1
|
Gupta A, Vejapi M, Knezevic NN. The role of nitric oxide and neuroendocrine system in pain generation. Mol Cell Endocrinol 2024; 591:112270. [PMID: 38750811 DOI: 10.1016/j.mce.2024.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Previous studies have indicated a complex interplay between the nitric oxide (NO) pain signaling pathways and hormonal signaling pathways in the body. This article delineates the role of nitric oxide signaling in neuropathic and inflammatory pain generation and subsequently discusses how the neuroendocrine system is involved in pain generation. Hormonal systems including the hypothalamic-pituitary axis (HPA) generation of cortisol, the renin-angiotensin-aldosterone system, calcitonin, melatonin, and sex hormones could potentially contribute to the generation of nitric oxide involved in the sensation of pain. Further research is necessary to clarify this relationship and may reveal therapeutic targets involving NO signaling that alleviate neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Aayush Gupta
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Rosalind Franklin University of Medicine and Science, USA
| | - Maja Vejapi
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Department of Anesthesiology, University of Illinois, Chicago, IL, USA; Department of Surgery, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
2
|
Pușcașu C, Ungurianu A, Șeremet OC, Andrei C, Mihai DP, Negreș S. The Influence of Sildenafil-Metformin Combination on Hyperalgesia and Biochemical Markers in Diabetic Neuropathy in Mice. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1375. [PMID: 37629665 PMCID: PMC10456948 DOI: 10.3390/medicina59081375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Background and objectives: Worldwide, approximately 500 million people suffer from diabetes and at least 50% of these people develop neuropathy. Currently, therapeutic strategies for reducing diabetic neuropathy (DN)-associated pain are limited and have several side effects. The purpose of the study was to evaluate the antihyperalgesic action of different sildenafil (phosphodiesterase-5 inhibitor) and metformin (antihyperglycemic agent) combinations in alloxan-induced DN. Methods: The study included 100 diabetic mice and 20 non-diabetic mice that were subjected to hot and cold stimulus tests. Furthermore, we determined the influence of this combination on TNF-α, IL-6 and nitrites levels in brain and liver tissues. Results: In both the hot-plate and tail withdrawal test, all sildenafil-metformin combinations administered in our study showed a significant increase in pain reaction latencies when compared to the diabetic control group. Furthermore, all combinations decreased blood glucose levels due to the hypoglycemic effect of metformin. Additionally, changes in nitrite levels and pro-inflammatory cytokines (TNF-α and IL-6) were observed after 14 days of treatment with different sildenafil-metformin combinations. Conclusions: The combination of these two substances increased the pain reaction latency of diabetic animals in a dose-dependent manner. Moreover, all sildenafil-metformin combinations significantly reduced the concentration of nitrites in the brain and liver, which are final products formed under the action of iNOS.
Collapse
Affiliation(s)
| | | | - Oana Cristina Șeremet
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | | | | | | |
Collapse
|
3
|
Kuo SW, Zhang T, Esteller R, Grill WM. In Vivo Measurements reveal that both low- and high-frequency spinal cord stimulation heterogeneously modulate superficial dorsal horn neurons. Neuroscience 2023; 520:119-131. [PMID: 37085007 DOI: 10.1016/j.neuroscience.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/01/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
Current sub-perception spinal cord stimulation (SCS) is characterized by the use of high-frequency pulses to achieve paresthesia-free analgesic effects. High-frequency SCS demonstrates distinctive properties from paresthesia-based SCS, such as a longer time course to response, implying the existence of alternative mechanism(s) of action beyond gate control theory. We quantified the responses to SCS of single neurons within the superficial dorsal horn (SDH), a structure in close proximity to SCS electrodes, to investigate the mechanisms underlying high-frequency SCS in 62 urethane-anesthetized male rats. Sciatic nerve stimulation was delivered to isolate lumbar SDH neurons with evoked C-fiber activity. The evoked C-fiber activity before and after the application of SCS was compared to quantify the effects of SCS across stimulation intensity and stimulation duration at three different stimulation frequencies. We observed heterogeneous responses of SDH neurons which depended primarily on the type of unit. Low-threshold units with spontaneous activity, putatively inhibitory interneurons, tended to be facilitated by SCS while the other unit types were suppressed. The effects of SCS were more prominent with increased stimulation duration from 30 s to 30 m across frequencies. Our results highlight the importance of inhibitory interneurons in modulating local circuits of the SDH and the importance of local circuit contributions to the analgesic mechanisms of SCS.
Collapse
Affiliation(s)
- Su-Wei Kuo
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Tianhe Zhang
- Division of Neuromodulation, Boston Scientific Corporation, CA
| | - Rosana Esteller
- Division of Neuromodulation, Boston Scientific Corporation, CA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC; Departments of Electrical and Computer Engineering, Neurobiology, and Neurosurgery, Duke University, Durham, NC.
| |
Collapse
|
4
|
Forouzanfar F, Tanha NK, Pourbagher-Shahri AM, Mahdianpour S, Esmaeili M, Ghazavi H. Synergistic effect of ellagic acid and gabapentin in a rat model of neuropathic pain. Metab Brain Dis 2023; 38:1421-1432. [PMID: 36811684 DOI: 10.1007/s11011-023-01190-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Neuropathic pain is a subtype of chronic pain characterized by a primary lesion or dysfunction of the peripheral or central nervous system. The current pain management of neuropathic pain is inadequate and needs new medications. AIM We studied the effects of 14 days of intraperitoneal ellagic acid (EA) and gabapentin administration in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the right sciatic nerve. METHODS Rats were divided into six groups: (1) control, (2) CCI, (3) CCI + EA (50 mg/kg), 4) CCI + EA (100 mg/kg), 5) CCI + gabapentin (100 mg/kg), and 6) CCI + EA (100 mg/kg) + gabapentin (100 mg/kg). Behavioral tests, including mechanical allodynia, cold allodynia, and thermal hyperalgesia, were conducted on days - 1(pre-operation), 7, and 14 post-CCI. In addition, at day 14 post-CCI, spinal cord segments were collected to measure the expression of inflammatory markers, including tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), and oxidative stress markers, including malondialdehyde (MDA) and thiol. RESULTS CCI increased mechanical allodynia, cold allodynia, and thermal hyperalgesia in rats which were reduced by treatment with EA (50 or 100 mg/kg), gabapentin, or their combination. CCI increased TNF-α, NO, and MDA levels and decreased thiol content in the spinal cord, which all were reverted by administration of EA (50 or 100 mg/kg), gabapentin, or their combination. CONCLUSION This is the first report on ellagic acid's ameliorative effect in rats' CCI-induced neuropathic pain. This effect can be attributed to its anti-oxidative and anti-inflammatory, thus making it potentially useful as an adjuvant to conventional treatment.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili Tanha
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Saeide Mahdianpour
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdiyeh Esmaeili
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Ghazavi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Isolation of Thymol from Trachyspermum ammi Fruits for Treatment of Diabetes and Diabetic Neuropathy in STZ-Induced Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8263999. [PMID: 35528161 PMCID: PMC9071892 DOI: 10.1155/2022/8263999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022]
Abstract
Terpenoids and phenols from Trachyspermum ammi (T. ammi) have reported some pharmacological actions. The objective of the work was to isolate the active constituent, its identification by spectroscopic techniques, and evaluation of the antidiabetic and neuroprotective activity from T. ammi on STZ Wistar rats. The dried fruits of T ammi were kept in a hydrodistillation apparatus to collect essential oil. The isolated fraction went through TLC, UV, FTIR, HPLC, HRMS, C13, and 1H NMR for characterization. Two dosage concentrations from the isolated compound were prepared as 10 and 20 mg/kg for treatment groups. The groups were tested for thermal and mechanical hyperalgesia, writhing, grip strength, spontaneous locomotor test, neuromuscular coordination tests, and histopathological and lipid profile analysis. Diabetes was induced by streptozotocin (45 mg/kg i.p.) and 12 weeks of treatment-induced diabetic neuropathy in Wistar rats. Biomarkers were evaluated to understand the neuropathic protection of thymol on STZ-treated Wistar rats. The biomarker studies (SOD, NO, LPO, Na+K+ATPase, and TNF-α) further confirmed thymol's diabetic neuropathy protective action. This study suggests that isolated compound thymol was antidiabetic and neuroprotective as it has shown controlled glucose levels defensive nerve damage in STZ Wistar rats. P < 0.05 level of significance was observed in the levels of endogenous biomarkers, fasting blood glucose levels, actophotometer response, and response latency in treated groups compared to the diabetic group, whereas P < 0.001 level of significance during lipid profile levels, thermal algesia, and neuromuscular comparison tests was noted in treated groups compared to the diabetic group.
Collapse
|
6
|
Madaan P, Behl T, Sehgal A, Singh S, Sharma N, Yadav S, Kaur S, Bhatia S, Al-Harrasi A, Abdellatif AAH, Ashraf GM, Abdel-Daim MM, Dailah HG, Anwer MK, Bungau S. Exploring the Therapeutic Potential of Targeting Purinergic and Orexinergic Receptors in Alcoholic Neuropathy. Neurotox Res 2022; 40:646-669. [DOI: 10.1007/s12640-022-00477-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
|
7
|
Kale MB, Bajaj K, Umare M, Wankhede NL, Taksande BG, Umekar MJ, Upaganlawar A. Exercise and Nutraceuticals: Eminent approach for Diabetic Neuropathy. Curr Mol Pharmacol 2021; 15:108-128. [PMID: 34191703 DOI: 10.2174/1874467214666210629123010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Abstract
Diabetic neuropathy is an incapacitating chronic pathological condition that encompasses a large group of diseases and manifestations of nerve damage. It affects approximately 50% of patients with diabetes mellitus. Autonomic, sensory, and motor neurons are affected. Disabilities are severe, along with poor recovery and diverse pathophysiology. Physical exercise and herbal-based therapies have the potential to decrease the disabilities associated with diabetic neuropathy. Aerobic exercises like walking, weight lifting, the use of nutraceuticals and herbal extracts are found to be effective. Literature from the public domain was studied emphasizing various beneficial effects of different exercises, use of herbal and nutraceuticals for their therapeutic action in diabetic neuropathy. Routine exercises and administration of herbal and nutraceuticals, either the extract of plant material containing the active phytoconstituent or isolated phytoconstituent at safe concentration, have been shown to have promising positive action in the treatment of diabetic neuropathy. Exercise has shown promising effects on vascular and neuronal health and has proven to be well effective in the treatment as well as prevention of diabetic neuropathy by various novel mechanisms, including herbal and nutraceuticals therapy is also beneficial for the condition. They primarily show the anti-oxidant effect, secretagogue, anti-inflammatory, analgesic, and neuroprotective action. Severe adverse events are rare with these therapies. The current review investigates the benefits of exercise and nutraceutical therapies in the treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Mayur Bhimrao Kale
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Komal Bajaj
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Mohit Umare
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Nitu L Wankhede
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | | | - Milind Janrao Umekar
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Aman Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad-42310, Nasik, Maharashtra, India
| |
Collapse
|
8
|
Subedi L, Gaire BP, Kim SY, Parveen A. Nitric Oxide as a Target for Phytochemicals in Anti-Neuroinflammatory Prevention Therapy. Int J Mol Sci 2021; 22:ijms22094771. [PMID: 33946349 PMCID: PMC8124914 DOI: 10.3390/ijms22094771] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Nitric oxide (NO) is a neurotransmitter that mediates the activation and inhibition of inflammatory cascades. Even though physiological NO is required for defense against various pathogens, excessive NO can trigger inflammatory signaling and cell death through reactive nitrogen species-induced oxidative stress. Excessive NO production by activated microglial cells is specifically associated with neuroinflammatory and neurodegenerative conditions, such as Alzheimer’s and Parkinson’s disease, amyotrophic lateral sclerosis, ischemia, hypoxia, multiple sclerosis, and other afflictions of the central nervous system (CNS). Therefore, controlling excessive NO production is a desirable therapeutic strategy for managing various neuroinflammatory disorders. Recently, phytochemicals have attracted considerable attention because of their potential to counteract excessive NO production in CNS disorders. Moreover, phytochemicals and nutraceuticals are typically safe and effective. In this review, we discuss the mechanisms of NO production and its involvement in various neurological disorders, and we revisit a number of recently identified phytochemicals which may act as NO inhibitors. This review may help identify novel potent anti-inflammatory agents that can downregulate NO, specifically during neuroinflammation and neurodegeneration.
Collapse
|
9
|
Arora S, Venugopalan A, Dharavath RN, Bishnoi M, Kondepudi KK, Chopra K. Naringenin Ameliorates Chronic Sleep Deprivation-Induced Pain via Sirtuin1 Inhibition. Neurochem Res 2021; 46:1177-1187. [PMID: 33599956 DOI: 10.1007/s11064-021-03254-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/01/2022]
Abstract
Growing experimental evidences have suggested the reciprocal correlation between sleep deprivation and pain. Inflammation and oxidative stress are among the key pathways underlying this correlation. Therefore, the present study was aimed to assess the effect of antioxidant and anti-inflammatory compound naringenin (NGN) against chronic sleep deprivation (CSD)-induced mechanical and thermal hyperalgesia in female Swiss albino mice. In this study, mice were chronically sleep-deprived for 8 h a day for five days a week with the weekend as a free sleep period and continued for nine weeks using a modified multiple platform method. The pain behavioral tests were conducted at the end of the fourth week to assess the development of hyperalgesia followed by the administration of NGN and a combination of NGN with Sirtinol (SIR, a sirtuin1 inhibitor) till the end of the study. After nine weeks, pain behavioral tests, along with oxidative stress and inflammatory parameters in cortex and striatum, were assessed. Results indicated that CSD-induced hyperalgesia in mice accompanied by increased oxidative stress and inflammatory markers in cortex and striatum of the brain. NGN combatted the hyperalgesic response and also decreased levels of oxidative stress and inflammatory markers. Furthermore, the pharmacological effect of NGN was mitigated with SIR. Thus, the findings of the present study reveal that NGN is acting via sirtuin1 to exert its antinociceptive activity against CSD-induced hyperalgesia.
Collapse
Affiliation(s)
- Shiyana Arora
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, 160014, Chandigarh, India
| | - Aishwarya Venugopalan
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, 160014, Chandigarh, India
| | - Ravinder Naik Dharavath
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, 160014, Chandigarh, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology Laboratory, National Agri-Food Biotechnology Institute, SAS Nagar, 140306, Punjab, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology Laboratory, National Agri-Food Biotechnology Institute, SAS Nagar, 140306, Punjab, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, 160014, Chandigarh, India.
| |
Collapse
|
10
|
Saraswat N, Sachan N, Chandra P. Anti-diabetic, diabetic neuropathy protective action and mechanism of action involving oxidative pathway of chlorogenic acid isolated from Selinum vaginatum roots in rats. Heliyon 2020; 6:e05137. [PMID: 33088940 PMCID: PMC7566111 DOI: 10.1016/j.heliyon.2020.e05137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/09/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Phytopharmaceuticals have always reported vital roles in the field of medicine hence the need to investigate safe and efficient drugs for treating metabolic disorders is very significant. Roots of Selinum vaginatum have therapeutic benefits and are widely used by the people of the Rohtang region for treating diabetes and its associated complications. The present study focusses on the isolation of the bioactive from the S. vaginatum roots for estimating acute toxicity studies, anti-diabetic and diabetic neuropathy protective action along with the mechanism of action in STZ induced Wistar rats. The Selinum vaginatum roots were collected from the Rohtang region, Himalayas. Chlorogenic acid was isolated and underwent identification by UV, HPLC, 1H NMR, C13 NMR, Mass, and FTIR spectroscopy methods. Chlorogenic acid was dosed at 10 and 20 mg/kg to observe the effects on experimentally induced diabetes and with time generated diabetic neuropathic complications. Biomarkers TNF-α, superoxide dismutase, nitrosative stress, lipid peroxide profile, and membrane-bound inorganic phosphate were analyzed. Histopathological evaluation of the liver and sciatic nerve was performed for all groups. Parameters like blood glucose levels, body weight, food intake, Thermal Hyperalgesia, Writhing, Cold Hyperalgesia Responses, Mechanical hyperalgesia, Grip Strength, Spontaneous Locomotor (Exploratory) Test, Neuromuscular Coordination tests, and lipid profile analysis showcased the anti-diabetic and diabetic neuropathy protective action of the drug. Inflammation, degradation, and necrosis were found to be reduced in the liver and sciatic nerve cells of treated groups. All the biomarkers used to analyze the oxidative pathway were significantly replenished indicates that chlorogenic acid produces these effects through this pathway.
Collapse
Affiliation(s)
- Nikita Saraswat
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Kanpur-Agra-Delhi National Highway-2, Bhauti, Kanpur (UP), 209 305, India
| | - Neetu Sachan
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Delhi Road (NH-24), Moradabad (UP), 244 102, India
| | - Phool Chandra
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Delhi Road (NH-24), Moradabad (UP), 244 102, India
| |
Collapse
|
11
|
Taherianfard M, Aalami S. Effects of Pretreatment With Ginseng Extract on Dopamine D2 Receptor Analgesia. Basic Clin Neurosci 2020; 11:587-593. [PMID: 33643552 PMCID: PMC7878063 DOI: 10.32598/bcn.9.10.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/10/2019] [Accepted: 12/19/2019] [Indexed: 11/29/2022] Open
Abstract
Introduction: The ginseng extract is an herb that has been used for many purposes such as analgesic effect. Dopamine D2 receptors are involved in the regulation of pain in humans. Therefore, the present investigation aims to study how pretreatment with aqueous-alcoholic extract of ginseng can affect dopamine D2 receptors’ pain sensitivity. Methods: We used 45 adult male rats weighing 250±20 for this study. Animals were maintained in a standard condition at a temperature of 21°C–24°C. The experimental groups were as follows: 1. Sham 1 (intraperitoneal [IP] injection of normal saline); 2. Sham 2 (intracerebroventricular [ICV] injection of artificial cerebrospinal fluid [ACSF]); 3. Experimental 1 (IP injection of ginseng extract); 4 and 5. Experimental groups 2 and 3 (IP injection of ginseng extract + bromocriptine 10 and 30 μg/rat by ICV injection); 6 and 7) experimental groups 4 and 5 (IP injection of ginseng extract + chlorpromazine 20 and 40 μg/rat by ICV injection). Ginseng extract 100 mg/kg/d was used for 7 days. Pain sensitivity test was done in all groups with the formalin test. Lateral ventricles of the rats were cannulated unilaterally by the stereotaxic procedure. Results: Our data showed that ginseng (100 mg/kg/d) significantly (P<0.05) decreased pain sensitivity compared to the sham 1 group. Bromocriptine in two doses significantly decreased pain sensitivity compared to the sham 2 group. Chlorpromazine in high doses significantly increased pain sensitivity compared to the sham 2 group. Conclusion: The present results indicate that ginseng can modulate the D2 receptor of the dopamine system in the control of pain sensitivity in the formalin test. Because bromocriptine and ginseng have similar effects, it seems that they had synergistic effects.
Collapse
Affiliation(s)
- Mahnaz Taherianfard
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Somaye Aalami
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
12
|
Li G, Nieman AN, Mian MY, Zahn NM, Mikulsky BN, Poe MM, Methuku KR, Liu Y, Cook JM, Stafford DC, Arnold LA. A Structure-Activity Relationship Comparison of Imidazodiazepines Binding at Kappa, Mu, and Delta Opioid Receptors and the GABA A Receptor. Molecules 2020; 25:E3864. [PMID: 32854311 PMCID: PMC7503500 DOI: 10.3390/molecules25173864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 01/06/2023] Open
Abstract
Analgesic and anti-inflammatory properties mediated by the κ opioid receptor (KOR) have been reported for oxadiazole imidazodiazepines. Affinities determined by radioligand competition assays of more than seventy imidazodiazepines using cell homogenates from HEK293 cells that overexpress KOR, µ opioid receptor (MOR), and δ opioid receptor (DOR) are presented. Affinities to synaptic, benzodiazepine-sensitive receptors (BZR) were determined with rat brain extract. The highest affinity for KOR was recorded for GL-I-30 (Ki of 27 nM) and G-protein recruitment was observed with an EC50 of 32 nM. Affinities for MOR and DOR were weak for all compounds. Ester and amide imidazodiazepines were among the most active KOR ligands but also competed with 3H-flunitrazepam for brain extract binding, which is mediated predominately by gamma aminobutyric acid type A receptors (GABAAR) of the α1-3β2-3γ1-2 subtypes. Imidazodiazepines with carboxylic acid and primary amide groups did not bind KOR but interacted strongly with GABAARs. Pyridine substitution reduced KOR affinity. Oxadiazole imidazodiazepines exhibited good KOR binding and interacted weakly with BZR, whereas oxazole imidazodiazepines were more selective towards BZR. Compounds that lack the imidazole moiety, the pendent phenyl, or pyridine substitutions exhibited insignificant KOR affinities. It can be concluded that a subset of imidazodiazepines represents novel KOR ligands with high selectivity among opioid receptors.
Collapse
MESH Headings
- Animals
- Azepines/chemistry
- Azepines/pharmacology
- GABA-A Receptor Agonists/chemistry
- GABA-A Receptor Agonists/pharmacology
- HEK293 Cells
- Humans
- Protein Binding
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Guanguan Li
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Amanda N. Nieman
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | - Md Yeunus Mian
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | - Nicolas M. Zahn
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | | | - Michael M. Poe
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008, USA;
| | - Kashi R. Methuku
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | - Yongfeng Liu
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA;
| | - James M. Cook
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | - Douglas C. Stafford
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
- Pantherics Incorporated, La Jolla, CA 92037, USA;
| | - Leggy A. Arnold
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
- Pantherics Incorporated, La Jolla, CA 92037, USA;
| |
Collapse
|
13
|
Hegazy N, Rezq S, Fahmy A. Renin-angiotensin system blockade modulates both the peripheral and central components of neuropathic pain in rats: Role of calcitonin gene-related peptide, substance P and nitric oxide. Basic Clin Pharmacol Toxicol 2020; 127:451-460. [PMID: 32542932 DOI: 10.1111/bcpt.13453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Nonetheless, renin-angiotensin-aldosterone system (RAAS) blockers attenuate neuropathic pain (NP), the exact molecular mechanisms of this effect are not completely understood. The study aimed to investigate the role of calcitonin gene-related peptide (CGRP), substance P (SP) and nitric oxide (NO), which are all involved in pain modulation, in the analgesic effect of different RAAS blockers in NP both on the peripheral and on the central levels. NP was induced by sciatic nerve chronic constriction injury (CCI, 14 days) in rats, that were given either centrally (telmisartan and ramipril) or peripherally (losartan and enalapril) acting angiotensin-converting enzyme inhibitors (ACE-Is) or angiotensin receptor blockers (ARBs). Behavioural assessment was performed, and CGRP, SP and NO levels were detected in the injured sciatic nerve and the brainstem at the end of experiment. CCI rats showed increased spontaneous pain response and foot deformity along with elevated CGRP, SP and NO levels. ARBs and ACE-Is treatment improved pain behaviour and reduced SP and NO levels. However, sciatic CGRP was increased with different interventions and brainstem CGRP was only elevated in the losartan group. These findings suggest an intermediary role of CGRP, SP and NO in RAAS blockers analgesic effect in NP.
Collapse
Affiliation(s)
- Nora Hegazy
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed Fahmy
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Nieman AN, Li G, Zahn NM, Mian MY, Mikulsky BN, Hoffman DA, Wilcox TM, Kehoe AS, Luecke IW, Poe MM, Alvarez-Carbonell D, Cook JM, Stafford DC, Arnold LA. Targeting Nitric Oxide Production in Microglia with Novel Imidazodiazepines for Nonsedative Pain Treatment. ACS Chem Neurosci 2020; 11:2019-2030. [PMID: 32511908 PMCID: PMC7380323 DOI: 10.1021/acschemneuro.0c00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The goal of this research is the identification of new treatments for neuropathic pain. We characterized the GABAergic system of immortalized mouse and human microglia using electrophysiology and qRT-PCR. Cells from both species exhibited membrane current changes in response to γ-aminobutyric acid, with an EC50 of 260 and 1940 nM, respectively. Human microglia expressed high levels of the γ-aminobutyric acid type A receptor (GABAAR) α3 subunit, which can assemble with β1 and γ2/δ subunits to form functional GABAARs. Mouse microglia contained α2, α3, and α5, in addition to β1-3, γ1-2, and δ, mRNA, enabling a more diverse array of GABAARs than human microglia. Benzodiazepines are well-established modulators of GABAAR activity, prompting a screen of a library of diverse benzodiazepines in microglia for cellular effects. Several active compounds were identified by reduction of nitric oxide (NO) in interferon gamma and lipopolysaccharide activated microglia. However, further investigation with GABAAR antagonists flumazenil, picrotoxin, and bicuculline demonstrated that GABAARs were not linked to the NO response. A screen of 48 receptors identified the κ-opioid receptor and to a lesser extent the μ-opioid receptor as molecular targets, with opioid receptor antagonist norbinaltorphimine reversing benzodiazepine induced reduction of microglial NO. Functional assays identified the downregulation of inducible NO synthase as the mode of action of imidazodiazepines MP-IV-010 and GL-IV-03. Like other κ-opioid receptor agonists, GL-IV-03 reduced the agitation response in both phases of the formalin nociception test. However, unlike other κ-opioid receptor agonists, MP-IV-010 and GL-IV-03 did not impair sensorimotor coordination in mice. Thus, MP-IV-010 and GL-IV-03 represent a new class of nonsedative drug candidates for inflammatory pain.
Collapse
Affiliation(s)
- Amanda N. Nieman
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Guanguan Li
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Nicolas M. Zahn
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Md Yeunus Mian
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | | | - Dylan A. Hoffman
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Taylor M. Wilcox
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Alexander S. Kehoe
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Ian W. Luecke
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Michael M. Poe
- Department of Chemistry, Western Michigan University, Kalamazoo MI 49008, United States
| | - David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - James M. Cook
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Douglas C. Stafford
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
- Pantherics Incorporated, La Jolla, California 92037, United States
| | - Leggy A. Arnold
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
- Pantherics Incorporated, La Jolla, California 92037, United States
| |
Collapse
|
15
|
Effect of ethanolic extract of Solanum virginianum Linn. on neuropathic pain using chronic constriction injury rat model and molecular docking studies. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1715-1728. [PMID: 32388600 DOI: 10.1007/s00210-020-01872-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/14/2020] [Indexed: 12/25/2022]
Abstract
The present research work was designed to examine the neuroprotective effect of ethanolic extract of Solanum virginianum Linn. (SV) in chronic construction injury (CCI) of sciatic nerve-induced neuropathic pain in rats. The extract was initially standardized by high-performance thin-layer chromatography using solasodine as a biomarker and was then subjected to assess the degree of mechanical allodynia, thermal allodynia, mechanical hyperalgesia, thermal hyperalgesia and biochemical evaluations. Administration of SV (100 and 200 mg/kg; p.o.) and pregabalin (10 mg/kg; p.o.) as a reference standard significantly debilitated hyperalgesia and allodynia and notably restored the altered antioxidant level and pro-inflammatory cytokine (IL-1β and TNF-α) expression in a dose-dependent manner. Further, to appraise the mechanistic approach of solasodine, docking simulation studies were done on the 3D structure of the voltage-gated N-type calcium channel (Cav 2.2), R-type calcium channel (Cav 2.3) and sodium channel (Nav 1.7), and the results revealed that solasodine properly positioned into Phe 19, Leu 32, Met 51 and Met 71 (FLMM pocket) of Cav 2.2 and Cav 2.3 and being a competitor of Ca2+/N-lobe it may inactivate these calcium channels but did not bind into the desired binding pocket of Nav 1.7. Thus, the study confirmed the role of solasodine as a major biomarker for the observed neuroprotective nature of Solanum virginianum.
Collapse
|
16
|
Kaswan NK, Mohd Suhaimi NS, Mohammed Izham NA, Tengku Mohamad TAS, Sulaiman MR, Perimal EK. Cardamonin inhibits nitric oxide production modulated through NMDA receptor in LPS-Induced SH-SY5Y cell in vitro model. LIFE SCIENCES, MEDICINE AND BIOMEDICINE 2020. [DOI: 10.28916/lsmb.4.9.2020.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
Effects of selective inhibition of nNOS and iNOS on neuropathic pain in rats. Mol Cell Neurosci 2020; 105:103497. [PMID: 32353527 DOI: 10.1016/j.mcn.2020.103497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/02/2023] Open
Abstract
Various animal models have been employed to understand the pathogenic mechanism of neuropathic pain. Nitric oxide (NO) is an important molecule in nociceptive transmission and is involved in neuropathic pain. However, its mechanistic actions remain unclear. The aim of this study was to better understand the involvement of neuronal and inducible isoforms of nitric oxide synthase (nNOS and iNOS) in neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve in rats. We evaluated pain sensitivity (mechanical withdrawal thresholds using Randall and Selitto, and von Frey tests, and thermal withdrawal thresholds using Hargreaves test) prior to CCI surgery, 14 days post CCI and after intrathecal injections of selective nNOS or iNOS inhibitors. We also evaluated the distribution of NOS isozymes in the spinal cord and dorsal root ganglia (DRG) by immunohistochemistry, synthesis of iNOS and nNOS by Western blot, and NO production using fluorescent probe DAF-2 DA (DA). Our results showed higher number of nNOS and iNOS-positive neurons in the spinal cord and DRG of CCI compared to sham rats, and their reduction in CCI rats after treatment with selective inhibitors compared to non-treated groups. Western blot results also indicated reduced expression of nNOS and iNOS after treatment with selective inhibitors. Furthermore, both inhibitors reduced CCI-evoked mechanical and thermal withdrawal thresholds but only nNOS inhibitor was able to efficiently lower mechanical withdrawal thresholds using von Frey test. In addition, we observed higher NO production in the spinal cord and DRG of injured rats compared to control group. Our study innovatively shows that nNOS may strongly modulate nociceptive transmission in rats with neuropathic pain, while iNOS may partially participate in the development of nociceptive responses. Thus, drugs targeting nNOS for neuropathic pain may represent a potential therapeutic strategy.
Collapse
|
18
|
Oh SH, Lee HY, Ki YJ, Kim SH, Lim KJ, Jung KT. Gabexate mesilate ameliorates the neuropathic pain in a rat model by inhibition of proinflammatory cytokines and nitric oxide pathway via suppression of nuclear factor-κB. Korean J Pain 2020; 33:30-39. [PMID: 31888315 PMCID: PMC6944363 DOI: 10.3344/kjp.2020.33.1.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study examined the effects of gabexate mesilate on spinal nerve ligation (SNL)-induced neuropathic pain. To confirm the involvement of gabexate mesilate on neuroinflammation, we focused on the activation of nuclear factor-κB (NF-κB) and consequent the expression of proinflammatory cytokines and inducible nitric oxide synthase (iNOS). METHODS Male Sprague-Dawley rats were used for the study. After randomization into three groups: the sham-operation group, vehicle-treated group (administered normal saline as a control), and the gabexate group (administered gabexate mesilate 20 mg/kg), SNL was performed. At the 3rd day, mechanical allodynia was confirmed using von Frey filaments, and drugs were administered intraperitoneally daily according to the group. The paw withdrawal threshold (PWT) was examined on the 3rd, 7th, and 14th day. The expressions of p65 subunit of NF-κB, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and iNOS were evaluated on the 7th and 14th day following SNL. RESULTS The PWT was significantly higher in the gabexate group compared with the vehicle-treated group (P < 0.05). The expressions of p65, proinflammatory cytokines, and iNOS significantly decreased in the gabexate group compared with the vehicle-treated group (P < 0.05) on the 7th day. On the 14th day, the expressions of p65 and iNOS showed lower levels, but those of the proinflammatory cytokines showed no significant differences. CONCLUSIONS Gabexate mesilate increased PWT after SNL and attenuate the progress of mechanical allodynia. These results seem to be involved with the anti-inflammatory effect of gabexate mesilate via inhibition of NF-κB, proinflammatory cytokines, and nitric oxide.
Collapse
Affiliation(s)
- Seon Hee Oh
- School of Medicine, Chosun University, Gwangju,
Korea
| | - Hyun Young Lee
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju,
Korea
| | - Young Joon Ki
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
| | - Sang Hun Kim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju,
Korea
| | - Kyung Joon Lim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju,
Korea
| | - Ki Tae Jung
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju,
Korea
| |
Collapse
|
19
|
Bollenbach M, Lugnier C, Kremer M, Salvat E, Megat S, Bihel F, Bourguignon JJ, Barrot M, Schmitt M. Design and synthesis of 3-aminophthalazine derivatives and structural analogues as PDE5 inhibitors: anti-allodynic effect against neuropathic pain in a mouse model. Eur J Med Chem 2019; 177:269-290. [DOI: 10.1016/j.ejmech.2019.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
|
20
|
Demir IE, Heinrich T, Carty DG, Saricaoglu ÖC, Klauss S, Teller S, Kehl T, Mota Reyes C, Tieftrunk E, Lazarou M, Bahceci DH, Gökcek B, Ucurum BE, Maak M, Diakopoulos KN, Lesina M, Schemann M, Erkan M, Krüger A, Algül H, Friess H, Ceyhan GO. Targeting nNOS ameliorates the severe neuropathic pain due to chronic pancreatitis. EBioMedicine 2019; 46:431-443. [PMID: 31401195 PMCID: PMC6711864 DOI: 10.1016/j.ebiom.2019.07.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Pain due to pancreatic cancer/PCa or chronic pancreatitis/CP, is notoriously resistant to the strongest pain medications. Here, we aimed at deciphering the specific molecular mediators of pain at surgical-stage pancreatic disease and to discover novel translational targets. METHODS We performed a systematic, quantitative analysis of the neurotransmitter/neuroenzmye profile within intrapancreatic nerves of CP and PCa patients. Ex vivo neuronal cultures treated with human pancreatic extracts, conditional genetically engineered knockout mouse models of PCa and CP, and the cerulein-induced CP model were employed to explore the therapeutic potential of the identified targets. FINDINGS We identified a unique enrichment of neuronal nitric-oxide-synthase (nNOS) in the pancreatic nerves of CP patients with increasing pain severity. Employment of ex vivo neuronal cultures treated with pancreatic tissue extracts of CP patients, and brain-derived-neurotrophic-factor-deficient (BDNF+/-) mice revealed neuronal enrichment of nNOS to be a consequence of BDNF loss in the progressively destroyed pancreatic tissue. Mechanistically, nNOS upregulation in sensory neurons was induced by tryptase secreted from perineural mast cells. In a head-to-head comparison of several genetically induced, painless mouse models of PCa (KPC, KC mice) or CP (Ptf1a-Cre;Atg5fl/fl) against the hypersecretion/cerulein-induced, painful CP mouse model, we show that a similar nNOS enrichment is present in the painful cerulein-CP model, but absent in painless genetic models. Consequently, mice afflicted with painful cerulein-induced CP could be significantly relieved upon treatment with the specific nNOS inhibitor NPLA. INTERPRETATION We propose nNOS inhibition as a novel strategy to treat the unbearable pain in CP. FUND: Deutsche Forschungsgemeinschaft/DFG (DE2428/3-1 and 3-2).
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; DKTK Munich site, Germany; SFB 1321, Germany.
| | - Tobias Heinrich
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dominique G Carty
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ömer Cemil Saricaoglu
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sarah Klauss
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Steffen Teller
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo Kehl
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carmen Mota Reyes
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elke Tieftrunk
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria Lazarou
- Human Biology, Technical University of Munich, Freising, Germany
| | - Dorukhan H Bahceci
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Betül Gökcek
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Bahar E Ucurum
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Matthias Maak
- Department of Surgery, University of Erlangen, Erlangen, Germany
| | - Kalliope N Diakopoulos
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marina Lesina
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Schemann
- Human Biology, Technical University of Munich, Freising, Germany
| | - Mert Erkan
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Achim Krüger
- Institute for Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hana Algül
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; DKTK Munich site, Germany; SFB 1321, Germany
| |
Collapse
|
21
|
Verma R, Sharma J, Singh N, Jaggi AS. Investigating the possible pain attenuating mechanisms of pregabalin in chronic constriction injury-induced neuropathic pain in rats. Int J Neurosci 2019; 129:1155-1165. [PMID: 31256739 DOI: 10.1080/00207454.2019.1638783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim of the study: The current study was aimed to investigate the neuropathic pain attenuating mechanism of pregabalin using chronic constriction injury (CCI) model in rats. Material and Methods: The sciatic nerve was ligated by placing four loose ligatures around it to induce neuropathic pain. The pain development in terms of cold allodynia, mechanical hyperalgesia, and heat hyperalgesia was assessed on the 7th and 14th day after surgery, using acetone drop, pinprick, and hot plate tests. On the 14th day after the injury, pain parameters were assessed 30 minutes after administration of pregabalin (30 mg/kg) and sodium nitroprusside (5 mg/kg) in CCI-subjected rats. Results: CCI led to induction of neuropathic pain, which was more prominent on 14th day in comparison to 7th day. A single administration of pregabalin and sodium nitroprusside on 14th day, markedly reduced pain parameters and increased serum nitrite levels. Pretreatment with L-NAME abolished neuropathic pain attenuating effects of pregabalin suggesting that pregabalin may increase the levels of nitric oxide to mitigate neuropathic pain. Pretreatment with naloxone significantly abrogated pain attenuating effects of pregabalin and sodium nitroprusside in CCI-subjected rats suggesting that pregabalin and nitric oxide-mediated analgesic action are mediated through release of endogenous opioids. Moreover, naloxone failed to modulate pregabalin-induced increase in nitric oxide levels suggesting that the opioid system does not control the nitric oxide levels, and opioids may be downstream modulators of nitric oxide. Conclusion: Pregabalin may increase the release of nitric oxide, which may increase the release of endogenous opioids to attenuate neuropathic pain in CCI subjected rats.
Collapse
Affiliation(s)
- Renuka Verma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala , Patiala , India
| | - Jasmine Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala , Patiala , India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala , Patiala , India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala , Patiala , India
| |
Collapse
|
22
|
Tempol Attenuates Neuropathic Pain by Inhibiting Nitric Oxide Production. Anal Cell Pathol (Amst) 2019; 2019:8253850. [PMID: 31223559 PMCID: PMC6541962 DOI: 10.1155/2019/8253850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/11/2019] [Indexed: 01/09/2023] Open
Abstract
Background Neuropathic pain not only affects individual life quality but also increases economic burden for the society. Treatment to alleviate neuropathic pain is required. Methodology Fifty rats were randomly assigned into sham, spinal nerve ligation, and three treatment groups with different doses of Tempol (100, 200, and 300 mg/kg, respectively), with 10 rats in each group. A neuropathic pain model was created with spinal nerve L5 and L6 ligation. Mechanical allodynia and thermal hyperalgesia were tested preoperatively (day 0) and postoperatively (days 1, 3, 5, and 7). Spinal cord levels of nitric oxide, as well as activities of nitric oxide synthase and acetylcholinesterase, were tested in postoperative day 7. Results Compared with rats in the spinal nerve ligation group, rats in Tempol treatment groups had decreased responses to mechanical pain and cold plate stimulations. A high dose of Tempol produced more attenuating effects. The level of nitric oxide and activity of nitric oxide synthase were also decreased with Tempol treatments, whereas no significant changes were observed in the activity of acetylcholinesterase. Conclusions Tempol attenuated an experimental rat model with neuropathic pain by inhibiting nitric oxide production.
Collapse
|
23
|
Omar E, Wallon G, Bauer C, Axiotis G, Bouix C, Soubirou JL, Aubrun F. Evaluation of intravenous lidocaine in head and neck cancer surgery: study protocol for a randomized controlled trial. Trials 2019; 20:220. [PMID: 30987664 PMCID: PMC6466788 DOI: 10.1186/s13063-019-3303-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pain after major head and neck cancer surgery is underestimated and has both nociceptive and neuropathic characteristics. Extended resection, flap coverage, nerve lesions, inflammation, and high-dose opioid administration can also lead to hyperalgesia and chronic postoperative pain. Opioids are frequently associated with adverse events such as dizziness, drowsiness, nausea and vomiting, or constipation disturbing postoperative recovery and extending the length of hospital stay. Patients eligible for major head and neck cancer surgery cannot benefit from full multimodal pain management with locoregional anesthesia. Intravenous lidocaine, investigated in several studies, has been found to decrease acute pain and morphine consumption. Some data suggest also that it can prevent chronic postsurgical pain. Evidence supporting its use varies between surgical procedures, and there is no published study regarding systemic lidocaine administration in major head and neck cancer surgery. We hypothesized that intravenous lidocaine infused in the perioperative period would lead to opioid sparing and chronic postsurgical pain reduction. METHODS/DESIGN A total of 128 patients undergoing major head and neck surgery will be included in this prospective two-center, double-blind, randomized controlled trial. Patients will be randomly assigned to lidocaine or placebo treatment. After induction of general anesthesia, an intravenous lidocaine bolus will be administered (1.5 mg.kg- 1), followed by a continuous infusion (2 mg.kg- 1.h- 1) which will be reduced in the postanesthesia care unit (1 mg.kg- 1.h- 1). The primary outcome measure is morphine consumption 48 h after surgery. The secondary outcomes include intraoperative remifentanil consumption, morphine consumption 24 h after surgery, and chronic postsurgical pain that will be assessed 3-6 months after surgery. DISCUSSION Recent evidence suggests that intravenous lidocaine can lead to opioid sparing and chronic postsurgical pain reduction for certain types of surgery. This is the first trial to prospectively investigate the efficacy and safety of intravenous lidocaine in major head and neck cancer surgery. TRIAL REGISTRATION ClinicalTrials.gov, NCT02894710 . Registered on 11 August 2016.
Collapse
Affiliation(s)
- Edris Omar
- Department of Anesthesiology and Critical Care, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France.
| | - Grégoire Wallon
- Department of Anesthesiology and Critical Care, Centre Léon Bérard, Lyon, France
| | - Christian Bauer
- Department of Anesthesiology and Critical Care, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Grégory Axiotis
- Department of Anesthesiology and Critical Care, Centre Léon Bérard, Lyon, France
| | - Cécile Bouix
- Clinical Research Center, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jean-Luc Soubirou
- Department of Anesthesiology and Critical Care, Centre Léon Bérard, Lyon, France
| | - Frédéric Aubrun
- Department of Anesthesiology and Critical Care, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
24
|
Kuthati Y, Lin SH, Chen IJ, Wong CS. Melatonin and their analogs as a potential use in the management of Neuropathic pain. J Formos Med Assoc 2018; 118:1177-1186. [PMID: 30316678 DOI: 10.1016/j.jfma.2018.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/02/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), secreted by the pineal gland is known to perform multiple functions including, antioxidant, anti-hypertensive, anti-cancerous, immunomodulatory, sedative and tranquilizing functions. Melatonin is also known to be involved in the regulation of body mass index, control the gastrointestinal system and play an important role in cardioprotection, thermoregulation, and reproduction. Recently, several studies have reported the efficacy of Melatonin in treating various pain syndromes. The current paper reviews the studies on Melatonin and its analogs, particularly in Neuropathic pain. Here, we first briefly summarized research in preclinical studies showing the possible mechanisms through which Melatonin and its analogs induce analgesia in Neuropathic pain. Second, we reviewed research indicating the role of Melatonin in attenuating analgesic tolerance. Finally, we discussed the recent studies that reported novel Melatonin agonists, which were proven to be effective in treating Neuropathic pain.
Collapse
Affiliation(s)
- Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Sheng-Hsiung Lin
- Planning and Management Office, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Ing-Jung Chen
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan; Planning and Management Office, Tri-Service General Hospital, National Defense Medical Center, Taiwan; Institute of Medical Sciences, National Defense Medical Center, Taiwan; Department of Anesthesiology, Tri-Service General Hospital, Taiwan.
| |
Collapse
|
25
|
Lipopolysaccharide-mediated inflammatory priming potentiates painful post-traumatic trigeminal neuropathy. Physiol Behav 2018; 194:497-504. [DOI: 10.1016/j.physbeh.2018.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 01/15/2023]
|
26
|
Krupkova O, Smolders L, Wuertz-Kozak K, Cook J, Pozzi A. The Pathobiology of the Meniscus: A Comparison Between the Human and Dog. Front Vet Sci 2018; 5:73. [PMID: 29713636 PMCID: PMC5911564 DOI: 10.3389/fvets.2018.00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/26/2018] [Indexed: 01/27/2023] Open
Abstract
Serious knee pain and related disability have an annual prevalence of approximately 25% on those over the age of 55 years. As curative treatments for the common knee problems are not available to date, knee pathologies typically progress and often lead to osteoarthritis (OA). While the roles that the meniscus plays in knee biomechanics are well characterized, biological mechanisms underlying meniscus pathophysiology and roles in knee pain and OA progression are not fully clear. Experimental treatments for knee disorders that are successful in animal models often produce unsatisfactory results in humans due to species differences or the inability to fully replicate disease progression in experimental animals. The use of animals with spontaneous knee pathologies, such as dogs, can significantly help addressing this issue. As microscopic and macroscopic anatomy of the canine and human menisci are similar, spontaneous meniscal pathologies in canine patients are thought to be highly relevant for translational medicine. However, it is not clear whether the biomolecular mechanisms of pain, degradation of extracellular matrix, and inflammatory responses are species dependent. The aims of this review are (1) to provide an overview of the anatomy, physiology, and pathology of the human and canine meniscus, (2) to compare the known signaling pathways involved in spontaneous meniscus pathology between both species, and (3) to assess the relevance of dogs with spontaneous meniscal pathology as a translational model. Understanding these mechanisms in human and canine meniscus can help to advance diagnostic and therapeutic strategies for painful knee disorders and improve clinical decision making.
Collapse
Affiliation(s)
- Olga Krupkova
- Small Animals Surgery, Tierspital, Zurich, Switzerland.,Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Karin Wuertz-Kozak
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Spine Center, Schön Klinik München Harlaching, Munich, Germany.,Academic Teaching Hospital and Spine Research Institute, Paracelsus Private Medical University Salzburg, Salzburg, Austria.,Department of Health Sciences, University of Potsdam, Potsdam, Germany
| | - James Cook
- Missouri Orthopaedic Institute, University of Missouri, Columbia, SC, United States
| | - Antonio Pozzi
- Small Animals Surgery, Tierspital, Zurich, Switzerland
| |
Collapse
|
27
|
Donertas B, Cengelli Unel C, Aydin S, Ulupinar E, Ozatik O, Kaygisiz B, Yildirim E, Erol K. Agmatine co-treatment attenuates allodynia and structural abnormalities in cisplatin-induced neuropathy in rats. Fundam Clin Pharmacol 2018; 32:288-296. [DOI: 10.1111/fcp.12351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Basak Donertas
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Cigdem Cengelli Unel
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Sule Aydin
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Emel Ulupinar
- Department of Anatomy; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Orhan Ozatik
- Department of Histology and Embryology; Faculty of Medicine; Dumlupinar University; Kutahya 43000 Turkey
| | - Bilgin Kaygisiz
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Engin Yildirim
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Kevser Erol
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| |
Collapse
|
28
|
Kandhare AD, Mukherjee AA, Bodhankar SL. Neuroprotective effect of Azadirachta indica standardized extract in partial sciatic nerve injury in rats: Evidence from anti-inflammatory, antioxidant and anti-apoptotic studies. EXCLI JOURNAL 2017; 16:546-565. [PMID: 28694757 PMCID: PMC5491907 DOI: 10.17179/excli2017-161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/22/2017] [Indexed: 11/10/2022]
Abstract
Chronic neuropathic pain is a common and widely recognized pain syndrome for patients and difficult to manage for physicians. Azadirachta indica (AI) possesses analgesic, anti-inflammatory, and antioxidant properties. To evaluate the neuroprotective effect of AI standardized extract in an animal model of peripheral neuropathy induced by partial sciatic nerve ligation (PSNL). PSNL was induced in male Wistar rats (180-200 g) with tight ligation of the nerve. Rats received treatment with either vehicle i.e. distilled water (PSNL control), Pyridoxine (100 mg/kg, p.o.) or AI (100, 200 and 400 mg/kg, p.o.) for 28 days. Various behavioral parameters, biochemical, molecular and histological parameters were evaluated. PSNL resulted in a significant decrease (p < 0.05) in allodynia, hyperalgesia, motor coordination and motor nerve conduction velocity (MNCV) whereas chronic treatment with AI (200 and 400 mg/kg) significantly attenuated (p < 0.05) these behavioral changes. Enhanced activity of oxidative-nitrosative stress, inflammatory mediators (TNF-α, IL-1β, and NF-κB) as well as mRNA expression of Bax, Caspase-3, and iNOs were significantly attenuated (p < 0.05) by AI treatment. It also significantly increased (p < 0.05) peripheral blood oxygen content and Bcl-2 mRNA expression. The flow cytometric analysis revealed that AI (200 and 400 mg/kg) treatment significantly attenuated neural apoptosis and reactive oxygen species levels. PSNL induced histological aberrations were also decreased by AI treatment. Azadirachta indica exerts its neuroprotection against PSNL induced neuropathic pain via inhibition of oxidative-nitrosative stress, the release of pro-inflammatory cytokines and apoptosis to improve MNCV (graphical abstract, Figure 1(Fig. 1)).
Collapse
Affiliation(s)
- Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| | - Anwesha A Mukherjee
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| |
Collapse
|
29
|
Effect of nitric oxide to axonal degeneration in multiple sclerosis via downregulating monocarboxylate transporter 1 in oligodendrocytes. Nitric Oxide 2017; 67:75-80. [PMID: 28392448 DOI: 10.1016/j.niox.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS). Axonal degeneration, one of the main pathological characteristics of MS, is affected by nitric oxide (NO). In turn, NO induces mitochondrial dysfunction of neurons and glial cells. Inadequate glucose causes monocarboxylate transporter 1 (MCT1) to transfer lactate from oligodendrocytes (OLs) to neurons, which decreases MCT1 and results in energy substrate deficit (mainly lactate) in axons. The condition gradually leads to axonal degeneration. This study proposes that NO-induced MCT1 down-regulation in OLs may be involved in the pathological process of axonal degeneration, which eventually leads to MS.
Collapse
|
30
|
Zerumbone Alleviates Neuropathic Pain through the Involvement of l-Arginine-Nitric Oxide-cGMP-K⁺ ATP Channel Pathways in Chronic Constriction Injury in Mice Model. Molecules 2017; 22:molecules22040555. [PMID: 28358309 PMCID: PMC6154097 DOI: 10.3390/molecules22040555] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/27/2022] Open
Abstract
The present study investigates the involvement of the l-arginine-Nitric Oxide-cGMP-K+ ATP pathways responsible for the action of anti-allodynic and antihyperalgesic activities of zerumbone in chronic constriction injury (CCI) induced neuropathic pain in mice. The role of l-arginine-NO-cGMP-K+ was assessed by the von Frey and the Randall-Selitto tests. Both allodynia and hyperalgesia assessments were carried out on the 14th day post CCI, 30 min after treatments were given for each respective pathway. Anti-allodynic and antihyperalgesic effects of zerumbone (10 mg/kg, i.p) were significantly reversed by the pre-treatment of l-arginine (10 mg/kg), 1H [1,2,4]Oxadiazole[4,3a]quinoxalin-1-one (ODQ), a soluble guanosyl cyclase blocker (2 mg/kg i.p.) and glibenclamide (ATP-sensitive potassium channel blocker) (10 mg/kg i.p.) (p < 0.05). Taken together, these results indicate that systemic administration of zerumbone produces significant anti-allodynic and antihyperalgesic activities in neuropathic pain in mice possibly due to involvement of the l-arginine-NO-cGMP-PKG-K+ ATP channel pathways in CCI model.
Collapse
|
31
|
Camacho ME, Chayah M, García ME, Fernández-Sáez N, Arias F, Gallo MA, Carrión MD. Quinazolinones, Quinazolinthiones, and Quinazolinimines as Nitric Oxide Synthase Inhibitors: Synthetic Study and Biological Evaluation. Arch Pharm (Weinheim) 2016; 349:638-50. [DOI: 10.1002/ardp.201600020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 02/05/2023]
Affiliation(s)
- M. Encarnación Camacho
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - Mariem Chayah
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - M. Esther García
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - Nerea Fernández-Sáez
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - Fabio Arias
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - Miguel A. Gallo
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - M. Dora Carrión
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| |
Collapse
|
32
|
Pineda de las Infantas MJ, Carrión MD, Chayah M, López-Cara LC, Gallo MA, Acuña-Castroviejo D, Camacho ME. Synthesis of oxadiazoline and quinazolinone derivatives and their biological evaluation as nitric oxide synthase inhibitors. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1568-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Effect of preferred music listening on pain reduction in mechanically ventilated patients after coronary artery bypass graft surgery. Res Cardiovasc Med 2016. [DOI: 10.5812/cardiovascmed.33769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Development of nNOS-positive neurons in the rat sensory ganglia after capsaicin treatment. Brain Res 2015; 1618:212-21. [PMID: 26054303 DOI: 10.1016/j.brainres.2015.05.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 12/16/2022]
Abstract
To gain a better understanding of the neuroplasticity of afferent neurons during postnatal ontogenesis, the distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity was studied in the nodose ganglion (NG) and Th2 and L4 dorsal root ganglia (DRG) from vehicle-treated and capsaicin-treated female Wistar rats at different ages (10-day-old, 20-day-old, 30-day-old, and two-month-old). The percentage of nNOS-immunoreactive (IR) neurons decreased after capsaicin treatment in all studied ganglia in first 20 days of life, from 55.4% to 36.9% in the Th2 DRG, from 54.6% to 26.1% in the L4 DRG and from 37.1% to 15.0% in the NG. However, in the NG, the proportion of nNOS-IR neurons increased after day 20, from 11.8% to 23.9%. In the sensory ganglia of all studied rats, a high proportion of nNOS-IR neurons bound isolectin B4. Approximately 90% of the sensory nNOS-IR neurons bound to IB4 in the DRG and approximately 80% in the NG in capsaicin-treated and vehicle-treated rats. In 10-day-old rats, a large number of nNOS-IR neurons also expressed TrkA, and the proportion of nNOS(+)/TrkA(+) neurons was larger in the capsaicin-treated rats compared with the vehicle-treated animals. During development, the percentage of nNOS(+)/TrkA(+) cells decreased in the first month of life in both groups. The information provided here will also serve as a basis for future studies investigating mechanisms of sensory neuron development.
Collapse
|
35
|
Abdelazeem AH, Khan SI, White SW, Sufka KJ, McCurdy CR. Design, synthesis and biological evaluation of bivalent benzoxazolone and benzothiazolone ligands as potential anti-inflammatory/analgesic agents. Bioorg Med Chem 2015; 23:3248-59. [PMID: 25975638 DOI: 10.1016/j.bmc.2015.04.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 01/13/2023]
Abstract
Benzoxazolone and benzothiazolone were used as template blocks to develop two series of dimers as anti-inflammatory and analgesic agents based on the concept of bivalent ligands. The first series (I) involved varying the carbon chain lengths extending from the piperazine core to the nitrogen atom of the dibenzo[d]oxazol-2(3H)-one or dibenzo[d]thiazol-2(3H)-one. The second series (II) was designed by changing the attachment point. All compounds were screened for their in vitro anti-inflammatory activity in terms of the inhibition of inducible nitric oxide synthase (iNOS) and nuclear factor kappa B (NF-κB). Seventeen compounds inhibited both targets. Eleven of them exhibited IC50 values below 3μM while five compounds showed IC50 values of 1μM or below. Most of the compounds were found to be devoid of cytotoxicity against mammalian kidney and solid tumors cell lines up to 25μg/mL. In vivo anti-inflammatory and antinociceptive studies revealed that compounds 3j, 5t and 8b have significant anti-inflammatory and analgesic activity comparable to that of indomethacin and ketorolac, respectively.
Collapse
Affiliation(s)
- Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS 38677, USA
| | - Stephen W White
- Department of Psychology, College of Liberal Arts, The University of Mississippi, MS 38677, USA
| | - Kenneth J Sufka
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS 38677, USA; Department of Psychology, College of Liberal Arts, The University of Mississippi, MS 38677, USA
| | - Christopher R McCurdy
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS 38677, USA; Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, MS 38677, USA.
| |
Collapse
|
36
|
Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev 2014; 43:6814-38. [PMID: 24549364 PMCID: PMC4138306 DOI: 10.1039/c3cs60467e] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule in the human body, playing a crucial role in cell and neuronal communication, regulation of blood pressure, and in immune activation. However, overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is one of the fundamental causes underlying neurodegenerative disorders and neuropathic pain. Therefore, developing small molecules for selective inhibition of nNOS over related isoforms (eNOS and iNOS) is therapeutically desirable. The aims of this review focus on the regulation and dysregulation of NO signaling, the role of NO in neurodegeneration and pain, the structure and mechanism of nNOS, and the use of this information to design selective inhibitors of this enzyme. Structure-based drug design, the bioavailability and pharmacokinetics of these inhibitors, and extensive target validation through animal studies are addressed.
Collapse
Affiliation(s)
- Paramita Mukherjee
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | | | | | | |
Collapse
|
37
|
Sedighi M, Haghnegahdar A. Role of vitamin D3 in treatment of lumbar disc herniation--pain and sensory aspects: study protocol for a randomized controlled trial. Trials 2014; 15:373. [PMID: 25257359 PMCID: PMC4190421 DOI: 10.1186/1745-6215-15-373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/04/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Vitamin D receptors have been identified in the spinal cord, nerve roots, dorsal root ganglia and glial cells, and its genetic polymorphism association with the development of lumbar disc degeneration and herniation has been documented. Metabolic effects of active vitamin D metabolites in the nucleus pulposus and annulus fibrosus cells have been studied. Lumbar disc herniation is a process that involves immune and inflammatory cells and processes that are targets for immune regulatory actions of vitamin D as a neurosteroid hormone. In addition to vitamin D's immune modulatory properties, its receptors have been identified in skeletal muscles. It also affects sensory neurons to modulate pain. In this study, we aim to study the role of vitamin D3 in discogenic pain and related sensory deficits. Additionally, we will address how post-treatment 25-hydroxy vitamin D3 level influences pain and sensory deficits severity. The cut-off value for serum 25-hydroxy vitamin D3 that would be efficacious in improving pain and sensory deficits in lumbar disc herniation will also be studied. METHODS/DESIGN We will conduct a randomized, placebo-controlled, double-blind clinical trial. Our study population will include 380 cases with one-level and unilateral lumbar disc herniation with duration of discogenic pain less than 8 weeks. Individuals who do not have any contraindications, will be divided into three groups based on serum 25-hydroxy vitamin D3 level, and each group will be randomized to receive either a single-dose 300,000-IU intramuscular injection of vitamin D3 or placebo. All patients will be under conservative treatment. Pre-treatment and post-treatment assessments will be performed with the McGill Pain Questionnaire and a visual analogue scale. For the 15-day duration of this study, questionnaires will be filled out during telephone interviews every 3 days (a total of five times). The initial and final interviews will be scheduled at our clinic. After 15 days, serum 25-hydroxy vitamin D3 levels will be measured for those who have received vitamin D3 (190 individuals). TRIAL REGISTRATION Iranian Registry for Clinical Trials ID: IRCT2014050317534N1 (trial registration: 5 June 2014).
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Neurosurgery, Shiraz Medical School, Shiraz University of Medical Sciences, PO Box 71345-1536, Shiraz, Iran.
| | | |
Collapse
|
38
|
Ahlawat A, Rana A, Goyal N, Sharma S. Potential role of nitric oxide synthase isoforms in pathophysiology of neuropathic pain. Inflammopharmacology 2014; 22:269-78. [PMID: 25095760 DOI: 10.1007/s10787-014-0213-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022]
Abstract
Neuropathic pain triggers a cascade of events in the sensory neurons. It is the main complication of diabetes after cardiovascular disease. Nitric oxide (NO) produced from nitric oxide synthases (NOS) is an important signaling molecule which is crucial for many physiological processes such as synaptic plasticity, neuronal survival, vasodilation, vascular homeostasis, immune regulation. Overproduction of NO due to changes in NOS isoforms level involves pathological processes such as neurotoxicity, septic shock and neuropathic pain. All three isoforms of NOS as well as their end product, NO have modulatory effect on neuropathic pain. Overactivation of the N-Methyl-D-Aspartate receptor and peroxynitrite formation results in high levels of neuronal NOS (nNOS) and endothelial NOS (eNOS) which suggest that nNOS and eNOS are critical for pain hypersensitivity. Inducible NOS induced in glia by inflammation due to activation of Tumor Necrosis Factor α, Calcitonin Gene Regulating Peptide, Mitogen Activated Protein Kinases, Extracellular signal Regulated Kinase, c-Jun N-terminal kinases can induce neuronal death. This review focuses on different nitric oxide synthases and their role in pathophysiology of neuropathic pain considering NOS as an important therapeutic target.
Collapse
|
39
|
Flexibilide obtained from cultured soft coral has anti-neuroinflammatory and analgesic effects through the upregulation of spinal transforming growth factor-β1 in neuropathic rats. Mar Drugs 2014; 12:3792-817. [PMID: 24979268 PMCID: PMC4113799 DOI: 10.3390/md12073792] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/27/2022] Open
Abstract
Chronic neuroinflammation plays an important role in the development and maintenance of neuropathic pain. The compound flexibilide, which can be obtained from cultured soft coral, possesses anti-inflammatory and analgesic effects in the rat carrageenan peripheral inflammation model. In the present study, we investigated the antinociceptive properties of flexibilide in the rat chronic constriction injury (CCI) model of neuropathic pain. First, we found that a single intrathecal (i.t.) administration of flexibilide significantly attenuated CCI-induced thermal hyperalgesia at 14 days after surgery. Second, i.t. administration of 10-μg flexibilide twice daily was able to prevent the development of thermal hyperalgesia and weight-bearing deficits in CCI rats. Third, i.t. flexibilide significantly inhibited CCI-induced activation of microglia and astrocytes, as well as the upregulated proinflammatory enzyme, inducible nitric oxide synthase, in the ipsilateral spinal dorsal horn. Furthermore, flexibilide attenuated the CCI-induced downregulation of spinal transforming growth factor-β1 (TGF-β1) at 14 days after surgery. Finally, i.t. SB431542, a selective inhibitor of TGF-β type I receptor, blocked the analgesic effects of flexibilide in CCI rats. Our results suggest that flexibilide may serve as a therapeutic agent for neuropathic pain. In addition, spinal TGF-β1 may be involved in the anti-neuroinflammatory and analgesic effects of flexibilide.
Collapse
|
40
|
Hsu CC, Chang CW, Peng CH, Liang CS. Rapid Management of Trigeminal Neuralgia and Comorbid Major Depressive Disorder With Duloxetine. Ann Pharmacother 2014; 48:1090-1092. [DOI: 10.1177/1060028014532789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: To describe a case of a patient diagnosed with major depressive disorder whose trigeminal neuralgia was unexpectedly but rapidly and efficiently responsive to duloxetine. Case Summary: A 37-year-old woman was diagnosed with trigeminal neuralgia, and the initial treatment with carbamazepine 800 mg/d did not improve her pain. In the following 3 years, she was poorly responsive to the combination therapy with several medications, including carbamazepine, valproate, baclofen, diclofenac, and acetaminophen. The repeated gamma knife radiosurgery still did not relieve her symptoms. She developed clinically significant depressive symptoms, and a diagnosis of major depressive disorder was made. Duloxetine 30 mg/d was initiated for the management of depression, with the dose gradually increased to 60 mg/d. Unexpectedly, at the dose of 60 mg/d, the patient reported remarkable relief in her trigeminal neuralgia within the first week. Her depressed mood gradually improved in the following 3 weeks. At the 4-year follow-up, she was gradually tapered off her medications, and her depression and trigeminal neuralgia were well managed on duloxetine 60 mg/d and carbamazepine 600 mg/d. Discussion: The mechanisms may be related to duloxetine’s ability to modulate norepinephrine and serotonin and antagonize N-methyl-d-aspartate (NMDA) receptors. The ignition hypothesis is a proposed etiology of trigeminal neuralgia, in that any individual hyperexcitable neuron can spread its discharge quickly to activate the entire population of neurons. We suggest that duloxetine exerts desynchronizing effects through its NMDA antagonism, modulating the hyperexcitable state of the trigeminal afferents. Conclusions: Duloxetine may be an adjuvant in treatment-resistant trigeminal neuralgia.
Collapse
Affiliation(s)
- Chung-Chih Hsu
- Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chun-Wei Chang
- Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chia-Ho Peng
- Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chih-Sung Liang
- Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
41
|
Development of nNOS-positive neurons in the rat sensory and sympathetic ganglia. Neuroscience 2014; 256:271-81. [DOI: 10.1016/j.neuroscience.2013.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/25/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022]
|
42
|
Plasma amino acids changes in complex regional pain syndrome. PAIN RESEARCH AND TREATMENT 2013; 2013:742407. [PMID: 24303215 PMCID: PMC3835366 DOI: 10.1155/2013/742407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/18/2013] [Accepted: 09/22/2013] [Indexed: 11/18/2022]
Abstract
Complex regional pain syndrome (CRPS) is a severe chronic pain condition that most often develops following trauma. Blood samples were collected from 220 individuals, 160 CRPS subjects, and 60 healthy pain-free controls. Plasma amino acid levels were compared and contrasted between groups. L-Aspartate, L-glutamate, and L-ornithine were significantly increased, whereas L-tryptophan and L-arginine were significantly decreased in CRPS subjects as compared to controls. In addition, the L-kynurenine to L-tryptophan ratio demonstrated a significant increase, whereas the global arginine bioavailability ratio (GABR) was significantly decreased in the CRPS subjects. The CRPS subjects demonstrated a significant correlation between overall pain and the plasma levels of L-glutamate and the L-kynurenine to L-tryptophan ratio. CRPS subjects also showed a correlation between the decrease in plasma L-tryptophan and disease duration. This study shows that CRPS subjects exhibit significant changes in plasma levels of amino acids involved in glutamate receptor activation and in amino acids associated with immune function as compared to healthy pain-free controls. A better understanding of the role plasma amino acids play in the pathophysiology of CRPS may lead to novel treatments for this crippling condition.
Collapse
|
43
|
Piaulino CA, Carvalho FCB, Almeida BC, Chaves MH, Almeida FRC, Brito SMRC. The stem bark extracts of Cenostigma macrophyllum attenuates tactile allodynia in streptozotocin-induced diabetic rats. PHARMACEUTICAL BIOLOGY 2013; 51:1243-1248. [PMID: 23844576 DOI: 10.3109/13880209.2013.786096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
UNLABELLED CONTEXT. Cenostigma macrophyllum Tul. var. acuminata Teles Freire (Leguminosae- Caesalpinioideae) is popularly known as "caneleiro". Previous studies showed antioxidant action and analgesic effects of the ethanol extract from the leaves of C. macrophyllum. The phytochemical evaluation of the stem bark revealed the presence of antinociceptive compounds. OBJECTIVE To investigate the antinociceptive actions of the ethanol extract and ethyl acetate fraction from C. macrophyllum stem bark in streptozotocin (STZ)-induced diabetic rats and the involvement of opioid and nitrergic mechanisms. MATERIALS AND METHODS STZ-rats received the ethanol extract (E.EtOH 200 and 300 mg/kg, p.o.) during 5 weeks. In acute experiments, untreated diabetic rats were treated with the ethyl acetate fraction (F.EtOAc 250 and 500 mg/kg, p.o.), on the 28th day of diabetes induction when the opioid and nitrergic mechanisms were investigated. The mechanical nociceptive threshold (MNT) was determined by application of von Frey filaments. RESULTS Data show that STZ-induced diabetic rats developed a significant tactile allodynia during 5 weeks. Diabetic rats that received E.EtOH (200 and 300 mg/kg) and F.EtOAc (250 and 500 mg/kg) had a pain threshold higher than those in the STZ-vehicle group. F.EtOAc effects were inhibited by pretreatment with naloxone and were not influenced by .-arginine. DISCUSSION AND CONCLUSION The results suggest that the ethanol extract and ethyl acetate fraction of C. macrophyllum presented antinociceptive activity. Thus, F.EtOAc may be exerting its effect by affecting the opioid system, but nitrergic mechanisms are not detectable. The observed activity may be due to its gallic acid, lupeol and bergenin content.
Collapse
Affiliation(s)
- Celyane Alves Piaulino
- Department of Biochemistry and Pharmacology, Federal University of Piaui, Teresina-PI, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Carrión MD, Chayah M, Entrena A, López A, Gallo MA, Acuña-Castroviejo D, Camacho ME. Synthesis and biological evaluation of 4,5-dihydro-1H-pyrazole derivatives as potential nNOS/iNOS selective inhibitors. Part 2: Influence of diverse substituents in both the phenyl moiety and the acyl group. Bioorg Med Chem 2013; 21:4132-42. [DOI: 10.1016/j.bmc.2013.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
|
45
|
Joshi RP, Negi G, Kumar A, Pawar YB, Munjal B, Bansal AK, Sharma SS. SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: an insight into its mechanism for neuroprotection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:776-85. [PMID: 23347896 DOI: 10.1016/j.nano.2013.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 11/19/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
UNLABELLED Curcumin has shown to be effective against various diabetes related complications. However major limitation with curcumin is its low bioavailability. In this study we formulated and characterized self nano emulsifying drug delivery system (SNEDDS) curcumin formulation to enhance its bioavailability and then evaluated its efficacy in experimental diabetic neuropathy. Bioavailability studies were performed in male Sprague Dawley rats. Further to evaluate the efficacy of formulation in diabetic neuropathy various parameters like nerve function and sensorimotor perception were assessed along with study of inflammatory proteins (NF-κB, IKK-β, COX-2, iNOS, TNF-α and IL-6). Nanotechnology based formulation resulted in prolonged plasma exposure and bioavailability. SNEDDS curcumin provided better results against functional, behavioural and biochemical deficits in experimental diabetic neuropathy, when compared with naive curcumin. Further western blot analysis confirmed the greater neuroprotective action of SNEDDS curcumin. SNEDDS curcumin formulation due to higher bioavailability was found to afford enhanced protection in diabetic neuropathy. FROM THE CLINICAL EDITOR In this study the authors formulated and characterized a self-emulsifying drug delivery system for formulation to enhance curcumin bioavailability in experimental diabetic neuropathy. Enhanced efficacy was demonstrated in a rat model.
Collapse
Affiliation(s)
- Rayanta P Joshi
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | | | | | | | | | | | | |
Collapse
|
46
|
Kandhare AD, Ghosh P, Ghule AE, Bodhankar SL. Elucidation of molecular mechanism involved in neuroprotective effect of Coenzyme Q10 in alcohol-induced neuropathic pain. Fundam Clin Pharmacol 2012; 27:603-22. [DOI: 10.1111/fcp.12003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/30/2012] [Accepted: 09/11/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Amit D. Kandhare
- Department of Pharmacology; Poona College of Pharmacy; Bharati Vidyapeeth Deemed University; Pune Maharashtra 411038 India
| | - Pinaki Ghosh
- Department of Pharmacology; Poona College of Pharmacy; Bharati Vidyapeeth Deemed University; Pune Maharashtra 411038 India
| | - Arvindkumar E. Ghule
- Department of Pharmacology; Poona College of Pharmacy; Bharati Vidyapeeth Deemed University; Pune Maharashtra 411038 India
| | - Subhash L. Bodhankar
- Department of Pharmacology; Poona College of Pharmacy; Bharati Vidyapeeth Deemed University; Pune Maharashtra 411038 India
| |
Collapse
|
47
|
Elucidation of ameliorative effect of Co-enzyme Q10 in streptozotocin-induced diabetic neuropathic perturbation by modulation of electrophysiological, biochemical and behavioral markers. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.biomag.2012.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Chopra K, Tiwari V. Alcoholic neuropathy: possible mechanisms and future treatment possibilities. Br J Clin Pharmacol 2012; 73:348-62. [PMID: 21988193 DOI: 10.1111/j.1365-2125.2011.04111.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic alcohol consumption produces painful peripheral neuropathy for which there is no reliable successful therapy, mainly due to lack of understanding of its pathobiology. Alcoholic neuropathy involves coasting caused by damage to nerves that results from long term excessive drinking of alcohol and is characterized by spontaneous burning pain, hyperalgesia and allodynia. The mechanism behind alcoholic neuropathy is not well understood, but several explanations have been proposed. These include activation of spinal cord microglia after chronic alcohol consumption, oxidative stress leading to free radical damage to nerves, activation of mGlu5 receptors in the spinal cord and activation of the sympathoadrenal and hypothalamo-pituitary-adrenal (HPA) axis. Nutritional deficiency (especially thiamine deficiency) and/or the direct toxic effect of alcohol or both have also been implicated in alcohol-induced neuropathic pain. Treatment is directed towards halting further damage to the peripheral nerves and restoring their normal functioning. This can be achieved by alcohol abstinence and a nutritionally balanced diet supplemented by all B vitamins. However, in the setting of ongoing alcohol use, vitamin supplementation alone has not been convincingly shown to be sufficient for improvement in most patients. The present review is focused around the multiple pathways involved in the development of peripheral neuropathy associated with chronic alcohol intake and the different therapeutic agents which may find a place in the therapeutic armamentarium for both prevention and management of alcoholic neuropathy.
Collapse
Affiliation(s)
- Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study, Panjab University, Chandigarh-160 014, India.
| | | |
Collapse
|
49
|
Chun YH, Auh QS, Lee J, Ro JY. Masseter inflammation differentially regulates three nitric oxide synthases in the rat trigeminal subnucleus caudalis. Arch Oral Biol 2012; 57:1141-6. [PMID: 22480457 DOI: 10.1016/j.archoralbio.2012.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 01/09/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate changes in expression levels of three nitric oxide synthases (NOSs), namely inducible NOS (iNOS), neuronal NOS (nNOS) and endothelial NOS (eNOS), in the subnucleus caudalis of the trigeminal sensory nuclear complex (Vc) under experimental myositis conditions. DESIGN Male Sprague Dawley rats were injected with an inflammatory agent, complete Freund's adjuvant (CFA), or capsaicin in the masseter muscle. The brainstem region containing the Vc was extracted at both immediate (30 and 60 min) and longer (1, 3, 7 days) time points to examine the changes in the three NOS protein levels via the Western blot technique. Subsequently, the RT-PCR experiments were carried out to verify the changes in iNOS mRNA. RESULTS Following the injections of CFA, there were no significant changes in the level of the three NOS proteins at the immediate time points. However, there was a significant upregulation of iNOS mRNA and protein 3 days after CFA-induced inflammation. Neither nNOS nor eNOS showed significant changes in the protein level at any of the longer time points. Capsaicin injection in the masseter, which we recently reported to upregulate all three NOS at the immediate time points, did not result in significant changes at longer time points. CONCLUSION Acute and chronic muscle inflammation differentially modulates the expression of the three NOS in the Vc. These data suggest that the contribution of each NOS in craniofacial muscle pain processing under inflammatory conditions may be anticipated with distinct temporal profiles.
Collapse
Affiliation(s)
- Yang Hyun Chun
- Kyung Hee University, School of Dentistry, Department of Oral Medicine, 1 Hoegi Dong, Dongdaemun Gu, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
50
|
Raygude KS, Kandhare AD, Ghosh P, Ghule AE, Bodhankar SL. Evaluation of ameliorative effect of quercetin in experimental model of alcoholic neuropathy in rats. Inflammopharmacology 2012; 20:331-41. [DOI: 10.1007/s10787-012-0122-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 01/27/2012] [Indexed: 12/31/2022]
|