1
|
Leung ECH, Jain P, Michealson MA, Choi H, Ellsworth-Kopkowski A, Valenzuela CF. Recent breakthroughs in understanding the cerebellum's role in fetal alcohol spectrum disorder: A systematic review. Alcohol 2024; 119:37-71. [PMID: 38097146 PMCID: PMC11166889 DOI: 10.1016/j.alcohol.2023.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 06/14/2024]
Abstract
Exposure to alcohol during fetal development can lead to structural and functional abnormalities in the cerebellum, a brain region responsible for motor coordination, balance, and specific cognitive functions. In this systematic review, we comprehensively analyze a vast body of research conducted on vertebrate animals and humans over the past 13 years. We identified studies through PubMed and screened them following PRISMA guidelines. Data extraction and quality analysis were conducted using Covidence systematic review software. A total of 108 studies met our inclusion criteria, with the majority (79 studies) involving vertebrate animal models and 29 studies focusing on human subjects. Animal models included zebrafish, mice, rats, sheep, and non-human primates, investigating the impact of ethanol on cerebellar structure, gene/protein expression, physiology, and cerebellar-dependent behaviors. Additionally, some animal studies explored potential therapeutic interventions against ethanol-induced cerebellar damage. The human studies predominantly adopted cohort designs, exploring the effects of prenatal alcohol exposure on cerebellar structure and function. Certain human studies delved into innovative cerebellar-based diagnostic approaches for fetal alcohol spectrum disorder (FASD). The collective findings from these studies clearly indicate that the cerebellum is involved in various neurophysiological deficits associated with FASD, emphasizing the importance of evaluating both cerebellar structure and function in the diagnostic process for this condition. Moreover, this review sheds light into potential therapeutic strategies that can mitigate prenatal alcohol exposure-induced cerebellar damage.
Collapse
Affiliation(s)
- Eric C H Leung
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Priyanka Jain
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Marisa A Michealson
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Hyesun Choi
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Alexis Ellsworth-Kopkowski
- Health Sciences Library & Informatics Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
2
|
Vieiros M, Navarro-Tapia E, Ramos-Triguero A, García-Meseguer À, Martínez L, García-Algar Ó, Andreu-Fernández V. Analysis of alcohol-metabolizing enzymes genetic variants and RAR/RXR expression in patients diagnosed with fetal alcohol syndrome: a case-control study. BMC Genomics 2024; 25:610. [PMID: 38886650 PMCID: PMC11184718 DOI: 10.1186/s12864-024-10516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Understanding the mechanisms underlying alcohol metabolism and its regulation, including the effect of polymorphisms in alcohol-metabolizing enzymes, is crucial for research on Fetal Alcohol Spectrum Disorders. The aim of this study was to identify specific single nucleotide polymorphisms in key alcohol-metabolizing enzymes in a cohort of 71 children, including children with fetal alcohol syndrome, children prenatally exposed to ethanol but without fetal alcohol spectrum disorder, and controls. We hypothesized that certain genetic variants related to alcohol metabolism may be fixed in these populations, giving them a particular alcohol metabolism profile. In addition, the difference in certain isoforms of these enzymes determines their affinity for alcohol, which also affects the metabolism of retinoic acid, which is key to the proper development of the central nervous system. Our results showed that children prenatally exposed to ethanol without fetal alcohol spectrum disorder traits had a higher frequency of the ADH1B*3 and ADH1C*1 alleles, which are associated with increased alcohol metabolism and therefore a protective factor against circulating alcohol in the fetus after maternal drinking, compared to FAS children who had an allele with a lower affinity for alcohol. This study also revealed the presence of an ADH4 variant in the FAS population that binds weakly to the teratogen, allowing increased circulation of the toxic agent and direct induction of developmental abnormalities in the fetus. However, both groups showed dysregulation in the expression of genes related to the retinoic acid pathway, such as retinoic acid receptor and retinoid X receptor, which are involved in the development, regeneration, and maintenance of the nervous system. These findings highlight the importance of understanding the interplay between alcohol metabolism, the retinoic acid pathway and genetic factors in the development of fetal alcohol syndrome.
Collapse
Affiliation(s)
- Melina Vieiros
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- IdiPAZ - Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Department de Cirurgia i Especialitats Mèdico-Quirúrgiques, Universitat de Barcelona, Barcelona, Spain
| | - Elisabet Navarro-Tapia
- IdiPAZ - Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain.
- Faculty of Health Sciences, Valencian International University, Valencia, Spain.
| | - Anna Ramos-Triguero
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Àgueda García-Meseguer
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Leopoldo Martínez
- IdiPAZ - Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Óscar García-Algar
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Biosanitary Research Institute, Valencian International University, Valencia, Spain.
| |
Collapse
|
3
|
Kovács MV, Charchat-Fichman H, Landeira-Fernandez J, Medina AE, Krahe TE. Combined exposure to alcohol and cannabis during development: Mechanisms and outcomes. Alcohol 2023; 110:1-13. [PMID: 36740025 PMCID: PMC10372841 DOI: 10.1016/j.alcohol.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Exposure to substances of abuse during pregnancy can have long-lasting effects on offspring. Alcohol is one of the most widely used substances of abuse that leads to the most severe consequences. Recent studies in the United States, Canada, and the United Kingdom showed that between 1% and 7% of all children exhibit signs and symptoms of fetal alcohol spectrum disorder (FASD). Despite preventive campaigns, the rate of children with FASD has not decreased during recent decades. Alcohol consumption often accompanies exposure to such drugs as tobacco, cocaine, opioids, and cannabis. These interactions can be synergistic and exacerbate the deleterious consequences of developmental alcohol exposure. The present review focuses on interactions between alcohol and cannabis exposure and the potential consequences of these interactions.
Collapse
Affiliation(s)
- Martina V Kovács
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, RJ, 22451-900, Brazil
| | - Helenice Charchat-Fichman
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, RJ, 22451-900, Brazil
| | - J Landeira-Fernandez
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, RJ, 22451-900, Brazil
| | - Alexandre E Medina
- Department of Pediatrics - School of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, United States.
| | - Thomas E Krahe
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, RJ, 22451-900, Brazil.
| |
Collapse
|
4
|
Mechanisms of Ethanol-Induced Cerebellar Ataxia: Underpinnings of Neuronal Death in the Cerebellum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168678. [PMID: 34444449 PMCID: PMC8391842 DOI: 10.3390/ijerph18168678] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
Ethanol consumption remains a major concern at a world scale in terms of transient or irreversible neurological consequences, with motor, cognitive, or social consequences. Cerebellum is particularly vulnerable to ethanol, both during development and at the adult stage. In adults, chronic alcoholism elicits, in particular, cerebellar vermis atrophy, the anterior lobe of the cerebellum being highly vulnerable. Alcohol-dependent patients develop gait ataxia and lower limb postural tremor. Prenatal exposure to ethanol causes fetal alcohol spectrum disorder (FASD), characterized by permanent congenital disabilities in both motor and cognitive domains, including deficits in general intelligence, attention, executive function, language, memory, visual perception, and communication/social skills. Children with FASD show volume deficits in the anterior lobules related to sensorimotor functions (Lobules I, II, IV, V, and VI), and lobules related to cognitive functions (Crus II and Lobule VIIB). Various mechanisms underlie ethanol-induced cell death, with oxidative stress and endoplasmic reticulum (ER) stress being the main pro-apoptotic mechanisms in alcohol abuse and FASD. Oxidative and ER stresses are induced by thiamine deficiency, especially in alcohol abuse, and are exacerbated by neuroinflammation, particularly in fetal ethanol exposure. Furthermore, exposure to ethanol during the prenatal period interferes with neurotransmission, neurotrophic factors and retinoic acid-mediated signaling, and reduces the number of microglia, which diminishes expected cerebellar development. We highlight the spectrum of cerebellar damage induced by ethanol, emphasizing physiological-based clinical profiles and biological mechanisms leading to cell death and disorganized development.
Collapse
|
5
|
Sarmah S, Srivastava R, McClintick JN, Janga SC, Edenberg HJ, Marrs JA. Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects. Sci Rep 2020; 10:3951. [PMID: 32127575 PMCID: PMC7054311 DOI: 10.1038/s41598-020-59043-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Ethanol exposure during prenatal development causes fetal alcohol spectrum disorder (FASD), the most frequent preventable birth defect and neurodevelopmental disability syndrome. The molecular targets of ethanol toxicity during development are poorly understood. Developmental stages surrounding gastrulation are very sensitive to ethanol exposure. To understand the effects of ethanol on early transcripts during embryogenesis, we treated zebrafish embryos with ethanol during pre-gastrulation period and examined the transcripts by Affymetrix GeneChip microarray before gastrulation. We identified 521 significantly dysregulated genes, including 61 transcription factors in ethanol-exposed embryos. Sox2, the key regulator of pluripotency and early development was significantly reduced. Functional annotation analysis showed enrichment in transcription regulation, embryonic axes patterning, and signaling pathways, including Wnt, Notch and retinoic acid. We identified all potential genomic targets of 25 dysregulated transcription factors and compared their interactions with the ethanol-dysregulated genes. This analysis predicted that Sox2 targeted a large number of ethanol-dysregulated genes. A gene regulatory network analysis showed that many of the dysregulated genes are targeted by multiple transcription factors. Injection of sox2 mRNA partially rescued ethanol-induced gene expression, epiboly and gastrulation defects. Additional studies of this ethanol dysregulated network may identify therapeutic targets that coordinately regulate early development.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Rajneesh Srivastava
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sarath C Janga
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Kraus K, Kleene R, Henis M, Braren I, Kataria H, Sharaf A, Loers G, Schachner M, Lutz D. A Fragment of Adhesion Molecule L1 Binds to Nuclear Receptors to Regulate Synaptic Plasticity and Motor Coordination. Mol Neurobiol 2018; 55:7164-7178. [PMID: 29383692 DOI: 10.1007/s12035-018-0901-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
Proteolytic cleavage of the neuronal isoform of the murine cell adhesion molecule L1, triggered by stimulation of the cognate L1-dependent signaling pathways, results in the generation and nuclear import of an L1 fragment that contains the intracellular domain, the transmembrane domain, and part of the extracellular domain. Here, we show that the LXXLL and FXXLF motifs in the extracellular and transmembrane domain of this L1 fragment mediate the interaction with the nuclear estrogen receptors α (ERα) and β (ERβ), peroxisome proliferator-activated receptor γ (PPARγ), and retinoid X receptor β (RXRβ). Mutations of the LXXLL motif in the transmembrane domain and of the FXXLF motif in the extracellular domain disturb the interaction of the L1 fragment with these nuclear receptors and, when introduced by viral transduction into mouse embryos in utero, result in impaired motor coordination, learning and memory, as well as synaptic connectivity in the cerebellum, in adulthood. These impairments are similar to those observed in the L1-deficient mouse. Our findings suggest that the interplay of nuclear L1 and distinct nuclear receptors is associated with synaptic contact formation and plasticity.
Collapse
Affiliation(s)
- Kristina Kraus
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ralf Kleene
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Melad Henis
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ingke Braren
- Vector Core Unit, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hardeep Kataria
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ahmed Sharaf
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Gabriele Loers
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
| | - David Lutz
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
7
|
Carter RC, Senekal M, Dodge NC, Bechard LJ, Meintjes EM, Molteno CD, Duggan CP, Jacobson JL, Jacobson SW. Maternal Alcohol Use and Nutrition During Pregnancy: Diet and Anthropometry. Alcohol Clin Exp Res 2017; 41:2114-2127. [DOI: 10.1111/acer.13504] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/13/2017] [Indexed: 02/04/2023]
Affiliation(s)
| | - Marjanne Senekal
- University of Cape Town Faculty of Health Sciences; Cape Town South Africa
| | - Neil C. Dodge
- Wayne State University School of Medicine; Detroit Michigan
| | | | | | | | | | - Joseph L. Jacobson
- University of Cape Town Faculty of Health Sciences; Cape Town South Africa
- Wayne State University School of Medicine; Detroit Michigan
| | - Sandra W. Jacobson
- University of Cape Town Faculty of Health Sciences; Cape Town South Africa
- Wayne State University School of Medicine; Detroit Michigan
| |
Collapse
|
8
|
Ferdous J, Mukherjee R, Ahmed KT, Ali DW. Retinoic acid prevents synaptic deficiencies induced by alcohol exposure during gastrulation in zebrafish embryos. Neurotoxicology 2017; 62:100-110. [PMID: 28587808 DOI: 10.1016/j.neuro.2017.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
In this study, we examined the effects of alcohol exposure during gastrulation on zebrafish embryos, specifically focusing on excitatory synaptic activity associated with neurons (Mauthner cells) that are born during gastrulation. Furthermore, we determined whether co-treatment of alcohol and retinoic acid (RA) could prevent the effects of alcohol exposure during gastrulation. We exposed zebrafish embryos to ethanol (150mM), RA (1nM), or a combination of RA (1nM) plus ethanol (150mM) for 5.5h from 5.25h post fertilization (hpf) to 10.75 hpf (gastrulation). Ethanol treatment resulted in altered hatching rates, survivability and body lengths. Immunohistochemical analysis of Mauthner cells (M-cells) suggested that ethanol treatment resulted in smaller M-cell bodies and thinner axons, while electrophysiological recordings of AMPA miniature excitatory postsynaptic currents (mEPSCs) associated with M-cells showed that ethanol treated animals had a significantly reduced mEPSC frequency. Other mEPSC parameters such as amplitude, rise times and decay kinetics were not altered by exposure to alcohol. Locomotor studies showed that ethanol treatment resulted in altered C-bend escape responses. For instance, the C-bends of alcohol-treated fish were larger than control embryos. Thus, ethanol treatment during gastrulation altered a range of features in embryonic zebrafish. Importantly, co-treatment with RA prevented all of the effects of ethanol including survivability, body length, M-cell morphology, AMPA mEPSC frequency and escape response movements. Together these findings show that ethanol exposure during the brief period of gastrulation has a significant effect on neuronal morphology and activity, and that this can be prevented with RA co-treatment.
Collapse
Affiliation(s)
- J Ferdous
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9 Canada
| | - R Mukherjee
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9 Canada
| | - K T Ahmed
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9 Canada
| | - D W Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9 Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2E9 Canada; Centre for Neuroscience, University of Alberta, Edmonton, Alberta, T6G 2E9 Canada.
| |
Collapse
|
9
|
Zhang C, Boa-Amponsem O, Cole GJ. Comparison of molecular marker expression in early zebrafish brain development following chronic ethanol or morpholino treatment. Exp Brain Res 2017; 235:2413-2423. [PMID: 28493069 DOI: 10.1007/s00221-017-4977-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
This study was undertaken to ascertain whether defined markers of early zebrafish brain development are affected by chronic ethanol exposure or morpholino knockdown of agrin, sonic hedgehog, retinoic acid, and fibroblast growth factors, four signaling molecules that are suggested to be ethanol sensitive. Zebrafish embryos were exposed to 2% ethanol from 6 to 24 hpf or injected with agrin, shha, aldh1a3, or fgf8a morpholinos. In situ hybridization was employed to analyze otx2, pax6a, epha4a, krx20, pax2a, fgf8a, wnt1, and eng2b expression during early brain development. Our results showed that pax6a mRNA expression was decreased in eye, forebrain, and hindbrain of both chronic ethanol exposed and select MO treatments. Epha4a expression in rhombomere R1 boundary was decreased in chronic ethanol exposure and aldh1a3 morphants, lost in fgf8a morphants, but largely unaffected in agrin and shha morphants. Ectopic pax6a and epha4a expression in midbrain was only found in fgf8a morphants. These results suggest that while chronic ethanol induces obvious morphological change in brain architecture, many molecular markers of these brain structures are relatively unaffected by ethanol exposure.
Collapse
Affiliation(s)
- Chengjin Zhang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Durham, NC, USA
| | - Oswald Boa-Amponsem
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Durham, NC, USA
- Integrated Biosciences Program, Durham, NC, USA
| | - Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Durham, NC, USA.
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
10
|
Burton DF, Zhang C, Boa-Amponsem O, Mackinnon S, Cole GJ. Long-term behavioral change as a result of acute ethanol exposure in zebrafish: Evidence for a role for sonic hedgehog but not retinoic acid signaling. Neurotoxicol Teratol 2017; 61:66-73. [PMID: 28223149 DOI: 10.1016/j.ntt.2017.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/17/2017] [Accepted: 01/22/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Developmental exposure to ethanol is recognized to produce long-term neurobehavioral impairment in multiple animal models. However, the molecular mechanisms underlying these deficits remain poorly understood. The present study was undertaken to ascertain whether two well-characterized targets of prenatal alcohol exposure, sonic hedgehog (Shh) and retinoic acid (RA), that induce the hallmark morphological phenotypes of fetal alcohol spectrum disorders (FASD), are involved in the generation of behavioral alterations as a result of alcohol exposure. METHODS Zebrafish embryos were exposed to ethanol (0%, 1%, 3%) at either 8-10 or 24-27h post-fertilization (hpf) and then evaluated during adolescence in the novel tank dive test to assess anxiety and risk-taking behavior. Overt signs of dysmorphogenesis were also scored and behavioral and morphological changes were compared for embryos treated with alcohol alone or in combination with subthreshold doses of shh or alhh1a3 morpholinos (MOs). RESULTS Ethanol treated fish displayed altered tank diving behavior that was not exacerbated by combined MO treatment. While treatment of embryos with either shha mRNA or RA prior to ethanol exposure only ameliorated the altered tank diving response in the case of shha mRNA overexpression, dysmorphogenesis was rescued by both treatments. CONCLUSION These results suggest that the effects of ethanol exposure on changes in anxiety and risk-taking behavior in adolescent zebrafish is manifested by a blunting of Shh, but not RA, signaling during early development.
Collapse
Affiliation(s)
- Derek F Burton
- Julius L. Chambers Biomedical/Biotechnology Research Institute, United States; Department of Biological and Biomedical Sciences, United States
| | - Chengjin Zhang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, United States
| | - Oswald Boa-Amponsem
- Julius L. Chambers Biomedical/Biotechnology Research Institute, United States; Integrated Biosciences Program, North Carolina Central University, Durham, NC 27707, United States
| | - Shanta Mackinnon
- Julius L. Chambers Biomedical/Biotechnology Research Institute, United States
| | - Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, United States; Department of Biological and Biomedical Sciences, United States.
| |
Collapse
|
11
|
González-Reimers E, Quintero-Platt G, Martín-González M, Romero-Acevedo L, Santolaria-Fernández F. Antioxidant Vitamins and Brain Dysfunction in Alcoholics. ADDICTIVE SUBSTANCES AND NEUROLOGICAL DISEASE 2017:163-179. [DOI: 10.1016/b978-0-12-805373-7.00017-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Shojaei S, Ghavami S, Panjehshahin MR, Owji AA. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats. Int J Mol Sci 2015; 16:30422-37. [PMID: 26703578 PMCID: PMC4691182 DOI: 10.3390/ijms161226242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 01/19/2023] Open
Abstract
We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats.
Collapse
Affiliation(s)
- Shahla Shojaei
- Department of Biochemistry and Recombinant Protein Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Health Research Policy Centre, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| | - Mohammad Reza Panjehshahin
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| | - Ali Akbar Owji
- Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| |
Collapse
|
13
|
Zhang C, Anderson A, Cole GJ. Analysis of crosstalk between retinoic acid and sonic hedgehog pathways following ethanol exposure in embryonic zebrafish. ACTA ACUST UNITED AC 2015; 103:1046-57. [PMID: 26470995 DOI: 10.1002/bdra.23460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/02/2015] [Accepted: 09/15/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ethanol is a teratogen affecting numerous regions of the developing nervous system. The present study was undertaken to ascertain whether ethanol independently disrupts distinct signaling pathways or rather disrupts interactive pathways that regulate development of ethanol-sensitive tissues. METHODS Zebrafish embryos were exposed to ethanol in the absence or presence of aldh1a3 or Shh morpholino oligonucleotides (MOs), which disrupt retinoic acid (RA) or sonic hedgehog (Shh) function, respectively. Morphological analysis of ocular or midbrain-hindbrain boundary (MHB) development was conducted, and the ability to rescue ethanol and MO-induced phenotypes was assessed. In situ hybridization was used to analyze Pax6a expression during ocular development. RESULTS Chronic ethanol exposure, or combined ethanol and MO treatment, results in perturbed MHB formation and microphthalmia. While RA can rescue the MHB phenotype following ethanol combined with either MO, Shh mRNA is unable to rescue the disrupted MHB with combined ethanol and aldh1a3 MO treatment. RA also is unable to rescue microphthalmia induced by ethanol and Shh MO. CONCLUSION These studies demonstrate that while reduction of either RA or Shh signaling produces the same disruption of MHB or ocular development, that can be phenocopied using ethanol combined with either MO, RA overexpression can only rescue disrupted MHB, but not microphthalmia, in combined subthreshold Shh MO and ethanol. Our data suggest that MHB development may involve crosstalk between RA and Shh signaling, while ocular development depends on RA and Shh signaling that both are targets of ethanol in fetal alcohol spectrum disorders but do not depend on a mechanism involving crosstalk.
Collapse
Affiliation(s)
- Chengjin Zhang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA
| | - Ashley Anderson
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
14
|
Kumar A, Al-Sammarraie N, DiPette DJ, Singh US. Metformin impairs Rho GTPase signaling to induce apoptosis in neuroblastoma cells and inhibits growth of tumors in the xenograft mouse model of neuroblastoma. Oncotarget 2015; 5:11709-22. [PMID: 25365944 PMCID: PMC4294363 DOI: 10.18632/oncotarget.2606] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/21/2014] [Indexed: 01/31/2023] Open
Abstract
Metformin has been shown to inhibit tumor growth in xenograft rodent models of adult cancers, and various human clinical trials are in progress. However, the precise molecular mechanisms of metformin action are largely unknown. In the present study we examined the anti-tumor activity of metformin against neuroblastoma, and determined the underlying signaling mechanisms. Using human neuroblastoma xenograft mice, we demonstrated that oral administration of metformin (100 and 250 mg/kg body weight) significantly inhibited the growth of tumors. The interference of metformin in spheroid formation further confirmed the anti-tumor activity of metformin. In tumors, the activation of Rac1 (GTP-Rac1) and Cdc42 (GTP-Cdc42) was increased while RhoA activation (GTP-RhoA) was decreased by metformin. It also induced phosphorylation of JNK and inhibited the phosphorylation of ERK1/2 without affecting p38 MAP Kinase. Infection of cells by adenoviruses expressing dominant negative Rac1 (Rac1-N17), Cdc42 (Cdc42-N17) or constitutively active RhoA (RhoA-V14), or incubation of cells with pharmacological inhibitors of Rac1 (NSC23766) or Cdc42 (ML141) significantly protected neuroblastoma cells from metformin-induced apoptosis. Additionally, inhibition of JNK activity along with Rac1 or Cdc42 attenuated cytotoxic effects of metformin. These studies demonstrated that metformin impairs Rho GTPases signaling to induce apoptosis via JNK pathway.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC, USA
| | - Nadia Al-Sammarraie
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC, USA
| | - Donald J DiPette
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Ugra S Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
15
|
Halder D, Mandal C, Lee BH, Lee JS, Choi MR, Chai JC, Lee YS, Jung KH, Chai YG. PCDHB14- and GABRB1-like nervous system developmental genes are altered during early neuronal differentiation of NCCIT cells treated with ethanol. Hum Exp Toxicol 2015; 34:1017-27. [PMID: 25566775 DOI: 10.1177/0960327114566827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ethanol (EtOH) exposure during embryonic development causes dysfunction of the central nervous system (CNS). Here, we examined the effects of chronic EtOH on gene expression during early stages of neuronal differentiation. Human embryonic carcinoma (NCCIT) cells were differentiated into neuronal precursors/lineages in the presence or absence of EtOH and folic acid. Gene expression profiling and pathway analysis demonstrated that EtOH deregulates many genes and pathways that are involved in early brain development. EtOH exposure downregulated several important genes, such as PCDHB14, GABRB1, CTNND2, NAV3, RALDH1, and OPN5, which are involved in CNS development, synapse assembly, synaptic transmission, and neurotransmitter receptor activity. GeneGo pathway analysis revealed that the deregulated genes mapped to disease pathways that were relevant to fetal alcohol spectrum disorders (FASD, such as neurotic disorders, epilepsy, and alcohol-related disorders). In conclusion, these findings suggest that the impairment of the neurological system or suboptimal synapse formation resulting from EtOH exposure could underlie the neurodevelopmental disorders in individuals with FASD.
Collapse
Affiliation(s)
- D Halder
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - C Mandal
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - B H Lee
- Department of Psychiatry, Gangnam Eulji Hospital, Eulji University, Seoul, Republic of Korea KARF Hospital, the Korean Alcohol Research Foundation, Goyang, Republic of Korea
| | - J S Lee
- KARF Hospital, the Korean Alcohol Research Foundation, Goyang, Republic of Korea
| | - M R Choi
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - J C Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - Y S Lee
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - K H Jung
- Institute of Natural Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Y G Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea Department of Nanobiotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Young JK, Giesbrecht HE, Eskin MN, Aliani M, Suh M. Nutrition implications for fetal alcohol spectrum disorder. Adv Nutr 2014; 5:675-92. [PMID: 25398731 PMCID: PMC4224205 DOI: 10.3945/an.113.004846] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prenatal alcohol exposure produces a multitude of detrimental alcohol-induced defects in children collectively known as fetal alcohol spectrum disorder (FASD). Children with FASD often exhibit delayed or abnormal mental, neural, and physical growth. Socioeconomic status, race, genetics, parity, gravidity, age, smoking, and alcohol consumption patterns are all factors that may influence FASD. Optimal maternal nutritional status is of utmost importance for proper fetal development, yet is often altered with alcohol consumption. It is critical to determine a means to resolve and reduce the physical and neurological malformations that develop in the fetus as a result of prenatal alcohol exposure. Because there is a lack of information on the role of nutrients and prenatal nutrition interventions for FASD, the focus of this review is to provide an overview of nutrients (vitamin A, docosahexaenoic acid, folic acid, zinc, choline, vitamin E, and selenium) that may prevent or alleviate the development of FASD. Results from various nutrient supplementation studies in animal models and FASD-related research conducted in humans provide insight into the plausibility of prenatal nutrition interventions for FASD. Further research is necessary to confirm positive results, to determine optimal amounts of nutrients needed in supplementation, and to investigate the collective effects of multiple-nutrient supplementation.
Collapse
Affiliation(s)
- Jennifer K Young
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Heather E Giesbrecht
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael N Eskin
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michel Aliani
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Miyoung Suh
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Kleiber ML, Laufer BI, Stringer RL, Singh SM. Third trimester-equivalent ethanol exposure is characterized by an acute cellular stress response and an ontogenetic disruption of genes critical for synaptic establishment and function in mice. Dev Neurosci 2014; 36:499-519. [PMID: 25278313 DOI: 10.1159/000365549] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/26/2014] [Indexed: 11/19/2022] Open
Abstract
The developing brain is remarkably sensitive to alcohol exposure, resulting in the wide range of cognitive and neurobehavioral characteristics categorized under the term fetal alcohol spectrum disorders (FASD). The brain is particularly susceptible to alcohol during synaptogenesis, a process that occurs heavily during the third trimester and is characterized by the establishment and pruning of neural circuitry; however, the molecular response of the brain to ethanol during synaptogenesis has not been documented. To model a binge-like exposure during the third-trimester neurodevelopmental equivalent, neonate mice were given a high (5 g/kg over 2 h) dose of ethanol at postnatal day 7. Acute transcript changes within the brain were assessed using expression arrays and analyzed for associations with gene ontology functional categories, canonical pathways, and gene network interactions. The short-term effect of ethanol was characterized by an acute stress response and a downregulation of energetically costly cellular processes. Further, alterations to a number of genes with roles in synaptic transmission and hormonal signaling, particularly those associated with the neuroendocrine development and function, were evident. Ethanol exposure during synaptogenesis was also associated with altered histone deacetylase and microRNA transcript levels, suggesting that abnormal epigenetic patterning may maintain some of the persistent molecular consequences of developmental ethanol exposure. The results shed insight into the sensitivity of the brain to ethanol during the third-trimester equivalent and outline how ethanol-induced alterations to genes associated with neural connectivity may contribute to FASD phenotypes.
Collapse
Affiliation(s)
- Morgan L Kleiber
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, Ont., Canada
| | | | | | | |
Collapse
|
18
|
Kumar A, Fan D, DiPette DJ, Singh US. Sparstolonin B, a novel plant derived compound, arrests cell cycle and induces apoptosis in N-myc amplified and N-myc nonamplified neuroblastoma cells. PLoS One 2014; 9:e96343. [PMID: 24788776 PMCID: PMC4006872 DOI: 10.1371/journal.pone.0096343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/05/2014] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma is one of the most common solid tumors and accounts for ∼15% of all the cancer related deaths in the children. Despite the standard therapy for advanced disease including chemotherapy, surgery, and radiation, the mortality rate remains high for these patients. Hence, novel therapeutic agents are desperately needed. Here we examined the anticancer activity of a novel plant-derived compound, sparstolonin B (SsnB; 8,5′-dihydroxy-4-phenyl-5,2′-oxidoisocoumarin) using neuroblastoma cell lines of different genetics. SsnB was recently isolated from an aquatic Chinese herb, Sparganium stoloniferum, and tubers of this herb have been used in traditional Chinese medicine for the treatment of several inflammatory diseases and cancers. Our cell viability and morphological analysis indicated that SsnB at 10 µM concentration significantly inhibited the growth of both N-myc amplified (SK-N-BE(2), NGP, and IMR-32 cells) and N-myc nonamplified (SH-SY5Y and SKNF-1 cells) neuroblastoma cells. The flow cytometric analyses suggested that SsnB arrests the cell cycle progression at G2-M phase in all neuroblastoma cell lines tested. Exposure of SsnB inhibited the compact spheroid formation and reduced the tumorigenicity of SH-SY5Y cells and SK-N-BE(2) cells in in vitro 3-D cell culture assays (anchorage-independent colony formation assay and hanging drop assay). SsnB lowers the cellular level of glutathione (GSH), increases generation of reactive oxygen species and activates the cleavage of caspase-3 whereas co-incubation of a GSH precursor, N-acetylcysteine, along with SsnB attenuates the inhibitory effects of SsnB and increases the neuroblastoma cell viability. Our results for the first time demonstrate that SsnB possesses anticancer activity indicating that SsnB-induced reactive oxygen species generation promotes apoptotic cell death in neuroblastoma cells of different genetic background. Thus these data suggest that SsnB can be a promising drug candidate in neuroblastoma therapy.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States of America
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, United States of America
| | - Donald J. DiPette
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, South Carolina, United States of America
| | - Ugra S. Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Kumar A, Hu J, LaVoie HA, Walsh KB, DiPette DJ, Singh US. Conformational changes and translocation of tissue-transglutaminase to the plasma membranes: role in cancer cell migration. BMC Cancer 2014; 14:256. [PMID: 24725450 PMCID: PMC4021189 DOI: 10.1186/1471-2407-14-256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 04/04/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Tissue-transglutaminase (TG2), a dual function G-protein, plays key roles in cell differentiation and migration. In our previous studies we reported the mechanism of TG2-induced cell differentiation. In present study, we explored the mechanism of how TG2 may be involved in cell migration. METHODS To study the mechanism of TG2-mediated cell migration, we used neuroblastoma cells (SH-SY5Y) which do not express TG2, neuroblastoma cells expressing exogenous TG2 (SHYTG2), and pancreatic cancer cells which express high levels of endogenous TG2. Resveratrol, a natural compound previously shown to inhibit neuroblastoma and pancreatic cancer in the animal models, was utilized to investigate the role of TG2 in cancer cell migration. Immunofluorescence assays were employed to detect expression and intracellular localization of TG2, and calcium levels in the migrating cells. Native gel electrophoresis was performed to analyze resveratrol-induced cellular distribution and conformational states of TG2 in migrating cells. Data are presented as the mean and standard deviation of at least 3 independent experiments. Comparisons were made among groups using one-way ANOVA followed by Tukey-Kramer ad hoc test. RESULTS TG2 containing cells (SHYTG2 and pancreatic cancer cells) exhibit increased cell migration and invasion in collagen-coated and matrigel-coated transwell plate assays, respectively. Resveratrol (1 μM-10 μM) prevented migration of TG2-expressing cells. During the course of migration, resveratrol increased the immunoreactivity of TG2 without affecting the total TG2 protein level in migrating cells. In these cells, resveratrol increased calcium levels, and depletion of intracellular calcium by a calcium chelator, BAPTA, attenuated resveratrol-enhanced TG2 immunoreactivity. In native-polyacrylamide gels, we detected an additional TG2 protein band with slower migration in total cell lysates of resveratrol treated cells. This TG2 form is non-phosphorylated, exclusively present in plasma membrane fractions and sensitive to intracellular Ca(2+) concentration suggesting a calcium requirement in TG2-regulated cell migration. CONCLUSIONS Taken together, we conclude that resveratrol induces conformational changes in TG2, and that Ca(2+)-mediated TG2 association with the plasma membrane is responsible for the inhibitory effects of resveratrol on cell migration.
Collapse
Affiliation(s)
| | | | | | | | | | - Ugra S Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA.
| |
Collapse
|
20
|
Cole GJ, Zhang C, Ojiaku P, Bell V, Devkota S, Mukhopadhyay S. Effects of ethanol exposure on nervous system development in zebrafish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 299:255-315. [PMID: 22959306 DOI: 10.1016/b978-0-12-394310-1.00007-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alcohol (ethanol) is a teratogen that adversely affects nervous system development in a wide range of animal species. In humans numerous congenital abnormalities arise as a result of fetal alcohol exposure, leading to a spectrum of disorders referred to as fetal alcohol spectrum disorder (FASD). These abnormalities include craniofacial defects as well as neurological defects that affect a variety of behaviors. These human FASD phenotypes are reproduced in the rodent central nervous system (CNS) following prenatal ethanol exposure. While the study of ethanol effects on zebrafish development has been more limited, several studies have shown that different strains of zebrafish exhibit differential susceptibility to ethanol-induced cyclopia, as well as behavioral deficits. Molecular mechanisms underlying the effects of ethanol on CNS development also appear to be shared between rodent and zebrafish. Thus, zebrafish appear to recapitulate the observed effects of ethanol on human and mouse CNS development, indicating that zebrafish can serve as a complimentary developmental model system to study the molecular basis of FASD. Recent studies examining the effect of ethanol exposure on zebrafish nervous system development are reviewed, with an emphasis on attempts to elucidate possible molecular pathways that may be impacted by developmental ethanol exposure. Recent work from our laboratories supports a role for perturbed extracellular matrix function in the pathology of ethanol exposure during zebrafish CNS development. The use of the zebrafish model to assess the effects of ethanol exposure on adult nervous system function as manifested by changes in zebrafish behavior is also discussed.
Collapse
Affiliation(s)
- Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
21
|
Ethanol neurotoxicity in the developing cerebellum: underlying mechanisms and implications. Brain Sci 2013; 3:941-63. [PMID: 24961432 PMCID: PMC4061865 DOI: 10.3390/brainsci3020941] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/08/2013] [Accepted: 06/04/2013] [Indexed: 01/18/2023] Open
Abstract
Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal development of all areas of the brain is affected, the cerebellum and cerebellar neurons are more susceptible to the damaging effects of ethanol. Ethanol’s harmful effects include neuronal cell death, impaired differentiation, reduction of neuronal numbers, and weakening of neuronal plasticity. Neuronal development requires many hormones and growth factors such as retinoic acid, nerve growth factors, and cytokines. These factors regulate development and differentiation of neurons by acting through various receptors and their signaling pathways. Ethanol exposure during development impairs neuronal signaling mechanisms mediated by the N-methyl-d-aspartate (NMDA) receptors, the retinoic acid receptors, and by growth factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-I), and basic fibroblast growth factor (bFGF). In combination, these ethanol effects disrupt cellular homeostasis, reduce the survival and migration of neurons, and lead to various developmental defects in the brain. Here we review the signaling mechanisms that are required for proper neuronal development, and how these processes are impaired by ethanol resulting in harmful consequences to brain development.
Collapse
|
22
|
A potential molecular target for morphological defects of fetal alcohol syndrome: Kir2.1. Curr Opin Genet Dev 2013; 23:324-9. [DOI: 10.1016/j.gde.2013.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/05/2013] [Accepted: 05/06/2013] [Indexed: 12/30/2022]
|
23
|
Neurodevelopmental alcohol exposure elicits long-term changes to gene expression that alter distinct molecular pathways dependent on timing of exposure. J Neurodev Disord 2013; 5:6. [PMID: 23497526 PMCID: PMC3621102 DOI: 10.1186/1866-1955-5-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/20/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Maternal alcohol consumption is known to adversely affect fetal neurodevelopment. While it is known that alcohol dose and timing play a role in the cognitive and behavioral changes associated with prenatal alcohol exposure, it is unclear what developmental processes are disrupted that may lead to these phenotypes. METHODS Mice (n=6 per treatment per developmental time) were exposed to two acute doses of alcohol (5 g/kg) at neurodevelopmental times representing the human first, second, or third trimester equivalent. Mice were reared to adulthood and changes to their adult brain transcriptome were assessed using expression arrays. These were then categorized based on Gene Ontology annotations, canonical pathway associations, and relationships to interacting molecules. RESULTS The results suggest that ethanol disrupts biological processes that are actively occurring at the time of exposure. These include cell proliferation during trimester one, cell migration and differentiation during trimester two, and cellular communication and neurotransmission during trimester three. Further, although ethanol altered a distinct set of genes depending on developmental timing, many of these show interrelatedness and can be associated with one another via 'hub' molecules and pathways such as those related to huntingtin and brain-derived neurotrophic factor. CONCLUSIONS These changes to brain gene expression represent a 'molecular footprint' of neurodevelopmental alcohol exposure that is long-lasting and correlates with active processes disrupted at the time of exposure. This study provides further support that there is no neurodevelopmental time when alcohol cannot adversely affect the developing brain.
Collapse
|
24
|
Giliberti D, Mohan SS, Brown LAS, Gauthier TW. Perinatal exposure to alcohol: implications for lung development and disease. Paediatr Respir Rev 2013; 14:17-21. [PMID: 23347657 PMCID: PMC3556383 DOI: 10.1016/j.prrv.2012.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In utero alcohol exposure dramatically increases the risk of premature delivery. However, the majority of premature and term newborns exposed to alcohol remain undetected by medical caregivers. There is a desperate need for reliable and accurate biomarkers of alcohol exposure for the term and premature newborn population. The inability to identify the exposed newborn severely limits our understanding of alcohol's pathophysiological effects on developing organs such as the lung. This chapter will review potential advancements in future biomarkers of alcohol exposure for the newborn population. We will discuss alcohol's effects on redox homeostasis and cellular development of the neonatal lung. Finally, we will present the evidence describing in utero alcohol's derangement of innate and adaptive immunity and risk for infectious complications in the lung. Continued investigations into the identification and understanding of the mechanisms of alcohol-induced alterations in the premature lung will advance the care of this vulnerable patient population.
Collapse
Affiliation(s)
- Danielle Giliberti
- Department of Paediatrics, Division of Neonatal-Perinatal Medicine, Emory University, Emory Children's Centre for Developmental Lung Biology, 2015 Uppergate Dr. NE, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
25
|
Luo J. Mechanisms of ethanol-induced death of cerebellar granule cells. THE CEREBELLUM 2012; 11:145-54. [PMID: 20927663 DOI: 10.1007/s12311-010-0219-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Maternal ethanol exposure during pregnancy may cause fetal alcohol spectrum disorders (FASD). FASD is the leading cause of mental retardation. The most deleterious effect of fetal alcohol exposure is inducing neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. The cerebellum is one of the brain areas that are most susceptible to ethanol during development. Ethanol exposure causes a loss of both cerebellar Purkinje cells and granule cells. This review focuses on the toxic effect of ethanol on cerebellar granule cells (CGC) and the underlying mechanisms. Both in vitro and in vivo studies indicate that ethanol induces apoptotic death of CGC. The vulnerability of CGC to ethanol-induced death diminishes over time as neurons mature. Several mechanisms for ethanol-induced apoptosis of CGC have been suggested. These include inhibition of N-methyl-D-aspartate receptors, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, disturbance of potassium channel currents, thiamine deficiency, and disruption of translational regulation. Cultures of CGC provide an excellent system to investigate cellular/molecular mechanisms of ethanol-induced neurodegeneration and to evaluate interventional strategies. This review will also discuss the approaches leading to neuroprotection against ethanol-induced neuroapoptosis.
Collapse
Affiliation(s)
- Jia Luo
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
26
|
Singh CK, Kumar A, LaVoie HA, DiPette DJ, Singh US. Resveratrol prevents impairment in activation of retinoic acid receptors and MAP kinases in the embryos of a rodent model of diabetic embryopathy. Reprod Sci 2012; 19:949-61. [PMID: 22534330 DOI: 10.1177/1933719112438972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Diabetes induces impairments in gene expression during embryonic development that leads to premature and improper tissue specialization. Retinoic acid receptors (RARs and retinoid X receptor [RXRs]) and mitogen-activated protein kinases (MAPKs) play crucial roles during embryonic development, and their suppression or activation has been shown as a determinant of the fate of embryonic organogenesis. We studied the activation of RARs and MAPKs in embryonic day 12 (E12) in embryos of rats under normal, diabetic, and diabetic treated with resveratrol ([RSV]; 100 mg/kg body weight) conditions. We found downregulation of RARs and RXRs expressions as well as their DNA-binding activities in the embryos exhibiting developmental delays due to diabetes. Furthermore, the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was decreased and phosphorylation of c-Jun N-terminal kinase (JNK) 1/2 and p38 was increased. Interestingly, embryos of diabetic rats treated with RSV showed normalized patterns of RARs, RXRs, neuronal markers, and ERK, JNK and p38 phosphorylation.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | | | | | | | | |
Collapse
|
27
|
Bosco C, Diaz E. Placental Hypoxia and Foetal Development Versus Alcohol Exposure in Pregnancy. Alcohol Alcohol 2012; 47:109-17. [DOI: 10.1093/alcalc/agr166] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
28
|
Kumar A, Singh CK, Lavoie HA, Dipette DJ, Singh US. Resveratrol restores Nrf2 level and prevents ethanol-induced toxic effects in the cerebellum of a rodent model of fetal alcohol spectrum disorders. Mol Pharmacol 2011; 80:446-57. [PMID: 21697273 DOI: 10.1124/mol.111.071126] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In humans, ethanol exposure during pregnancy produces a wide range of abnormalities in infants collectively known as fetal alcohol spectrum disorders (FASD). Neuronal malformations in FASD manifest as postnatal behavioral and functional disturbances. The cerebellum is particularly sensitive to ethanol during development. In a rodent model of FASD, high doses of ethanol (blood ethanol concentration 80 mM) induces neuronal cell death in the cerebellum. However, information on potential agent(s) that may protect the cerebellum against the toxic effects of ethanol is lacking. Growing evidence suggests that a polyphenolic compound, resveratrol, has antioxidant and neuroprotective properties. Here we studied whether resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phytoalexin found in red grapes and blueberries, protects the cerebellar granule neurons against ethanol-induced cell death. In the present study, we showed that administration of resveratrol (100 mg/kg) to postnatal day 7 rat pups prevents ethanol-induced apoptosis by scavenging reactive oxygen species in the external granule layer of the cerebellum and increases the survival of cerebellar granule cells. It restores ethanol-induced changes in the level of transcription factor nuclear factor-erythroid derived 2-like 2 (nfe2l2, also known as Nrf2) in the nucleus. This in turn retains the expression and activity of its downstream gene targets such as NADPH quinine oxidoreductase 1 and superoxide dismutase in cerebellum of ethanol-exposed pups. These studies indicate that resveratrol exhibits neuroprotective effects in cerebellum by acting at redox regulating proteins in a rodent model of FASD.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | |
Collapse
|
29
|
Santofimia-Castaño P, Salido GM, Gonzalez A. Ethanol reduces kainate-evoked glutamate secretion in rat hippocampal astrocytes. Brain Res 2011; 1402:1-8. [PMID: 21679931 DOI: 10.1016/j.brainres.2011.05.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 12/12/2022]
Abstract
In this study we have used rat hippocampal astrocytes in culture to investigate the effect of ethanol on kainate-induced glutamate secretion. Our results show that kainate (10 μM to 500 μM) stimulated glutamate release from astrocytes. Preincubation of astrocytes in the presence of ethanol induced a concentration-dependent (1mM-50mM) inhibition of glutamate release caused by stimulation of cells with 100 μM kainate. Inhibition of alcohol-dehydrogenase, by preincubation of astrocytes in the presence of 4-methylpyrazole (1mM), abolished ethanol-induced inhibition of glutamate release in response to kainate. On the other hand, preincubation of astrocytes in the presence of the antioxidant cinnamtannin B-1 (10 μM) also blocked ethanol inhibitory action on glutamate release in response to kainate. Ethanol (50mM) reduced Ca(2+) mobilization in response to kainate, whereas cinnamtannin B-1 reversed the inhibitory action of ethanol on Ca(2+) mobilization by kainate. Our results are consistent with an inhibitory action of ethanol on glutamate secretion from hippocampal astrocytes. The inhibitory effects of ethanol are probably due to its oxidative metabolization, involves reactive oxygen species production, and a lower Ca(2+) mobilization by kainate. Taking into account the pivotal role that astrocytes play within the central nervous system, especially in relation to neurons, the negative effects of ethanol on the release of glutamate might affect neuron-glia communication in the hippocampus, which might lead to functional defects in the brain.
Collapse
|
30
|
Guo W, Crossey EL, Zhang L, Zucca S, George OL, Valenzuela CF, Zhao X. Alcohol exposure decreases CREB binding protein expression and histone acetylation in the developing cerebellum. PLoS One 2011; 6:e19351. [PMID: 21655322 PMCID: PMC3104983 DOI: 10.1371/journal.pone.0019351] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 04/03/2011] [Indexed: 11/18/2022] Open
Abstract
Background Fetal alcohol exposure affects 1 in 100 children making it the leading cause of mental retardation in the US. It has long been known that alcohol affects cerebellum development and function. However, the underlying molecular mechanism is unclear. Methodology/Principal Findings We demonstrate that CREB binding protein (CBP) is widely expressed in granule and Purkinje neurons of the developing cerebellar cortex of naïve rats. We also show that exposure to ethanol during the 3rd trimester-equivalent of human pregnancy reduces CBP levels. CBP is a histone acetyltransferase, a component of the epigenetic mechanism controlling neuronal gene expression. We further demonstrate that the acetylation of both histone H3 and H4 is reduced in the cerebellum of ethanol- treated rats. Conclusions/Significance These findings indicate that ethanol exposure decreases the expression and function of CBP in the developing cerebellum. This effect of ethanol may be responsible for the motor coordination deficits that characterize fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Weixiang Guo
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Erin L. Crossey
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Li Zhang
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Stefano Zucca
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Olivia L. George
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - C. Fernando Valenzuela
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail: (CV); (XZ)
| | - Xinyu Zhao
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail: (CV); (XZ)
| |
Collapse
|
31
|
Goez HR, Scott O, Hasal S. Fetal exposure to alcohol, developmental brain anomaly, and vitamin a deficiency: a case report. J Child Neurol 2011; 26:231-4. [PMID: 21285041 DOI: 10.1177/0883073810380458] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prenatal alcohol exposure is a cause of congenital brain malformations such as hydrocephalus; however, a complete mechanism accounting for this phenomenon has yet to be discovered. We report a case of a newborn who was exposed to alcohol throughout pregnancy and presented with low serum vitamin A and hydrocephalus. To our knowledge, the connection between prenatal ethanol exposure, vitamin A deficiency, and a developmental brain anomaly has never been described in humans before. A possible mechanism may be mediated by disruption of the homeostasis of vitamin A, an important morphogen in the developing nervous system. This, in turn, compromises the activity of the floor plate, a structure in charge of polarization and midline formation in the neural tube. We conclude that vitamin A screening and supplementation might be recommended for newborns of mothers who ingested ethanol during pregnancy.
Collapse
Affiliation(s)
- Helly R Goez
- Division of Pediatric Neurology, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|