1
|
Wilkins-Rodríguez AA, Salazar-Schettino PM, Manning-Cela RG, Gutiérrez-Kobeh L. Differential Regulation of L-Arginine Metabolism through NOS2 and Arginases during Infection with Trypanosoma cruzi. Pathogens 2024; 13:878. [PMID: 39452749 PMCID: PMC11510043 DOI: 10.3390/pathogens13100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
L-arginine metabolism through arginases and inducible nitric oxide synthase (NOS2) constitutes a fundamental axis for the resolution or progression of Chagas disease. Infection with Trypanosoma cruzi can cause a wide spectrum of disease, ranging from acute forms contained by the host immune response to chronic ones, such as the chronic chagasic cardiomyopathy. Here, we analyzed, in an in vitro model, the ability of two T. cruzi isolates, with different degrees of virulence, to regulate the metabolism of L-arginine through arginase 1 (Arg-1) and NOS2 in macrophages and through arginase 2 (Arg-2) and NOS2 in cardiomyocytes. Stimulation of bone marrow-derived macrophages (BMMΦ), obtained from CD1 mice, with TNF-α + IFN-γ induced their polarization into classically activated macrophages (CAMΦ), which expressed functional NOS2, while stimulation with IL-4 induced their polarization into alternatively activated macrophages (AAMΦ), which expressed functional Arg-1. Interestingly, stimulation of cardiomyocytes, obtained from hearts of CD1 neonatal mice, with TNF-α + IFN-γ or IL-4 also resulted in functional NOS2 and arginase expression, as observed in CAMΦ and AAMΦ, but Arg-2 was the arginase isoform expressed instead of Arg-1. We observed that infection of BMMΦ with the more virulent T. cruzi isolate (QRO) importantly diminished NOS2 expression and nitric oxide (NO) production in CAMΦ, allowing parasite survival, while infection with the less virulent isolate (CI2) did not diminish NOS2 activity and NO production in CAMΦ to a great extent, which resulted in parasite killing. Regarding Arg-1, infection of BMMΦ with the QRO isolate significantly induced Arg-1 expression and activity in AAMΦ, which resulted in a higher parasite load than the one in the unstimulated BMMΦ. Even though infection with CI2 isolate did not increase Arg-1 expression and activity in AAMΦ, the parasite load was higher than the one in the unstimulated BMMΦ but at a lesser magnitude than that observed during infection with the QRO isolate. On the other hand, infection of cardiomyocytes with either QRO or CI2 isolates and further stimulation with TNF-α + IFN-γ inhibited NOS2 expression and NO production, leading to amelioration of infection. Surprisingly, infection of cardiomyocytes with either QRO or CI2 isolates and further stimulation with IL-4 strongly inhibited Arg-2 expression and function, which resulted in parasite loads similar to those observed in unstimulated cardiomyocytes. Our results suggest that T. cruzi isolates that exhibit variable virulence or pathogenicity degrees differentially regulate L-arginine metabolism through Arg-1/2 and NOS2 in macrophages and cardiomyocytes.
Collapse
Affiliation(s)
- Arturo A. Wilkins-Rodríguez
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico;
| | - Paz María Salazar-Schettino
- Laboratorio de Biología de Parásitos, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Rebeca G. Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico;
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico;
| |
Collapse
|
2
|
Silvestrini MMA, Alessio GD, Frias BED, Sales Júnior PA, Araújo MSS, Silvestrini CMA, Brito Alvim de Melo GE, Martins-Filho OA, Teixeira-Carvalho A, Martins HR. New insights into Trypanosoma cruzi genetic diversity, and its influence on parasite biology and clinical outcomes. Front Immunol 2024; 15:1342431. [PMID: 38655255 PMCID: PMC11035809 DOI: 10.3389/fimmu.2024.1342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.
Collapse
Affiliation(s)
| | - Glaucia Diniz Alessio
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Estefânia Diniz Frias
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Policarpo Ademar Sales Júnior
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Rodrigues Martins
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
3
|
Gonzáles-Córdova RA, Dos Santos TR, Gachet-Castro C, Andrade Vieira J, Trajano-Silva LAM, Sakamoto-Hojo ET, Baqui MMA. Trypanosoma cruzi infection induces DNA double-strand breaks and activates DNA damage response pathway in host epithelial cells. Sci Rep 2024; 14:5225. [PMID: 38433244 PMCID: PMC10909859 DOI: 10.1038/s41598-024-53589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, invades many cell types affecting numerous host-signalling pathways. During the T. cruzi infection, we demonstrated modulations in the host RNA polymerase II activity with the downregulation of ribonucleoproteins affecting host transcription and splicing machinery. These alterations could be a result of the initial damage to the host DNA caused by the presence of the parasite, however, the mechanisms are not well understood. Herein, we examined whether infection by T. cruzi coincided with enhanced DNA damage in the host cell. We studied the engagement of the DNA damage response (DDR) pathways at the different time points (0-24 h post-infection, hpi) by T. cruzi in LLC-MK2 cells. In response to double-strand breaks (DSB), maximum phosphorylation of the histone variant H2AX is observed at 2hpi and promotes recruitment of the DDR p53-binding protein (53BP1). During T. cruzi infection, Ataxia-telangiectasia mutated protein (ATM) and DNA-PK protein kinases remained active in a time-dependent manner and played roles in regulating the host response to DSB. The host DNA lesions caused by the infection are likely orchestrated by the non-homologous end joining (NHEJ) pathway to maintain the host genome integrity.
Collapse
Affiliation(s)
- Raul Alexander Gonzáles-Córdova
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Thamires Rossi Dos Santos
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Camila Gachet-Castro
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Johnathan Andrade Vieira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Lays Adrianne Mendonça Trajano-Silva
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
- Department of Biology, Faculty of Philosophy Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, 14040-901, Brazil
| | - Munira Muhammad Abdel Baqui
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil.
| |
Collapse
|
4
|
Ballal S. A brief account of evolution of assays to study carbohydrate-protein interaction. J Mol Recognit 2024; 37:e3065. [PMID: 37864321 DOI: 10.1002/jmr.3065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/02/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023]
Abstract
Molecular recognition remains one of the most desirable means of cellular communication. Each cell offers a unique surface pattern of biomolecules that makes it very specific about the nature of molecules that interact with the cell. Protein-glycan interaction has been one of the most common forms of cell signaling. Glycans expressed on the cell surface interact with an exogenous protein, and in many cases lead to a physiological response. These carbohydrate-binding proteins, commonly known as lectins, are very specific to the glycan they bind to. An exogenous lectin interacting with an animal cell surface glycan is generally studied using the classical hemagglutination assay. However, this method presents certain challenges that make it imperative to design and develop novel methods that are more specific and efficient in their interaction. In the last decade, a few methods have been developed to analyze more diverse reactions and use a lesser amount of sample. In some cases, the processing of the sample is also reduced. This review discusses how the methods have evolved over the decades and how they have reduced error while becoming more efficient.
Collapse
Affiliation(s)
- Suhas Ballal
- Department of Chemistry and Biochemistry, Jain (Deemed to be) University, Bengaluru, India
| |
Collapse
|
5
|
Rodríguez-Durán J, Gallardo JP, Alba Soto CD, Gómez KA, Potenza M. The Kinetoplastid-Specific Protein TcCAL1 Plays Different Roles During In Vitro Differentiation and Host-Cell Invasion in Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 12:901880. [PMID: 35846750 PMCID: PMC9280158 DOI: 10.3389/fcimb.2022.901880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In the pathogen Typanosoma cruzi, the calcium ion (Ca2+) regulates key processes for parasite survival. However, the mechanisms decoding Ca2+ signals are not fully identified or understood. Here, we investigate the role of a hypothetical Ca2+-binding protein named TcCAL1 in the in vitro life cycle of T. cruzi. Results showed that the overexpression of TcCAL1 fused to a 6X histidine tag (TcCAL1-6xHis) impaired the differentiation of epimastigotes into metacyclic trypomastigotes, significantly decreasing metacyclogenesis rates. When the virulence of transgenic metacyclic trypomastigotes was explored in mammalian cell invasion assays, we found that the percentage of infection was significantly higher in Vero cells incubated with TcCAL1-6xHis-overexpressing parasites than in controls, as well as the number of intracellular amastigotes. Additionally, the percentage of Vero cells with adhered metacyclic trypomastigotes significantly increased in samples incubated with TcCAL1-6xHis-overexpressing parasites compared with controls. In contrast, the differentiation rates from metacyclic trypomastigotes to axenic amastigotes or the epimastigote proliferation in the exponential phase of growth have not been affected by TcCAL1-6xHis overexpression. Based on our findings, we speculate that TcCAL1 exerts its function by sequestering intracellular Ca2+ by its EF-hand motifs (impairing metacyclogenesis) and/or due to an unknown activity which could be amplified by the ion binding (promoting cell invasion). This work underpins the importance of studying the kinetoplastid-specific proteins with unknown functions in pathogen parasites.
Collapse
Affiliation(s)
- Jessica Rodríguez-Durán
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
| | - Juan Pablo Gallardo
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
| | - Catalina Dirney Alba Soto
- Instituto de Microbiología y Parasitología Médica, Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina Andrea Gómez
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
| | - Mariana Potenza
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
- *Correspondence: Mariana Potenza, ;
| |
Collapse
|
6
|
Valera-Vera E, Reigada C, Sayé M, Digirolamo FA, Galceran F, Miranda MR, Pereira CA. Trypanocidal activity of the anthocyanidin delphinidin, a non-competitive inhibitor of arginine kinase. Nat Prod Res 2022; 36:3153-3157. [PMID: 34219561 DOI: 10.1080/14786419.2021.1947270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Arginine kinase from Trypanosoma cruzi (TcAK) catalyzes the interconversion of arginine and phosphoarginine to maintain the ATP/ADP cell balance, and is involved in the parasites' energetic homeostasis and stress responses. Using virtual screening approaches, some plant-derived polyphenolic pigments, such as anthocyanidins, were predicted to inhibit TcAK activity. Here, it was demonstrated that the anthocyanidin delphinidin showed a non-competitive inhibition mechanism of TcAK (Ki arginine = 1.32 µM and Ki ATP = 500 µM). Molecular docking simulations predicted that delphinidin occupies part of the ATP/ADP pocket, more specifically the one that binds the ribose phosphate, and molecular dynamics simulations confirmed the amino acids involved in binding. Delphinidin exerted trypanocidal activity over T. cruzi trypomastigotes with a calculated IC50 of 19.51 µM. Anthocyanidins are low-toxicity natural products which can be exploited for the development of trypanocidal drugs with less secondary effects than those currently used for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Edward Valera-Vera
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Chantal Reigada
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Sayé
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fabio A Digirolamo
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Facundo Galceran
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana R Miranda
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio A Pereira
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Oliveira ACS, Rezende L, Gorshkov V, Melo-Braga MN, Verano-Braga T, Fernandes-Braga W, Guadalupe JLDM, de Menezes GB, Kjeldsen F, de Andrade HM, Andrade LDO. Biological and Molecular Effects of Trypanosoma cruzi Residence in a LAMP-Deficient Intracellular Environment. Front Cell Infect Microbiol 2022; 11:788482. [PMID: 35071040 PMCID: PMC8770540 DOI: 10.3389/fcimb.2021.788482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023] Open
Abstract
Trypanosoma cruzi invades non-professional phagocytic cells by subverting their membrane repair process, which is dependent on membrane injury and cell signaling, intracellular calcium increase, and lysosome recruitment. Cells lacking lysosome-associated membrane proteins 1 and 2 (LAMP1 and LAMP2) are less permissive to parasite invasion but more prone to parasite intracellular multiplication. Several passages through a different intracellular environment can significantly change T. cruzi's gene expression profile. Here, we evaluated whether one single passage through LAMP-deficient (KO) or wild-type (WT) fibroblasts, thus different intracellular environments, could influence T. cruzi Y strain trypomastigotes' ability to invade L6 myoblasts and WT fibroblasts host cells. Parasites released from LAMP2 KO cells (TcY-L2-/-) showed higher invasion, calcium signaling, and membrane injury rates, for the assays in L6 myoblasts, when compared to those released from WT (TcY-WT) or LAMP1/2 KO cells (TcY-L1/2-/-). On the other hand, TcY-L1/2-/- showed higher invasion, calcium signaling, and cell membrane injury rates, for the assays in WT fibroblasts, compared to TcY-WT and TcY-L1/2-/-. Albeit TcY-WT presented an intermediary invasion and calcium signaling rates, compared to the others, in WT fibroblasts, they induced lower levels of injury, which reinforces that signals mediated by surface membrane protein interactions also have a significant contribution to trigger host cell calcium signals. These results clearly show that parasites released from WT or LAMP KO cells are distinct from each other. Additionally, these parasites' ability to invade the cell may be distinct depending on which cell type they interact with. Since these alterations most likely would reflect differences among parasite surface molecules, we also evaluated their proteome. We identified few protein complexes, membrane, and secreted proteins regulated in our dataset. Among those are some members of MASP, mucins, trans-sialidases, and gp63 proteins family, which are known to play an important role during parasite infection and could correlate to TcY-WT, TcY-L1/2-/-, and TcY-L2-/- biological behavior.
Collapse
Affiliation(s)
- Anny Carolline Silva Oliveira
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Luisa Rezende
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vladimir Gorshkov
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marcella Nunes Melo-Braga
- Department of Biochemistry and Immunology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Thiago Verano-Braga
- Hypertension Lab/Functional Proteomics Group, Department of Physiology and Biophysics, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Jorge Luís de Melo Guadalupe
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gustavo Batista de Menezes
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Frank Kjeldsen
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hélida Monteiro de Andrade
- Laboratory of Leishmanioses, Department of Parasitology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luciana de Oliveira Andrade
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
8
|
Manchola Varón NC, Dos Santos GRRM, Colli W, Alves MJM. Interaction With the Extracellular Matrix Triggers Calcium Signaling in Trypanosoma cruzi Prior to Cell Invasion. Front Cell Infect Microbiol 2021; 11:731372. [PMID: 34671568 PMCID: PMC8521164 DOI: 10.3389/fcimb.2021.731372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease in humans, infects a wide variety of vertebrates. Trypomastigotes, the parasite infective forms, invade mammalian cells by a still poorly understood mechanism. Adhesion of tissue culture- derived trypomastigotes to the extracellular matrix (ECM) prior to cell invasion has been shown to be a relevant part of the process. Changes in phosphorylation, S-nitrosylation, and nitration levels of proteins, in the late phase of the interaction (2 h), leading to the reprogramming of both trypomastigotes metabolism and the DNA binding profile of modified histones, were described by our group. Here, the involvement of calcium signaling at a very early phase of parasite interaction with ECM is described. Increments in the intracellular calcium concentrations during trypomastigotes-ECM interaction depends on the Ca2+ uptake from the extracellular medium, since it is inhibited by EGTA or Nifedipine, an inhibitor of the L-type voltage gated Ca2+ channels and sphingosine-dependent plasma membrane Ca2+ channel, but not by Vanadate, an inhibitor of the plasma membrane Ca2+-ATPase. Furthermore, Nifedipine inhibits the invasion of host cells by tissue culture- derived trypomastigotes in a dose-dependent manner, reaching 95% inhibition at 100 µM Nifedipine. These data indicate the importance of both Ca2+ uptake from the medium and parasite-ECM interaction for host-cell invasion. Previous treatment of ECM with protease abolishes the Ca2+ uptake, further reinforcing the possibility that these events may be connected. The mitochondrion plays a relevant role in Ca2+ homeostasis in trypomastigotes during their interaction with ECM, as shown by the increment of the intracellular Ca2+ concentration in the presence of Antimycin A, in contrast to other calcium homeostasis disruptors, such as Cyclopiazonic acid for endoplasmic reticulum and Bafilomycin A for acidocalcisome. Total phosphatase activity in the parasite decreases in the presence of Nifedipine, EGTA, and Okadaic acid, implying a role of calcium in the phosphorylation level of proteins that are interacting with the ECM in tissue culture- derived trypomastigotes. In summary, we describe here the increment of Ca2+ at an early phase of the trypomastigotes interaction with ECM, implicating both nifedipine-sensitive Ca2+ channels in the influx of Ca2+ and the mitochondrion as the relevant organelle in Ca2+ homeostasis. The data unravel a complex sequence of events prior to host cell invasion itself.
Collapse
Affiliation(s)
- Nubia Carolina Manchola Varón
- Laboratory of Biochemistry of Parasites, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Walter Colli
- Laboratory of Biochemistry of Parasites, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria Julia M Alves
- Laboratory of Biochemistry of Parasites, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Coutinho JVP, Rosa-Fernandes L, Mule SN, de Oliveira GS, Manchola NC, Santiago VF, Colli W, Wrenger C, Alves MJM, Palmisano G. The thermal proteome stability profile of Trypanosoma cruzi in epimastigote and trypomastigote life stages. J Proteomics 2021; 248:104339. [PMID: 34352427 DOI: 10.1016/j.jprot.2021.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022]
Abstract
Trypanosoma cruzi is a flagellate protozoa being the etiological agent of Chagas disease, a neglected tropical disease, which still poses a public health problem worldwide. The intricate molecular changes during T. cruzi-host interaction have been explored using different largescale omics techniques. However, protein stability is largely unknown. Thermal proteome profiling (TPP) methodology has the potential to characterize proteome-wide stability highlighting key proteins during T. cruzi infection and life stage transition from the invertebrate to the mammalian host. In the present work, T. cruzi epimastigotes and trypomastigotes cell lysates were subjected to TPP workflow and analyzed by quantitative large-scale mass spectrometry-based proteomics to fit a melting profile for each protein. A total of 2884 proteins were identified and associated to 1741 melting curves being 1370 in trypomastigotes (TmAVG 53.53 °C) and 1279 in epimastigotes (TmAVG 50.89 °C). A total of 453 proteins were identified with statistically different melting profiles between the two life stages. Proteins associated to pathogenesis and intracellular transport had regulated melting temperatures. Membrane and glycosylated proteins had a higher average Tm in trypomastigotes compared to epimastigotes. This study represents the first large-scale comparison of parasite protein stability between life stages. SIGNIFICANCE: Trypanosoma cruzi, a unicellular flagellate parasite, is the etiological agent of Chagas disease, endemic in South America and affecting more that 7 million people worldwide. There is an intense research to identify novel chemotherapeutic and diagnostic targets of Chagas disease. Proteomic approaches have helped in elucidating the quantitative proteome and PTMs changes of T. cruzi during life cycle transition and upon different biotic and abiotic stimuli. However, a comprehensive knowledge of the protein-protein interaction and protein conformation is still missing. In order to fill this gap, this manuscript elucidates the T. cruzi Y strain proteome-wide thermal stability map in the epimastigote and trypomastigote life stages. Comparison between life stages showed a higher average melting temperature stability for trypomastigotes than epimastigotes indicating a host temperature adaptation. Both presented a selective thermal stability shift for cellular compartments, molecular functions and biological processes based on the T. cruzi life stage. Membrane and glycosylated proteins presented a higher thermal stability in trypomastigotes when compared to the epimastigotes.
Collapse
Affiliation(s)
- Joao V P Coutinho
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Gilberto Santos de Oliveira
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Veronica Feijoli Santiago
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Walter Colli
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
10
|
Valera-Vera EA, Reigada C, Sayé M, Digirolamo FA, Galceran F, Miranda MR, Pereira CA. Effect of capsaicin on the protozoan parasite Trypanosoma cruzi. FEMS Microbiol Lett 2020; 367:6000212. [PMID: 33232444 DOI: 10.1093/femsle/fnaa194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease. There are only two approved treatments, both of them unsuitable for the chronic phase, therefore the development of new drugs is a priority. Trypanosoma cruzi arginine kinase (TcAK) is a promising drug target since it is absent in humans and it is involved in cellular stress responses. In a previous study, possible TcAK inhibitors were identified through computer simulations resulting the best compounds capsaicin and cyanidin derivatives. Here, we evaluate the effect of capsaicin on TcAK activity and its trypanocidal effect. Although capsaicin produced a weak enzyme inhibition, it had a strong trypanocidal effect on epimastigotes and trypomastigotes (IC50 = 6.26 µM and 0.26 µM, respectively) being 20-fold more active on trypomastigotes than mammalian cells. Capsaicin was also active on the intracellular cycle reducing by half the burst of trypomastigotes at approximately 2 µM. Considering the difference between the concentrations at which parasite death and TcAK inhibition occur, other possible targets were predicted. Capsaicin is a selective trypanocidal agent active in nanomolar concentrations, with an IC50 57-fold lower than benznidazole, the drug currently used for treating Chagas disease.
Collapse
Affiliation(s)
- Edward A Valera-Vera
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| | - Chantal Reigada
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| | - Melisa Sayé
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| | - Fabio A Digirolamo
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| | - Facundo Galceran
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| | - Mariana R Miranda
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| | - Claudio A Pereira
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| |
Collapse
|
11
|
Proteome-wide modulation of S-nitrosylation in Trypanosoma cruzi trypomastigotes upon interaction with the host extracellular matrix. J Proteomics 2020; 231:104020. [PMID: 33096306 DOI: 10.1016/j.jprot.2020.104020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/20/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Trypanosoma cruzi trypomastigotes adhere to extracellular matrix (ECM) to invade mammalian host cells regulating intracellular signaling pathways. Herein, resin-assisted enrichment of thiols combined with mass spectrometry were employed to map site-specific S-nitrosylated (SNO) proteins from T. cruzi trypomastigotes incubated (MTy) or not (Ty) with ECM. We confirmed the reduction of S-nitrosylation upon incubation with ECM, associated with a rewiring of the subcellular distribution and intracellular signaling pathways. Forty, 248 and 85 SNO-peptides were identified only in MTy, Ty or in both conditions, respectively. SNO proteins were enriched in ribosome, transport, carbohydrate and lipid metabolisms. Nitrosylation of histones H2B and H3 on Cys64 and Cys126, respectively, is described. Protein-protein interaction networks revealed ribosomal proteins, proteins involved in carbon and fatty acid metabolism to be among the enriched protein complexes. Kinases, phosphatases and enzymes involved in the metabolism of carbohydrates, lipids and amino acids were identified as nitrosylated and phosphorylated, suggesting a post-translational modifications crosstalk. In silico mapping of nitric oxide synthase (NOS) genes, previously uncharacterized, matched to four putative T. cruzi proteins expressing C-terminal NOS domain. Our results provide the first site-specific characterization of S-nitrosylated proteins in T. cruzi and their modulation upon ECM incubation before infection of the mammalian hosts. SIGNIFICANCE: Protein S-nitrosylation represents a major molecular mechanism for signal transduction by nitric oxide. We present for the first time a proteomic profile of S-nitrosylated proteins from infective forms of T. cruzi, showing a decrease in SNO proteins after incubation of the parasite with the extracellular matrix, a necessary step for the parasite invasion of the host mammalian cells. We also show for the first time nitrosylation of H2B (Cys64) and H3 (Cys126) histones, sites not conserved in higher eukaryotic cells, and suggest that some specific histone isoforms are sensitive to NO signaling. S-nitrosylation in H2B and H3 histones are more abundant in MTy. Moreover, proteins involved in translation, glycolytic pathway and fatty acid metabolism are enriched in the present dataset. Comparison of the SNO proteome and the phosphoproteome, obtained previously under the same experimental conditions, show that most of the proteins sharing both modifications are involved in metabolic pathways, transport and ribosome function. The data suggest that both PTMs are involved in reprogramming the metabolism of T. cruzi in response to environmental changes. Although NO synthesis was detected in T. cruzi, the identification of NOS remains elusive. Analysis in silico showed two genes similar in domains to NADPH-dependent cytochrome-P450 reductase and two putative oxidoreductases, but no oxygenase domain of NOS was mapped in the T. cruzi genome. It is tempting to speculate that NO synthase-like from T. cruzi and its early NO-mediated pathways triggered in response to host interaction constitute potential diagnostic and therapeutic targets.
Collapse
|
12
|
Ennes-Vidal V, Pitaluga AN, Britto CFDPDC, Branquinha MH, Santos ALSD, Menna-Barreto RFS, d'Avila-Levy CM. Expression and cellular localisation of Trypanosoma cruzi calpains. Mem Inst Oswaldo Cruz 2020; 115:e200142. [PMID: 33053076 PMCID: PMC7552305 DOI: 10.1590/0074-02760200142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Calpains are present in almost all organisms and comprise a family of calcium-dependent cysteine peptidases implicated in crucial cellular functions. Trypanosoma cruzi, the causative agent of Chagas disease, presents an expansion on this gene family with unexplored biological properties. OBJECTIVES Here, we searched for calpains in the T. cruzi genome, evaluated the mRNA levels, calpain activity and the protein expression and determined the cellular localisation in all three parasite life cycle forms. METHODS/FINDINGS Sixty-three calpain sequences were identified in T. cruzi CL Brener genome, with fourteen domain arrangements. The comparison of calpain mRNA abundance by quantitative polymerase chain reaction (qPCR) revealed seven up-regulated sequences in amastigotes and/or bloodstream trypomastigotes and five in epimastigotes. Western Blotting analysis revealed seven different molecules in the three parasite forms, and one amastigote-specific, while no proteolytic activity could be detected. Flow cytometry assays revealed a higher amount of intracellular calpains in amastigotes and/or trypomastigotes in comparison to epimastigotes. Finally, ultrastructural analysis revealed the presence of calpains in the cytoplasm, vesicular and plasma membranes of the three parasite forms, and in the paraflagellar rod in trypomastigotes. CONCLUSION Calpains are differentially expressed and localised in the T. cruzi life cycle forms. This study adds data on the calpain occurrence and expression pattern in T. cruzi.
Collapse
Affiliation(s)
- Vítor Ennes-Vidal
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Rio de Janeiro, RJ, Brasil
| | - André Nóbrega Pitaluga
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Parasitas e Vetores, Rio de Janeiro, RJ, Brasil
| | | | - Marta Helena Branquinha
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Rio de Janeiro, RJ, Brasil
| | - André Luis Souza Dos Santos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Rio de Janeiro, RJ, Brasil.,Universidade Federal do Rio de Janeiro, Instituto de Química, Programa de Pós-Graduação em Bioquímica, Rio de Janeiro, RJ, Brasil
| | | | - Claudia Masini d'Avila-Levy
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
13
|
Arias DG, Cabeza MS, Echarren ML, Faral-Tello P, Iglesias AA, Robello C, Guerrero SA. On the functionality of a methionine sulfoxide reductase B from Trypanosoma cruzi. Free Radic Biol Med 2020; 158:96-114. [PMID: 32682073 DOI: 10.1016/j.freeradbiomed.2020.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/20/2020] [Accepted: 06/26/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Methionine is an amino acid susceptible to be oxidized to give a racemic mixture of R and S forms of methionine sulfoxide (MetSO). This posttranslational modification has been reported to occur in vivo under either normal or stress conditions. The reduction of MetSO to methionine is catalyzed by methionine sulfoxide reductases (MSRs), thiol-dependent enzymes present in almost all organisms. These enzymes can reduce specifically one or another of the isomers of MetSO (free and protein-bound). This redox modification could change the structure and function of many proteins, either concerned in redox or other metabolic pathways. The study of antioxidant systems in Trypanosoma cruzi has been mainly focused on the involvement of trypanothione, a specific redox component for these organisms. Though, little information is available concerning mechanisms for repairing oxidized methionine residues in proteins, which would be relevant for the survival of these pathogens in the different stages of their life cycle. METHODS We report an in vitro functional and in vivo cellular characterization of methionine sulfoxide reductase B (MSRB, specific for protein-bound MetSO R-enantiomer) from T. cruzi strain Dm28c. RESULTS MSRB exhibited both cytosolic and mitochondrial localization in epimastigote cells. From assays involving parasites overexpressing MSRB, we observed the contribution of this protein to increase the general resistance against oxidative damage, the infectivity of trypomastigote cells, and intracellular replication of the amastigote stage. Also, we report that epimastigotes overexpressing MSRB exhibit inhibition of the metacyclogenesis process; this suggesting the involvement of the proteins as negative modulators in this cellular differentiation. CONCLUSIONS AND GENERAL SIGNIFICANCE This report contributes to novel insights concerning redox metabolism in T. cruzi. Results herein presented support the importance of enzymatic steps involved in the metabolism of L-Met and in repairing oxidized macromolecules in this parasite.
Collapse
Affiliation(s)
- Diego G Arias
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Matías S Cabeza
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María L Echarren
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina
| | - Paula Faral-Tello
- Laboratorio de Interacción Hospedero-Patógeno, UBM, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carlos Robello
- Laboratorio de Interacción Hospedero-Patógeno, UBM, Instituto Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Bioquímica - Facultad de Medicina - Universidad de la República, Montevideo, Uruguay
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
14
|
Magalhães RDM, Mattos EC, Rozanski A, Galante PAF, Palmisano G, Cruz AK, Colli W, Camargo AA, Alves MJM. Global changes in nitration levels and DNA binding profile of Trypanosoma cruzi histones induced by incubation with host extracellular matrix. PLoS Negl Trop Dis 2020; 14:e0008262. [PMID: 32469928 PMCID: PMC7286532 DOI: 10.1371/journal.pntd.0008262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/10/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Adhesion of T. cruzi trypomastigotes to components of the extracellular matrix (ECM) is an important step in mammalian host cell invasion. We have recently described a significant increase in the tyrosine nitration levels of histones H2A and H4 when trypomastigotes are incubated with components of the ECM. In this work, we used chromatin immunoprecipitation (ChIP) with an anti-nitrotyrosine antibody followed by mass spectrometry to identify nitrated DNA binding proteins in T. cruzi and to detect alterations in nitration levels induced upon parasite incubation with the ECM. Histone H1, H2B, H2A and H3 were detected among the 9 most abundant nitrated DNA binding proteins using this proteomic approach. One nitrated tyrosine residue (Y29) was identified in Histone H2B in the MS/MS spectrum. In addition, we observed a significant increase in the nitration levels of histones H1, H2B, H2A and H4 upon parasite incubation with ECM. Finally, we used ChIP-Seq to map global changes in the DNA binding profile of nitrated proteins. We observed a significant change in the binding pattern of nitrated proteins to DNA after parasite incubation with ECM. This work provides the first global profile of nitrated DNA binding proteins in T. cruzi and additional evidence for modification in the nitration profile of histones upon parasite incubation with ECM. Our data also indicate that the parasite interaction with the ECM induces alterations in chromatin structure, possibly affecting nuclear functions.
Collapse
Affiliation(s)
- Rubens Daniel Miserani Magalhães
- Departamento de Bioquímica Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Centro de Oncologia Molecular, Hospital Sírio Libanês, São Paulo, Brazil
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eliciane Cevolani Mattos
- Departamento de Bioquímica Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Andrei Rozanski
- Centro de Oncologia Molecular, Hospital Sírio Libanês, São Paulo, Brazil
| | | | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Angela Kaysel Cruz
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Walter Colli
- Departamento de Bioquímica Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Anamaria Aranha Camargo
- Centro de Oncologia Molecular, Hospital Sírio Libanês, São Paulo, Brazil
- * E-mail: (AAC), (MJMA)
| | - Maria Júlia Manso Alves
- Departamento de Bioquímica Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail: (AAC), (MJMA)
| |
Collapse
|
15
|
Sangenito LS, Menna-Barreto RFS, d'Avila-Levy CM, Branquinha MH, Santos ALS. Repositioning of HIV Aspartyl Peptidase Inhibitors for Combating the Neglected Human Pathogen Trypanosoma cruzi. Curr Med Chem 2019; 26:6590-6613. [PMID: 31187704 DOI: 10.2174/0929867326666190610152934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
Abstract
Chagas disease, caused by the flagellate parasite Trypanosoma cruzi, is a wellknown neglected tropical disease. This parasitic illness affects 6-7 million people and can lead to severe myocarditis and/or complications of the digestive tract. The changes in its epidemiology facilitate co-infection with the Human Immunodeficiency Virus (HIV), making even more difficult the diagnosis and prognosis. The parasitic infection is reactivated in T. cruzi/HIV co-infection, with the appearance of unusual manifestations in the chronic phase and the exacerbation of classical clinical signs. The therapeutic arsenal to treat Chagas disease, in all its clinical forms, is restricted basically to two drugs, benznidazole and nifurtimox. Both drugs are extremely toxic and the therapeutic efficacy is still unclear, making the clinical treatment a huge issue to be solved. Therefore, it seems obvious the necessity of new tangible approaches to combat this illness. In this sense, the repositioning of approved drugs appears as an interesting and viable strategy. The discovery of Human Immunodeficiency Virus Aspartyl Peptidase Inhibitors (HIV-PIs) represented a milestone in the treatment of Acquired Immune Deficiency Syndrome (AIDS) and, concomitantly, a marked reduction in both the incidence and prevalence of important bacterial, fungal and parasitic co-infections was clearly observed. Taking all these findings into consideration, the present review summarizes the promising and beneficial data concerning the effects of HIV-PIs on all the evolutionary forms of T. cruzi and in important steps of the parasite's life cycle, which highlight their possible application as alternative drugs to treat Chagas disease.
Collapse
Affiliation(s)
- Leandro S Sangenito
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cláudia M d'Avila-Levy
- Laboratorio de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Mandacaru SC, Queiroz RML, Alborghetti MR, de Oliveira LS, de Lima CMR, Bastos IMD, Santana JM, Roepstorff P, Ricart CAO, Charneau S. Exoproteome profiling of Trypanosoma cruzi during amastigogenesis early stages. PLoS One 2019; 14:e0225386. [PMID: 31756194 PMCID: PMC6874342 DOI: 10.1371/journal.pone.0225386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi, affecting around 8 million people worldwide. After host cell invasion, the infective trypomastigote form remains 2–4 hours inside acidic phagolysosomes to differentiate into replicative amastigote form. In vitro acidic-pH-induced axenic amastigogenesis was used here to study this step of the parasite life cycle. After three hours of trypomastigote incubation in amastigogenesis promoting acidic medium (pH 5.0) or control physiological pH (7.4) medium samples were subjected to three rounds of centrifugation followed by ultrafiltration of the supernatants. The resulting exoproteome samples were trypsin digested and analysed by nano flow liquid chromatography coupled to tandem mass spectrometry. Computational protein identification searches yielded 271 and 483 protein groups in the exoproteome at pH 7.4 and pH 5.0, respectively, with 180 common proteins between both conditions. The total amount and diversity of proteins released by parasites almost doubled upon acidic incubation compared to control. Overall, 76.5% of proteins were predicted to be secreted by classical or non-classical pathways and 35.1% of these proteins have predicted transmembrane domains. Classical secretory pathway analysis showed an increased number of mucins and mucin-associated surface proteins after acidic incubation. However, the number of released trans-sialidases and surface GP63 peptidases was higher at pH 7.4. Trans-sialidases and mucins are anchored to the membrane and exhibit an enzyme-substrate relationship. In general, mucins are glycoproteins with immunomodulatory functions in Chagas disease, present mainly in the epimastigote and trypomastigote surfaces and could be enzymatically cleaved and released in the phagolysosome during amastigogenesis. Moreover, evidence for flagella discard during amastigogenesis are addressed. This study provides the first comparative analysis of the exoproteome during amastigogenesis, and the presented data evidence the dynamism of its profile in response to acidic pH-induced differentiation.
Collapse
Affiliation(s)
- Samuel C. Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Rayner M. L. Queiroz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marcos R. Alborghetti
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Lucas S. de Oliveira
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Consuelo M. R. de Lima
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Izabela M. D. Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Jaime M. Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Carlos André O. Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- * E-mail:
| |
Collapse
|
17
|
Reigada C, Sayé M, Phanstiel O, Valera-Vera E, Miranda MR, Pereira CA. Identification of Trypanosoma cruzi Polyamine Transport Inhibitors by Computational Drug Repurposing. Front Med (Lausanne) 2019; 6:256. [PMID: 31781568 PMCID: PMC6857147 DOI: 10.3389/fmed.2019.00256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/24/2019] [Indexed: 01/22/2023] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a parasitic infection endemic in Latin America. In T. cruzi the transport of polyamines is essential because this organism is unable to synthesize these compounds de novo. Therefore, the uptake of polyamines from the extracellular medium is critical for survival of the parasite. The anthracene-putrescine conjugate Ant4 was first designed as a polyamine transport probe in cancer cells. Ant4 was also found to inhibit the polyamine transport system and produced a strong trypanocidal effect in T. cruzi. Considering that Ant4 is not currently approved by the FDA, in this work we performed computer simulations to find trypanocidal drugs approved for use in humans that have structures and activities similar to Ant4. Through a similarity ligand-based virtual screening using Ant4 as reference molecule, four possible inhibitors of polyamine transport were found. Three of them, promazine, chlorpromazine, and clomipramine, showed to be effective inhibitors of putrescine uptake, and also revealed a high trypanocidal activity against T. cruzi amastigotes (IC50 values of 3.8, 1.9, and 2.9 μM, respectively) and trypomastigotes (IC50 values of 3.4, 2.7, and 1.3 μM, respectively) while in epimastigotes the IC50 were significantly higher (34.7, 41.4, and 39.7 μM, respectively). Finally, molecular docking simulations suggest that the interactions between the T. cruzi polyamine transporter TcPAT12 and all the identified inhibitors occur in the same region of the protein. However, this location is different from the site occupied by the natural substrates. The value of this effort is that repurposing known drugs in the treatment of other pathologies, especially neglected diseases such as Chagas disease, significantly decreases the time and economic cost of implementation.
Collapse
Affiliation(s)
- Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Otto Phanstiel
- Department of Medical Education, University of Central Florida, Orlando, FL, United States
| | - Edward Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana R Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio A Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Reigada C, Sayé M, Valera-Vera E, Miranda MR, Pereira CA. Repurposing of terconazole as an anti Trypanosoma cruzi agent. Heliyon 2019; 5:e01947. [PMID: 31211266 PMCID: PMC6562323 DOI: 10.1016/j.heliyon.2019.e01947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/16/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a parasitic infection endemic in Latin America. Currently there are no effective treatments for the chronic phase of the disease, when most patients are diagnosed, therefore the development of new drugs is a priority area. Several triazoles, used as fungicides, exhibit trypanocidal activity both in vitro and in vivo. The mechanism of action of such drugs, both in fungi and in T. cruzi, relies in the inhibition of ergosterol biosynthesis affecting the cell viability and growth. Among them, terconazole was the first triazole antifungal drug for human use. In this work, the trypanocidal activity of terconazole was evaluated using in vitro assays. In epimastigotes of two parasites strains from different discrete typing units (Y and Dm28c) the calculated IC50 were 25.7 μM and 21.9 μM, respectively. In trypomastigotes and amastigotes (the clinically relevant life-stages of T. cruzi) a higher drug susceptibility was observed with IC50 values of 4.6 μM and 5.9 μM, respectively. Finally, the molecular docking simulations suggest that terconazole inhibits the T. cruzi cytochrome P450 14-α-demethylase, interacting in a similar way that other triazole drugs. Drug repurposing to Chagas disease treatment is one of the recommended approach according to the criterion of international health organizations for their application in neglected diseases.
Collapse
Affiliation(s)
- Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Edward Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Mariana R Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Claudio A Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
19
|
Reprogramming of Trypanosoma cruzi metabolism triggered by parasite interaction with the host cell extracellular matrix. PLoS Negl Trop Dis 2019; 13:e0007103. [PMID: 30726203 PMCID: PMC6380580 DOI: 10.1371/journal.pntd.0007103] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/19/2019] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas' disease, affects 8 million people predominantly living in socioeconomic underdeveloped areas. T. cruzi trypomastigotes (Ty), the classical infective stage, interact with the extracellular matrix (ECM), an obligatory step before invasion of almost all mammalian cells in different tissues. Here we have characterized the proteome and phosphoproteome of T. cruzi trypomastigotes upon interaction with ECM (MTy) and the data are available via ProteomeXchange with identifier PXD010970. Proteins involved with metabolic processes (such as the glycolytic pathway), kinases, flagellum and microtubule related proteins, transport-associated proteins and RNA/DNA binding elements are highly represented in the pool of proteins modified by phosphorylation. Further, important metabolic switches triggered by this interaction with ECM were indicated by decreases in the phosphorylation of hexokinase, phosphofructokinase, fructose-2,6-bisphosphatase, phosphoglucomutase, phosphoglycerate kinase in MTy. Concomitantly, a decrease in the pyruvate and lactate and an increase of glucose and succinate contents were detected by GC-MS. These observations led us to focus on the changes in the glycolytic pathway upon binding of the parasite to the ECM. Inhibition of hexokinase, pyruvate kinase and lactate dehydrogenase activities in MTy were observed and this correlated with the phosphorylation levels of the respective enzymes. Putative kinases involved in protein phosphorylation altered upon parasite incubation with ECM were suggested by in silico analysis. Taken together, our results show that in addition to cytoskeletal changes and protease activation, a reprogramming of the trypomastigote metabolism is triggered by the interaction of the parasite with the ECM prior to cell invasion and differentiation into amastigotes, the multiplicative intracellular stage of T. cruzi in the vertebrate host.
Collapse
|
20
|
Ortega-Rodriguez U, Portillo S, Ashmus RA, Duran JA, Schocker NS, Iniguez E, Montoya AL, Zepeda BG, Olivas JJ, Karimi NH, Alonso-Padilla J, Izquierdo L, Pinazo MJ, de Noya BA, Noya O, Maldonado RA, Torrico F, Gascon J, Michael K, Almeida IC. Purification of Glycosylphosphatidylinositol-Anchored Mucins from Trypanosoma cruzi Trypomastigotes and Synthesis of α-Gal-Containing Neoglycoproteins: Application as Biomarkers for Reliable Diagnosis and Early Assessment of Chemotherapeutic Outcomes of Chagas Disease. Methods Mol Biol 2019; 1955:287-308. [PMID: 30868536 PMCID: PMC6589430 DOI: 10.1007/978-1-4939-9148-8_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chagas disease (ChD), caused by the protozoan parasite Trypanosoma cruzi, affects millions of people worldwide. Chemotherapy is restricted to two drugs, which are partially effective and may cause severe side effects, leading to cessation of treatment in a significant number of patients. Currently, there are no biomarkers to assess therapeutic efficacy of these drugs in the chronic stage. Moreover, no preventive or therapeutic vaccines are available. In this chapter, we describe the purification of Trypanosoma cruzi trypomastigote-derived glycosylphosphatidylinositol (GPI)-anchored mucins (tGPI-mucins) for their use as antigens for the reliable primary or confirmatory diagnosis and as prognostic biomarkers for early assessment of cure following ChD chemotherapy. We also describe, as an example, the synthesis of a potential tGPI-mucin-derived α-Gal-terminating glycan and its coupling to a carrier protein for use as diagnostic and prognostic biomarker in ChD.
Collapse
Affiliation(s)
| | - Susana Portillo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Roger A Ashmus
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Jerry A Duran
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Nathaniel S Schocker
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Eva Iniguez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Alba L Montoya
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Brenda G Zepeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Janet J Olivas
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Nasim H Karimi
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Luis Izquierdo
- Barcelona Centre for International Health Research (ISGlobal), Barcelona, Spain
| | - Maria-Jesús Pinazo
- Barcelona Centre for International Health Research (ISGlobal), Barcelona, Spain
| | - Belkisyolé Alarcón de Noya
- Facultad de Medicina, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Oscar Noya
- Facultad de Medicina, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Rosa A Maldonado
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Faustino Torrico
- Faculty of Medicine, Universidad Mayor de San Simón, Cochabamba, Bolivia
- Fundación CEADES, Cochabamba, Bolivia
| | - Joaquim Gascon
- Facultad de Medicina, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Katja Michael
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Igor C Almeida
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
21
|
Sangenito LS, Menna-Barreto RF, Oliveira AC, d'Avila-Levy CM, Branquinha MH, Santos AL. Primary evidence of the mechanisms of action of HIV aspartyl peptidase inhibitors on Trypanosoma cruzi trypomastigote forms. Int J Antimicrob Agents 2018; 52:185-194. [DOI: 10.1016/j.ijantimicag.2018.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 11/28/2022]
|
22
|
Guimarães-Pinto K, Nascimento DO, Corrêa-Ferreira A, Morrot A, Freire-de-Lima CG, Lopes MF, DosReis GA, Filardy AA. Trypanosoma cruzi Infection Induces Cellular Stress Response and Senescence-Like Phenotype in Murine Fibroblasts. Front Immunol 2018; 9:1569. [PMID: 30038622 PMCID: PMC6047053 DOI: 10.3389/fimmu.2018.01569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Trypanosoma cruzi infects and replicates within a wide variety of immune and non-immune cells. Here, we investigated early cellular responses induced in NIH-3T3 fibroblasts upon infection with trypomastigote forms of T. cruzi. We show that fibroblasts were susceptible to T. cruzi infection and started to release trypomastigotes to the culture medium after 4 days of infection. Also, we found that T. cruzi infection reduced the number of fibroblasts in 3-day cell cultures, by altering fibroblast proliferation. Infected fibroblasts displayed distinctive phenotypic alterations, including enlarged and flattened morphology with a nuclei accumulation of senescence-associated heterochromatin foci. In addition, infection induced an overexpression of the enzyme senescence-associated β-galactosidase (SA-β-gal), an activation marker of the cellular senescence program, as well as the production of cytokines and chemokines involved with the senescence-associated secretory phenotype (SASP) such as IL-6, TNF-α, IL-1β, and MCP-1. Infected fibroblasts released increased amounts of stress-associated factors nitric oxide (NO) and reactive oxygen species (ROS), and the treatment with antioxidants deferoxamine (DFO) and N-acetylcysteine reduced ROS generation, secretion of SASP-related cytokine IL-6, SA-β-gal activity, and parasite load by infected fibroblasts. Taken together, our data suggest that T. cruzi infection triggers a rapid cellular stress response followed by induction of a senescent-like phenotype in NIH-3T3 fibroblasts, enabling them to act as reservoirs of parasites during the early stages of the Chagas disease.
Collapse
Affiliation(s)
- Kamila Guimarães-Pinto
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Antonia Corrêa-Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Celio G Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela F Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George A DosReis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, Brazil
| | - Alessandra A Filardy
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Strauss M, Rodrigues JHS, Lo Presti MS, Bazán PC, Báez AL, Paglini-Oliva P, Nakamura CV, Bustamante JM, Rivarola HW. In vitro and in vivo drug combination for the treatment of Trypanosoma cruzi infection: A multivariate approach. Exp Parasitol 2018; 189:19-27. [PMID: 29726395 DOI: 10.1016/j.exppara.2018.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/18/2018] [Accepted: 04/15/2018] [Indexed: 01/07/2023]
Abstract
Combination therapies based on the available drugs have been proposed as promising therapeutic alternatives for many diseases. Clomipramine (CLO) has been found to modify the evolution of the experimental infection. The objective of this study was to evaluate the combined effect of benznidazole (BZ) and clomipramine (CLO) against different life-stages of Trypanosoma cruzi in vitro and their efficacy in a murine model. Life-stages of T. cruzi, BZ-partially-resistant (Y) strain, were incubated with BZ and CLO and isobolograms and combination index (CI) were obtained. Swiss mice were infected with trypomastigotes and different treatment schedules were performed, each of which consisted of 30 consecutive daily doses. Treatment efficacy was evaluated by comparing parasitemia, qPCR, survival and histological analysis. These results were analyzed using multivariate analysis to determine the combined effect of the drugs in vivo. CLO + BZ showed synergistic activity in vitro against the clinically relevant life-stages of T. cruzi. The most susceptible forms were the intracellular amastigotes (CI: 0.20), followed by trypomastigotes (CI: 0.60), with no toxicity upon mammalian cells. The combination of both drugs CLO (1.25 mg/kg) and BZ (6.25 mg/kg), in vivo, significantly diminished the parasitic load in blood and the mortality rate. CLO + BZ presented a similar inflammatory response in cardiac and skeletal muscle (amount of inflammatory cells) to BZ (6.25 mg/kg). Finally, the results from the principal component analysis reaffirmed that both drugs administered in combination presented higher activity compared with the individual administration in the acute experimental model.
Collapse
Affiliation(s)
- Mariana Strauss
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC-CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Santa Rosa 1085, Córdoba X5000ESU, Argentina
| | - Jean Henrique S Rodrigues
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Colombo 5790, Paraná, Brazil
| | - María Silvina Lo Presti
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC-CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Santa Rosa 1085, Córdoba X5000ESU, Argentina
| | - Paola Carolina Bazán
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC-CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Santa Rosa 1085, Córdoba X5000ESU, Argentina
| | - Alejandra Lidia Báez
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC-CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Santa Rosa 1085, Córdoba X5000ESU, Argentina
| | - Patricia Paglini-Oliva
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC-CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Santa Rosa 1085, Córdoba X5000ESU, Argentina
| | - Celso Vataru Nakamura
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Colombo 5790, Paraná, Brazil
| | - Juan Manuel Bustamante
- University of Georgia, Center for Tropical and Emerging Global Diseases, D.W. Brooks Dr. S310 Coverdell Center, Athens, GA 30602, USA
| | - Héctor Walter Rivarola
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC-CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Santa Rosa 1085, Córdoba X5000ESU, Argentina.
| |
Collapse
|
24
|
Ribeiro KS, Vasconcellos CI, Soares RP, Mendes MT, Ellis CC, Aguilera-Flores M, de Almeida IC, Schenkman S, Iwai LK, Torrecilhas AC. Proteomic analysis reveals different composition of extracellular vesicles released by two Trypanosoma cruzi strains associated with their distinct interaction with host cells. J Extracell Vesicles 2018; 7:1463779. [PMID: 29696081 PMCID: PMC5912195 DOI: 10.1080/20013078.2018.1463779] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/07/2018] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma cruzi, the aetiologic agent of Chagas disease, releases vesicles containing a wide range of surface molecules known to affect the host immunological responses and the cellular infectivity. Here, we compared the secretome of two distinct strains (Y and YuYu) of T. cruzi, which were previously shown to differentially modulate host innate and acquired immune responses. Tissue culture-derived trypomastigotes of both strains secreted extracellular vesicles (EVs), as demonstrated by electron scanning microscopy. EVs were purified by exclusion chromatography or ultracentrifugation and quantitated using nanoparticle tracking analysis. Trypomastigotes from YuYu strain released higher number of EVs than those from Y strain, enriched with virulence factors trans-sialidase (TS) and cruzipain. Proteomic analysis confirmed the increased abundance of proteins coded by the TS gene family, mucin-like glycoproteins, and some typical exosomal proteins in the YuYu strain, which also showed considerable differences between purified EVs and vesicle-free fraction as compared to the Y strain. To evaluate whether such differences were related to parasite infectivity, J774 macrophages and LLC-MK2 kidney cells were preincubated with purified EVs from both strains and then infected with Y strain trypomastigotes. EVs released by YuYu strain caused a lower infection but higher intracellular proliferation in J774 macrophages than EVs from Y strain. In contrast, YuYu strain-derived EVs caused higher infection of LLC-MK2 cells than Y strain-derived EVs. In conclusion, quantitative and qualitative differences in EVs and secreted proteins from different T. cruzi strains may correlate with infectivity/virulence during the host-parasite interaction.
Collapse
Affiliation(s)
| | | | | | - Maria Tays Mendes
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Cameron C Ellis
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Marcela Aguilera-Flores
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Igor Correia de Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratório Especial de Toxicologia Aplicada (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
25
|
An overview of lectin–glycan interactions: a key event in initiating fungal infection and pathogenesis. Arch Microbiol 2018; 200:371-382. [DOI: 10.1007/s00203-018-1487-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/01/2017] [Accepted: 01/30/2018] [Indexed: 01/16/2023]
|
26
|
The dinoponeratoxin peptides from the giant ant Dinoponera quadriceps display in vitro antitrypanosomal activity. Biol Chem 2018; 399:187-196. [DOI: 10.1515/hsz-2017-0198] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
Abstract
The crude venom of the giant ant Dinoponera quadriceps is a cocktail of polypeptides and organic compounds that shows antiparasitic effects against Trypanosoma cruzi, the causative agent of Chagas disease. In order to investigate the venom-derived components responsible for such antitrypanosomal activity, four dinoponeratoxins (DnTxs) were identified, namely M-PONTX-Dq3a, -Dq3b, -Dq3c and -Dq4e, that are diverse in size, net charge, hydrophobicity and propensity to interact with eukaryote cell membranes. These peptides were tested against epimastigote, trypomastigote and amastigote forms of benznidazole (Bz)-resistant Y strain of T. cruzi and in mammalian host cells. The M-PONTX-Dq3a and -Dq4e inhibited all developmental forms of T. cruzi, including amastigotes, the responsible form for the maintenance of infection on chronic phase of the disease. The M-PONTX-Dq3a showed the highest selectivity index (SI) (80) and caused morphological alterations in T. cruzi, as observed by scanning electron microscopy (SEM), and induced cell death through necrosis, as seen by multiparametric flow cytometry analysis with specific biochemical markers. Altogether, the D. quadriceps venom appears as a source for the prospection of trypanocidal peptides and the M-PONTX-Dq3a arises as a candidate among the dinoponeratoxin-related peptides in the development of compounds against Chagas disease.
Collapse
|
27
|
Soprano LL, Parente JE, Landoni M, Couto AS, Duschak VG. Trypanosoma cruzi serinecarboxipeptidase is a sulfated glycoprotein and a minor antigen in human Chagas disease infection. Med Microbiol Immunol 2017; 207:117-128. [DOI: 10.1007/s00430-017-0529-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 12/05/2017] [Indexed: 01/09/2023]
|
28
|
Antichagasic effect of crotalicidin, a cathelicidin-like vipericidin, found in Crotalus durissus terrificus rattlesnake's venom gland. Parasitology 2017; 145:1059-1064. [PMID: 29208061 DOI: 10.1017/s0031182017001846] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cathelicidins are antimicrobial peptides produced by humans and animals in response to various pathogenic microbes. Crotalicidin (Ctn), a cathelicidin-related vipericidin from the South American Crotalus durissus terrificus rattlesnake's venom gland, and its fragments have demonstrated antimicrobial and antifungal activity, similarly to human cathelicidin LL-37. In order to provide templates for the development of modern trypanocidal agents, the present study evaluated the antichagasic effect of these four peptides (Ctn, Ctn[1-14], Ctn[15-34] and LL-37). Herein, Ctn and short derived peptides were tested against the epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi Y strain (benznidazole-resistant strain) and cytotoxicity in mammalian cells was evaluated against LLC-MK2 lineage cells. Ctn inhibited all T. cruzi developmental forms, including amastigotes, which is implicated in the burden of infection in the chronic phase of Chagas disease. Moreover, Ctn showed a high selective index against trypomastigote forms (>200). Ctn induced cell death in T. cruzi through necrosis, as determined by flow cytometry analyses with specific molecular probes and morphological alterations, such as loss of membrane integrity and cell shrinkage, as observed through scanning electron microscopy. Overall, Ctn seems to be a promising template for the development of antichagasic agents.
Collapse
|
29
|
Sousa PL, Souza RODS, Tessarolo LD, de Menezes RRPPB, Sampaio TL, Canuto JA, Martins AMC. Betulinic acid induces cell death by necrosis in Trypanosoma cruzi. Acta Trop 2017; 174:72-75. [PMID: 28690148 DOI: 10.1016/j.actatropica.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 01/31/2023]
Abstract
Chagas' disease is a neglected disease caused by the protozoan parasite Trypanosoma cruzi and constitutes a serious health problem worldwide. The treatment is limited, with variable efficacy of benznidazole and nifurtimox. Betulinic Acid (BA), a triterpene, can be found in medicinal herbs and has a wide variety of biological and pharmacological activities. The objective was to evaluate betulinic acid effects on the cell death mechanism in Trypanosoma cruzi strain Y. BA inhibited the growth of epimastigotes in periods of 24h (IC50=73.43μM), 48h (IC50=119.8μM) and 72h (IC50=212.2μM) of incubation; of trypomastigotes (IC50=51.88μM) in periods of 24h and intracellular amastigotes (IC50=25.94μM) in periods of 24 and 48h of incubation, no toxicity on LLC-MK2 cells at the concentrations used. Analysis of the possible mechanism of parasite cell death showed alterations in mitochondrial membrane potential, alterations in cell membrane integrity, an increase in the formation of reactive oxygen species and increase swelling of the reservosomes. In conclusion, betulinic acid was be able to inhibition all developmental forms of Trypanosoma cruzi Y strain with necrotic mechanism and involvement of mitochondrial membrane potential alteration and increase in reactive oxygen species.
Collapse
|
30
|
Expression of inhibitory receptors and polyfunctional responses of T cells are linked to the risk of congenital transmission of T. cruzi. PLoS Negl Trop Dis 2017; 11:e0005627. [PMID: 28598971 PMCID: PMC5479596 DOI: 10.1371/journal.pntd.0005627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/21/2017] [Accepted: 05/06/2017] [Indexed: 12/01/2022] Open
Abstract
Congenital T. cruzi infections involve multiple factors in which complex interactions between the parasite and the immune system of pregnant women play important roles. In this study, we used an experimental murine model of chronic infection with T. cruzi to evaluate the changes in the expression of inhibitory receptors and the polyfunctionality of T cells during gestation and their association with congenital transmission rate of T. cruzi infection. The results showed that pregnant naïve mice had a higher percentage of CD4+ and CD8+ T cells that expressed inhibitory receptors than cells from non-pregnant naïve mice. However, in mice chronically infected with T. cruzi, gestation induced a significant decrease in the frequency of T cells that expressed or co-expressed inhibitory receptors, as well as an increase in the frequency of polyfunctional CD4+ and CD8+ T cells. This different behavior may be due to the breakdown in the infected mice of the gestation-induced immune homeostasis, probably to control the parasite load. Remarkably, it was observed that the mothers that transmitted the parasite had a higher frequency of T cells that expressed and co-expressed inhibitory receptors as well as a lower frequency of polyfunctional parasite-specific T cells than those that did not transmit it, even though the parasitemia load was similar in both groups. All together these data suggest that the maternal immune profile of the CD4+ and CD8+ T cells could be a determining factor in the congenital transmission of T. cruzi. Chagas disease or American trypanosomiasis is a complex parasitic disease caused by the protozoan Trypanosoma cruzi. This disease that affects approximately 10 million people worldwide may be mother-to-child transmitted which is an important public health problem with great relevance in endemic and non-endemic areas and regions where the vector transmission has been controlled. During gestation, the maternal immune system must defend both the mother and the fetus from infections, while, at the same time, it must tolerate a semiallogenic fetus. This immune homeostasis is characterized by a natural process of immunosuppression that in T. cruzi-infected pregnant women can lead to an increase in the mother´s parasite load that favors the risk of congenital transmission. In this study, it was determined the immunological modifications induced by gestation in an experimental model of T. cruzi chronic infection and their influence in the parasite congenital transmission. The results indicate that a T. cruzi infection induces a reversion of the pregnancy-associated homeostasis. Furthermore, it is shown that females who are not able to reverse the biological profile induced by pregnancy are those that transmit the parasite.
Collapse
|
31
|
Mello CP, Lima DB, Menezes RRPPBD, Bandeira ICJ, Tessarolo LD, Sampaio TL, Falcão CB, Rádis-Baptista G, Martins AMC. Evaluation of the antichagasic activity of batroxicidin, a cathelicidin-related antimicrobial peptide found in Bothrops atrox venom gland. Toxicon 2017; 130:56-62. [PMID: 28246023 DOI: 10.1016/j.toxicon.2017.02.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 11/18/2022]
Abstract
Antimicrobial peptides (AMPs) are potential alternatives to conventional antibiotics, as they have a fast mode of action, a low likelihood of resistance development and can act in conjunction with existing drug regimens. We report in this study the effects of batroxicidin (BatxC), a cathelicidin-related AMP from Bothrops atrox venom gland, over Trypanosoma cruzi, a protozoan that causes Chagas' disease. BatxC inhibited all T. cruzi (Y strain: benznidazole-resistant) developmental forms, with selectivity index of 315. Later, separate flow cytometry assays showed T. cruzi cell labeling by 7-aminoactinomycin D, the increase in reactive oxygen species and the loss of mitochondrial membrane potential when the parasite was treated with BatxC, which are indication of necrosis. T. cruzi cell death pathway by a necrotic mechanism was finally confirmed by scanning electron microscopy which observed loss of cell membrane integrity. In conclusion, BatxC was able to inhibit T. cruzi, with high selectivity index, by inducing necrosis.
Collapse
Affiliation(s)
- Clarissa Perdigão Mello
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Danya Bandeira Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | | | - Louise Donadello Tessarolo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Tiago Lima Sampaio
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Claudio Borges Falcão
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | - Alice Maria Costa Martins
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
32
|
Queiroz RML, Ricart CAO, Machado MO, Bastos IMD, de Santana JM, de Sousa MV, Roepstorff P, Charneau S. Insight into the Exoproteome of the Tissue-Derived Trypomastigote form of Trypanosoma cruzi. Front Chem 2016; 4:42. [PMID: 27872839 PMCID: PMC5097913 DOI: 10.3389/fchem.2016.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/19/2016] [Indexed: 01/07/2023] Open
Abstract
The protozoan parasite Trypanosoma cruzi causes Chagas disease, one of the major neglected infectious diseases. It has the potential to infect any nucleated mammalian cell. The secreted/excreted protein repertoire released by T. cruzi trypomastigotes is crucial in host-pathogen interactions. In this study, mammalian tissue culture-derived trypomastigotes (Y strain) were used to characterize the exoproteome of the infective bloodstream life form. Proteins released into the serum-free culture medium after 3 h of incubation were harvested and digested with trypsin. NanoLC-MS/MS analysis resulted in the identification of 540 proteins, the largest set of released proteins identified to date in Trypanosoma spp. Bioinformatic analysis predicted most identified proteins as secreted, predominantly by non-classical pathways, and involved in host-cell infection. Some proteins possess predicted GPI-anchor signals, these being mostly trans-sialidases, mucin associated surface proteins and surface glycoproteins. Moreover, we enriched phosphopeptides and glycopeptides from tryptic digests. The majority of identified glycoproteins are trans-sialidases and surface glycoproteins involved in host-parasite interaction. Conversely, most identified phosphoproteins have no Gene Ontology classification. The existence of various proteins related to similar functions in the exoproteome likely reflects this parasite's enhanced mechanisms for adhesion, invasion, and internalization of different host-cell types, and escape from immune defenses.
Collapse
Affiliation(s)
- Rayner M L Queiroz
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil; Department of Biochemistry and Molecular Biology, University of Southern DenmarkOdense, Denmark
| | - Carlos A O Ricart
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia , Brasilia, Brazil
| | - Mara O Machado
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia , Brasilia, Brazil
| | - Izabela M D Bastos
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, University of Brasilia Brasilia, Brazil
| | - Jaime M de Santana
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, University of Brasilia Brasilia, Brazil
| | - Marcelo V de Sousa
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, University of Brasilia Brasilia, Brazil
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark Odense, Denmark
| | - Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia , Brasilia, Brazil
| |
Collapse
|
33
|
Sangenito LS, d'Avila-Levy CM, Branquinha MH, Santos ALS. Nelfinavir and lopinavir impair Trypanosoma cruzi trypomastigote infection in mammalian host cells and show anti-amastigote activity. Int J Antimicrob Agents 2016; 48:703-711. [PMID: 27838277 DOI: 10.1016/j.ijantimicag.2016.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023]
Abstract
There is an urgent need to implement new strategies and to search for new chemotherapeutic targets to combat Chagas' disease. In this context, repositioning of clinically approved drugs appears as a viable tool to combat this and several other neglected pathologies. An example is the use of aspartic peptidase inhibitors (PIs) currently applied in human immunodeficiency virus (HIV) treatment against different infectious agents. Therefore, the main objective of this work was to verify the effects of the HIV-PIs nelfinavir and lopinavir against Trypanosoma cruzi using in vitro models of infection. Cytotoxicity assays with LLC-MK2 epithelial cells and RAW macrophages allowed an evaluation of the effects of HIV-PIs on the interaction between trypomastigotes and these cells as well as the survival of intracellular amastigotes. Pre-treatment of trypomastigotes with nelfinavir and lopinavir inhibited the association index with LLC-MK2 cells and RAW macrophages in a dose- and time-dependent manner. In addition, nelfinavir and lopinavir also significantly reduced the number of intracellular amastigotes in both mammalian cell lineages, particularly when administered in daily doses. Both compounds had no effect on nitric oxide production in infected RAW macrophages. These results open the possibility for the use of HIV-PIs as a tangible alternative in the treatment of Chagas' disease. However, the main mechanism of action of nelfinavir and lopinavir has yet to be elucidated, and more studies using in vivo models must be conducted.
Collapse
Affiliation(s)
- Leandro S Sangenito
- Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudia M d'Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - André L S Santos
- Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
34
|
Alves MJM, Kawahara R, Viner R, Colli W, Mattos EC, Thaysen-Andersen M, Larsen MR, Palmisano G. Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi. J Proteomics 2016; 151:182-192. [PMID: 27318177 DOI: 10.1016/j.jprot.2016.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/17/2022]
Abstract
Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving insect and mammalian hosts and distinct developmental stages. During T. cruzi developmental stages, glycoproteins play important role in the host-parasite interaction, such as cellular recognition, host cell invasion and adhesion, and immune evasion. In this study, comprehensive glycoprofiling analysis was performed in the epimastigote and trypomastigote stages of T. cruzi using two glycopeptide enrichment strategies, lectin-based and hydrophilic interaction liquid chromatography, followed by high resolution LC-MS/MS. Following deglycosylation, a total of 1306 N-glycosylation sites in NxS/T/C motifs were identified from 690 T. cruzi glycoproteins. Among them, 170 and 334 glycoproteins were exclusively identified in epimastigotes and trypomastigotes, respectively. Besides, global site-specific characterization of the N- and O-linked glycan heterogeneity in the two life stages of T. cruzi was achieved by intact glycopeptide analysis, revealing 144/466 unique N-linked and 10/97 unique O-linked intact glycopeptides in epimastigotes/trypomastigotes, respectively. Conclusively, this study documents the significant T. cruzi stage-specific expression of glycoproteins that can help to better understand the T. cruzi phenotype and response caused by the interaction with different hosts during its complex life cycle. BIOLOGICAL SIGNIFICANCE Chagas disease caused by the protozoan Trypanosoma cruzi is a neglected disease which affects millions of people especially in Latin America. The absence of efficient drugs and vaccines against Chagas disease stimulates the search for novel targets. Glycoproteins are very attractive therapeutic candidate targets since they mediate key processes in the host-parasite interaction, such as cellular recognition, host cell invasion and adhesion, and immune evasion. This study aimed to provide an in depth characterization of the N-linked and O-linked glycoproteome of two T. cruzi life stages: epimastigotes and trypomastigotes. Mass spectrometry-based proteomics showed interesting stage-specific glycoproteome signatures that are valuable to better understand the importance of protein glycosylation in epimastigotes and trypomastigotes and to expand the repertoire of potential therapeutic targets against Chagas disease.
Collapse
Affiliation(s)
- Maria Julia Manso Alves
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Rebeca Kawahara
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, USA
| | - Walter Colli
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Eliciane Cevolani Mattos
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | | | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern, Odense, DK, Denmark
| | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil.
| |
Collapse
|
35
|
Clomipramine and Benznidazole Act Synergistically and Ameliorate the Outcome of Experimental Chagas Disease. Antimicrob Agents Chemother 2016; 60:3700-8. [PMID: 27067322 DOI: 10.1128/aac.00404-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/28/2016] [Indexed: 10/21/2022] Open
Abstract
Chagas disease is an important public health problem in Latin America, and its treatment by chemotherapy with benznidazole (BZ) or nifurtimox remains unsatisfactory. In order to design new alternative strategies to improve the current etiological treatments, in the present work, we comprehensively evaluated the in vitro and in vivo anti-Trypanosoma cruzi effects of clomipramine (CMP) (a parasite-trypanothione reductase-specific inhibitor) combined with BZ. In vitro studies, carried out using a checkerboard technique on trypomastigotes (T. cruzi strain Tulahuen), revealed a combination index (CI) of 0.375, indicative of a synergistic effect of the drug combination. This result was correlated with the data obtained in infected BALB/c mice. We observed that during the acute phase (15 days postinfection [dpi]), BZ at 25 mg/kg of body weight/day alone decreased the levels of parasitemia compared with those of the control group, but when BZ was administered with CMP, the drug combination completely suppressed the parasitemia due to the observed synergistic effect. Furthermore, in the chronic phase (90 dpi), mice treated with both drugs showed less heart damage as assessed by the histopathological analysis, index of myocardial inflammation, and levels of heart injury biochemical markers than mice treated with BZ alone at the reference dose (100 mg/kg/day). Collectively, these data support the notion that CMP combined with low doses of BZ diminishes cardiac damage and inflammation during the chronic phase of cardiomyopathy. The synergistic activity of BZ-CMP clearly suggests a potential drug combination for Chagas disease treatment, which would allow a reduction of the effective dose of BZ and an increase in therapeutic safety.
Collapse
|
36
|
Herrera LJ, Brand S, Santos A, Nohara LL, Harrison J, Norcross NR, Thompson S, Smith V, Lema C, Varela-Ramirez A, Gilbert IH, Almeida IC, Maldonado RA. Validation of N-myristoyltransferase as Potential Chemotherapeutic Target in Mammal-Dwelling Stages of Trypanosoma cruzi. PLoS Negl Trop Dis 2016; 10:e0004540. [PMID: 27128971 PMCID: PMC4851402 DOI: 10.1371/journal.pntd.0004540] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi causes Chagas disease, an endemic and debilitating illness in Latin America. Lately, owing to extensive population movements, this neglected tropical disease has become a global health concern. The two clinically available drugs for the chemotherapy of Chagas disease have rather high toxicity and limited efficacy in the chronic phase of the disease, and may induce parasite resistance. The development of new anti-T. cruzi agents is therefore imperative. The enzyme N-myristoyltransferase (NMT) has recently been biochemically characterized, shown to be essential in Leishmania major, Trypanosoma brucei, and T. cruzi¸ and proposed as promising chemotherapeutic target in these trypanosomatids. METHODOLOGY/PRINCIPAL FINDINGS Here, using high-content imaging we assayed eight known trypanosomatid NMT inhibitors, against mammal-dwelling intracellular amastigote and trypomastigote stages and demonstrated that three of them (compounds 1, 5, and 8) have potent anti-proliferative effect at submicromolar concentrations against T. cruzi, with very low toxicity against human epithelial cells. Moreover, metabolic labeling using myristic acid, azide showed a considerable decrease in the myristoylation of proteins in parasites treated with NMT inhibitors, providing evidence of the on-target activity of the inhibitors. CONCLUSIONS/SIGNIFICANCE Taken together, our data point out to the potential use of NMT inhibitors as anti-T. cruzi chemotherapy.
Collapse
Affiliation(s)
- Linda J. Herrera
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Stephen Brand
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Andres Santos
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Lilian L. Nohara
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Justin Harrison
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Neil R. Norcross
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Stephen Thompson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Victoria Smith
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Carolina Lema
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Armando Varela-Ramirez
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Ian H. Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Igor C. Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Rosa A. Maldonado
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| |
Collapse
|
37
|
Qvit N, Schechtman D, Pena DA, Berti DA, Soares CO, Miao Q, Liang LA, Baron LA, Teh-Poot C, Martínez-Vega P, Ramirez-Sierra MJ, Churchill E, Cunningham AD, Malkovskiy AV, Federspiel NA, Gozzo FC, Torrecilhas AC, Manso Alves MJ, Jardim A, Momar N, Dumonteil E, Mochly-Rosen D. Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors. Int J Parasitol Drugs Drug Resist 2016; 6:74-84. [PMID: 27054066 PMCID: PMC4805777 DOI: 10.1016/j.ijpddr.2016.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/15/2023]
Abstract
Parasitic diseases cause ∼ 500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase) and TRACK (Trypanosoma receptor for activated C-kinase). We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase), may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs.
Collapse
Affiliation(s)
- Nir Qvit
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| | - Deborah Schechtman
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305, USA; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | | | | | | | - Qianqian Miao
- National Reference Centre for Parasitology, Research Institute of the McGill University, Montreal, Canada
| | - Liying Annie Liang
- National Reference Centre for Parasitology, Research Institute of the McGill University, Montreal, Canada
| | - Lauren A Baron
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Christian Teh-Poot
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Pedro Martínez-Vega
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Maria Jesus Ramirez-Sierra
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Eric Churchill
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Anna D Cunningham
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Andrey V Malkovskiy
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Nancy A Federspiel
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Fabio Cesar Gozzo
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | | | | | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Québec, Canada
| | - Ndao Momar
- National Reference Centre for Parasitology, Research Institute of the McGill University, Montreal, Canada
| | - Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
38
|
Lazarin-Bidóia D, Desoti VC, Martins SC, Ribeiro FM, Ud Din Z, Rodrigues-Filho E, Ueda-Nakamura T, Nakamura CV, de Oliveira Silva S. Dibenzylideneacetones Are Potent Trypanocidal Compounds That Affect the Trypanosoma cruzi Redox System. Antimicrob Agents Chemother 2016; 60:890-903. [PMID: 26596953 PMCID: PMC4750705 DOI: 10.1128/aac.01360-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/19/2015] [Indexed: 12/30/2022] Open
Abstract
Despite ongoing efforts, the available treatments for Chagas' disease are still unsatisfactory, especially in the chronic phase of the disease. Our previous study reported the strong trypanocidal activity of the dibenzylideneacetones A3K2A1 and A3K2A3 against Trypanosoma cruzi (Z. Ud Din, T. P. Fill, F. F. de Assis, D. Lazarin-Bidóia, V. Kaplum, F. P. Garcia, C. V. Nakamura, K. T. de Oliveira, and E. Rodrigues-Filho, Bioorg Med Chem 22:1121-1127, 2014, http://dx.doi.org/10.1016/j.bmc.2013.12.020). In the present study, we investigated the mechanisms of action of these compounds that are involved in parasite death. We showed that A3K2A1 and A3K2A3 induced oxidative stress in the three parasitic forms, especially trypomastigotes, reflected by an increase in oxidant species production and depletion of the endogenous antioxidant system. This oxidative imbalance culminated in damage in essential cell structures of T. cruzi, reflected by lipid peroxidation and DNA fragmentation. Consequently, A3K2A1 and A3K2A3 induced vital alterations in T. cruzi, leading to parasite death through the three pathways, apoptosis, autophagy, and necrosis.
Collapse
Affiliation(s)
- Danielle Lazarin-Bidóia
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Vânia Cristina Desoti
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Solange Cardoso Martins
- Programa de Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Fabianne Martins Ribeiro
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Zia Ud Din
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Edson Rodrigues-Filho
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Tânia Ueda-Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil Programa de Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Sueli de Oliveira Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
39
|
Nogueira PM, Ribeiro K, Silveira ACO, Campos JH, Martins-Filho OA, Bela SR, Campos MA, Pessoa NL, Colli W, Alves MJM, Soares RP, Torrecilhas AC. Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune responses. J Extracell Vesicles 2015; 4:28734. [PMID: 26613751 PMCID: PMC4662668 DOI: 10.3402/jev.v4.28734] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 12/20/2022] Open
Abstract
Trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas Disease, shed extracellular vesicles (EVs) enriched with glycoproteins of the gp85/trans-sialidase (TS) superfamily and other α-galactosyl (α-Gal)-containing glycoconjugates, such as mucins. Here, purified vesicles from T. cruzi strains (Y, Colombiana, CL-14 and YuYu) were quantified according to size, intensity and concentration. Qualitative analysis revealed differences in their protein and α-galactosyl contents. Later, those polymorphisms were evaluated in the modulation of immune responses (innate and in the chronic phase) in C57BL/6 mice. EVs isolated from YuYu and CL-14 strains induced in macrophages higher levels of proinflammatory cytokines (TNF-α and IL-6) and nitric oxide via TLR2. In general, no differences were observed in MAPKs activation (p38, JNK and ERK 1/2) after EVs stimulation. In splenic cells derived from chronically infected mice, a different modulation pattern was observed, where Colombiana (followed by Y strain) EVs were more proinflammatory. This modulation was independent of the T. cruzi strain used in the mice infection. To test the functional importance of this modulation, the expression of intracellular cytokines after in vitro exposure was evaluated using EVs from YuYu and Colombiana strains. Both EVs induced cytokine production with the appearance of IL-10 in the chronically infected mice. A high frequency of IL-10 in CD4+ and CD8+ T lymphocytes was observed. A mixed profile of cytokine induction was observed in B cells with the production of TNF-α and IL-10. Finally, dendritic cells produced TNF-α after stimulation with EVs. Polymorphisms in the vesicles surface may be determinant in the immunopathologic events not only in the early steps of infection but also in the chronic phase.
Collapse
Affiliation(s)
- Paula M Nogueira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Kleber Ribeiro
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Biológicas, Campus Diadema, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda C O Silveira
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - João H Campos
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Biológicas, Campus Diadema, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Samantha R Bela
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Marco A Campos
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Natalia L Pessoa
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Walter Colli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Maria J M Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo P Soares
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Biológicas, Campus Diadema, Universidade Federal de São Paulo, São Paulo, Brazil;
| |
Collapse
|
40
|
Teixeira AAR, de Vasconcelos VDCS, Colli W, Alves MJM, Giordano RJ. Trypanosoma cruzi Binds to Cytokeratin through Conserved Peptide Motifs Found in the Laminin-G-Like Domain of the gp85/Trans-sialidase Proteins. PLoS Negl Trop Dis 2015; 9:e0004099. [PMID: 26398185 PMCID: PMC4580646 DOI: 10.1371/journal.pntd.0004099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022] Open
Abstract
Background Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, is a disease that affects millions of people most of them living in South and Central Americas. There are few treatment options for individuals with Chagas' disease making it important to understand the molecular details of parasite infection, so novel therapeutic alternatives may be developed for these patients. Here, we investigate the interaction between host cell intermediate filament proteins and the T. cruzi gp85 glycoprotein superfamily with hundreds of members that have long been implicated in parasite cell invasion. Methodology/Principal Findings An in silico analysis was utilized to identify peptide motifs shared by the gp85 T. cruzi proteins and, using phage display, these selected peptide motifs were screened for their ability to bind to cells. One peptide, named TS9, showed significant cell binding capacity and was selected for further studies. Affinity chromatography, phage display and invasion assays revealed that peptide TS9 binds to cytokeratins and vimentin, and prevents T. cruzi cell infection. Interestingly, peptide TS9 and a previously identified binding site for intermediate filament proteins are disposed in an antiparallel β-sheet fold, present in a conserved laminin-G-like domain shared by all members of the family. Moreover, peptide TS9 overlaps with an immunodominant T cell epitope. Conclusions/Significance Taken together, the present study reinforces previous results from our group implicating the gp85 superfamily of glycoproteins and the intermediate filament proteins cytokeratin and vimentin in the parasite infection process. It also suggests an important role in parasite biology for the conserved laminin-G-like domain, present in all members of this large family of cell surface proteins. Chagas' disease affects millions of people worldwide and is caused by a microorganism called Trypanosoma cruzi. Treatment options for patients with Chagas' disease is still limited to a small number of drugs, all of them very toxic with important side effects that can be debilitating for the health of patients. Understanding the molecular details of how T. cruzi infects humans is an important step toward the development of new drugs for this disease. As part of its life cycle, T. cruzi has to invade cells in order to replicate and produce new parasites. This is a complex event, which involves different proteins produced by both the parasite and the human host cells. Among them, there is a large family of highly polymorphic T. cruzi proteins important to guide the parasite to the target cells. Here we show that notwithstanding their differences, all members of this family share a small region comprised of nine amino acids that is important for cell recognition and infection by the parasite. Exploring these findings may provide researchers with new insights on how to prevent T. cruzi cell invasion and lead to novel therapeutic alternative for this debilitating disease.
Collapse
Affiliation(s)
| | | | - Walter Colli
- Department of Biochemistry, Chemistry Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Júlia Manso Alves
- Department of Biochemistry, Chemistry Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo José Giordano
- Department of Biochemistry, Chemistry Institute, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
41
|
Involvement of sulfates from cruzipain, a major antigen of Trypanosoma cruzi, in the interaction with immunomodulatory molecule Siglec-E. Med Microbiol Immunol 2015; 205:21-35. [PMID: 26047932 DOI: 10.1007/s00430-015-0421-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
Abstract
In order to investigate the involvement of sulfated groups in the Trypanosoma cruzi host-parasite relationship, we studied the interaction between the major cysteine proteinase of T. cruzi, cruzipain (Cz), a sulfate-containing sialylated molecule and the sialic acid-binding immunoglobulin like lectin-E (Siglec-E). To this aim, ELISA, indirect immunofluorescence assays and flow cytometry, using mouse Siglec-E-Fc fusion molecules and glycoproteins of parasites, were performed. Competition assays verified that the lectins, Maackia amurensis II (Mal II) and Siglec-E-Fc, compete for the same binding sites. Taking into account that Mal II binding remains unaltered by sulfation, we established this lectin as sialylation degree control. Proteins of an enriched microsomal fraction showed the highest binding to Siglec-E as compared with those from the other parasite subcellular fractions. ELISA assays and the affinity purification of Cz by a Siglec-E column confirmed the interaction between both molecules. The significant decrease in binding of Siglec-E-Fc to Cz and to its C-terminal domain (C-T) after desulfation of these molecules suggests that sulfates contribute to the interaction between Siglec-E-Fc and these glycoproteins. Competitive ELISA assays confirmed the involvement of sulfated epitopes in the affinity between Siglec-E and Cz, probably modified by natural protein environment. Interestingly, data from flow cytometry of untreated and chlorate-treated parasites suggested that sulfates are not primary receptors, but enhance the binding of Siglec-E to trypomastigotic forms. Altogether, our findings support the notion that sulfate-containing sialylated glycoproteins interact with Siglec-E, an ortholog protein of human Siglec-9, and might modulate the immune response of the host, favoring parasitemia and persistence of the parasite.
Collapse
|
42
|
Pereira M, Soares C, Canuto GAB, Tavares MFM, Colli W, Alves MJM. Down regulation of NO signaling in Trypanosoma cruzi upon parasite-extracellular matrix interaction: changes in protein modification by nitrosylation and nitration. PLoS Negl Trop Dis 2015; 9:e0003683. [PMID: 25856423 PMCID: PMC4391712 DOI: 10.1371/journal.pntd.0003683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/06/2015] [Indexed: 01/18/2023] Open
Abstract
Background Adhesion of the Trypanosoma cruzi trypomastigotes, the causative agent of Chagas' disease in humans, to components of the extracellular matrix (ECM) is an important step in host cell invasion. The signaling events triggered in the parasite upon binding to ECM are less explored and, to our knowledge, there is no data available regarding •NO signaling. Methodology/Principal Findings Trypomastigotes were incubated with ECM for different periods of time. Nitrated and S-nitrosylated proteins were analyzed by Western blotting using anti-nitrotyrosine and S-nitrosyl cysteine antibodies. At 2 h incubation time, a decrease in NO synthase activity, •NO, citrulline, arginine and cGMP concentrations, as well as the protein modifications levels have been observed in the parasite. The modified proteins were enriched by immunoprecipitation with anti-nitrotyrosine antibodies (nitrated proteins) or by the biotin switch method (S-nitrosylated proteins) and identified by MS/MS. The presence of both modifications was confirmed in proteins of interest by immunoblotting or immunoprecipitation. Conclusions/Significance For the first time it was shown that T. cruzi proteins are amenable to modifications by S-nitrosylation and nitration. When T. cruzi trypomastigotes are incubated with the extracellular matrix there is a general down regulation of these reactions, including a decrease in both NOS activity and cGMP concentration. Notwithstanding, some specific proteins, such as enolase or histones had, at least, their nitration levels increased. This suggests that post-translational modifications of T. cruzi proteins are not only a reflex of NOS activity, implying other mechanisms that circumvent a relatively low synthesis of •NO. In conclusion, the extracellular matrix, a cell surrounding layer of macromolecules that have to be trespassed by the parasite in order to be internalized into host cells, contributes to the modification of •NO signaling in the parasite, probably an essential move for the ensuing invasion step. Interaction of Trypanosoma cruzi with the extracellular matrix (ECM) is an essential step in the invasion of mammalian cells. However, the nature of the signaling triggered in the parasite is poorly understood. Herein the key role of nitric oxide in T. cruzi signaling is described, using an ECM preparation, in the absence of host cells. Inhibition of NOS activity, with the expected decrease in •NO production, as well as decrease in cGMP concentration were observed by the incubation of T. cruzi trypomastigotes with ECM. Additionally, lower levels of protein S-nitrosylation and nitration were detected. These post-translational modifications have been analyzed by biotin-switch and protein immunoprecipitation approaches coupled to mass spectrometry. The presence of both modifications was confirmed for specific proteins, as mucin II (S-nitrosylation), histones, enolase and tubulins. To our knowledge, decrease in the •NO signaling pathway upon T. cruzi trypomastigotes adhesion to ECM, affecting both the canonical pathway (•NO-soluble guanylyl cyclase-cGMP) and protein S-nitrosylation and nitration is described for the first time in this parasite.
Collapse
Affiliation(s)
- Milton Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Chrislaine Soares
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Walter Colli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Julia M. Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
43
|
Livore VI, Uttaro AD. Biosynthesis of very long chain fatty acids in Trypanosoma cruzi. Parasitol Res 2014; 114:265-71. [DOI: 10.1007/s00436-014-4188-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/14/2014] [Indexed: 11/25/2022]
|
44
|
Khusal KG, Tonelli RR, Mattos EC, Soares CO, Di Genova BM, Juliano MA, Urias U, Colli W, Alves MJM. Prokineticin receptor identified by phage display is an entry receptor for Trypanosoma cruzi into mammalian cells. Parasitol Res 2014; 114:155-65. [DOI: 10.1007/s00436-014-4172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 10/06/2014] [Indexed: 01/06/2023]
|
45
|
Queiroz RML, Charneau S, Mandacaru SC, Schwämmle V, Lima BD, Roepstorff P, Ricart CAO. Quantitative proteomic and phosphoproteomic analysis of Trypanosoma cruzi amastigogenesis. Mol Cell Proteomics 2014; 13:3457-72. [PMID: 25225356 DOI: 10.1074/mcp.m114.040329] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chagas disease is a tropical neglected disease endemic in Latin America caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote, and amastigote. The differentiation from infective trypomastigotes into replicative amastigotes, called amastigogenesis, takes place in vivo inside mammalian host cells after a period of incubation in an acidic phagolysosome. This differentiation process can be mimicked in vitro by incubating tissue-culture-derived trypomastigotes in acidic DMEM. Here we used this well-established differentiation protocol to perform a comprehensive quantitative proteomic and phosphoproteomic analysis of T. cruzi amastigogenesis. Samples from fully differentiated forms and two biologically relevant intermediate time points were Lys-C/trypsin digested, iTRAQ-labeled, and multiplexed. Subsequently, phosphopeptides were enriched using a TiO2 matrix. Non-phosphorylated peptides were fractionated via hydrophilic interaction liquid chromatography prior to LC-MS/MS analysis. LC-MS/MS and bioinformatics procedures were used for protein and phosphopeptide quantitation, identification, and phosphorylation site assignment. We were able to identify regulated proteins and pathways involved in coordinating amastigogenesis. We also observed that a significant proportion of the regulated proteins were membrane proteins. Modulated phosphorylation events coordinated by protein kinases and phosphatases that are part of the signaling cascade induced by incubation in acidic medium were also evinced. To our knowledge, this work is the most comprehensive quantitative proteomics study of T. cruzi amastigogenesis, and these data will serve as a trustworthy basis for future studies, and possibly for new potential drug targets.
Collapse
Affiliation(s)
- Rayner M L Queiroz
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil; §Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Sébastien Charneau
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil
| | - Samuel C Mandacaru
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil
| | - Veit Schwämmle
- §Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Beatriz D Lima
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil
| | - Peter Roepstorff
- §Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Carlos A O Ricart
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil;
| |
Collapse
|
46
|
Effects of chlorate on the sulfation process of Trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion. Acta Trop 2014; 137:161-73. [PMID: 24879929 DOI: 10.1016/j.actatropica.2014.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023]
Abstract
Sulfation, a post-translational modification which plays a key role in various biological processes, is inhibited by competition with chlorate. In Trypanosoma cruzi, the agent of Chagas' disease, sulfated structures have been described as part of glycolipids and we have reported sulfated high-mannose type oligosaccharides in the C-T domain of the cruzipain (Cz) glycoprotein. However, sulfation pathways have not been described yet in this parasite. Herein, we studied the effect of chlorate treatment on T. cruzi with the aim to gain some knowledge about sulfation metabolism and the role of sulfated molecules in this parasite. In chlorate-treated epimastigotes, immunoblotting with anti-sulfates enriched Cz IgGs (AS-enriched IgGs) showed Cz undersulfation. Accordingly, a Cz mobility shift toward higher isoelectric points was observed in 2D-PAGE probed with anti-Cz antibodies. Ultrastructural membrane abnormalities and a significant decrease of dark lipid reservosomes were shown by electron microscopy and a significant decrease in sulfatide levels was confirmed by TLC/UV-MALDI-TOF-MS analysis. Altogether, these results suggest T. cruzi sulfation occurs via PAPS. Sulfated epitopes in trypomastigote and amastigote forms were evidenced using AS-enriched IgGs by immunoblotting. Their presence on trypomastigotes surface was demonstrated by flow cytometry and IF with Cz/dCz specific antibodies. Interestingly, the percentage of infected cardiac HL-1 cells decreased 40% when using chlorate-treated trypomastigotes, suggesting sulfates are involved in the invasion process. The same effect was observed when cells were pre-incubated with dCz, dC-T or an anti-high mannose receptor (HMR) antibody, suggesting Cz sulfates and HMR are also involved in the infection process by T. cruzi.
Collapse
|
47
|
Gazos-Lopes F, Oliveira MM, Hoelz LVB, Vieira DP, Marques AF, Nakayasu ES, Gomes MT, Salloum NG, Pascutti PG, Souto-Padrón T, Monteiro RQ, Lopes AH, Almeida IC. Structural and functional analysis of a platelet-activating lysophosphatidylcholine of Trypanosoma cruzi. PLoS Negl Trop Dis 2014; 8:e3077. [PMID: 25101628 PMCID: PMC4125143 DOI: 10.1371/journal.pntd.0003077] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/13/2014] [Indexed: 12/15/2022] Open
Abstract
Background Trypanosoma cruzi is the causative agent of the life-threatening Chagas disease, in which increased platelet aggregation related to myocarditis is observed. Platelet-activating factor (PAF) is a potent intercellular lipid mediator and second messenger that exerts its activity through a PAF-specific receptor (PAFR). Previous data from our group suggested that T. cruzi synthesizes a phospholipid with PAF-like activity. The structure of T. cruzi PAF-like molecule, however, remains elusive. Methodology/Principal findings Here, we have purified and structurally characterized the putative T. cruzi PAF-like molecule by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Our ESI-MS/MS data demonstrated that the T. cruzi PAF-like molecule is actually a lysophosphatidylcholine (LPC), namely sn-1 C18:1(delta 9)-LPC. Similar to PAF, the platelet-aggregating activity of C18:1-LPC was abrogated by the PAFR antagonist, WEB 2086. Other major LPC species, i.e., C16:0-, C18:0-, and C18:2-LPC, were also characterized in all T. cruzi stages. These LPC species, however, failed to induce platelet aggregation. Quantification of T. cruzi LPC species by ESI-MS revealed that intracellular amastigote and trypomastigote forms have much higher levels of C18:1-LPC than epimastigote and metacyclic trypomastigote forms. C18:1-LPC was also found to be secreted by the parasite in extracellular vesicles (EV) and an EV-free fraction. A three-dimensional model of PAFR was constructed and a molecular docking study was performed to predict the interactions between the PAFR model and PAF, and each LPC species. Molecular docking data suggested that, contrary to other LPC species analyzed, C18:1-LPC is predicted to interact with the PAFR model in a fashion similar to PAF. Conclusions/Significance Taken together, our data indicate that T. cruzi synthesizes a bioactive C18:1-LPC, which aggregates platelets via PAFR. We propose that C18:1-LPC might be an important lipid mediator in the progression of Chagas disease and its biosynthesis could eventually be exploited as a potential target for new therapeutic interventions. Chagas disease, caused by the parasite Trypanosoma cruzi, was exclusively confined to Latin America but it has recently spread to other regions of the world. Chagas disease affects 8–10 million people and kills thousands of them every year. Lysophosphatidylcholine (LPC) is a major bioactive phospholipid of human plasma low-density lipoproteins (LDL). Platelet-activating factor (PAF) is a phospholipid similar to LPC and a potent intercellular mediator. Both PAF and LPC have been reported to act on mammalian cells through PAF receptor (PAFR). Previous data from our group suggested that T. cruzi produces a phospholipid with PAF activity. Here, we describe the structural and functional analysis of different species of LPC from T. cruzi, including a LPC with a fatty acid chain of 18 carbon atoms and one double bond (C18:1-LPC). We also show that C18:1-LPC is able to induce rabbit platelet aggregation, which is abrogated by a PAFR antagonist. In addition, a three-dimensional model of human PAFR was constructed. Contrary to other T. cruzi LPC molecules, C18:1-LPC is predicted to interact with the PAFR model in a fashion similar to PAF. Further studies are needed to validate the biosynthesis of T. cruzi C18:1-LPC as a potential drug target in Chagas disease.
Collapse
Affiliation(s)
- Felipe Gazos-Lopes
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Mauricio M. Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas V. B. Hoelz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle P. Vieira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre F. Marques
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ernesto S. Nakayasu
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Marta T. Gomes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco H, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nasim G. Salloum
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Pedro G. Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaïs Souto-Padrón
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco H, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela H. Lopes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (AHL); (ICA)
| | - Igor C. Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
- * E-mail: (AHL); (ICA)
| |
Collapse
|
48
|
Queiroz RML, Charneau S, Bastos IMD, Santana JM, Sousa MV, Roepstorff P, Ricart CAO. Cell surface proteome analysis of human-hosted Trypanosoma cruzi life stages. J Proteome Res 2014; 13:3530-41. [PMID: 24978697 DOI: 10.1021/pr401120y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chagas' disease is a neglected infectious illness, caused by the protozoan Trypanosoma cruzi. It remains a challenging health issue in Latin America, where it is endemic, and so far there is no immunoprophylatic vaccine or satisfactory chemotherapic treatment for its chronic stage. The present work addressed the analysis of the plasma membrane (PM) subproteome from T. cruzi human-hosted life stages, trypomastigote and axenic amastigote, by two complementary PM protein enrichment techniques followed by identification using an LC-MS/MS approach. The results revealed an extensive repertoire of proteins in the PM subproteomes, including enzymes that might be suitable candidates for drug intervention. The comparison of the cell surface proteome among the life forms revealed some potentially stage-specific enzymes, although the majority was shared by both stages. Bioinformatic analysis showed that the vast majority of the identified proteins are membrane-derived and/or possess predicted transmembrane domains. They are mainly involved in host cell infection, protein adhesion, cell signaling, and the modulation of mammalian host immune response. Several virulence factors and proteins potentially capable of acting at a number of metabolic pathways of the host and also to regulate cell differentiation of the parasite itself were also found.
Collapse
Affiliation(s)
- Rayner M L Queiroz
- Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Serna C, Lara JA, Rodrigues SP, Marques AF, Almeida IC, Maldonado RA. A synthetic peptide from Trypanosoma cruzi mucin-like associated surface protein as candidate for a vaccine against Chagas disease. Vaccine 2014; 32:3525-32. [PMID: 24793944 DOI: 10.1016/j.vaccine.2014.04.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/01/2014] [Accepted: 04/14/2014] [Indexed: 01/15/2023]
Abstract
Chagas disease, caused by Trypanosoma cruzi, is responsible for producing significant morbidity and mortality throughout Latin America. The disease has recently become a public health concern to nonendemic regions like the U.S. and Europe. Currently there are no fully effective drugs or vaccine available to treat the disease. The mucin-associated surface proteins (MASPs) are glycosylphosphatidylinositol (GPI)-anchored glycoproteins encoded by a multigene family with hundreds of members. MASPs are among the most abundant antigens found on the surface of the infective trypomastigote stage of T. cruzi, thus representing an attractive target for vaccine development. Here we used immunoinformatics to select a 20-mer peptide with several predicted overlapping B-cell, MHC-I, and MHC-II epitopes, from a MASP family member expressed on mammal-dwelling stages of T. cruzi. The synthetic MASP peptide conjugated to keyhole limpet hemocyanin (MASPpep-KLH) was tested in presence or not of an adjuvant (alum, Al) as a vaccine candidate in the C3H/HeNsd murine model of T. cruzi infection. In considerable contrast to the control groups receiving placebo, Al, or KLH alone or the group immunized with MASPpep-KLH/Al, the group immunized with MASPpep-KLH showed 86% survival rate after challenge with a highly lethal dose of trypomastigotes. As evaluated by quantitative real-time polymerase chain reaction, MASPpep-KLH-immunized animals had much lower parasite load in the heart, liver, and spleen than control animals. Moreover, protected animals produced trypanolytic, protective antibodies, and a cytokine profile conducive to resistance against parasite infection. Finally, in vivo depletion of either CD4(+) or CD8(+) T cells indicated that the latter are critical for protection in mice immunized with MASPpep-KLH. In summary, this new peptide-based vaccine with overlapping B- and T-cell epitopes is able to control T. cruzi infection in mice by priming both humoral and cellular immunity.
Collapse
Affiliation(s)
- Carylinda Serna
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Joshua A Lara
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Silas P Rodrigues
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Alexandre F Marques
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States; Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Igor C Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States.
| | - Rosa A Maldonado
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States.
| |
Collapse
|
50
|
Camargo R, Faria LO, Kloss A, Favali CBF, Kuckelkorn U, Kloetzel PM, de Sá CM, Lima BD. Trypanosoma cruzi infection down-modulates the immunoproteasome biosynthesis and the MHC class I cell surface expression in HeLa cells. PLoS One 2014; 9:e95977. [PMID: 24752321 PMCID: PMC3994161 DOI: 10.1371/journal.pone.0095977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
Generally, Trypanosoma cruzi infection in human is persistent and tends to chronicity, suggesting that the parasite evade the immune surveillance by down regulating the intracellular antigen processing routes. Within the MHC class I pathway, the majority of antigenic peptides are generated by the proteasome. However, upon IFN-γ stimulation, the catalytic constitutive subunits of the proteasome are replaced by the subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 to form the immunoproteasome. In this scenario, we analyzed whether the expression and activity of the constitutive and the immunoproteasome as well as the expression of other components of the MHC class I pathway are altered during the infection of HeLa cells with T. cruzi. By RT-PCR and two-dimensional gel electrophoresis analysis, we showed that the expression and composition of the constitutive proteasome is not affected by the parasite. In contrast, the biosynthesis of the β1i, β2i, β5i immunosubunits, PA28β, TAP1 and the MHC class I molecule as well as the proteasomal proteolytic activities were down-regulated in infected-IFN-γ-treated cell cultures. Taken together, our results provide evidence that the protozoan T. cruzi specifically modulates its infection through an unknown posttranscriptional mechanism that inhibits the expression of the MHC class I pathway components.
Collapse
Affiliation(s)
- Ricardo Camargo
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Liliam O. Faria
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Alexander Kloss
- Institute für Biochimie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cecília B. F. Favali
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Ulrike Kuckelkorn
- Institute für Biochimie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Cezar Martins de Sá
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Beatriz D. Lima
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|