus in Alcoholism and Beyond. Front Syst Neurosci 2020; 14:606345. [PMID: 33362482 PMCID: PMC7759542 DOI: 10.3389/fnsys.2020.606345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Post-mortem neuropathological and in vivo neuroimaging methods have demonstrated the vulnerability of the inferior colliculus to the sequelae of thiamine deficiency as occurs in Wernicke-Korsakoff Syndrome (WKS). A rich literature in animal models ranging from mice to monkeys-including our neuroimaging studies in rats-has shown involvement of the inferior colliculi in the neural response to thiamine depletion, frequently accomplished with pyrithiamine, an inhibitor of thiamine metabolism. In uncomplicated alcoholism (i.e., absent diagnosable neurological concomitants), the literature citing involvement of the inferior colliculus is scarce, has nearly all been accomplished in preclinical models, and is predominately discussed in the context of ethanol withdrawal. Our recent work using novel, voxel-based analysis of structural Magnetic Resonance Imaging (MRI) has demonstrated significant, persistent shrinkage of the inferior colliculus using acute and chronic ethanol exposure paradigms in two strains of rats. We speculate that these consistent findings should be considered from the perspective of the inferior colliculi having a relatively high CNS metabolic rate. As such, they are especially vulnerable to hypoxic injury and may be provide a common anatomical link among a variety of disparate insults. An argument will be made that the inferior colliculi have functions, possibly related to auditory gating, necessary for awareness of the external environment. Multimodal imaging including diffusion methods to provide more accurate in vivo visualization and quantification of the inferior colliculi may clarify the roles of brain stem nuclei such as the inferior colliculi in alcoholism and other neuropathologies marked by altered metabolism.
Collapse
Affiliation(s)
- Tanuja Bordia
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
8
|
Tanabe J, Yamamoto DJ, Sutton B, Brown MS, Hoffman PL, Burnham EL, Glueck DH, Tabakoff B. Effects of Alcohol and Acetate on Cerebral Blood Flow: A Pilot Study. Alcohol Clin Exp Res 2019; 43:2070-2078. [PMID: 31386214 PMCID: PMC7066986 DOI: 10.1111/acer.14173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Acute alcohol produces effects on cerebral metabolism and blood flow. Alcohol is converted to acetate, which serves as a source of energy for the brain and is an agonist at G protein-coupled receptors distributed in different cell types in the body including neurons. Acetate has been hypothesized to play a role in the cerebral blood flow (CBF) response after alcohol ingestion. We tested whether administration of acetate would alter CBF in a pattern similar to or different from that of alcohol ingestion in healthy individuals. METHODS Twenty-four healthy participants were assigned by convenience to receive either 0.6 g/kg alcohol orally (n = 12) or acetate intravenously (n = 12). For each participant, CBF maps were acquired using an arterial spin labeling sequence on a 3T magnetic resonance scanner after placebo and after drug administration. Whole-brain CBF maps were compared between placebo and drug using a paired t-test, and set at a threshold of p < 0.05 corrected for multiple comparisons (k ≥ 142 voxels, ≥3.78 cm3 ), voxel-level p < 0.005. Intoxication was measured after placebo and drug administration with a Subjective High Assessment Scale (SHAS-7). RESULTS Compared to placebo, alcohol and acetate were associated with increased CBF in the medial thalamus. Alcohol, but not acetate, was associated with increased CBF in the right orbitofrontal, medial prefrontal and cingulate cortex, and hippocampus. Plasma acetate levels increased following administration of alcohol and acetate and did not differ between the 2 arms. Alcohol, but not acetate, was associated with an increase in SHAS-7 scores (p < 0.001). CONCLUSIONS Increased thalamic CBF associated with either alcohol or acetate administration suggests that the thalamic CBF response after alcohol could be mediated by acetate. Compared to other brain regions, thalamus may differ in its ability to metabolize acetate or expression of receptors responsive to acetate. Increased prefrontal and limbic CBF associated with alcohol may be linked to alcohol's behavioral effects.
Collapse
Affiliation(s)
- Jody Tanabe
- Department of Radiology, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Psychiatry, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Dorothy J. Yamamoto
- Department of Radiology, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brianne Sutton
- Department of Radiology, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Psychiatry, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Mark S. Brown
- Department of Radiology, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Paula L. Hoffman
- Department of Pharmacology, School of Medicine, University
of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ellen L. Burnham
- Department of Medicine, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Deborah H. Glueck
- Department of Pediatrics, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, School of Pharmacy,
University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
9
|
Eveque-Mourroux MR, Emans PJ, Zautsen RRM, Boonen A, Heeren RMA, Cillero-Pastor B. Spatially resolved endogenous improved metabolite detection in human osteoarthritis cartilage by matrix assisted laser desorption ionization mass spectrometry imaging. Analyst 2019; 144:5953-5958. [PMID: 31418440 DOI: 10.1039/c9an00944b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is one of the most common musculoskeletal diseases, characterized by the progressive deterioration of articular cartilage. Although the disease has been well studied in the past few years, the endogenous metabolic composition and more importantly the spatial information of these molecules in cartilage is still poorly understood. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has been previously used for the investigation of the bimolecular distribution of proteins and lipids through the in situ analysis of cartilage tissue sections. MALDI-MSI as a tool to detect metabolites remains challenging, as these species have low abundance and degrade rapidly. In this work, we present a complete methodology, from sample preparation to data analysis for the detection of endogenous metabolites on cartilage by MSI. Our results demonstrate for the first time the ability to detect small molecules in fragile, challenging tissues through an optimized protocol, and render MSI as a tool towards a better understanding of OA.
Collapse
Affiliation(s)
- M R Eveque-Mourroux
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
10
|
Ronowska A, Szutowicz A, Bielarczyk H, Gul-Hinc S, Klimaszewska-Łata J, Dyś A, Zyśk M, Jankowska-Kulawy A. The Regulatory Effects of Acetyl-CoA Distribution in the Healthy and Diseased Brain. Front Cell Neurosci 2018; 12:169. [PMID: 30050410 PMCID: PMC6052899 DOI: 10.3389/fncel.2018.00169] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Brain neurons, to support their neurotransmitter functions, require a several times higher supply of glucose than non-excitable cells. Pyruvate, the end product of glycolysis, through pyruvate dehydrogenase complex reaction, is a principal source of acetyl-CoA, which is a direct energy substrate in all brain cells. Several neurodegenerative conditions result in the inhibition of pyruvate dehydrogenase and decrease of acetyl-CoA synthesis in mitochondria. This attenuates metabolic flux through TCA in the mitochondria, yielding energy deficits and inhibition of diverse synthetic acetylation reactions in all neuronal sub-compartments. The acetyl-CoA concentrations in neuronal mitochondrial and cytoplasmic compartments are in the range of 10 and 7 μmol/L, respectively. They appear to be from 2 to 20 times lower than acetyl-CoA Km values for carnitine acetyltransferase, acetyl-CoA carboxylase, aspartate acetyltransferase, choline acetyltransferase, sphingosine kinase 1 acetyltransferase, acetyl-CoA hydrolase, and acetyl-CoA acetyltransferase, respectively. Therefore, alterations in acetyl-CoA levels alone may significantly change the rates of metabolic fluxes through multiple acetylation reactions in brain cells in different physiologic and pathologic conditions. Such substrate-dependent alterations in cytoplasmic, endoplasmic reticulum or nuclear acetylations may directly affect ACh synthesis, protein acetylations, and gene expression. Thereby, acetyl-CoA may regulate the functional and adaptative properties of neuronal and non-neuronal brain cells. The excitotoxicity-evoked intracellular zinc excess hits several intracellular targets, yielding the collapse of energy balance and impairment of the functional and structural integrity of postsynaptic cholinergic neurons. Acute disruption of brain energy homeostasis activates slow accumulation of amyloid-β1-42 (Aβ). Extra and intracellular oligomeric deposits of Aβ affect diverse transporting and signaling pathways in neuronal cells. It may combine with multiple neurotoxic signals, aggravating their detrimental effects on neuronal cells. This review presents evidences that changes of intraneuronal levels and compartmentation of acetyl-CoA may contribute significantly to neurotoxic pathomechanisms of different neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Anna Ronowska
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Szutowicz
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hanna Bielarczyk
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Gul-Hinc
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Klimaszewska-Łata
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Marlena Zyśk
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
11
|
Hsieh YJ, Wu LC, Ke CC, Chang CW, Kuo JW, Huang WS, Chen FD, Yang BH, Tai HT, Chen SCJ, Liu RS. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain. Alcohol Clin Exp Res 2017; 42:329-337. [PMID: 29205407 DOI: 10.1111/acer.13573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1-11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1-11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. METHODS [1-11 C]-acetate positron emission tomography (PET) with dynamic measurement of K1 and k2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. RESULTS PET imaging demonstrated decreased [1-11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K1 and clearance rate constant k2 were decreased in acutely intoxicated rats. No significant change was noted in K1 and k2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. CONCLUSIONS In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1-11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1-11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain.
Collapse
Affiliation(s)
- Ya-Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Liang-Chih Wu
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Chih Ke
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Chi-Wei Chang
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jung-Wen Kuo
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Wen-Sheng Huang
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fu-Du Chen
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Bang-Hung Yang
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Ting Tai
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sharon Chia-Ju Chen
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ren-Shyan Liu
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Biophotonic and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Nuclear Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Metabolic profiling of stages of healthy pregnancy in Hu sheep using nuclear magnetic resonance (NMR). Theriogenology 2017; 92:121-128. [DOI: 10.1016/j.theriogenology.2017.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 01/03/2023]
|
13
|
Pawlosky RJ, Kemper MF, Kashiwaya Y, King MT, Mattson MP, Veech RL. Effects of a dietary ketone ester on hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer's disease. J Neurochem 2017; 141:195-207. [PMID: 28099989 DOI: 10.1111/jnc.13958] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/28/2022]
Abstract
In patients with Alzheimer's disease (AD) and in a triple transgenic (3xTgAD) mouse model of AD low glucose metabolism in the brain precedes loss of memory and cognitive decline. The metabolism of ketones in the brain by-passes glycolysis and therefore may correct several deficiencies that are associated with glucose hypometabolism. A dietary supplement composed of an ester of D-β-hydroxybutyrate and R-1,3 butane diol referred to as ketone ester (KE) was incorporated into a rodent diet and fed to 3xTgAD mice for 8 months. At 16.5 months of age animals were killed and brains dissected. Analyses were carried out on the hippocampus and frontal cortex for glycolytic and TCA (Tricarboxylic Acid) cycle intermediates, amino acids, oxidized lipids and proteins, and enzymes. There were higher concentrations of d-β-hydroxybutyrate in the hippocampus of KE-fed mice where there were also higher concentrations of TCA cycle and glycolytic intermediates and the energy-linked biomarker, N-acetyl aspartate compared to controls. In the hippocampi of control-fed animals the free mitochondrial [NAD+ ]/[NADH] ratio were highly oxidized, whereas, in KE-fed animals the mitochondria were reduced. Also, the levels of oxidized protein and lipids were lower and the energy of ATP hydrolysis was greater compared to controls. 3xTgAD mice maintained on a KE-supplemented diet had higher concentrations of glycolytic and TCA cycle metabolites, a more reduced mitochondrial redox potential, and lower amounts of oxidized lipids and proteins in their hippocampi compared to controls. The KE offers a potential therapy to counter fundamental metabolic deficits common to patients and transgenic models. Read the Editorial Highlight for this article on page 162.
Collapse
Affiliation(s)
- Robert J Pawlosky
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Martin F Kemper
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoshihero Kashiwaya
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Todd King
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Ageing Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard L Veech
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Cai L, Stevenson J, Peng C, Xin R, Rastogi R, Liu K, Geng X, Gao Z, Ji X, Rafols JA, Ji Z, Ding Y. Adjuvant therapies using normobaric oxygen with hypothermia or ethanol for reducing hyperglycolysis in thromboembolic cerebral ischemia. Neuroscience 2016; 318:45-57. [PMID: 26794589 DOI: 10.1016/j.neuroscience.2016.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/25/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Normobaric oxygen (NBO), ethanol (EtOH), and therapeutic hypothermia (TH) delivered alone or in combination have neuroprotective properties after acute stroke. We used an autologous thromboembolic rat stroke model to assess the additive effects of these treatments for reducing the deleterious effects of hyperglycolysis post-stroke in which reperfusion is induced with recombinant tissue plasminogen activator (rt-PA). METHODS Sprague-Dawley rats were subjected to middle cerebral artery (MCA) occlusion with an autologous embolus. One hour after occlusion, rt-PA was administered alone or with NBO (60%), EtOH (1.0 g/kg), TH (33 °C), either singly or in combination. Infarct volume and neurological deficit were assessed at 24h after rt-PA-induced reperfusion with or without other treatments. The extent of hyperglycolysis, as determined by cerebral glucose and lactate levels was evaluated at 3 and 24h after rt-PA administration. At the same time points, expressions of glucose transporter 1 (Glut1), glucose transporter 3 (Glut3), phosphofructokinase1 (PFK-1), and lactate dehydrogenase were (LDH) measured by Western blotting. RESULTS Following rt-PA in rats with thromboembolic stroke, NBO combined with TH or EtOH most effectively decreased infarct volume and neurological deficit. As compared to rt-PA alone, EtOH or TH but not NBO monotherapies significantly reduced post-stroke hyperglycolysis. The increased utilization of glucose and production of lactate post-stroke was prevented most effectively when NBO was combined with either EtOH or TH after reperfusion with rt-PA, as shown by the significantly decreased Glut1, Glut3, PFK-1, and LDH levels. CONCLUSIONS In a rat thromboembolic stroke model, both EtOH and TH used individually offer neuroprotection after the administration of rt-PA. While NBO monotherapy does not appear to be effective, it significantly potentiates the efficacy of EtOH and TH. The similar neuroprotection and underlying mechanisms pertaining to the attenuation of hyperglycolysis provided by EtOH or TH in combination with NBO suggest a possibility of substituting EtOH for TH. Thus a combination of NBO and EtOH, which are widely available and easily used, could become a novel and effective neuroprotective strategy in the clinical setting.
Collapse
Affiliation(s)
- L Cai
- China-America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - J Stevenson
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - C Peng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - R Xin
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Department of Radiology, Luhe Hospital, Capital Medical University, Beijing, China
| | - R Rastogi
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - K Liu
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - X Geng
- China-America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Z Gao
- Cerebral Vascular Diseases Research Institute, Capital Medical University, Beijing, China
| | - X Ji
- Cerebral Vascular Diseases Research Institute, Capital Medical University, Beijing, China
| | - J A Rafols
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Z Ji
- China-America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China.
| | - Y Ding
- China-America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
15
|
Saba LM, Flink SC, Vanderlinden LA, Israel Y, Tampier L, Colombo G, Kiianmaa K, Bell RL, Printz MP, Flodman P, Koob G, Richardson HN, Lombardo J, Hoffman PL, Tabakoff B. The sequenced rat brain transcriptome--its use in identifying networks predisposing alcohol consumption. FEBS J 2015; 282:3556-78. [PMID: 26183165 DOI: 10.1111/febs.13358] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/10/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023]
Abstract
UNLABELLED A quantitative genetic approach, which involves correlation of transcriptional networks with the phenotype in a recombinant inbred (RI) population and in selectively bred lines of rats, and determination of coinciding quantitative trait loci for gene expression and the trait of interest, has been applied in the present study. In this analysis, a novel approach was used that combined DNA-Seq data, data from brain exon array analysis of HXB/BXH RI rat strains and six pairs of rat lines selectively bred for high and low alcohol preference, and RNA-Seq data (including rat brain transcriptome reconstruction) to quantify transcript expression levels, generate co-expression modules and identify biological functions that contribute to the predisposition of consuming varying amounts of alcohol. A gene co-expression module was identified in the RI rat strains that contained both annotated and unannotated transcripts expressed in the brain, and was associated with alcohol consumption in the RI panel. This module was found to be enriched with differentially expressed genes from the selected lines of rats. The candidate genes within the module and differentially expressed genes between high and low drinking selected lines were associated with glia (microglia and astrocytes) and could be categorized as being related to immune function, energy metabolism and calcium homeostasis, as well as glial-neuronal communication. The results of the present study show that there are multiple combinations of genetic factors that can produce the same phenotypic outcome. Although no single gene accounts for predisposition to a particular level of alcohol consumption in every animal model, coordinated differential expression of subsets of genes in the identified pathways produce similar phenotypic outcomes. DATABASE The datasets supporting the results of the present study are available at http://phenogen.ucdenver.edu.
Collapse
Affiliation(s)
- Laura M Saba
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Stephen C Flink
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Lauren A Vanderlinden
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Yedy Israel
- Laboratory of Pharmacogenetics of Alcoholism, Molecular & Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lutske Tampier
- Laboratory of Pharmacogenetics of Alcoholism, Molecular & Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Monserrato, Italy
| | - Kalervo Kiianmaa
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, Helsinki, Finland
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Morton P Printz
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Pamela Flodman
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - George Koob
- Committee on the Neurobiology of Addiction Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Heather N Richardson
- Committee on the Neurobiology of Addiction Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Joseph Lombardo
- National Supercomputing Center for Energy and Environment, University of Nevada, Las Vegas, Nevada, USA
| | - Paula L Hoffman
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Denver, Aurora, CO, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
16
|
Song BJ, Akbar M, Jo I, Hardwick JP, Abdelmegeed MA. Translational Implications of the Alcohol-Metabolizing Enzymes, Including Cytochrome P450-2E1, in Alcoholic and Nonalcoholic Liver Disease. ADVANCES IN PHARMACOLOGY 2015; 74:303-72. [PMID: 26233911 DOI: 10.1016/bs.apha.2015.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fat accumulation (hepatic steatosis) in alcoholic and nonalcoholic fatty liver disease is a potentially pathologic condition which can progress to steatohepatitis (inflammation), fibrosis, cirrhosis, and carcinogenesis. Many clinically used drugs or some alternative medicine compounds are also known to cause drug-induced liver injury, which can further lead to fulminant liver failure and acute deaths in extreme cases. During liver disease process, certain cytochromes P450 such as the ethanol-inducible cytochrome P450-2E1 (CYP2E1) and CYP4A isozymes can be induced and/or activated by alcohol and/or high-fat diets and pathophysiological conditions such as fasting, obesity, and diabetes. Activation of these P450 isozymes, involved in the metabolism of ethanol, fatty acids, and various drugs, can produce reactive oxygen/nitrogen species directly and/or indirectly, contributing to oxidative modifications of DNA/RNA, proteins and lipids. In addition, aldehyde dehydrogenases including the mitochondrial low Km aldehyde dehydrogenase-2 (ALDH2), responsible for the metabolism of acetaldehyde and lipid aldehydes, can be inactivated by various hepatotoxic agents. These highly reactive acetaldehyde and lipid peroxides, accumulated due to ALDH2 suppression, can interact with cellular macromolecules DNA/RNA, lipids, and proteins, leading to suppression of their normal function, contributing to DNA mutations, endoplasmic reticulum stress, mitochondrial dysfunction, steatosis, and cell death. In this chapter, we specifically review the roles of the alcohol-metabolizing enzymes including the alcohol dehydrogenase, ALDH2, CYP2E1, and other enzymes in promoting liver disease. We also discuss translational research opportunities with natural and/or synthetic antioxidants, which can prevent or delay the onset of inflammation and liver disease.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - James P Hardwick
- Biochemistry and Molecular Pathology in Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases. J Neurosci 2015; 35:3248-55. [PMID: 25698759 DOI: 10.1523/jneurosci.4877-14.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-(18)FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal.
Collapse
|
18
|
Israel Y, Quintanilla ME, Karahanian E, Rivera-Meza M, Herrera-Marschitz M. The "first hit" toward alcohol reinforcement: role of ethanol metabolites. Alcohol Clin Exp Res 2015; 39:776-86. [PMID: 25828063 DOI: 10.1111/acer.12709] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/22/2015] [Indexed: 12/20/2022]
Abstract
This review analyzes literature that describes the behavioral effects of 2 metabolites of ethanol (EtOH): acetaldehyde and salsolinol (a condensation product of acetaldehyde and dopamine) generated in the brain. These metabolites are self-administered into specific brain areas by animals, showing strong reinforcing effects. A wealth of evidence shows that EtOH, a drug consumed to attain millimolar concentrations, generates brain metabolites that are reinforcing at micromolar and nanomolar concentrations. Salsolinol administration leads to marked increases in voluntary EtOH intake, an effect inhibited by mu-opioid receptor blockers. In animals that have ingested EtOH chronically, the maintenance of alcohol intake is no longer influenced by EtOH metabolites, as intake is taken over by other brain systems. However, after EtOH withdrawal brain acetaldehyde has a major role in promoting binge-like drinking in the condition known as the "alcohol deprivation effect"; a condition seen in animals that have ingested alcohol chronically, are deprived of EtOH for extended periods, and are allowed EtOH re-access. The review also analyzes the behavioral effects of acetate, a metabolite that enters the brain and is responsible for motor incoordination at low doses of EtOH. Also discussed are the paradoxical effects of systemic acetaldehyde. Overall, evidence strongly suggests that brain-generated EtOH metabolites play a major role in the early ("first-hit") development of alcohol reinforcement and in the generation of relapse-like drinking.
Collapse
Affiliation(s)
- Yedy Israel
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
19
|
Abstract
Neuroimaging, including PET, MRI, and MRS, is a powerful approach to the study of brain function. This article reviews neuroimaging findings related to alcohol and other drugs of abuse that have been published since 2011. Uses of neuroimaging are to characterize patients to determine who will fare better in treatment and to investigate the reasons underlying the effect on outcomes. Neuroimaging is also used to characterize the acute and chronic effects of substances on the brain and how those effects are related to dependence, relapse, and other drug effects. The data can be used to provide encouraging information for patients, as several studies have shown that long-term abstinence is associated with at least partial normalization of neurological abnormalities.
Collapse
Affiliation(s)
- Mark J Niciu
- National Institutes of Health and Department of Health and Human Services, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, 10 Center Dr., Building 10/CRC, Room 7-5545, Bethesda, MD 20892, USA
| | - Graeme F Mason
- Yale University Department of Diagnostic Radiology and Psychiatry, New Haven, CT, USA
| |
Collapse
|
20
|
Lendvai N, Pawlosky R, Bullova P, Eisenhofer G, Patocs A, Veech RL, Pacak K. Succinate-to-fumarate ratio as a new metabolic marker to detect the presence of SDHB/D-related paraganglioma: initial experimental and ex vivo findings. Endocrinology 2014; 155:27-32. [PMID: 24189137 PMCID: PMC5398636 DOI: 10.1210/en.2013-1549] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pheochromocytomas (PHEOs) and paragangliomas (PGLs; extra-adrenal tumors) are rare neuroendocrine chromaffin cell tumors with a hereditary background in about 30%-35%. Those caused by succinate dehydrogenase subunit B (SDHB) germline mutations are associated with a high metastatic potential and ultimately higher patient mortality. Succinate dehydrogenase converts succinate to fumarate, uniquely linking the Krebs cycle and oxidative phosphorylation. SDH mutations result in the accumulation of succinate associated with various metabolic disturbances and the shift to aerobic glycolysis in tumor tissue. In the present study, we measured succinate and fumarate levels in mouse pheochromocytoma (MPC) and mouse tumor tissue (MTT) cells and in 10 apparently sporadic, 10 SDHB-, 5 SDHD-, and 2 neurofibromatosis 1-related PHEOs/PGLs and plasma samples using mass spectrometry. We found that the succinate-to-fumarate ratio was significantly higher in the SDHB- and SDHD-related PGLs than in apparently sporadic and neurofibromatosis 1-related PHEOs/PGLs (P = .0376). To further support our data, we silenced SDHB expression in MPC and MTT cells and evaluated the succinate and fumarate levels. Compared with control samples, SDHB-silenced MTT cells also showed an increase in the succinate-to-fumarate ratio (MTT cells: 2.45 vs 7.53), similar to the findings in SDHB-related PGLs. The present findings for the first time demonstrate a significantly increased succinate-to-fumarate ratio in SDHB/D-related PGLs and thus suggest this ratio may be used as a new metabolic marker for the detection of SDHB/D-related PHEOs/PGLs.
Collapse
Affiliation(s)
- Nikoletta Lendvai
- Program in Reproductive and Adult Endocrinology (N.L., P.B., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; Second Department of Medicine (N.L.), Semmelweis University, Budapest, Hungary 1088; Section on Metabolic Control Analysis (R.P., R.L.V.), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852; Department of Molecular Medicine (P.B.), Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic 84505; Institute of Clinical Chemistry and Laboratory Medicine (G.E.), University Hospital Carl Gustav Carus at the TU Dresden, Dresden, Germany; Department of Medicine III (G.E.), University Hospital Carl Gustav Carus at the TU Dresden, Dresden, Germany 01307; Molecular Medicine Research Group (A.P.), Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary; and Department of Laboratory Medicine Institute (A.P.), Central Isotope Laboratory, Semmelweis University, Budapest, Hungary 1088
| | | | | | | | | | | | | |
Collapse
|
21
|
Rae CD, Davidson JE, Maher AD, Rowlands BD, Kashem MA, Nasrallah FA, Rallapalli SK, Cook JM, Balcar VJ. Ethanol, not detectably metabolized in brain, significantly reduces brain metabolism, probably via action at specific GABA(A) receptors and has measureable metabolic effects at very low concentrations. J Neurochem 2013; 129:304-14. [PMID: 24313287 DOI: 10.1111/jnc.12634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 11/28/2022]
Abstract
Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we measured the effect of alcohol on metabolism of [3-¹³C]pyruvate in the adult Guinea pig brain cortical tissue slice and compared the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2-¹³C]ethanol. Analyses of metabolic profile clusters suggest that the significant reductions in metabolism induced by ethanol (10, 30 and 60 mM) are via action at neurotransmitter receptors, particularly α4β3δ receptors, whereas very low concentrations of ethanol may produce metabolic responses owing to release of GABA via GABA transporter 1 (GAT1) and the subsequent interaction of this GABA with local α5- or α1-containing GABA(A)R. There was no measureable metabolism of [1,2-¹³C]ethanol with no significant incorporation of ¹³C from [1,2-¹³C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabelled ethanol.
Collapse
Affiliation(s)
- Caroline D Rae
- Neuroscience Research Australia, and Brain Sciences UNSW, Randwick, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang J, Du H, Ma X, Pittman B, Castracane L, Li TK, Behar KL, Mason GF. Metabolic products of [2-(13) C]ethanol in the rat brain after chronic ethanol exposure. J Neurochem 2013; 127:353-64. [PMID: 24033360 PMCID: PMC6145094 DOI: 10.1111/jnc.12405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 01/05/2023]
Abstract
Most ingested ethanol is metabolized in the liver to acetaldehyde and then to acetate, which can be oxidized by the brain. This project assessed whether chronic exposure to alcohol can increase cerebral oxidation of acetate. Through metabolism, acetate may contribute to long-term adaptation to drinking. Two groups of adult male Sprague-Dawley rats were studied, one treated with ethanol vapor and the other given room air. After 3 weeks the rats received an intravenous infusion of [2-(13) C]ethanol via a lateral tail vein for 2 h. As the liver converts ethanol to [2-(13) C]acetate, some of the acetate enters the brain. Through oxidation the (13) C is incorporated into the metabolic intermediate α-ketoglutarate, which is converted to glutamate (Glu), glutamine (Gln), and GABA. These were observed by magnetic resonance spectroscopy and found to be (13) C-labeled primarily through the consumption of ethanol-derived acetate. Brain Gln, Glu, and, GABA (13) C enrichments, normalized to (13) C-acetate enrichments in the plasma, were higher in the chronically treated rats than in the ethanol-naïve rats, suggesting increased cerebral uptake and oxidation of circulating acetate. Chronic ethanol exposure increased incorporation of systemically derived acetate into brain Gln, Glu, and GABA, key neurochemicals linked to brain energy metabolism and neurotransmission. The liver converts ethanol to acetate, which may contribute to long-term adaptation to drinking. Astroglia oxidize acetate and generate neurochemicals, while neurons and glia may also oxidize ethanol. When (13) C-ethanol is administered intravenously, (13) C-glutamine, glutamate, and GABA, normalized to (13) C-acetate, were higher in chronic ethanol-exposed rats than in control rats, suggesting that ethanol exposure increases cerebral oxidation of circulating acetate.
Collapse
Affiliation(s)
- Jie Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan, Hubei, China, 430071
- Department of Diagnostic Radiology
| | - Hongying Du
- Department of Diagnostic Radiology
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R.China, 430070
| | | | - Brian Pittman
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA, 06511
| | | | - Ting-Kai Li
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA, 27710
| | - Kevin L. Behar
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA, 06511
| | - Graeme F. Mason
- Department of Diagnostic Radiology
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA, 06511
| |
Collapse
|
23
|
Qin L, Crews FT. Focal thalamic degeneration from ethanol and thiamine deficiency is associated with neuroimmune gene induction, microglial activation, and lack of monocarboxylic acid transporters. Alcohol Clin Exp Res 2013; 38:657-71. [PMID: 24117525 PMCID: PMC3959259 DOI: 10.1111/acer.12272] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022]
Abstract
Background Wernicke's encephalopathy-Korsakoff syndrome (WE-KS) is common in alcoholics, caused by thiamine deficiency (TD; vitamin B1) and associated with lesions to the thalamus (THAL). Although TD alone can cause WE, the high incidence in alcoholism suggests that TD and ethanol (EtOH) interact. Methods Mice in control, TD, or EtOH groups alone or combined were studied after 5 or 10 days of treatment. THAL and entorhinal cortex (ENT) histochemistry and mRNA were assessed. Results Combined EtOH-TD treatment for 5 days (EtOH-TD5) showed activated microglia, proinflammatory gene induction and THAL neurodegeneration that was greater than that found with TD alone (TD5), whereas 10 days resulted in marked THAL degeneration and microglial-neuroimmune activation in both groups. In contrast, 10 days of TD did not cause ENT degeneration. Interestingly, in ENT, TD10 activated microglia and astrocytes more than EtOH-TD10. In THAL, multiple astrocytic markers were lost consistent with glial cell loss. TD blocks glucose metabolism more than acetate. Acetate derived from hepatic EtOH metabolism is transported by monocarboxylic acid transporters (MCT) into both neurons and astrocytes that use acetyl-CoA synthetase (AcCoAS) to generate cellular energy from acetate. MCT and AcCoAS expression in THAL is lower than ENT prompting the hypothesis that focal THAL degeneration is related to insufficient MCT and AcCoAS in THAL. To test this hypothesis, we administered glycerin triacetate (GTA) to increase blood acetate and found it protected the THAL from TD-induced degeneration. Conclusions Our findings suggest that EtOH potentiates TD-induced THAL degeneration through neuroimmune gene induction. The findings support the hypothesis that TD deficiency inhibits global glucose metabolism and that a reduced ability to process acetate for cellular energy results in THAL focal degeneration in alcoholics contributing to the high incidence of Wernicke-Korsakoff syndrome in alcoholism.
Collapse
Affiliation(s)
- Liya Qin
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
24
|
Oxidation of ethanol in the rat brain and effects associated with chronic ethanol exposure. Proc Natl Acad Sci U S A 2013; 110:14444-9. [PMID: 23940368 DOI: 10.1073/pnas.1306011110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It has been reported that chronic and acute alcohol exposure decreases cerebral glucose metabolism and increases acetate oxidation. However, it remains unknown how much ethanol the living brain can oxidize directly and whether such a process would be affected by alcohol exposure. The questions have implications for reward, oxidative damage, and long-term adaptation to drinking. One group of adult male Sprague-Dawley rats was treated with ethanol vapor and the other given room air. After 3 wk the rats received i.v. [2-(13)C]ethanol and [1, 2-(13)C2]acetate for 2 h, and then the brain was fixed, removed, and divided into neocortex and subcortical tissues for measurement of (13)C isotopic labeling of glutamate and glutamine by magnetic resonance spectroscopy. Ethanol oxidation was seen to occur both in the cortex and the subcortex. In ethanol-naïve rats, cortical oxidation of ethanol occurred at rates of 0.017 ± 0.002 µmol/min/g in astroglia and 0.014 ± 0.003 µmol/min/g in neurons, and chronic alcohol exposure increased the astroglial ethanol oxidation to 0.028 ± 0.002 µmol/min/g (P = 0.001) with an insignificant effect on neuronal ethanol oxidation. Compared with published rates of overall oxidative metabolism in astroglia and neurons, ethanol provided 12.3 ± 1.4% of cortical astroglial oxidation in ethanol-naïve rats and 20.2 ± 1.5% in ethanol-treated rats. For cortical astroglia and neurons combined, the ethanol oxidation for naïve and treated rats was 3.2 ± 0.3% and 3.8 ± 0.2% of total oxidation, respectively. (13)C labeling from subcortical oxidation of ethanol was similar to that seen in cortex but was not affected by chronic ethanol exposure.
Collapse
|
25
|
Jiang L, Gulanski BI, De Feyter HM, Weinzimer SA, Pittman B, Guidone E, Koretski J, Harman S, Petrakis IL, Krystal JH, Mason GF. Increased brain uptake and oxidation of acetate in heavy drinkers. J Clin Invest 2013; 123:1605-14. [PMID: 23478412 DOI: 10.1172/jci65153] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 01/17/2013] [Indexed: 11/17/2022] Open
Abstract
When a person consumes ethanol, the body quickly begins to convert it to acetic acid, which circulates in the blood and can serve as a source of energy for the brain and other organs. This study used 13C magnetic resonance spectroscopy to test whether chronic heavy drinking is associated with greater brain uptake and oxidation of acetic acid, providing a potential metabolic reward or adenosinergic effect as a consequence of drinking. Seven heavy drinkers, who regularly consumed at least 8 drinks per week and at least 4 drinks per day at least once per week, and 7 light drinkers, who consumed fewer than 2 drinks per week were recruited. The subjects were administered [2-13C]acetate for 2 hours and scanned throughout that time with magnetic resonance spectroscopy of the brain to observe natural 13C abundance of N-acetylaspartate (NAA) and the appearance of 13C-labeled glutamate, glutamine, and acetate. Heavy drinkers had approximately 2-fold more brain acetate relative to blood and twice as much labeled glutamate and glutamine. The results show that acetate transport and oxidation are faster in heavy drinkers compared with that in light drinkers. Our finding suggests that a new therapeutic approach to supply acetate during alcohol detoxification may be beneficial.
Collapse
Affiliation(s)
- Lihong Jiang
- Department of Diagnostic Radiology, Yale University, School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Volkow ND, Kim SW, Wang GJ, Alexoff D, Logan J, Muench L, Shea C, Telang F, Fowler JS, Wong C, Benveniste H, Tomasi D. Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain. Neuroimage 2013; 64:277-83. [PMID: 22947541 PMCID: PMC3508320 DOI: 10.1016/j.neuroimage.2012.08.057] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/09/2012] [Accepted: 08/21/2012] [Indexed: 10/28/2022] Open
Abstract
Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also the metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in the thalamus. In contrast, alcohol intoxication caused a significant increase in [1-(11)C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in the cerebellum and the smallest in the thalamus. In heavy alcohol drinkers [1-(11)C]acetate brain uptake during alcohol challenge tended to be higher than in occasional drinkers (p<0.06) and the increases in [1-(11)C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-(11)C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (i.e. ketogenic diets) may have in alcoholics undergoing alcohol detoxification.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Srivastava S, Kashiwaya Y, Chen X, Geiger JD, Pawlosky R, Veech RL. Microwave irradiation decreases ATP, increases free [Mg²⁺], and alters in vivo intracellular reactions in rat brain. J Neurochem 2012; 123:668-75. [PMID: 23013291 PMCID: PMC3524514 DOI: 10.1111/jnc.12026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid inactivation of metabolism is essential for accurately determining the concentrations of metabolic intermediates in the in vivo state. We compared a broad spectrum of energetic intermediate metabolites and neurotransmitters in brains obtained by microwave irradiation to those obtained by freeze blowing, the most rapid method of extracting and freezing rat brain. The concentrations of many intermediates, cytosolic free NAD(P)(+) /NAD(P)H ratios, as well as neurotransmitters were not affected by the microwave procedure. However, the brain concentrations of ATP were about 30% lower, whereas those of ADP, AMP, and GDP were higher in the microwave-irradiated compared with the freeze-blown brains. In addition, the hydrolysis of approximately 1 μmol/g of ATP, a major in vivo Mg(2+) -binding site, was related to approximately five-fold increase in free [Mg(2+) ] (0.53 ± 0.07 mM in freeze blown vs. 2.91 mM ± 0.48 mM in microwaved brains), as determined from the ratio [citrate]/[isocitrate]. Consequently, many intracellular properties, such as the phosphorylation potential and the ∆G' of ATP hydrolysis were significantly altered in microwaved tissue. The determinations of some glycolytic and TCA cycle metabolites, the phosphorylation potential, and the ∆G' of ATP hydrolysis do not represent the in vivo state when using microwave-fixed brain tissue.
Collapse
Affiliation(s)
- Shireesh Srivastava
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
28
|
Heilig M, Warren KR, Kunos G, Silverman PB, Hewitt BG. Addiction research centres and the nurturing of creativity: the National Institute on Alcohol Abuse and Alcoholism. Addiction 2011; 106:1052-60. [PMID: 20569230 PMCID: PMC3024445 DOI: 10.1111/j.1360-0443.2010.02995.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this paper is to present a concise account of the history, mission, structure and some recent achievements of the US National Institute on Alcohol Abuse and Alcoholism (NIAAA). Created by the US Congress 40 years ago, the NIAAA has evolved from an entity charged mainly with building a national system of alcoholism treatment services to one with responsibility for developing, nurturing and supporting the biomedical and behavioral science foundation necessary to reduce the significant domestic and global public health impact of alcohol use disorders. The NIAAA is unique in that it functions both as a funding agency, supporting research at universities and other external, or 'extramural' research institutions, and is also a research institution itself, where alcohol research is carried out in-house, or 'intramurally'. Of a $450.2 million 2009 Congressional Appropriation, approximately 90% was devoted toward the former and approximately 10% towards the latter objective. The current NIAAA Strategic Plan builds on a new organizing principle for long-range research planning, based on a life-span perspective that recognizes that human biology and behavior continue to change throughout life and changes occurring throughout the life-span affect individuals' drinking patterns as well as the decisions they may make to change their drinking habits or to seek help for alcohol use problems. Within this framework, major efforts are currently being devoted to educating practitioners on clinically useful, science-based assessment and treatment methods that exist today, and development of personalized new treatments for tomorrow.
Collapse
Affiliation(s)
- Markus Heilig
- The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, US Department of Health and Human Services, 10 Center Drive, Bethesda, MD 20892-1108, USA.
| | | | | | | | | |
Collapse
|
29
|
Zimatkin SM, Oganesian NA, Kiselevski YV, Deitrich RA. Acetate-dependent mechanisms of inborn tolerance to ethanol. Alcohol Alcohol 2011; 46:233-8. [PMID: 21349883 DOI: 10.1093/alcalc/agr014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS To clarify the role of acetate in neurochemical mechanisms of the initial (inborn) tolerance to ethanol. METHODS Rats with low and high inborn tolerance to hypnotic effect of ethanol were used. In the brain region homogenates (frontal and parietal cortex, hypothalamus, striatum, medulla oblongata) and brain cortex synaptosomes, the levels of acetate, acetyl-CoA, acetylcholine (AcH), the activity of pyruvate dehydrogenase (PDG) and acetyl-CoA synthetase were examined. RESULTS It has been found that brain cortex of rats with high tolerance to hypnotic effect of ethanol have higher level of acetate and activity of acetyl-CoA synthetase, but lower level of acetyl-СCoA and activity of PDG. In brain cortex synaptosomes of tolerant rats, the pyruvate oxidation rate as well as the content of acetyl-CoA and AcH synthesis were lower when compared with intolerant animals. The addition of acetate into the medium significantly increased the AcH synthesis in synaptosomes of tolerant, but not of intolerant animals. Calcium ions stimulated the AcH release from synaptosomes twice as high in tolerant as in intolerant animals. Acetate eliminated the stimulating effect of calcium ions upon the release of AcH in synaptosomes of intolerant rats, but not in tolerant animals. As a result, the quantum release of AcH from synaptosomes in the presence of acetate was 6.5 times higher in tolerant when compared with intolerant rats. CONCLUSION The brain cortex of rats with high inborn tolerance to hypnotic effect of ethanol can better utilize acetate for the acetyl-CoA and AcH synthesis, as well as being resistant to inhibitory effect of acetate to calcium-stimulated release of AcH. It indicates the metabolic and cholinergic mechanisms of the initial tolerance to ethanol.
Collapse
Affiliation(s)
- Sergey M Zimatkin
- Grodno State Medical University, 80 Gorkogo Street, Grodno 230015, Belarus.
| | | | | | | |
Collapse
|
30
|
Blasco H, Corcia P, Moreau C, Veau S, Fournier C, Vourc'h P, Emond P, Gordon P, Pradat PF, Praline J, Devos D, Nadal-Desbarats L, Andres CR. 1H-NMR-based metabolomic profiling of CSF in early amyotrophic lateral sclerosis. PLoS One 2010; 5:e13223. [PMID: 20949041 PMCID: PMC2951909 DOI: 10.1371/journal.pone.0013223] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/08/2010] [Indexed: 11/19/2022] Open
Abstract
Background Pathophysiological mechanisms involved in amyotrophic lateral sclerosis (ALS) are complex and none has identified reliable markers useful in routine patient evaluation. The aim of this study was to analyze the CSF of patients with ALS by 1H NMR (Nuclear Magnetic Resonance) spectroscopy in order to identify biomarkers in the early stages of the disease, and to evaluate the biochemical factors involved in ALS. Methodology CSF samples were collected from patients with ALS at the time of diagnosis and from patients without neurodegenerative diseases. One and two-dimensional 1H NMR analyses were performed and metabolites were quantified by the ERETIC method. We compared the concentrations of CSF metabolites between both groups. Finally, we performed principal component (PCA) and discriminant analyses. Principal Findings Fifty CSF samples from ALS patients and 44 from controls were analyzed. We quantified 17 metabolites including amino-acids, organic acids, and ketone bodies. Quantitative analysis revealed significantly lower acetate concentrations (p = 0.0002) in ALS patients compared to controls. Concentration of acetone trended higher (p = 0.015), and those of pyruvate (p = 0.002) and ascorbate (p = 0.003) were higher in the ALS group. PCA demonstrated that the pattern of analyzed metabolites discriminated between groups. Discriminant analysis using an algorithm of 17 metabolites revealed that patients were accurately classified 81.6% of the time. Conclusion/Significance CSF screening by NMR spectroscopy could be a useful, simple and low cost tool to improve the early diagnosis of ALS. The results indicate a perturbation of glucose metabolism, and the need to further explore cerebral energetic metabolism.
Collapse
|
31
|
D'Souza El-Guindy NB, Kovacs EJ, De Witte P, Spies C, Littleton JM, de Villiers WJS, Lott AJ, Plackett TP, Lanzke N, Meadows GG. Laboratory models available to study alcohol-induced organ damage and immune variations: choosing the appropriate model. Alcohol Clin Exp Res 2010; 34:1489-511. [PMID: 20586763 PMCID: PMC2929290 DOI: 10.1111/j.1530-0277.2010.01234.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The morbidity and mortality resulting from alcohol-related diseases globally impose a substantive cost to society. To minimize the financial burden on society and improve the quality of life for individuals suffering from the ill effects of alcohol abuse, substantial research in the alcohol field is focused on understanding the mechanisms by which alcohol-related diseases develop and progress. Since ethical concerns and inherent difficulties limit the amount of alcohol abuse research that can be performed in humans, most studies are performed in laboratory animals. This article summarizes the various laboratory models of alcohol abuse that are currently available and are used to study the mechanisms by which alcohol abuse induces organ damage and immune defects. The strengths and weaknesses of each of the models are discussed. Integrated into the review are the presentations that were made in the symposium "Methods of Ethanol Application in Alcohol Model-How Long is Long Enough" at the joint 2008 Research Society on Alcoholism (RSA) and International Society for Biomedical Research on Alcoholism (ISBRA) meeting, Washington, DC, emphasizing the importance not only of selecting the most appropriate laboratory alcohol model to address the specific goals of a project but also of ensuring that the findings can be extrapolated to alcohol-induced diseases in humans.
Collapse
Affiliation(s)
- Nympha B D'Souza El-Guindy
- Department of Internal Medicine, Division of Digestive Diseases, University of Kentucky and Veterans Affairs Medical Center, Lexington, Kentucky, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yao CT, Lai CL, Hsieh HS, Chi CW, Yin SJ. Establishment of steady-state metabolism of ethanol in perfused rat liver: the quantitative analysis using kinetic mechanism-based rate equations of alcohol dehydrogenase. Alcohol 2010; 44:541-51. [PMID: 20724102 DOI: 10.1016/j.alcohol.2010.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/09/2010] [Accepted: 07/10/2010] [Indexed: 01/02/2023]
Abstract
Alcohol dehydrogenase (ADH) catalyzes oxidation of ingested ethanol to acetaldehyde, the first step in hepatic metabolism. The purpose of this study was to establish an ex vivo rat liver perfusion system under defined and verified steady states with respect to the metabolites and the metabolic rates, and to quantitatively correlate the observed rates with simulations based on the kinetic mechanism-based rate equations of rat liver ADH. Class I ADH1 was isolated from male Sprague-Dawley rats and characterized by steady-state kinetics in the Krebs-Ringer perfusion buffer with supplements. Nonrecirculating liver perfusion with constant input of ethanol at near physiological hepatic blood flow rate was performed in situ. Ethanol and the related metabolites acetaldehyde, acetate, lactate, and pyruvate in perfusates were determined. Results of the initial velocity, product, and dead-end inhibition studies showed that rat ADH1 conformed to the Theorell-Chance Ordered Bi Bi mechanism. Steady-state metabolism of ethanol in the perfused liver maintained up to 3h as evidenced by the steady-state levels of ethanol and metabolites in the effluent, and the steady-state ethanol disappearance rates and acetate production rates. The changes of the metabolic rates were qualitatively and in general quantitatively correlated to the results from simulations with the kinetic rate equations of ADH1 under a wide range of ethanol, in the presence of competitive inhibitor 4-methylpyrazole and of uncompetitive inhibitor isobutyramide. Preliminary flux control analysis estimated that apparent C(ADH)(J) in the perfused liver may approximate 0.7 at constant infusion with 1-2 mM ethanol, suggesting that ADH plays a major but not the exclusive role in governing hepatic ethanol metabolism. The reported steady-state rat liver perfusion system may potentially be applicable to other drug or drug-ethanol interaction studies.
Collapse
|
33
|
Kashiwaya Y, Pawlosky R, Markis W, King MT, Bergman C, Srivastava S, Murray A, Clarke K, Veech RL. A ketone ester diet increases brain malonyl-CoA and Uncoupling proteins 4 and 5 while decreasing food intake in the normal Wistar Rat. J Biol Chem 2010; 285:25950-6. [PMID: 20529850 PMCID: PMC2923987 DOI: 10.1074/jbc.m110.138198] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/25/2010] [Indexed: 01/20/2023] Open
Abstract
Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD(+)]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain L-glutamate by 15-20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain.
Collapse
Affiliation(s)
- Yoshihiro Kashiwaya
- From the Laboratory of Metabolic Control, NIAAA, National Institutes of Health, Rockville, Maryland 20852-9047
| | - Robert Pawlosky
- From the Laboratory of Metabolic Control, NIAAA, National Institutes of Health, Rockville, Maryland 20852-9047
| | - William Markis
- From the Laboratory of Metabolic Control, NIAAA, National Institutes of Health, Rockville, Maryland 20852-9047
| | - M. Todd King
- From the Laboratory of Metabolic Control, NIAAA, National Institutes of Health, Rockville, Maryland 20852-9047
| | - Christian Bergman
- From the Laboratory of Metabolic Control, NIAAA, National Institutes of Health, Rockville, Maryland 20852-9047
| | - Shireesh Srivastava
- From the Laboratory of Metabolic Control, NIAAA, National Institutes of Health, Rockville, Maryland 20852-9047
| | - Andrew Murray
- the Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom, and
| | - Kieran Clarke
- the Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Richard L. Veech
- From the Laboratory of Metabolic Control, NIAAA, National Institutes of Health, Rockville, Maryland 20852-9047
| |
Collapse
|
34
|
Björk K, Hansson AC, Sommer WH. Genetic Variation and Brain Gene Expression in Rodent Models of Alcoholism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:129-71. [DOI: 10.1016/s0074-7742(10)91005-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|