1
|
Tracy EP, Adereti I, Chu J, Brown J. Hereditary haemorrhagic telangiectasia type 1 complicated by recurrent deep-seated MSSA infections necessitating lifelong antibiotic suppression. BMJ Case Rep 2024; 17:e258558. [PMID: 39375159 DOI: 10.1136/bcr-2023-258558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) leads to arteriovenous malformations (AVM) that increase the risk of haemorrhage and cause right-left shunting bypassing the reticuloendothelial system increasing the risk for recurrent infections. A 60+ year old male patient with HHT type 1 (status post six pulmonary AVM coiled embolisations) with epistaxis presented with intractable back pain, methicillin-sensitive Staphylococcus aureus (MSSA) bacteraemia and spinal MRI revealing spondylodiskitis and L4-L5 epidural phlegmon. He has an extensive history of deep-seated infections including two prior spinal infections, two joint infections and one muscular abscess-all with MSSA. The patient was treated with 6 weeks of intravenous nafcillin with symptom resolution. Infectious disease prescribed cefalexin 500 mg daily for suppression of infection recurrence considering his extensive deep-seated infection history and multiple risk factors. This case raises important questions about preventative antimicrobial management of high-risk patients with HHT, which is a grey area in current international HHT guidelines.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Medicine, University of Louisville, Louisville, Kentucky, USA
| | | | - Justin Chu
- Sports Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Julianna Brown
- Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
2
|
Wu J, Liu B, Zhou Z. Genetic analysis of a family with hereditary hemorrhagic telangiectasia caused by a novel frameshift deletion mutation of the endoglin (ENG) gene. Med Clin (Barc) 2024:S0025-7753(24)00385-3. [PMID: 39025773 DOI: 10.1016/j.medcli.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 07/20/2024]
Affiliation(s)
- Jiangtao Wu
- Department of Radiology, The First Affiliated Hospital of Dali University, Dali, China
| | - Bin Liu
- Department of General Surgery, Baoshan People's Hospital, Bao shan, China
| | - Zhou Zhou
- Department of Radiology, The First Affiliated Hospital of Dali University, Dali, China.
| |
Collapse
|
3
|
Ahmed S, Ansari AI, Khan AS, Khan JA. Diffuse pulmonary arteriovenous malformation presenting with secondary polycythemia and headaches: a case report. J Med Case Rep 2024; 18:313. [PMID: 38973008 PMCID: PMC11229252 DOI: 10.1186/s13256-024-04643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Pulmonary arteriovenous malformations are a relatively uncommon medical condition, affecting roughly 1 in every 2500 individuals. Of those suffering from pulmonary arteriovenous malformations, 80% have an underlying genetic condition: hereditary hemorrhagic telangiectasia. CASE PRESENTATION We present the case of a 20-year-old Pakistani male with a history of persistent slower-onset frontal headaches that increased in severity within the course of the day. His hemoglobin was 18 g/dl, indicating polycythemia, for which he had undergone seven venesections in a month previously. His physical examination was unremarkable. His computed tomography scan depicted multiple dilated tortuous vessels with branching linear opacities in the right lower lobe of the lungs. The multiple feeding arteries were supplied by the right main pulmonary artery, and the large draining veins led to the right inferior pulmonary vein. This was identified as a diffuse pulmonary arteriovenous malformation. He was recommended for a right pulmonary artery angiogram. It showed multiple tortuous vessels with a nidus and large draining veins-features of a diffuse arteriovenous malformation in the right lower lobe of the lung consistent with the computed tomography scan. Embolization of two of these vessels feeding the arteriovenous malformation was conducted, using Amplatzer Vascular plug 2, whereas multiple pushable coils (five coils) were used for embolizing the third feeding vessel. This achieved 70-80% successful embolization of right pulmonary AVM; however, some residual flow was still seen in the arteriovenous malformation given the complexity of the lesion. Immediately after, his oxygen saturation improved from 78% to 96%. CONCLUSION Diffuse pulmonary arteriovenous malformations, as seen in this patient, are rare, accounting for less than 5% of total pulmonary arteriovenous malformations diagnosed. The patient presented with a complaint of progressive frontal headaches, which can be attributed to low oxygen saturation or the presence of a cerebral arteriovenous malformation. There was no history of hereditary hemorrhagic telangiectasia in the patient's family. Furthermore, although most patients with hereditary hemorrhagic telangiectasia and hence pulmonary arteriovenous malformation have complaints of iron-deficiency anemia, our patient in contrast was suffering from polycythemia. This can be explained as a compensatory mechanism in hypoxemic conditions. Moreover, the patient had no complaint of hemoptysis or epistaxis, giving a varied presentation in comparison with a typical pulmonary arteriovenous malformation.
Collapse
Affiliation(s)
- Salaar Ahmed
- Medical College, Aga Khan University, Stadium Road, Karachi, 74800, Pakistan.
| | - Amna Irfan Ansari
- Medical College, Aga Khan University, Stadium Road, Karachi, 74800, Pakistan
| | - Abdullah Saeed Khan
- Medical College, Aga Khan University, Stadium Road, Karachi, 74800, Pakistan
| | - Javaid Ahmed Khan
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
4
|
Desroches-Castan A, Koca D, Liu H, Roelants C, Resmini L, Ricard N, Bouvard C, Chaumontel N, Tharaux PL, Tillet E, Battail C, Lenoir O, Bailly S. BMP9 is a key player in endothelial identity and its loss is sufficient to induce arteriovenous malformations. Cardiovasc Res 2024; 120:782-795. [PMID: 38502919 DOI: 10.1093/cvr/cvae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/10/2023] [Accepted: 12/18/2023] [Indexed: 03/21/2024] Open
Abstract
AIMS BMP9 is a high affinity ligand of ALK1 and endoglin receptors that are mutated in the rare genetic vascular disorder hereditary hemorrhagic telangiectasia (HHT). We have previously shown that loss of Bmp9 in the 129/Ola genetic background leads to spontaneous liver fibrosis via capillarization of liver sinusoidal endothelial cells (LSEC) and kidney lesions. We aimed to decipher the molecular mechanisms downstream of BMP9 to better characterize its role in vascular homeostasis in different organs. METHODS AND RESULTS For this, we performed an RNA-seq analysis on LSEC from adult WT and Bmp9-KO mice and identified over 2000 differentially expressed genes. Gene ontology analysis showed that Bmp9 deletion led to a decrease in BMP and Notch signalling, but also LSEC capillary identity while increasing their cell cycle. The gene ontology term 'glomerulus development' was also negatively enriched in Bmp9-KO mice vs. WT supporting a role for BMP9 in kidney vascularization. Through different imaging approaches (electron microscopy, immunostainings), we found that loss of Bmp9 led to vascular enlargement of the glomeruli capillaries associated with alteration of podocytes. Importantly, we also showed for the first time that the loss of Bmp9 led to spontaneous arteriovenous malformations (AVMs) in the liver, gastrointestinal tract, and uterus. CONCLUSION Altogether, these results demonstrate that BMP9 plays an important role in vascular quiescence both locally in the liver by regulating endothelial capillary differentiation markers and cell cycle but also at distance in many organs via its presence in the circulation. It also reveals that loss of Bmp9 is sufficient to induce spontaneous AVMs, supporting a key role for BMP9 in the pathogenesis of HHT.
Collapse
Affiliation(s)
- Agnes Desroches-Castan
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 17 avenue des Martyrs, 38054 Grenoble, France
| | - Dzenis Koca
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 17 avenue des Martyrs, 38054 Grenoble, France
| | - Hequn Liu
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 17 avenue des Martyrs, 38054 Grenoble, France
| | - Caroline Roelants
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 17 avenue des Martyrs, 38054 Grenoble, France
| | - Léa Resmini
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Nicolas Ricard
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 17 avenue des Martyrs, 38054 Grenoble, France
| | - Claire Bouvard
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 17 avenue des Martyrs, 38054 Grenoble, France
| | - Nicolas Chaumontel
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 17 avenue des Martyrs, 38054 Grenoble, France
| | | | - Emmanuelle Tillet
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 17 avenue des Martyrs, 38054 Grenoble, France
| | - Christophe Battail
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 17 avenue des Martyrs, 38054 Grenoble, France
| | | | - Sabine Bailly
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 17 avenue des Martyrs, 38054 Grenoble, France
| |
Collapse
|
5
|
Cubiró X, Garcia-Melendo C, Morales-Munera CE, Riera-Mestre A, Torres-Iglesias R, Villanueva B, Puig L, Baselga E. Comparative Treatment of Mucocutaneous Lesions in Hereditary Haemorrhagic Telangiectasia Patients With Dual Sequential Pulsed Dye Laser and Neodymium: Yttrium-Aluminium-Garnet Versus Neodymium: Yttrium-Aluminium-Garnet Laser Alone: A Double-Blind Randomized Controlled Study With Quality-of-Life Evaluation. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:246-257. [PMID: 37913989 DOI: 10.1016/j.ad.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Hereditary haemorrhagic telangiectasia (HHT) is characterized by the presence of telangiectases and larger arteriovenous malformations in different organs. Mucocutaneous telangiectases can bleed and become an aesthetic concern, impairing quality of life (QoL). However, the best treatment approach has not been defined yet. OBJECTIVE To evaluate the efficacy and safety of dual wavelength sequential 595/1064nm laser (DWSL) compared to 1064nm laser (Nd:YAG) alone. Secondarily, to evaluate QoL impairment in HHT patients, and its improvement with laser therapy. METHODS A comparative randomized split-body double-blinded prospective study (DWSL vs Nd:YAG). Demographic, clinical and treatment characteristics were recorded. The severity and degree of improvement were evaluated by three blinded examiners who scored pre-treatment and post-treatment pictures on a 5-point scale. Patients fulfilled Skindex-29 and FACE-Q® tests and assessed procedure-associated pain and patient satisfaction. RESULTS 111 treatment areas (55 treated with DWSL and 56 with Nd:YAG) from 26 patients were analyzed. The median number of laser sessions was 2 (interquartile range [IQR] 2-4; mean 2.90 vs 2.88, respectively). The median improvement score, irrespective of location, was significantly higher for Nd:YAG compared to DWSL: 3 (IQR 2-3; mean 2.61) vs 2 (IQR 2-3; mean 2.32), p=0.031. Both FACE-Q index and Skindex-29 test results improved significantly (p<0.001), and 92.4% patients reported a high degree of satisfaction (≥8). No severe adverse events were reported. CONCLUSIONS DWSL and Nd:YAG laser are convenient, safe and effective treatment options for mucocutaneous telangiectases in HHT patients. However, Nd:YAG delivered better results with better tolerability. QoL was significantly improved by both treatments.
Collapse
Affiliation(s)
- X Cubiró
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigació Biomèdica IIB Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Dermatology, Hospital de Mollet, Mollet del Vallès, Barcelona, Spain.
| | - C Garcia-Melendo
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigació Biomèdica IIB Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Dermatology, Consorci Sanitari de Terrassa, Terrassa, Barcelona, Spain
| | - C E Morales-Munera
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigació Biomèdica IIB Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Riera-Mestre
- Hereditary Hemorrhagic Telangiectasia Unit, Department of Internal Medicine, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - R Torres-Iglesias
- Hereditary Hemorrhagic Telangiectasia Unit, Department of Internal Medicine, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - B Villanueva
- Hereditary Hemorrhagic Telangiectasia Unit, Department of Internal Medicine, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - L Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigació Biomèdica IIB Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - E Baselga
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigació Biomèdica IIB Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Dermatology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
6
|
Cubiró X, Garcia-Melendo C, Morales-Munera CE, Riera-Mestre A, Torres-Iglesias R, Villanueva B, Puig L, Baselga E. Comparative Treatment of Mucocutaneous Lesions in Hereditary Haemorrhagic Telangiectasia Patients With Dual Sequential Pulsed Dye Laser and Neodymium: Yttrium-Aluminium-Garnet Versus Neodymium: Yttrium-Aluminium-Garnet Laser Alone: A Double-Blind Randomized Controlled Study With Quality-of-Life Evaluation. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:T246-T257. [PMID: 38185205 DOI: 10.1016/j.ad.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Hereditary haemorrhagic telangiectasia (HHT) is characterized by the presence of telangiectases and larger arteriovenous malformations in different organs. Mucocutaneous telangiectases can bleed and become an aesthetic concern, impairing quality of life (QoL). However, the best treatment approach has not been defined yet. OBJECTIVE To evaluate the efficacy and safety of dual wavelength sequential 595/1064nm laser (DWSL) compared to 1064nm laser (Nd:YAG) alone. Secondarily, to evaluate QoL impairment in HHT patients, and its improvement with laser therapy. METHODS A comparative randomized split-body double-blinded prospective study (DWSL vs Nd:YAG). Demographic, clinical and treatment characteristics were recorded. The severity and degree of improvement were evaluated by three blinded examiners who scored pre-treatment and post-treatment pictures on a 5-point scale. Patients fulfilled Skindex-29 and FACE-Q® tests and assessed procedure-associated pain and patient satisfaction. RESULTS 111 treatment areas (55 treated with DWSL and 56 with Nd:YAG) from 26 patients were analyzed. The median number of laser sessions was 2 (interquartile range [IQR] 2-4; mean 2.90 vs 2.88, respectively). The median improvement score, irrespective of location, was significantly higher for Nd:YAG compared to DWSL: 3 (IQR 2-3; mean 2.61) vs 2 (IQR 2-3; mean 2.32), p=0.031. Both FACE-Q index and Skindex-29 test results improved significantly (p<0.001), and 92.4% patients reported a high degree of satisfaction (≥8). No severe adverse events were reported. CONCLUSIONS DWSL and Nd:YAG laser are convenient, safe and effective treatment options for mucocutaneous telangiectases in HHT patients. However, Nd:YAG delivered better results with better tolerability. QoL was significantly improved by both treatments.
Collapse
Affiliation(s)
- X Cubiró
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, España; Institut d'Investigació Biomèdica IIB Sant Pau, Barcelona, España; Universitat Autònoma de Barcelona, Barcelona, España; Department of Dermatology, Hospital de Mollet, Mollet del Vallès, Barcelona, España.
| | - C Garcia-Melendo
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, España; Institut d'Investigació Biomèdica IIB Sant Pau, Barcelona, España; Universitat Autònoma de Barcelona, Barcelona, España; Department of Dermatology, Consorci Sanitari de Terrassa, Terrassa, Barcelona, España
| | - C E Morales-Munera
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, España; Institut d'Investigació Biomèdica IIB Sant Pau, Barcelona, España; Universitat Autònoma de Barcelona, Barcelona, España
| | - A Riera-Mestre
- Hereditary Hemorrhagic Telangiectasia Unit, Department of Internal Medicine, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, España; Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, España; Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, España
| | - R Torres-Iglesias
- Hereditary Hemorrhagic Telangiectasia Unit, Department of Internal Medicine, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, España; Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, España
| | - B Villanueva
- Hereditary Hemorrhagic Telangiectasia Unit, Department of Internal Medicine, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, España; Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, España
| | - L Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, España; Institut d'Investigació Biomèdica IIB Sant Pau, Barcelona, España; Universitat Autònoma de Barcelona, Barcelona, España
| | - E Baselga
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, España; Institut d'Investigació Biomèdica IIB Sant Pau, Barcelona, España; Universitat Autònoma de Barcelona, Barcelona, España; Department of Dermatology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, España
| |
Collapse
|
7
|
Guilhem A, Ciudad M, Aubriot-Lorton MH, Greigert H, Cladière C, Leguy-Seguin V, Audia S, Samson M, Bonnotte B. Pro-angiogenic changes of T-helper lymphocytes in hereditary hemorrhagic telangiectasia. Front Immunol 2023; 14:1321182. [PMID: 38143764 PMCID: PMC10748412 DOI: 10.3389/fimmu.2023.1321182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a rare inherited disease due to heterozygous loss-of-function mutations on the BMP9/10 pathway (ENG, ACVRL1 or MADH4 mainly). HHT endothelial cells are prone to lose their quiescence, leading to progressive appearance of numerous telangiectases on skin and mucosa (complicated by epistaxis and anemia), and to larger arteriovenous malformations in lungs, liver and brain. HHT is also associated with T lymphocyte abnormalities, which are currently poorly understood. We quantified by flow-cytometry the main T lymphocyte circulating subsets in 40 HHT patients and 20 matched healthy controls. Immunostaining was done on 2 HHT skin telangiectases. Disruptions in T lymphocyte homeostasis was observed, characterized by increases in subsets known to promote angiogenesis: Th2 (1.38% vs 1.15%, p=0.021), Th17 (0.32% vs 0.22%, p=0.019 2) and Treg (4.94% vs 3.51%, p= 0.027). T angiogenic lymphocytes (Tang), defined as CD3+CD31+CXCR4+ T cells, were at similar levels in both groups, but the proportion of VEGF-A+ Tang after stimulation was higher in the HHT group compared to controls (68.2% vs 44.9%, p=0.012). The global HHT T lymphopenia predominantly affected the effector memory T-helper cells (200 vs 270 cells/mm3, p=0.017), and the lymphocytic infiltrate around HHT telangiectases consisted of memory T-helper cells. The Th17 circulating subset was positively correlated with the monthly epistaxis duration (r coefficient: +0,431, p=0.042), prospectively assessed. HHT T-helper lymphocytes are affected by several pro-angiogenic changes, potentially resulting from their recruitment by abnormal endothelial cells. They could constitute a biologically relevant source of VEGF-A and a valuable therapeutic target in HHT.
Collapse
Affiliation(s)
- Alexandre Guilhem
- Service de Médecine Interne et Immunologie Clinique, Centre de compétence maladie de Rendu-Osler, Centre Hospitalo-Universitaire Dijon Bourgogne, Dijon, France
- Université de Bourgogne, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Marion Ciudad
- Université de Bourgogne, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | | | - Hélène Greigert
- Service de Médecine Interne et Immunologie Clinique, Centre de compétence maladie de Rendu-Osler, Centre Hospitalo-Universitaire Dijon Bourgogne, Dijon, France
| | - Claudie Cladière
- Université de Bourgogne, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Vanessa Leguy-Seguin
- Service de Médecine Interne et Immunologie Clinique, Centre de compétence maladie de Rendu-Osler, Centre Hospitalo-Universitaire Dijon Bourgogne, Dijon, France
| | - Sylvain Audia
- Service de Médecine Interne et Immunologie Clinique, Centre de compétence maladie de Rendu-Osler, Centre Hospitalo-Universitaire Dijon Bourgogne, Dijon, France
- Université de Bourgogne, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Maxime Samson
- Service de Médecine Interne et Immunologie Clinique, Centre de compétence maladie de Rendu-Osler, Centre Hospitalo-Universitaire Dijon Bourgogne, Dijon, France
- Université de Bourgogne, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Bernard Bonnotte
- Service de Médecine Interne et Immunologie Clinique, Centre de compétence maladie de Rendu-Osler, Centre Hospitalo-Universitaire Dijon Bourgogne, Dijon, France
- Université de Bourgogne, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| |
Collapse
|
8
|
Dinakaran S, Zhao H, Tang Y, Wang Z, Ruiz S, Nomura-Kitabayashi A, Blanc L, Faughnan ME, Marambaud P. CDK6-mediated endothelial cell cycle acceleration drives arteriovenous malformations in hereditary hemorrhagic telangiectasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.554413. [PMID: 37745444 PMCID: PMC10515892 DOI: 10.1101/2023.09.15.554413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Increased endothelial cell (EC) proliferation is a hallmark of arteriovenous malformations (AVMs) in hereditary hemorrhagic telangiectasia (HHT). The underlying mechanism and disease relevance of this abnormal cell proliferative state of the ECs remain unknown. Here, we report the identification of a CDK6-driven mechanism of cell cycle progression deregulation directly involved in EC proliferation and HHT vascular pathology. Specifically, HHT mouse liver ECs exhibited defects in their cell cycle control characterized by a G1/S checkpoint bypass and acceleration of cell cycle speed. Phosphorylated retinoblastoma (p-RB1)-a marker of G1/S transition through the restriction point-significantly accumulated in ECs of HHT mouse retinal AVMs and HHT patient skin telangiectasias. Mechanistically, ALK1 loss of function increased the expression of key restriction point mediators, and treatment with palbociclib or ribociclib, two CDK4/6 inhibitors, blocked p-RB1 increase and retinal AVMs in HHT mice. Palbociclib also improved vascular pathology in the brain and slowed down endothelial cell cycle speed and EC proliferation. Specific deletion of Cdk6 in ECs was sufficient to protect HHT mice from AVM pathology. Thus, CDK6-mediated endothelial cell cycle acceleration controls EC proliferation in AVMs and is a central determinant of HHT pathogenesis. We propose that clinically approved CDK4/6 inhibitors have repurposing potential in HHT.
Collapse
Affiliation(s)
- Sajeth Dinakaran
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Haitian Zhao
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Yuefeng Tang
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Zhimin Wang
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Santiago Ruiz
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Aya Nomura-Kitabayashi
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Lionel Blanc
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Division of Pediatrics Hematology/Oncology, Cohen Children’s Medical Center, New Hyde Park, New York, USA
| | - Marie E. Faughnan
- Toronto HHT Centre, St. Michael’s Hospital and Li Ka Shing Knowledge Institute, Toronto, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Philippe Marambaud
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| |
Collapse
|
9
|
Sánchez-Duffhues G, Hiepen C. Human iPSCs as Model Systems for BMP-Related Rare Diseases. Cells 2023; 12:2200. [PMID: 37681932 PMCID: PMC10487005 DOI: 10.3390/cells12172200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Disturbances in bone morphogenetic protein (BMP) signalling contribute to onset and development of a number of rare genetic diseases, including Fibrodysplasia ossificans progressiva (FOP), Pulmonary arterial hypertension (PAH), and Hereditary haemorrhagic telangiectasia (HHT). After decades of animal research to build a solid foundation in understanding the underlying molecular mechanisms, the progressive implementation of iPSC-based patient-derived models will improve drug development by addressing drug efficacy, specificity, and toxicity in a complex humanized environment. We will review the current state of literature on iPSC-derived model systems in this field, with special emphasis on the access to patient source material and the complications that may come with it. Given the essential role of BMPs during embryonic development and stem cell differentiation, gain- or loss-of-function mutations in the BMP signalling pathway may compromise iPSC generation, maintenance, and differentiation procedures. This review highlights the need for careful optimization of the protocols used. Finally, we will discuss recent developments towards complex in vitro culture models aiming to resemble specific tissue microenvironments with multi-faceted cellular inputs, such as cell mechanics and ECM together with organoids, organ-on-chip, and microfluidic technologies.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), ISPA-HUCA, Avda. de Roma, s/n, 33011 Oviedo, Spain
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Christian Hiepen
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| |
Collapse
|
10
|
Mitchell A, Frontini M, Islam S, Sivapalaratnam S, Krishnan A. Increased bleeding and thrombosis in myeloproliferative neoplasms mediated through altered expression of inherited platelet disorder genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541977. [PMID: 37292725 PMCID: PMC10245891 DOI: 10.1101/2023.05.23.541977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An altered thrombo-hemorrhagic profile has long been observed in patients with myeloproliferative neoplasms (MPNs). We hypothesized that this observed clinical phenotype may result from altered expression of genes known to harbor genetic variants in bleeding, thrombotic, or platelet disorders. Here, we identify 32 genes from a clinically validated gene panel that were also significantly differentially expressed in platelets from MPN patients as opposed to healthy donors. This work begins to unravel previously unclear mechanisms underlying an important clinical reality in MPNs. Knowledge of altered platelet gene expression in MPN thrombosis/bleeding diathesis opens opportunities to advance clinical care by: (1) enabling risk stratification, in particular, for patients undergoing invasive procedures, and (2) facilitating tailoring of treatment strategies for those at highest risk, for example, in the form of antifibrinolytics, desmopressin or platelet transfusions (not current routine practice). Marker genes identified in this work may also enable prioritization of candidates in future MPN mechanistic as well as outcome studies.
Collapse
Affiliation(s)
- Alan Mitchell
- Department of Clinical Haematology, Barts Health NHS Trust, University of Exeter Medical School, Faculty of Health and Life Sciences, RILD Building, Barrack Road, Exeter, EX2 5DW
| | - Mattia Frontini
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, RILD Building, Barrack Road, Exeter, EX2 5DW
| | | | - Suthesh Sivapalaratnam
- Department of Clinical Haematology, Barts Health NHS Trust, University of Exeter Medical School, Faculty of Health and Life Sciences, RILD Building, Barrack Road, Exeter, EX2 5DW
- Blizard Institute, Queen Mary University London
| | - Anandi Krishnan
- Department of Pathology, Stanford University School of Medicine
| |
Collapse
|
11
|
Cannavicci A, Zhang Q, Kutryk MJB. The Potential Role of MiRs-139-5p and -454-3p in Endoglin-Knockdown-Induced Angiogenic Dysfunction in HUVECs. Int J Mol Sci 2023; 24:ijms24054916. [PMID: 36902347 PMCID: PMC10003543 DOI: 10.3390/ijms24054916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic disease characterized by aberrant angiogenesis and vascular malformations. Mutations in the transforming growth factor beta co-receptor, endoglin (ENG), account for approximately half of known HHT cases and cause abnormal angiogenic activity in endothelial cells (ECs). To date, how ENG deficiency contributes to EC dysfunction remains to be fully understood. MicroRNAs (miRNAs) regulate virtually every cellular process. We hypothesized that ENG depletion results in miRNA dysregulation that plays an important role in mediating EC dysfunction. Our goal was to test the hypothesis by identifying dysregulated miRNAs in ENG-knockdown human umbilical vein endothelial cells (HUVECs) and characterizing their potential role in EC function. We identified 32 potentially downregulated miRNAs in ENG-knockdown HUVECs with a TaqMan miRNA microarray. MiRs-139-5p and -454-3p were found to be significantly downregulated after RT-qPCR validation. While the inhibition of miR-139-5p or miR-454-3p had no effect on HUVEC viability, proliferation or apoptosis, angiogenic capacity was significantly compromised as determined by a tube formation assay. Most notably, the overexpression of miRs-139-5p and -454-3p rescued impaired tube formation in HUVECs with ENG knockdown. To our knowledge, we are the first to demonstrate miRNA alterations after the knockdown of ENG in HUVECs. Our results indicate a potential role of miRs-139-5p and -454-3p in ENG-deficiency-induced angiogenic dysfunction in ECs. Further study to examine the involvement of miRs-139-5p and -454-3p in HHT pathogenesis is warranted.
Collapse
Affiliation(s)
- Anthony Cannavicci
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael J. B. Kutryk
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Correspondence: ; Tel.: +1-(416)-360-4000 (ext. 6155)
| |
Collapse
|
12
|
Kroll CJ, Kroll MH. Thrombosis in hereditary hemorrhagic telangiectasia. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:18-20. [PMID: 36695382 DOI: 10.1016/j.jtha.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Caleb J Kroll
- Section of Benign Hematology, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael H Kroll
- Section of Benign Hematology, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
13
|
Development and performance of a hereditary hemorrhagic telangiectasia-specific quality-of-life instrument. Blood Adv 2022; 6:4301-4309. [PMID: 35877137 PMCID: PMC9327531 DOI: 10.1182/bloodadvances.2022007748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is characterized by arteriovenous malformations and telangiectasia, with primary clinical manifestations of epistaxis and gastrointestinal bleeding and resultant anemia. HHT negatively affects health-related quality of life (HR-QoL); however, existing tools to measure HR-QoL are not HHT specific. Our objective was to develop an HHT-specific HR-QoL (HHT-QoL) instrument and evaluate its performance in a cross-sectional survey of individuals with HHT. Four HHT-specific questions were developed to evaluate the impact of HHT on productivity and social and personal interactions. An anonymous e-mail survey was conducted through Cure HHT. Participants also indicated their perceived HHT severity and completed 3 Patient-Reported Outcomes Measurement Information System (PROMIS) questionnaires: Discretionary Social Activities, Social Roles, and Emotional Distress. Complete data were available for 290 participants who self-identified their HHT severity as mild (29%), moderate (46%), or severe (25%). The HHT-QoL scale was reliable (Cronbach's-α, 0.83). Principal components analysis indicated the instrument was unidimensional. Participants had low levels of QoL with their ability to participate in discretionary social activities (PROMIS mean 36.4 [standard deviation 14.3]) and perform in social roles (41.5 [17.2]), and the presence of a high level of emotional distress (64.8 [24.2]). The HHT-QoL score correlated negatively with PROMIS Discretionary Social Activities (r = -0.65) and Social Roles (r = -0.68) and positively correlated with PROMIS Emotional Distress (r = 0.51). In conclusion, the 4-item HHT-QoL instrument provides valuable insight and may be a useful addition to future clinical research in HHT.
Collapse
|
14
|
Sârbu F, Oprea VD, Tatu AL, Polea Drima E, Bojincă VC, Romila A. Hereditary Hemorrhagic Telangiectasia Associating Neuropsychiatric Manifestations with a Significant Impact on Disease Management-Case Report and Literature Review. Life (Basel) 2022; 12:1059. [PMID: 35888148 PMCID: PMC9320563 DOI: 10.3390/life12071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
(1) Background: Genetic hereditary hemorrhagic telangiectasia (HHT) is clinically diagnosed. The clinical manifestations and lack of curative therapeutic interventions may lead to mental illnesses, mainly from the depression-anxiety spectrum. (2) Methods: We report the case of a 69-year-old patient diagnosed with HHT and associated psychiatric disorders; a comprehensive literature review was performed based on relevant keywords. (3) Results: Curaçao diagnostic criteria based the HHT diagnosis in our patient case at 63 years old around the surgical interventions for a basal cell carcinoma, after multiple episodes of epistaxis beginning in childhood, but with a long symptom-free period between 20 and 45 years of age. The anxiety-depressive disorder associated with nosocomephobia resulted in a delayed diagnosis and low adherence to medical monitoring. A comprehensive literature review revealed the scarcity of publications analyzing the impact of psychiatric disorders linked to this rare condition, frequently associating behavioral disengagement as a coping strategy, psychological distress, anxiety, depression, and hopelessness. (4) Conclusions: As patients with HHT face traumatic experiences from disease-related causes as well as recurring emergency hospital visits, active monitoring for mental illnesses and psychological support should be considered as part of the initial medical approach and throughout the continuum of care.
Collapse
Affiliation(s)
- Fabiola Sârbu
- Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University of Galati, 800216 Galati, Romania; (F.S.); (E.P.D.); (A.R.)
- “Elisabeta Doamna” Psychiatric Hospital, 800179 Galati, Romania
| | - Violeta Diana Oprea
- Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University of Galati, 800216 Galati, Romania; (F.S.); (E.P.D.); (A.R.)
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania
| | - Alin Laurențiu Tatu
- Clinical, Medical Department, Dermatology, ReForm UDJ, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University of Galati, 800216 Galati, Romania
- Dermatology Department, Clinical Hospital of Infectious Diseases Saint Parascheva, 800179 Galati, Romania
| | - Eduard Polea Drima
- Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University of Galati, 800216 Galati, Romania; (F.S.); (E.P.D.); (A.R.)
- “Elisabeta Doamna” Psychiatric Hospital, 800179 Galati, Romania
| | - Violeta Claudia Bojincă
- Internal Medicine Department, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy in Bucharest, 020021 Bucharest, Romania;
- Department of Internal Medicine and Rheumatology, “Sf. Maria” Hospital, 011172 Bucharest, Romania
| | - Aurelia Romila
- Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University of Galati, 800216 Galati, Romania; (F.S.); (E.P.D.); (A.R.)
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania
| |
Collapse
|
15
|
MicroRNA-132-3p, Downregulated in Myeloid Angiogenic Cells from Hereditary Hemorrhagic Telangiectasia Patients, Is Enriched in the TGFβ and PI3K/AKT Signalling Pathways. Genes (Basel) 2022; 13:genes13040665. [PMID: 35456471 PMCID: PMC9027908 DOI: 10.3390/genes13040665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Background. Hereditary hemorrhagic telangiectasia (HHT) is a rare, autosomal dominant genetic disorder characterized by life-threatening vascular dysplasia. Myeloid angiogenic cells (MACs), alternatively called early endothelial progenitor cells or circulating angiogenic cells, do not directly incorporate into developing blood vessels, but augment angiogenesis in a paracrine manner. MAC dysfunction has been reported in HHT. MicroRNAs (miRNAs) regulate cellular function by modulating gene expression post-transcriptionally. To date, the role of miRNAs in HHT MAC dysfunction has not been documented. Objective. The goal of this study was to comparatively profile miRNAs in HHT patient and control MACs to identify dysregulated miRNAs that may be responsible for the observed MAC dysfunction in HHT. Methodology/Results. Twenty-three dysregulated miRNAs (twenty-one upregulated and two downregulated) in HHT MACs were identified with a TaqMan miRNA microarray. Pathway enrichment analysis showed that the dysregulated miRNAs were significantly enriched in pathways involved in HHT pathogenesis, such as the transforming growth factor β (TGFβ), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), and Hippo signalling pathways. Furthermore, miR-132-3p was determined to be significantly reduced in HHT MACs compared with controls by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Bioinformatic analysis revealed that miR-132-3p is significantly enriched in the TGFβ and PI3K/AKT signalling pathways, targeting SMAD4, an effector of the TGFβ signalling pathway and RASA1, a negative regulator of the PI3K/AKT signalling pathway, respectively. Conclusion. MiRNA dysregulation, specifically reduced expression of miR-132-3p, in HHT MACs was identified. The dysregulated miRNAs are significantly enriched in the TGFβ, PI3K/AKT, and Hippo signalling pathways. These data suggest that alteration in miRNA expression may impair these pathways and contribute to MAC dysfunction in HHT.
Collapse
|
16
|
Khan AR, Waqar S, Wazir MH, Arif A. A Rare Case of Hereditary Hemorrhagic Telangiectasia: A Case Report. Cureus 2022; 14:e24517. [PMID: 35651452 PMCID: PMC9136551 DOI: 10.7759/cureus.24517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT), also known as Osler-Weber-Rendu syndrome, is a very rare autosomal dominant genetic disorder that leads to abnormal blood vessel formation in the skin, mucus membranes (called telangiectasia), and organs such as the lung, liver, and brain. It occurs due to a mutation in one of the ACVRL1, ENG, and SMAD4 genes, which code for the formation of blood vessels. The most common symptom is recurring nosebleed (epistaxis; due to rupture of nasal mucosal telangiectasia), which begins in childhood and affects about 90-95% of people with HHT. Other common signs and symptoms include punctate, linear, or splinter-like telangiectasias on the upper body, oral mucosa, or nail beds, gastrointestinal bleeding, and iron deficiency anemia. The diagnostic criteria currently in use are the Curaçao criteria. The diagnosis is made by clinical screening (e.g., history and physical exam), baseline investigations (complete blood count, hemoglobin, hematocrit, and ferritin level), genetic testing, and detailed medical imaging to detect visceral arteriovenous malformations (AVMs) such as esophagogastroduodenoscopy, colonoscopy, multiphase contrast CT, computed tomography angiography (CTA or CT Angio), magnetic resonance angiography (MRA), chest X-ray, Doppler ultrasonography, liver biopsy, and cerebral angiography. Management includes intravenous iron therapy or blood transfusion, antifibrinolytics (e.g tranexamic acid), ablation therapies (e.g. laser treatment, radiofrequency ablation, electrosurgery, sclerotherapy, and argon plasma coagulation), and systemic anti-angiogenic agents (e.g. thalidomide, bevacizumab). In this report, we present the case of a 22-year-old man from Swabi, Pakistan, with a history of recurrent epistaxis (nosebleed) from childhood, who presented with multiple episodes of melena (blood in stool), fatigue, palpitation, and iron deficiency anemia for five years. Multiple esophagogastroduodenoscopies (OGDs) and colonoscopies were done over the years, which showed AVM in the antrum and fundus of the stomach, duodenum, and colon, and a diagnosis of HHT was made. CTA and exploratory laparotomy showed ileal loop hemangiomas. He was managed with multiple blood transfusions, argon plasma coagulation (APC) for the AVMs, oral thalidomide, and steroids. Despite therapy, the patient had intermittent episodes of blood in stool and low blood counts. During his stay in Hayatabad Medical Complex (HMC), the patient was managed with high-frequency blood transfusion and bevacizumab (systemic anti-angiogenic agent). A dramatic reduction in the number of required transfusions and improvement in the patient's bloodlines and symptoms was noted. This case highlights the importance of endoscopic methods for the timely diagnosis of HHT and its management with intravenous bevacizumab.
Collapse
Affiliation(s)
- Ahmad R Khan
- Internal Medicine, Hayatabad Medical Complex Peshawar, Peshawar, PAK
| | - Salma Waqar
- Internal Medicine, Hayatabad Medical Complex Peshawar, Peshawar, PAK
| | | | - Amina Arif
- Internal Medicine, Hayatabad Medical Complex Peshawar, Peshawar, PAK
| |
Collapse
|
17
|
Guilhem A, Portalès P, Dupuis-Girod S, Rivière S, Vincent T. Altered expressions of CXCR4 and CD26 on T-helper lymphocytes in hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis 2021; 16:511. [PMID: 34906163 PMCID: PMC8670161 DOI: 10.1186/s13023-021-02139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic disease characterized by a deregulated neo-angiogenesis. Besides a mainly vascular phenotype (muco-cutaneous telangiectases, arteriovenous malformations), a specific risk of infection is suggested by case series of severe and atypical infections as well as by reports of decreased T and natural killer (NK) lymphocyte counts. As some evidence supports a dysregulation of the CXCR4/CXCL12 chemotactic axis of HHT endothelial cells, we hypothesized that a similar phenomenon could occur on lymphocytes. Methods Eighteen HHT patients with history of severe infection (HSI) were matched in age and sex with 18 HHT without HSI and 18 healthy control subjects (HC). We assessed the cell count and the surface expression of CXCR4 and CD26 (CXCL12 inactivating peptidase) of circulating T-helper and T-cytotoxic lymphocytes (including naive, memory and activated subsets) and NK cells. Results The overall HHT group of 36 patients exhibited a reduction of circulating T-helper lymphocytes compared to HC (median: 517 vs. 1026 cells/mm3, p < 0.0001), correlated with age (r = − 0.46, p = 0.005), requirement of intravenous iron or blood transfusions (median: 291 vs. 627 cells/mm3, p = 0.03) and CXCR4 surface expression (r = 0.353, p = 0.0345). CXCR4 and CD26 membrane expression were both decreased on HHT T-helper lymphocytes (median MFI ratio: 4.49 vs. 5.74 for CXCR4 and 3.21 vs. 4.33 for CD26, p = 0.03 and 0.0018 respectively) with an unchanged CXCR4/CD26 ratio. The HHT group with HSI had a higher CXCR4/CD26 ratio on the total T-lymphocyte population, as well as on the T-helper population and its naive subset (median on naive T-helper cells: 2.34 vs. 1.32, p = 0.0002). Conclusions Our findings support a dysregulation of the CXCL12/CXCR4 chemotaxis of T-helper lymphocytes in HHT patients, potentially linked to their T-helper lymphopenia and susceptibility to infection. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02139-y.
Collapse
Affiliation(s)
- Alexandre Guilhem
- CHU de Montpellier, Médecine interne et maladies multi-organiques de l'adulte, Hôpital Saint Eloi, Montpellier, France.
| | - Pierre Portalès
- CHU de Montpellier, Laboratoire d'immunologie, Hôpital Saint Eloi, Montpellier, France
| | - Sophie Dupuis-Girod
- Centre National de référence Maladie de Rendu-Osler, Service de génétique Hôpital Mère-Enfant, Hospices Civils de Lyon, Bron, France
| | - Sophie Rivière
- CHU de Montpellier, Médecine interne et maladies multi-organiques de l'adulte, Hôpital Saint Eloi, Montpellier, France
| | - Thierry Vincent
- CHU de Montpellier, Laboratoire d'immunologie, Hôpital Saint Eloi, Montpellier, France
| |
Collapse
|
18
|
Suppressa P, Pagella F, Lenato GM, Gaetani E, Serio I, Masala MS, Spinozzi G, Lizzio R, Matti E, De Silvestri A, Passali GC, Aguglia M, Crocione C, Sabbà C. Characterization of epidemiological distribution and outcome of COVID-19 in patients with hereditary hemorrhagic telangiectasia: a nationwide retrospective multi-centre study during first wave in Italy. Orphanet J Rare Dis 2021; 16:378. [PMID: 34496900 PMCID: PMC8424156 DOI: 10.1186/s13023-021-02000-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
Background Coronavirus Disease 2019 (COVID-19) continues to have a devastating impact across the world. A number of pre-existing common clinical conditions were reported to represent risk factors for more severe COVID-19 outcomes. Hereditary Hemorrhagic Telangiectasia (HHT) is a rare vascular heritable disorders, characterized by complications secondary to visceral Arterio-Venous Malformations. The impact of HHT, as well as for many Rare Diseases (RDs) on infection susceptibility profile and clinical adverse outcome risk is an unresolved issue. Objectives The main objectives were: to assess the clinical features and outcomes of HHT patients infected with COVID-19; to compare the relative infection risk in these patients with the Italian general population throughout the first pandemic wave; to investigate the factors potentially associated with severe COVID-19 outcome in HHT patients, and the possible impact of COVID-19 infection on HHT-related symptoms/complications. Finally, we aimed to estimate how the lockdown-associated wearing of personal protective equipment/individual protection devices could affect HHT-related telangiectasia bleeding frequency. Methods The study is a nation-wide questionnaire-based survey, with a multi-Center retrospective cross-sectional design, addressed to the whole Italian HHT population. COVID-19 cases, occurring throughout the first pandemic wave, were collected by a questionnaire-based semi-structured interview. Only the cases ascertained by laboratory confirmation (molecular/serological) were included for epidemiological estimates. Information concerning eventual SarS-Cov-2 infection, as well as regarding HHT-related manifestations and HHT-unrelated co-morbidities were collected by the questionnaire. Prevalence data were compared to Italian general population in the same period. Results The survey disclosed 9/296 (3.04%) COVID-19 cases, 8/9 of them being resident in Lombardy, the main epidemic epicenter. Pneumonia was reported by 4/9 patients, which prompted hospital admission and intensive care management in 2 cases. No fatal outcome was recorded. After careful refinement of epidemiological analysis, the survey evidenced overlapping infection risk in HHT compared to general population. Conclusions COVID-19 infection profile parallels geographical distribution of epidemic foci. COVID-19 in HHT patients can lead to highly variable clinical profile, likely overlapping with that of general population. The HHT disease does not seem to involve a different approach in terms of hospital admission and access to intensive care with respect to general population.
Collapse
Affiliation(s)
- Patrizia Suppressa
- DIM-Interdisciplinary Department of Medicine, "Frugoni" Internal Medicine and Geriatrics Unit, HHT Interdepartmental Center, VascERN HHT Reference Center, Policlinico Hospital, University of Bari, P.zza Giulio Cesare, 70124, Bari, Italy
| | - Fabio Pagella
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,University of Pavia, Pavia, Italy
| | - Gennaro Mariano Lenato
- DIM-Interdisciplinary Department of Medicine, "Frugoni" Internal Medicine and Geriatrics Unit, HHT Interdepartmental Center, VascERN HHT Reference Center, Policlinico Hospital, University of Bari, P.zza Giulio Cesare, 70124, Bari, Italy
| | - Eleonora Gaetani
- Department of Medical and Surgical Sciences, Multidisciplinary Gemelli Group for HHT, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore School of Medicine, Rome, Italy
| | - Ilaria Serio
- Division of Internal Medicine, Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
| | | | - Giuseppe Spinozzi
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roberta Lizzio
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elina Matti
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Annalisa De Silvestri
- Clinical Epidemiology and Biometry Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulio Cesare Passali
- Division of Otorhinolaryngology, Multidisciplinary Gemelli Group for HHT, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore School of Medicine, Rome, Italy
| | - Maria Aguglia
- Clinical Pathology Unit, Vito Fazzi Hospital, Lecce, Italy.,HHT Onlus Patient Association, Rome, Italy
| | | | - Carlo Sabbà
- DIM-Interdisciplinary Department of Medicine, "Frugoni" Internal Medicine and Geriatrics Unit, HHT Interdepartmental Center, VascERN HHT Reference Center, Policlinico Hospital, University of Bari, P.zza Giulio Cesare, 70124, Bari, Italy.
| |
Collapse
|
19
|
Primikiris P, Hadjigeorgiou G, Tsamopoulou M, Biondi A, Iosif C. Review on the current treatment status of vein of Galen malformations and future directions in research and treatment. Expert Rev Med Devices 2021; 18:933-954. [PMID: 34424109 DOI: 10.1080/17434440.2021.1970527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Vein of Galen malformations (VOGMs) represent a rare pathologic entity with often catastrophic natural history. The advances in endovascular treatment in recent years have allowed for a paradigm shift in the treatment and outcome of these high-flow shunts, even though their pathogenetic mechanisms and evolution remain in part obscure. AREAS COVERED The overall management of VOGMs requires a tailored case-to-case approach, starting with in utero detection and reserving endovascular treatment for indicated cases. Lately, the advances in translational research with whole-genome sequencing and the coupling with cellular-level hemodynamics attempt to shed more light in the pathogenesis and evolution of these lesions. At the same time the advances in endovascular techniques allow for more safety and tailored technical strategy planning. Furthermore, the advances in MRI techniques allow a better understanding of their vascular anatomy. In view of these recent advances and by performing a PUBMED literature review of the last 15 years, we attempt a review of the evolutions in the imaging, management, endovascular treatment and understanding of underlying mechanisms for VOGMs. EXPERT OPINION The progress in the fields detailed in this review appears very promising in better understanding VOGMs and expanding the available therapeutic arsenal.
Collapse
Affiliation(s)
- Panagiotis Primikiris
- Department of Interventional Neuroradiology, Jean Minjoz University Hospital, Besancon, France
| | | | - Maria Tsamopoulou
- School of Medicine, National Kapodistrian University of Athens, Greece
| | - Alessandra Biondi
- Department of Interventional Neuroradiology, Jean Minjoz University Hospital, Besancon, France
| | - Christina Iosif
- School of Medicine, European University of Cyprus, Nicosia, Cyprus.,Department of Interventional Neuroradiology, Henry Dunant Hospital, Athens, Greece
| |
Collapse
|
20
|
Desroches-Castan A, Tillet E, Bouvard C, Bailly S. BMP9 and BMP10: two close vascular quiescence partners that stand out. Dev Dyn 2021; 251:178-197. [PMID: 34240497 DOI: 10.1002/dvdy.395] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are dimeric transforming growth factor ß (TGFß) family cytokines that were first described in bone and cartilage formation but have since been shown to be involved in many pleiotropic functions. In human, there are 15 BMP ligands, which initiate their cellular signaling by forming a complex with two copies of type I receptors and two copies of type II receptors, both of which are transmembrane receptors with an intracellular serine/threonine kinase domain. Within this receptor family, ALK1 (Activin receptor-Like Kinase 1), which is a type I receptor mainly expressed on endothelial cells, and BMPRII (BMP Receptor type II), a type II receptor also highly expressed on endothelial cells, have been directly linked to two rare vascular diseases: hereditary haemorrhagic telangiectasia (HHT), and pulmonary arterial hypertension (PAH), respectively. BMP9 (gene name GDF2) and BMP10, two close members of the BMP family, are the only known ligands for the ALK1 receptor. This specificity gives them a unique role in physiological and pathological angiogenesis and tissue homeostasis. The aim of this current review is to present an overview of what is known about BMP9 and BMP10 on vascular regulation with a particular emphasis on recent results and the many questions that remain unanswered regarding the roles and specificities between BMP9 and BMP10. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Claire Bouvard
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Sabine Bailly
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| |
Collapse
|
21
|
Song Y, Yang K, Sun T, Tang R. Development and validation of prognostic markers in sarcomas base on a multi-omics analysis. BMC Med Genomics 2021; 14:31. [PMID: 33509178 PMCID: PMC7841904 DOI: 10.1186/s12920-021-00876-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In sarcomas, the DNA copy number and DNA methylation exhibit genomic aberrations. Transcriptome imbalances play a driving role in the heterogeneous progression of sarcomas. However, it is still unclear whether abnormalities of DNA copy numbers are systematically related to epigenetic DNA methylation, thus, a comprehensive analysis of sarcoma occurrence and development from the perspective of epigenetic and genomics is required. METHODS RNASeq, copy number variation (CNV), methylation data, clinical follow-up information were obtained from The Cancer Genome Atlas (TCGA) and GEO database. The association between methylation and CNV was analyzed to further identify methylation-related genes (MET-Gs) and CNV abnormality-related genes (CNV-Gs). Subsequently DNA copy number, methylation, and gene expression data associated with the MET-Gs and CNV-Gs were integrated to determine molecular subtypes and clinical and molecular characteristics of molecular subtypes. Finally, key biomarkers were determined and validated in independent validation sets. RESULTS A total of 5354 CNV-Gs and 4042 MET-Gs were screened and showed a high degree of consistency. Four molecular subtypes (iC1, iC2, iC3, and iC4) with different prognostic significances were identified by multiomics cluster analysis, specifically, iC2 had the worst prognosis and iC4 indicated an immune-enhancing state. Three potential prognostic markers (ENO1, ACVRL1 and APBB1IP) were determined after comparing the molecular characteristics of the four molecular subtypes. The expression of ENO1 gene was significantly correlated with CNV, and was noticeably higher in iC2 subtype with the worst prognosis than any other subtypes. The expressions of ACVRL1 and APBB1IP were negatively correlated with methylation, and were high-expressed in the iC4 subtype with the most favorable prognosis. In addition, the number of silent/nonsilent mutations and neoantigens in iC2 subtype were significantly more than those in iC1/iC3/iC4 subtype, and the same trend was also observed in CNV Gain/Loss. CONCLUSION The current comprehensive analysis of genomic and epigenomic regulation provides new insights into multilayered pathobiology of sarcomas. Four molecular subtypes and three prognostic markers developed in this study improve the current understanding of the molecular mechanisms underlying sarcoma.
Collapse
Affiliation(s)
- Yongchun Song
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Kui Yang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Tuanhe Sun
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Ruixiang Tang
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
22
|
Snodgrass RO, Chico TJA, Arthur HM. Hereditary Haemorrhagic Telangiectasia, an Inherited Vascular Disorder in Need of Improved Evidence-Based Pharmaceutical Interventions. Genes (Basel) 2021; 12:174. [PMID: 33513792 PMCID: PMC7911152 DOI: 10.3390/genes12020174] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) is characterised by arteriovenous malformations (AVMs). These vascular abnormalities form when arteries and veins directly connect, bypassing the local capillary system. Large AVMs may occur in the lungs, liver and brain, increasing the risk of morbidity and mortality. Smaller AVMs, known as telangiectases, are prevalent on the skin and mucosal lining of the nose, mouth and gastrointestinal tract and are prone to haemorrhage. HHT is primarily associated with a reduction in endoglin (ENG) or ACVRL1 activity due to loss-of-function mutations. ENG and ACVRL1 transmembrane receptors are expressed on endothelial cells (ECs) and bind to circulating ligands BMP9 and BMP10 with high affinity. Ligand binding to the receptor complex leads to activation of the SMAD1/5/8 signalling pathway to regulate downstream gene expression. Various genetic animal models demonstrate that disruption of this pathway in ECs results in AVMs. The vascular abnormalities underlying AVM formation result from abnormal EC responses to angiogenic and haemodynamic cues, and include increased proliferation, reduced migration against the direction of blood flow and an increased EC footprint. There is growing evidence that targeting VEGF signalling has beneficial outcomes in HHT patients and in animal models of this disease. The anti-VEGF inhibitor bevacizumab reduces epistaxis and has a normalising effect on high cardiac output in HHT patients with hepatic AVMs. Blocking VEGF signalling also reduces vascular malformations in mouse models of HHT1 and HHT2. However, VEGF signalling is complex and drives numerous downstream pathways, and it is not yet clear which pathway (or combination of pathways) is critical to target. This review will consider the recent evidence gained from HHT clinical and preclinical studies that are increasing our understanding of HHT pathobiology and informing therapeutic strategies.
Collapse
Affiliation(s)
- Ryan O. Snodgrass
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK; (R.O.S.); (T.J.A.C.)
| | - Timothy J. A. Chico
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK; (R.O.S.); (T.J.A.C.)
| | - Helen M. Arthur
- Biosciences Institute, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| |
Collapse
|
23
|
Ricard N, Bailly S, Guignabert C, Simons M. The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nat Rev Cardiol 2021; 18:565-580. [PMID: 33627876 PMCID: PMC7903932 DOI: 10.1038/s41569-021-00517-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Endothelial cells are at the interface between circulating blood and tissues. This position confers on them a crucial role in controlling oxygen and nutrient exchange and cellular trafficking between blood and the perfused organs. The endothelium adopts a structure that is specific to the needs and function of each tissue and organ and is subject to tissue-specific signalling input. In adults, endothelial cells are quiescent, meaning that they are not proliferating. Quiescence was considered to be a state in which endothelial cells are not stimulated but are instead slumbering and awaiting activating signals. However, new evidence shows that quiescent endothelium is fully awake, that it constantly receives and initiates functionally important signalling inputs and that this state is actively regulated. Signalling pathways involved in the maintenance of functionally quiescent endothelia are starting to be identified and are a combination of endocrine, autocrine, paracrine and mechanical inputs. The paracrine pathways confer a microenvironment on the endothelial cells that is specific to the perfused organs and tissues. In this Review, we present the current knowledge of organ-specific signalling pathways involved in the maintenance of endothelial quiescence and the pathologies associated with their disruption. Linking organ-specific pathways and human vascular pathologies will pave the way towards the development of innovative preventive strategies and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Ricard
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Sabine Bailly
- grid.457348.9Université Grenoble Alpes, INSERM, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France
| | - Christophe Guignabert
- grid.414221.0INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Michael Simons
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cell Biology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
24
|
Yang P, Troncone L, Augur ZM, Kim SSJ, McNeil ME, Yu PB. The role of bone morphogenetic protein signaling in vascular calcification. Bone 2020; 141:115542. [PMID: 32736145 PMCID: PMC8185454 DOI: 10.1016/j.bone.2020.115542] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/10/2023]
Abstract
Vascular calcification is associated with atherosclerosis, chronic kidney disease, and diabetes, and results from processes resembling endochondral or intramembranous ossification, or from processes that are distinct from ossification. Bone morphogenetic proteins (BMP), as well as other ligands, receptors, and regulators of the transforming growth factor beta (TGFβ) family regulate vascular and valvular calcification by modulating the phenotypic plasticity of multipotent progenitor lineages associated with the vasculature or valves. While osteogenic ligands BMP2 and BMP4 appear to be both markers and drivers of vascular calcification, particularly in atherosclerosis, BMP7 may serve to protect against calcification in chronic kidney disease. BMP signaling regulators such as matrix Gla protein and BMP-binding endothelial regulator protein (BMPER) play protective roles in vascular calcification. The effects of BMP signaling molecules in vascular calcification are context-dependent, tissue-dependent, and cell-type specific. Here we review the current knowledge on mechanisms by which BMP signaling regulates vascular calcification and the potential therapeutic implications.
Collapse
Affiliation(s)
- Peiran Yang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luca Troncone
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary M Augur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie S J Kim
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Megan E McNeil
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Bowers EMR, Lee S. Treatment of tongue telangiectasia in a patient with hereditary haemorrhagic telangiectasia. BMJ Case Rep 2020; 13:13/11/e238485. [PMID: 33139375 DOI: 10.1136/bcr-2020-238485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 61-year-old Caucasian woman presented to an outpatient otolaryngology clinic with increased bleeding from a dorsal tongue telangiectasia for 3 weeks. Her history was significant for hereditary haemorrhagic telangiectasia (HHT), a rare condition that causes vascular dysplasia, and recent symptomatic anaemia requiring blood transfusions. After failing medical management with topical haemostatic agents, she was offered and underwent surgical intervention to remove the tongue telangiectasia with duel therapy potassium titanyl phosphate (KTP) laser coblation and bevacizumab injections. A team of otolaryngologists removed the lesion without complications, and the patient denied bleeding, had minimal pain, and endorsed increased quality of life postoperatively. Tongue telangiectasias can cause life-threatening bleeding in some patients with HHT, and no surgical management guidelines exist to treat them. This case demonstrates the efficacy of KTP laser followed by bevacizumab injections in treating tongue telangiectasias in a patient with HHT.
Collapse
Affiliation(s)
| | - Stella Lee
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Cannavicci A, Zhang Q, Kutryk MJB. Non-Coding RNAs and Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9103333. [PMID: 33080889 PMCID: PMC7603193 DOI: 10.3390/jcm9103333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are functional ribonucleic acid (RNA) species that include microRNAs (miRs), a class of short non-coding RNAs (∼21–25 nucleotides), and long non-coding RNAs (lncRNAs) consisting of more than 200 nucleotides. They regulate gene expression post-transcriptionally and are involved in a wide range of pathophysiological processes. Hereditary hemorrhagic telangiectasia (HHT) is a rare disorder inherited in an autosomal dominant fashion characterized by vascular dysplasia. Patients can develop life-threatening vascular malformations and experience severe hemorrhaging. Effective pharmacological therapies are limited. The study of ncRNAs in HHT is an emerging field with great promise. This review will explore the current literature on the involvement of ncRNAs in HHT as diagnostic and pathogenic factors.
Collapse
Affiliation(s)
- Anthony Cannavicci
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada;
| | - Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada;
| | - Michael J. B. Kutryk
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada;
- Correspondence: ; Tel.: +1-(416)-360-4000 (ext. 6155)
| |
Collapse
|
27
|
Ruiz S, Zhao H, Chandakkar P, Papoin J, Choi H, Nomura-Kitabayashi A, Patel R, Gillen M, Diao L, Chatterjee PK, He M, Al-Abed Y, Wang P, Metz CN, Oh SP, Blanc L, Campagne F, Marambaud P. Correcting Smad1/5/8, mTOR, and VEGFR2 treats pathology in hereditary hemorrhagic telangiectasia models. J Clin Invest 2020; 130:942-957. [PMID: 31689244 DOI: 10.1172/jci127425] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT), a genetic bleeding disorder leading to systemic arteriovenous malformations (AVMs), is caused by loss-of-function mutations in the ALK1/ENG/Smad1/5/8 pathway. Evidence suggests that HHT pathogenesis strongly relies on overactivated PI3K/Akt/mTOR and VEGFR2 pathways in endothelial cells (ECs). In the BMP9/10-immunoblocked (BMP9/10ib) neonatal mouse model of HHT, we report here that the mTOR inhibitor, sirolimus, and the receptor tyrosine kinase inhibitor, nintedanib, could synergistically fully block, but also reversed, retinal AVMs to avert retinal bleeding and anemia. Sirolimus plus nintedanib prevented vascular pathology in the oral mucosa, lungs, and liver of the BMP9/10ib mice, as well as significantly reduced gastrointestinal bleeding and anemia in inducible ALK1-deficient adult mice. Mechanistically, in vivo in BMP9/10ib mouse ECs, sirolimus and nintedanib blocked the overactivation of mTOR and VEGFR2, respectively. Furthermore, we found that sirolimus activated ALK2-mediated Smad1/5/8 signaling in primary ECs - including in HHT patient blood outgrowth ECs - and partially rescued Smad1/5/8 activity in vivo in BMP9/10ib mouse ECs. These data demonstrate that the combined correction of endothelial Smad1/5/8, mTOR, and VEGFR2 pathways opposes HHT pathogenesis. Repurposing of sirolimus plus nintedanib might provide therapeutic benefit in patients with HHT.
Collapse
Affiliation(s)
- Santiago Ruiz
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and
| | - Haitian Zhao
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and
| | | | - Julien Papoin
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Hyunwoo Choi
- Barrow Aneurysm and AVM Research Center, Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Radhika Patel
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and
| | - Matthew Gillen
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and
| | - Li Diao
- Center for Immunology and Inflammation
| | | | - Mingzhu He
- Center for Molecular Innovation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Christine N Metz
- Institute of Molecular Medicine, and.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - S Paul Oh
- Barrow Aneurysm and AVM Research Center, Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Lionel Blanc
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Fabien Campagne
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - Philippe Marambaud
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
28
|
Huang Y, Liu CT, Zheng XR, Dou B, Huang R. [Hereditary hemorrhagic telangiectasia: a report of two cases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:1041-1042. [PMID: 32933640 PMCID: PMC7499434 DOI: 10.7499/j.issn.1008-8830.2004196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
This article reports two children with hereditary hemorrhagic telangiectasia (HHT). Patient 1 was a boy aged 12 years and was admitted due to intermittent cough and wheezing for more than 10 years. This boy and his mother and grandmother had a history of epistaxis. The boy had a history of the rupture of cerebral arteriovenous malformations. Gene detection showed a heterozygous mutation, c.277C>T(p.Arg93*), in the ENG gene. Patient 2 was a girl aged 13 years and was admitted due to cyanosis of lips for more than 1 year. The girl had a history of recurrent epistaxis and the manifestations of severe decline in pulmonary diffuse function, pulmonary hypertension, dilation of blood vessels at the distal end of lungs, and small arteriovenous communications in both lungs. Children with HHT often lack typical respiratory symptoms, which may lead to missed diagnosis and misdiagnosis in the early stage. Pulmonary computed tomography or right cardiac acoustic contrast can help with the diagnosis of HHT, and gene detection can improve the early diagnostic rate of this disease.
Collapse
Affiliation(s)
- Yan Huang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha 410008, China.
| | | | | | | | | |
Collapse
|
29
|
Li Y, Shang Q, Li P, Yang Z, Yang J, Shi J, Ge S, Wang Y, Fan X, Jia R. BMP9 attenuates occurrence of venous malformation by maintaining endothelial quiescence and strengthening vessel walls via SMAD1/5/ID1/α-SMA pathway. J Mol Cell Cardiol 2020; 147:92-107. [PMID: 32730768 DOI: 10.1016/j.yjmcc.2020.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Venous malformation (VM) is a type of vascular morphogenic defect in humans with an incidence of 1%. Although gene mutation is considered as the most common cause of VM, the pathogenesis of those without gene mutation remains to be elucidated. Here, we aimed to explore the relation of bone morphogenetic protein 9 (BMP9) and development of VM. At first, we found serum and tissue BMP9 expression in VM patients was significantly lower than that in healthy subjects, detected via enzyme-linked immunosorbent assay. Next, with wound healing assay, transwell assay and tube formation assay, we discovered BMP9 could inhibit migration and enhance tube formation activity of human umbilical vein endothelial cells (HUVECs) via receptor activin receptor-like kinase 1 (ALK1). Besides, BMP9 improved the expression of structural proteins alpha-smooth muscle actin (α-SMA) and Desmin in human umbilical vein smooth muscle cells (HUVSMCs) via activation of the SMAD1/5-ID1 pathway, determined by RNA-based next-generation sequencing, qPCR, immunofluorescence and western blotting. Intriguingly, this effect could be blocked by receptor ALK1 inhibitor, SMAD1/5 inhibitor and siRNAs targeting ID1, verifying the BMP9/ALK1/SMAD1/5/ID1/α-SMA pathway. Meanwhile, knocking out BMP9 in C57BL/6 mice embryo led to α-SMA scarcity in walls of lung and mesenteric vessels, as well as walls of small trachea. BMP9-/- zebrafish also exhibited abnormal vascular maturity, indicating a critical role of BMP9 in vascular maturity and remodeling. Finally, a VM mice model revealed that BMP9 might have therapeutic effect in VM progression. Our study discovered that BMP9 might inhibit the occurrence of VM by strengthening the vessel wall and maintaining endothelium quiescence. These findings provide promising evidences of new therapeutic targets that might be used for the management of VM.
Collapse
Affiliation(s)
- Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Qingfeng Shang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Peng Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Jiahao Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yefei Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
30
|
Deregulation of Drosha in the pathogenesis of hereditary hemorrhagic telangiectasia. Curr Opin Hematol 2020; 26:161-169. [PMID: 30855334 DOI: 10.1097/moh.0000000000000493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The TGFβ (transforming growth factor β) superfamily - a large group of structurally related and evolutionarily conserved proteins - profoundly shapes and organizes the vasculature during normal development and adult homeostasis. Mutations inactivating several of its ligands, receptors, or signal transducers set off hereditary hemorrhagic telangiectasia (HHT), a disorder that causes capillary networks to form incorrectly. Drosha, an essential microRNA-processing enzyme, also interfaces with TGFβ signal transducers, but its involvement in vascular conditions had not been tested until recently. This review summarizes current evidence that links mutations of Drosha to HHT. RECENT FINDINGS Genetic studies have revealed that rare missense mutations in the Drosha gene occur more commonly among HHT patients than in healthy people. Molecular analyses also indicated that Drosha enzymes with HHT-associated mutations generate microRNAs less efficiently than their wild-type counterpart when stimulated by TGFβ ligands. In zebrafish or mouse, mutant Drosha proteins cause the formation of dilated, leaky blood vessels deprived of capillaries, similar to those typically found in patients with HHT. SUMMARY Recent evidence suggests that Drosha-mediated microRNA biogenesis contributes significantly to the control of vascular development and homeostasis by TGFβ. Loss or reduction of Drosha function may predispose carriers to HHT and possibly other vascular diseases.
Collapse
|
31
|
Efficacy and Safety of a 0.1% Tacrolimus Nasal Ointment as a Treatment for Epistaxis in Hereditary Hemorrhagic Telangiectasia: A Double-Blind, Randomized, Placebo-Controlled, Multicenter Trial. J Clin Med 2020; 9:jcm9051262. [PMID: 32357559 PMCID: PMC7287684 DOI: 10.3390/jcm9051262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia is a rare but ubiquitous genetic disease. Epistaxis is the most frequent and life-threatening manifestation and tacrolimus, an immunosuppressive agent, appears to be an interesting new treatment option because of its anti-angiogenic properties. Our objective was to evaluate, six weeks after the end of the treatment, the efficacy on the duration of nosebleeds of tacrolimus nasal ointment, administered for six weeks to patients with hereditary hemorrhagic telangiectasia complicated by nosebleeds, and we performed a prospective, multicenter, randomized, placebo-controlled, double-blinded, ratio 1:1 phase II study. Patients were recruited from three French Hereditary Hemorrhagic Telangiectasia (HHT) centers between May 2017 and August 2018, with a six-week follow-up, and we included people aged over 18 years, diagnosed with hereditary hemorrhagic telangiectasia and epistaxis (total duration > 30 min/6 weeks prior to inclusion). Tacrolimus ointment 0.1% was self-administered by the patients twice daily. About 0.1 g of product was to be administered in each nostril with a cotton swab. A total of 50 patients was randomized and treated. Mean epistaxis duration before and after treatment in the tacrolimus group were 324.64 and 249.14 min, respectively, and in the placebo group 224.69 and 188.14 min, respectively. Epistaxis duration improved in both groups, with no significant difference in our main objective comparing epistaxis before and after treatment (p = 0.77); however, there was a significant difference in evolution when comparing epistaxis before and during treatment (p = 0.04). Toxicity was low and no severe adverse events were reported. In conclusion, tacrolimus nasal ointment, administered for six weeks, did not improve epistaxis in HHT patients after the end of the treatment. However, the good tolerance, associated with a significant improvement in epistaxis duration during treatment, encouraged us to perform a phase 3 trial on a larger patient population with a main outcome of epistaxis duration during treatment and a longer treatment time.
Collapse
|
32
|
Robert F, Desroches-Castan A, Bailly S, Dupuis-Girod S, Feige JJ. Future treatments for hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis 2020; 15:4. [PMID: 31910860 PMCID: PMC6945546 DOI: 10.1186/s13023-019-1281-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT), also known as Rendu-Osler syndrome, is a genetic vascular disorder affecting 1 in 5000–8000 individuals worldwide. This rare disease is characterized by various vascular defects including epistaxis, blood vessel dilations (telangiectasia) and arteriovenous malformations (AVM) in several organs. About 90% of the cases are associated with heterozygous mutations of ACVRL1 or ENG genes, that respectively encode a bone morphogenetic protein receptor (activin receptor-like kinase 1, ALK1) and a co-receptor named endoglin. Less frequent mutations found in the remaining 10% of patients also affect the gene SMAD4 which is part of the transcriptional complex directly activated by this pathway. Presently, the therapeutic treatments for HHT are intended to reduce the symptoms of the disease. However, recent progress has been made using drugs that target VEGF (vascular endothelial growth factor) and the angiogenic pathway with the use of bevacizumab (anti-VEGF antibody). Furthermore, several exciting high-throughput screenings and preclinical studies have identified new molecular targets directly related to the signaling pathways affected in the disease. These include FKBP12, PI3-kinase and angiopoietin-2. This review aims at reporting these recent developments that should soon allow a better care of HHT patients.
Collapse
Affiliation(s)
- Florian Robert
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France
| | - Agnès Desroches-Castan
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France
| | - Sabine Bailly
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France
| | - Sophie Dupuis-Girod
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France.,Hospices Civils de Lyon, Service de Génétique, Hôpital Femme-Mère-Enfants, F-69677, Bron, France.,Centre National de Référence pour la Maladie de Rendu-Osler, F-69677, Bron, France
| | - Jean-Jacques Feige
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France.
| |
Collapse
|
33
|
Khoueir N, Borsik M, Camous D, Herman P, Verillaud B. Injection of bevacizumab and cyanoacrylate glue for hereditary hemorrhagic telangiectasia. Laryngoscope 2019; 129:2210-2215. [PMID: 31566760 DOI: 10.1002/lary.27889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 11/12/2022]
Abstract
OBJECTIVES/HYPOTHESIS The objective of this study was to report for the first time on the results of submucosal injections of bevacizumab used in conjunction with cyanoacrylate glue sclerotherapy in hereditary hemorrhagic telangiectasia (HHT). STUDY DESIGN Retrospective analytic chart review. METHODS We performed a chart review that included all patients with HHT treated with intranasal bevacizumab and cyanoacrylate glue for refractory epistaxis at Lariboisiere University Hospital from 2013 with a minimum follow-up of 6 months. We injected 100 mg (25 mg/mL) of bevacizumab diluted in 2 mL of serum at the base of the telangiectasias, and sclerotherapy with an injection of cyanoacrylate glue was used adjunctively. Treatment efficacy was based on changes in Epistaxis Severity Scores (ESS) and the Bergler-Sadick Scale. Quality of life and patient satisfaction were evaluated using the Cantril Self-Anchoring Ladder (CL) and Likert scale, respectively. RESULTS Thirty-one patients were included, with a mean follow-up of 26.6 months. The average ESS score significantly decreased from 7.82 to 3.89 (P < .05). The Bergler-Sadick score significantly improved (P < .05) following the treatment, including the frequency (from 2.74 to 1.64) and the quantity (from 2.54 to 1.51) scales. Quality of life was significantly improved (P < .05) using the CL score (from 4.16 to 7.22). The Likert satisfaction scale related to the treatment efficacy was high, with an average of 7.03 out of 10. No complications were noted. CONCLUSIONS Submucosal injections of bevacizumab in conjunction with cyanoacrylate glue sclerotherapy significantly reduced epistaxis and improved the quality of life in HHT. Prospective comparative studies are needed to further evaluate the significance of this treatment modality. LEVEL OF EVIDENCE 3b Laryngoscope, 129:2210-2215, 2019.
Collapse
Affiliation(s)
- Nadim Khoueir
- Department of Otolaryngology-Head and Neck Surgery/Skull Base Surgery, Hospital Groups Saint Louis, Lariboisière, Fernand-Widal, Public Assistance Paris Hospitals, Paris-Diderot University, Paris, France.,Department of Otolaryngology-Head and Neck Surgery, Hotel Dieu de France University Hospital, Saint Joseph University, Faculty of Medicine, Beirut, Lebanon
| | - Michel Borsik
- Department of Otolaryngology-Head and Neck Surgery/Skull Base Surgery, Hospital Groups Saint Louis, Lariboisière, Fernand-Widal, Public Assistance Paris Hospitals, Paris-Diderot University, Paris, France
| | - Domitille Camous
- Department of Otolaryngology-Head and Neck Surgery/Skull Base Surgery, Hospital Groups Saint Louis, Lariboisière, Fernand-Widal, Public Assistance Paris Hospitals, Paris-Diderot University, Paris, France
| | - Philippe Herman
- Department of Otolaryngology-Head and Neck Surgery/Skull Base Surgery, Hospital Groups Saint Louis, Lariboisière, Fernand-Widal, Public Assistance Paris Hospitals, Paris-Diderot University, Paris, France
| | - Benjamin Verillaud
- Department of Otolaryngology-Head and Neck Surgery/Skull Base Surgery, Hospital Groups Saint Louis, Lariboisière, Fernand-Widal, Public Assistance Paris Hospitals, Paris-Diderot University, Paris, France
| |
Collapse
|
34
|
Desroches-Castan A, Tillet E, Ricard N, Ouarné M, Mallet C, Belmudes L, Couté Y, Boillot O, Scoazec JY, Bailly S, Feige JJ. Bone Morphogenetic Protein 9 Is a Paracrine Factor Controlling Liver Sinusoidal Endothelial Cell Fenestration and Protecting Against Hepatic Fibrosis. Hepatology 2019; 70:1392-1408. [PMID: 30964206 DOI: 10.1002/hep.30655] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic protein 9 (BMP9) is a circulating factor produced by hepatic stellate cells that plays a critical role in vascular quiescence through its endothelial receptor activin receptor-like kinase 1 (ALK1). Mutations in the gene encoding ALK1 cause hereditary hemorrhagic telangiectasia type 2, a rare genetic disease presenting hepatic vessel malformations. Variations of both the circulating levels and the hepatic mRNA levels of BMP9 have been recently associated with various forms of hepatic fibrosis. However, the molecular mechanism that links BMP9 with liver diseases is still unknown. Here, we report that Bmp9 gene deletion in 129/Ola mice triggers hepatic perisinusoidal fibrosis that was detectable from 15 weeks of age. An inflammatory response appeared within the same time frame as fibrosis, whereas sinusoidal vessel dilation developed later on. Proteomic and mRNA analyses of primary liver sinusoidal endothelial cells (LSECs) both revealed that the expression of the LSEC-specifying transcription factor GATA-binding protein 4 was strongly reduced in Bmp9 gene knockout (Bmp9-KO) mice as compared with wild-type mice. LSECs from Bmp9-KO mice also lost the expression of several terminal differentiation markers (Lyve1, Stab1, Stab2, Ehd3, Cd209b, eNos, Maf, Plvap). They gained CD34 expression and deposited a basal lamina, indicating that they were capillarized. Another main characteristic of differentiated LSECs is the presence of permeable fenestrae. LSECs from Bmp9-KO mice had a significantly reduced number of fenestrae. This was already observable in 2-week-old pups. Moreover, we could show that addition of BMP9 to primary cultures of LSECs prevented the loss of their fenestrae and maintained the expression levels of Gata4 and Plvap. Conclusion: Taken together, our observations show that BMP9 is a key paracrine regulator of liver homeostasis, controlling LSEC fenestration and protecting against perivascular hepatic fibrosis.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Nicolas Ricard
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Marie Ouarné
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Christine Mallet
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Lucid Belmudes
- BGE Laboratory, Université Grenoble Alpes, CEA, Inserm, Grenoble, France
| | - Yohann Couté
- BGE Laboratory, Université Grenoble Alpes, CEA, Inserm, Grenoble, France
| | - Olivier Boillot
- Liver Transplant Unit, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sabine Bailly
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Jean-Jacques Feige
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| |
Collapse
|
35
|
Differential Consequences of Bmp9 Deletion on Sinusoidal Endothelial Cell Differentiation and Liver Fibrosis in 129/Ola and C57BL/6 Mice. Cells 2019; 8:cells8091079. [PMID: 31540222 PMCID: PMC6770219 DOI: 10.3390/cells8091079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present work was to address the role of BMP9 in different genetic backgrounds (C57BL/6, BALB/c, and 129/Ola) of mice deleted for Bmp9. We found that Bmp9 deletion led to premature mortality only in the 129/Ola strain. We have previously shown that Bmp9 deletion led to liver sinusoidal endothelial cells (LSEC) capillarization and liver fibrosis in the 129/Ola background. Here, we showed that this is not the case in the C57BL/6 background. Analysis of LSEC from Wild-type (WT) versus Bmp9-KO mice in the C57BL/6 background showed no difference in LSEC fenestration and in the expression of differentiation markers. Comparison of the mRNA expression of LSEC differentiation markers between WT C57BL/6 and 129/Ola mice showed a significant decrease in Stabilin2, Plvap, and CD209b, suggesting a more capillary-like phenotype in WT C57BL/6 LSECs. C57BL/6 mice also had lower BMP9 circulating concentrations and hepatic Vegfr2 mRNA levels, compared to the 129/Ola mice. Taken together, our observations support a role for BMP9 in liver endothelial cell fenestration and prevention of fibrosis that is dependent on genetic background. It also suggests that 129/Ola mice are a more suitable model than C57BL/6 for the study of liver fibrosis subsequent to LSEC capillarization.
Collapse
|
36
|
Guilhem A, Ciudad M, Leguy-Seguin V, Nicolas B, Berthier S, Maillet T, Audia S, Samson M, Bonnotte B. Implication des lymphocytes T angiogéniques au cours de la maladie de Rendu–Osler. Rev Med Interne 2019. [DOI: 10.1016/j.revmed.2019.03.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Zhang Q, Xiao M, Gu S, Xu Y, Liu T, Li H, Yu Y, Qin L, Zhu Y, Chen F, Wang Y, Ding C, Wu H, Ji H, Chen Z, Zu Y, Malkoski S, Li Y, Liang T, Ji J, Qin J, Xu P, Zhao B, Shen L, Lin X, Feng XH. ALK phosphorylates SMAD4 on tyrosine to disable TGF-β tumour suppressor functions. Nat Cell Biol 2019; 21:179-189. [PMID: 30664791 DOI: 10.1038/s41556-018-0264-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Abstract
Loss of TGF-β tumour suppressive response is a hallmark of human cancers. As a central player in TGF-β signal transduction, SMAD4 (also known as DPC4) is frequently mutated or deleted in gastrointestinal and pancreatic cancer. However, such genetic alterations are rare in most cancer types and the underlying mechanism for TGF-β resistance is not understood. Here we describe a mechanism of TGF-β resistance in ALK-positive tumours, including lymphoma, lung cancer and neuroblastoma. We demonstrate that, in ALK-positive tumours, ALK directly phosphorylates SMAD4 at Tyr 95. Phosphorylated SMAD4 is unable to bind to DNA and fails to elicit TGF-β gene responses and tumour suppressing responses. Chemical or genetic interference of the oncogenic ALK restores TGF-β responses in ALK-positive tumour cells. These findings reveal that SMAD4 is tyrosine-phosphorylated by an oncogenic tyrosine kinase during tumorigenesis. This suggests a mechanism by which SMAD4 is inactivated in cancers and provides guidance for targeted therapies in ALK-positive cancers.
Collapse
Affiliation(s)
- Qianting Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Mu Xiao
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shuchen Gu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yongxian Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ting Liu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hao Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yi Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lan Qin
- DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yezhang Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fenfang Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yulong Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chen Ding
- Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, China.,College of Life Sciences, Fudan University, Shanghai, China
| | - Hongxing Wu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hongbin Ji
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Zhe Chen
- Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Youli Zu
- The Methodist Hospital Research Institute, Houston, TX, USA
| | - Stephen Malkoski
- Department of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Yi Li
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and the Key Laboratory of Cancer Prevention and Intervention, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Junfang Ji
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jun Qin
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, China.,Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Pinglong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bin Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Li Shen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xia Lin
- DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Xin-Hua Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China. .,DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
38
|
Direct imaging of capillaries reveals the mechanism of arteriovenous interlacing in the chick chorioallantoic membrane. Commun Biol 2018; 1:235. [PMID: 30588514 PMCID: PMC6303259 DOI: 10.1038/s42003-018-0229-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/13/2018] [Indexed: 11/08/2022] Open
Abstract
Understanding vascular development in vertebrates is an important scientific endeavor. Normal vasculatures generally start off as a disorganized capillary lattice which progressively matures into a well-organized vascular loop comprising a hierarchy of arteries and veins. One striking feature of vascular development is the interlacing of arteries and veins. How arteries and veins manage to avoid themselves and interlace with such a perfect architecture is not understood. Here we present a detailed view of the development of the vasculature in the chorioallantoic membrane of the chicken embryo. We find that the origin of arteriovenous interlacing lies in the presence of an increased hemodynamic resistance at the distal part of the arteries due to vascular flattening onto the ectodermal surface. This reduces the vascular conductance distally, thus repelling veins away. In more proximal parts, vessels round off into cylinders and the increased flow attracts veins.
Collapse
|
39
|
Links Between Strokes and Hereditary Hemorrhagic Telangiectasia: A Population-Based Study. Can J Neurol Sci 2018; 46:44-50. [PMID: 30520389 DOI: 10.1017/cjn.2018.360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia (HHT) is a disease of abnormal vasculature where patients are predisposed to strokes of multiple etiologies. We assessed yearly stroke incidence among Albertans with HHT and compared with the general population. Given the tendency for stroke in HHT patients, we expected HHT patients to have higher stroke incidence, in particular at younger ages. METHODS Population-based administrative health data on inpatient and ambulatory admissions were extracted over a 16-year period using International Classification of Diseases (ICD)-9 and ICD-10, Canada codes. We analyzed overall occurrence of strokes in Alberta by age, gender, stroke subtype, and diagnosis of HHT. RESULTS The age-standardized incidence rate of stroke in HHT was 450 per 100,000 compared with 260 per 100,000 in the general population with a rate ratio of 1.73 (95% confidence interval (CI) [1.046-2.842]). This study found a higher HHT prevalence in Alberta (1 in 3800) compared to the world average of 1 in 5000. Women were also more likely to be diagnosed with HHT, with a 3.25:1 female gender preponderance in the yearly incidence.InterpretationThis study not only shows that HHT patients are at higher risk of having a stroke but also quantifies that risk using an age-adjusted metric in Alberta. This province has a higher than expected disease burden of HHT, with the majority of cases affecting women. Our study found that acute ischemic strokes and transient ischemic attacks are far more common than hemorrhage in HHT. As HHT is a rare, multi-system, chronic disease, these patients should be referred to an HHT Centre of Excellence.
Collapse
|
40
|
Sweeney M, Foldes G. It Takes Two: Endothelial-Perivascular Cell Cross-Talk in Vascular Development and Disease. Front Cardiovasc Med 2018; 5:154. [PMID: 30425990 PMCID: PMC6218412 DOI: 10.3389/fcvm.2018.00154] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022] Open
Abstract
The formation of new blood vessels is a crucial step in the development of any new tissue both during embryogenesis and in vitro models as without sufficient perfusion the tissue will be unable to grow beyond the size where nutrition and oxygenation can be managed by diffusion alone. Endothelial cells are the primary building block of blood vessels and are capable of forming tube like structures independently however they are unable to independently form functional vasculature which is capable of conducting blood flow. This requires support from other structures including supporting perivascular cells and the extracellular matrix. The crosstalk between endothelial cells and perivascular cells is vital in regulating vasculogenesis and angiogenesis and the consequences when this is disrupted can be seen in a variety of congenital and acquired disease states. This review details the mechanisms of vasculogenesis in vivo during embryogenesis and compares this to currently employed in vitro techniques. It also highlights clinical consequences of defects in the endothelial cell-pericyte cross-talk and highlights therapies which are being developed to target this pathway. Improving the understanding of the intricacies of endothelial-pericyte signaling will inform pathophysiology of multiple vascular diseases and allow the development of effective in vitro models to guide drug development and assist with approaches in tissue engineering to develop functional vasculature for regenerative medicine applications.
Collapse
Affiliation(s)
- Mark Sweeney
- Cardiovascular Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gabor Foldes
- Cardiovascular Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
41
|
Massive juvenile polyposis of the stomach in a family with SMAD4 gene mutation. Fam Cancer 2018; 18:165-172. [PMID: 30196345 DOI: 10.1007/s10689-018-0100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Relatively little is known on the genotype-phenotype correlations between SMAD4 gene mutations, juvenile polyposis of the intestine and Hereditary Hemorrhagic Teleangectasia. We describe a family in which the proband (a 46-year old woman) had massive polyposis of the stomach-leading to surgery-with high-grade dysplasia at histology. Molecular analysis was carried out using Next Generation sequencing techniques with Miseq Illumina Platforms and a minimal coverage of 40 reads. In the proband, the analysis showed the presence of a truncating mutation in the SMAD4 gene (c.1213dupC, a variant previously associated with juvenile polyposis and Hereditary Hemorrhagic Teleangectasia). The same mutation was detected in two other members of the family (father and brother of the proband), who showed massive polypoid involvement of the stomach at gastroscopy. By taking the family history, subtle evidence of Hereditary Teleangectasia was found (nasal bleeding and arterovenous malformations) in the three gene carriers. Colonoscopy showed polyp occurrence in all three affected members with SMAD4 mutation, with prevalence of adenomatous lesions in one (father), of hamartomas in the brother, and of a mix of histological types in the proband. The main features of the family can be summarized as follows: (A) In hereditary juvenile polyposis, lesions of different histology can be detected at colonoscopy; (B) In the gene carriers of SMAD4 mutations, lesions of the stomach require careful surveillance and, when necessary, surgical interventions; (C) Signs and symptoms of Hereditary Hemorrhagic Teleangectasia should be suspected (and searched) in individuals with SMAD4 constitutional mutations.
Collapse
|
42
|
Chaturvedi S, Kohli R, Schaefer N, Clancy M, Kasthuri RS. Characteristics and outcomes of venous thromboembolism in patients with hereditary hemorrhagic telangiectasia. Thromb Res 2018; 169:41-43. [DOI: 10.1016/j.thromres.2018.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/07/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
43
|
Zonneville J, Safina A, Truskinovsky AM, Arteaga CL, Bakin AV. TGF-β signaling promotes tumor vasculature by enhancing the pericyte-endothelium association. BMC Cancer 2018; 18:670. [PMID: 29921235 PMCID: PMC6008941 DOI: 10.1186/s12885-018-4587-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Background The breast cancer microenvironment promotes tumor vascularization through the complex interactions involving tumor-associated fibroblasts (TAFs). Emerging data indicate that TAFs increase production and signaling by TGF-β cytokines, while the role of TGF-β signaling in the regulation of tumor blood vessels is not fully understood. The current study presents evidence that TAFs enhance the organization of tumor blood capillaries, and TGF-β signaling plays an important role in this response. Methods Tumor vascularization was studied in xenograft models of breast carcinoma cells, alone and in combination with fibroblasts. TGF-β signaling in breast cancer cells was modulated by expression of kinase-inactive TGFBR1-K232R (dnTGFBR1) or constitutive-active TGFBR1-T204D (caTGFBR1) receptor mutants. The architecture of tumor blood capillaries was assessed by immune-histochemical analysis of endothelium and pericytes. The role of TGF-β-Smad signaling in fibronectin expression was examined using adenoviral transduction of signaling components. Results Our studies revealed that TAFs significantly increase the lumen size of blood microvessels. Inactivation of TGF-β signaling in tumor cells by dnTGFBR1 reduced the microvessel density and lumen sizes, decreasing tumor growth. In contrast, caTGFBR1-tumors exhibited greater vessel density and lumen sizes. Tumors with inactive dnTGFBR1 showed lower amounts of TAFs, while caTGFBR1 increased amounts of TAFs compared to the control. Inspection of pericytes and endothelial cells in tumor vasculature revealed that TAFs enhanced vessel coverage by pericytes, vascular cells supporting capillaries. This effect was impaired in dnTGFBR1-tumors, whereas active caTGFBR1 enhanced the association of pericytes with endothelium. Accordingly, dnTGFBR1-tumors exhibited the presence of hemorrhages, a sign of fragile blood vessels. Biochemical analysis showed that TGFBR1-SMAD signaling up-regulates fibronectin, a prominent regulator of endothelium-pericyte interactions. Conclusions The current study indicates that tumor-fibroblast crosstalk enhances tumor vascularization by increasing the pericyte-endothelium association via a mechanism involving the TGFβ-fibronectin axis. The tumor-fibroblast model represents a useful system for dissecting the complex interactions governing tumor angiogenesis and developing new approaches to therapeutic targeting tumor vasculature. Electronic supplementary material The online version of this article (10.1186/s12885-018-4587-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justin Zonneville
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, 14263, USA
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Andrei V Bakin
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, 14263, USA.
| |
Collapse
|
44
|
Gamboa NT, Joyce EJ, Eli I, Park MS, Taussky P, Schmidt RH, McDonald J, Whitehead KJ, Kalani MYS. Clinical presentation and treatment paradigms of brain arteriovenous malformations in patients with hereditary hemorrhagic telangiectasia. J Clin Neurosci 2018; 51:22-28. [PMID: 29483005 DOI: 10.1016/j.jocn.2018.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/08/2018] [Indexed: 11/25/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is characterized by recurrent spontaneous epistaxis, mucocutaneous telangiectases, and multisystem arteriovenous malformations (AVMs). Brain AVMs typically present at birth and are identified in approximately 10-20% of patients with HHT. A retrospective review was undertaken of all HHT patients with known single or multiple brain AVMs treated at our institution. Thirty-nine patients with brain AVM(s) were diagnosed with HHT. Most patients presented with at least one Curaçao criterion. A total of 78 brain AVMs were identified in 39 patients. Two-thirds of patients had solitary brain AVMs, whereas 33% of patients harbored at least two lesions (range: 2-16). Brain AVMs of the supratentorial cerebral hemispheres comprised 83% of all lesions, whereas infratentorial lesions accounted for only 17%. Of the 55 brain AVMs assigned Spetzler-Martin grading, the majority of patients were Grade 1 (73%), and 23% and 4% were Grades 2 and 3, respectively. Patients were treated with surgery alone (51%), embolization alone (6%), embolization followed by surgery (9%), stereotactic radiosurgery (11%), stereotactic radiosurgery followed by surgery (3%), or observation (20%). Of patients who underwent genetic analysis, 62% possessed mutations in ENG (HHT type 1), whereas 38% had mutations in ACVRL1 (HHT type 2). This robust patient cohort of brain AVMs in 39 patients with HHT advances the collective understanding of this disease's varied presentation, diagnostic workup, genetic underpinnings, and available treatment options.
Collapse
Affiliation(s)
- Nicholas T Gamboa
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Evan J Joyce
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ilyas Eli
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Min S Park
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Philipp Taussky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Richard H Schmidt
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, UT, United States; University of Utah Hereditary Hemorrhagic Telangiectasia Center of Excellence, Salt Lake City, UT, United States
| | - Jamie McDonald
- University of Utah Hereditary Hemorrhagic Telangiectasia Center of Excellence, Salt Lake City, UT, United States
| | - Kevin J Whitehead
- University of Utah Hereditary Hemorrhagic Telangiectasia Center of Excellence, Salt Lake City, UT, United States
| | - M Yashar S Kalani
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, UT, United States; University of Utah Hereditary Hemorrhagic Telangiectasia Center of Excellence, Salt Lake City, UT, United States.
| |
Collapse
|
45
|
Goumans MJ, Zwijsen A, Ten Dijke P, Bailly S. Bone Morphogenetic Proteins in Vascular Homeostasis and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031989. [PMID: 28348038 DOI: 10.1101/cshperspect.a031989] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well established that control of vascular morphogenesis and homeostasis is regulated by vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), Delta-like 4 (Dll4), angiopoietin, and ephrin signaling. It has become clear that signaling by bone morphogenetic proteins (BMPs), which have a long history of studies in bone and early heart development, are also essential for regulating vascular function. Indeed, mutations that cause deregulated BMP signaling are linked to two human vascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. These observations are corroborated by data obtained with vascular cells in cell culture and in mouse models. BMPs are required for normal endothelial cell differentiation and for venous/arterial and lymphatic specification. In adult life, BMP signaling orchestrates neo-angiogenesis as well as vascular inflammation, remodeling, and calcification responses to shear and oxidative stress. This review emphasizes the pivotal role of BMPs in the vascular system, based on studies of mouse models and human vascular disorders.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - An Zwijsen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, 3000 Leuven, Belgium
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Mécale (INSERM), U1036, 38000 Grenoble, France.,Laboratoire Biologie du Cancer et de l'Infection, Commissariat à l'Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,University of Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
46
|
Ribeiro DM, Zanzoni A, Cipriano A, Delli Ponti R, Spinelli L, Ballarino M, Bozzoni I, Tartaglia GG, Brun C. Protein complex scaffolding predicted as a prevalent function of long non-coding RNAs. Nucleic Acids Res 2018; 46:917-928. [PMID: 29165713 PMCID: PMC5778612 DOI: 10.1093/nar/gkx1169] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/14/2022] Open
Abstract
The human transcriptome contains thousands of long non-coding RNAs (lncRNAs). Characterizing their function is a current challenge. An emerging concept is that lncRNAs serve as protein scaffolds, forming ribonucleoproteins and bringing proteins in proximity. However, only few scaffolding lncRNAs have been characterized and the prevalence of this function is unknown. Here, we propose the first computational approach aimed at predicting scaffolding lncRNAs at large scale. We predicted the largest human lncRNA-protein interaction network to date using the catRAPID omics algorithm. In combination with tissue expression and statistical approaches, we identified 847 lncRNAs (∼5% of the long non-coding transcriptome) predicted to scaffold half of the known protein complexes and network modules. Lastly, we show that the association of certain lncRNAs to disease may involve their scaffolding ability. Overall, our results suggest for the first time that RNA-mediated scaffolding of protein complexes and modules may be a common mechanism in human cells.
Collapse
Affiliation(s)
- Diogo M Ribeiro
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Andrea Cipriano
- Dept. of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Riccardo Delli Ponti
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Lionel Spinelli
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Monica Ballarino
- Dept. of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Irene Bozzoni
- Dept. of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluıs Companys, 08010 Barcelona, Spain
| | - Christine Brun
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
- CNRS, Marseille, France
| |
Collapse
|
47
|
Jiang X, Wooderchak-Donahue WL, McDonald J, Ghatpande P, Baalbaki M, Sandoval M, Hart D, Clay H, Coughlin S, Lagna G, Bayrak-Toydemir P, Hata A. Inactivating mutations in Drosha mediate vascular abnormalities similar to hereditary hemorrhagic telangiectasia. Sci Signal 2018; 11:11/513/eaan6831. [PMID: 29339534 DOI: 10.1126/scisignal.aan6831] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) family of cytokines critically regulates vascular morphogenesis and homeostasis. Impairment of TGF-β or BMP signaling leads to heritable vascular disorders, including hereditary hemorrhagic telangiectasia (HHT). Drosha, a key enzyme for microRNA (miRNA) biogenesis, also regulates the TGF-β and BMP pathway through interaction with Smads and their joint control of gene expression through miRNAs. We report that mice lacking Drosha in the vascular endothelium developed a vascular phenotype resembling HHT that included dilated and disorganized vasculature, arteriovenous fistulae, and hemorrhages. Exome sequencing of HHT patients who lacked known pathogenic mutations revealed an overrepresentation of rare nonsynonymous variants of DROSHA Two of these DROSHA variants (P100L and R279L) did not interact with Smads and were partially catalytically active. In zebrafish, expression of these mutants or morpholino-directed knockdown of Drosha resulted in angiogenesis defects and abnormal vascular permeability. Together, our studies point to an essential role of Drosha in vascular development and the maintenance of vascular integrity, and reveal a previously unappreciated link between Drosha dysfunction and HHT.
Collapse
Affiliation(s)
- Xuan Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Whitney L Wooderchak-Donahue
- Associated Regional and University Pathologists Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA.,Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA
| | - Jamie McDonald
- Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mai Baalbaki
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melissa Sandoval
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel Hart
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hilary Clay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shaun Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pinar Bayrak-Toydemir
- Associated Regional and University Pathologists Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA. .,Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
48
|
Ruiz S, Chandakkar P, Zhao H, Papoin J, Chatterjee PK, Christen E, Metz CN, Blanc L, Campagne F, Marambaud P. Tacrolimus rescues the signaling and gene expression signature of endothelial ALK1 loss-of-function and improves HHT vascular pathology. Hum Mol Genet 2017; 26:4786-4798. [PMID: 28973643 PMCID: PMC5886173 DOI: 10.1093/hmg/ddx358] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/09/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a highly debilitating and life-threatening genetic vascular disorder arising from endothelial cell (EC) proliferation and hypervascularization, for which no cure exists. Because HHT is caused by loss-of-function mutations in bone morphogenetic protein 9 (BMP9)-ALK1-Smad1/5/8 signaling, interventions aimed at activating this pathway are of therapeutic value. We interrogated the whole-transcriptome in human umbilical vein ECs (HUVECs) and found that ALK1 signaling inhibition was associated with a specific pro-angiogenic gene expression signature, which included a significant elevation of DLL4 expression. By screening the NIH clinical collections of FDA-approved drugs, we identified tacrolimus (FK-506) as the most potent activator of ALK1 signaling in BMP9-challenged C2C12 reporter cells. In HUVECs, tacrolimus activated Smad1/5/8 and opposed the pro-angiogenic gene expression signature associated with ALK1 loss-of-function, by notably reducing Dll4 expression. In these cells, tacrolimus also inhibited Akt and p38 stimulation by vascular endothelial growth factor, a major driver of angiogenesis. In the BMP9/10-immunodepleted postnatal retina-a mouse model of HHT vascular pathology-tacrolimus activated endothelial Smad1/5/8 and prevented the Dll4 overexpression and hypervascularization associated with this model. Finally, tacrolimus stimulated Smad1/5/8 signaling in C2C12 cells expressing BMP9-unresponsive ALK1 HHT mutants and in HHT patient blood outgrowth ECs. Tacrolimus repurposing has therefore therapeutic potential in HHT.
Collapse
Affiliation(s)
- Santiago Ruiz
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | | | - Haitian Zhao
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | | | - Prodyot K Chatterjee
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Erica Christen
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | - Christine N Metz
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| | - Lionel Blanc
- Center for Autoimmune and Musculoskeletal Disorders
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| | - Fabien Campagne
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine
- Department of Physiology and Biophysics, The Weill Cornell Medical College, New York, NY 10021, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| |
Collapse
|
49
|
Tørring PM, Kjeldsen AD, Ousager LB, Brusgaard K. ENG mutational mosaicism in a family with hereditary hemorrhagic telangiectasia. Mol Genet Genomic Med 2017; 6:121-125. [PMID: 29243366 PMCID: PMC5823686 DOI: 10.1002/mgg3.361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Background Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder caused by mutations in ENG,ACVRL1, or SMAD4. Around 90% of HHT patients present with a heterozygous pathogenic genetic variation. Almost all cases of HHT have a family history. Very few cases are de novo or mosaicism. We describe a case with mutational mosaicism that would not be observed in the clinical routine when using Sanger sequencing or a NGS read coverage below app. 100. Methods DNA was extracted from peripheral blood leukocytes, and buccal swabs. The coding region, exon–intron boundaries, and the flanking sequences of the genes were sequenced by NGS. Results The proband had clinical HHT fulfilling the Curaçao criteria and genetic testing identified a frameshift mutation in ENG. The mother of the proband, also with clinical HHT, was found negative when analyzing DNA from blood for the familial mutation using Sanger sequencing. Analyzing her DNA by NGS HHT panel sequencing when extracted from both peripheral blood leukocytes, and cheek swabs, identified the familial ENG mutation at low levels. Conclusion We provide evidence of ENG mutational mosaicism in an individual presenting with clinical HHT. These findings illustrate the importance of considering mutational mosaicism.
Collapse
Affiliation(s)
- Pernille M Tørring
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Anette D Kjeldsen
- Department of Otorhinolaryngology, Odense University Hospital, Odense, Denmark
| | | | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
50
|
Abstract
Correct organization of the vascular tree requires the balanced activities of several signaling pathways that regulate tubulogenesis and vascular branching, elongation, and pruning. When this balance is lost, the vessels can be malformed and fragile, and they can lose arteriovenous differentiation. In this review, we concentrate on the transforming growth factor (TGF)-β/bone morphogenetic protein (BMP) pathway, which is one of the most important and complex signaling systems in vascular development. Inactivation of these pathways can lead to altered vascular organization in the embryo. In addition, many vascular malformations are related to deregulation of TGF-β/BMP signaling. Here, we focus on two of the most studied vascular malformations that are induced by deregulation of TGF-β/BMP signaling: hereditary hemorrhagic telangiectasia (HHT) and cerebral cavernous malformation (CCM). The first of these is related to loss-of-function mutation of the TGF-β/BMP receptor complex and the second to increased signaling sensitivity to TGF-β/BMP. In this review, we discuss the potential therapeutic targets against these vascular malformations identified so far, as well as their basis in general mechanisms of vascular development and stability.
Collapse
Affiliation(s)
- Sara I Cunha
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Peetra U Magnusson
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Elisabetta Dejana
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.).
| | - Maria Grazia Lampugnani
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| |
Collapse
|