1
|
Berná L, Rego N, Francia ME. The Elusive Mitochondrial Genomes of Apicomplexa: Where Are We Now? Front Microbiol 2021; 12:751775. [PMID: 34721355 PMCID: PMC8554336 DOI: 10.3389/fmicb.2021.751775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are vital organelles of eukaryotic cells, participating in key metabolic pathways such as cellular respiration, thermogenesis, maintenance of cellular redox potential, calcium homeostasis, cell signaling, and cell death. The phylum Apicomplexa is entirely composed of obligate intracellular parasites, causing a plethora of severe diseases in humans, wild and domestic animals. These pathogens include the causative agents of malaria, cryptosporidiosis, neosporosis, East Coast fever and toxoplasmosis, among others. The mitochondria in Apicomplexa has been put forward as a promising source of undiscovered drug targets, and it has been validated as the target of atovaquone, a drug currently used in the clinic to counter malaria. Apicomplexans present a single tubular mitochondria that varies widely both in structure and in genomic content across the phylum. The organelle is characterized by massive gene migrations to the nucleus, sequence rearrangements and drastic functional reductions in some species. Recent third generation sequencing studies have reignited an interest for elucidating the extensive diversity displayed by the mitochondrial genomes of apicomplexans and their intriguing genomic features. The underlying mechanisms of gene transcription and translation are also ill-understood. In this review, we present the state of the art on mitochondrial genome structure, composition and organization in the apicomplexan phylum revisiting topological and biochemical information gathered through classical techniques. We contextualize this in light of the genomic insight gained by second and, more recently, third generation sequencing technologies. We discuss the mitochondrial genomic and mechanistic features found in evolutionarily related alveolates, and discuss the common and distinct origins of the apicomplexan mitochondria peculiarities.
Collapse
Affiliation(s)
- Luisa Berná
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Molecular Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Sección Biomatemática-Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María E Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Linzke M, Yan SLR, Tárnok A, Ulrich H, Groves MR, Wrenger C. Live and Let Dye: Visualizing the Cellular Compartments of the Malaria Parasite Plasmodium falciparum. Cytometry A 2019; 97:694-705. [PMID: 31738009 DOI: 10.1002/cyto.a.23927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Malaria remains one of the deadliest diseases worldwide and it is caused by the protozoan parasite Plasmodium spp. Parasite visualization is an important tool for the correct detection of malarial cases but also to understand its biology. Advances in visualization techniques promote new insights into the complex life cycle and biology of Plasmodium parasites. Live cell imaging by fluorescence microscopy or flow cytometry are the foundation of the visualization technique for malaria research. In this review, we present an overview of possibilities in live cell imaging of the malaria parasite. We discuss some of the state-of-the-art techniques to visualize organelles and processes of the parasite and discuss limitation and advantages of each technique. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Marleen Linzke
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| | - Sun Liu Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| | - Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University Leipzig, D-04107, Härtelstraße 16-18, Leipzig, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, São Paulo, São Paulo, 05508-900, Brazil
| | - Matthew R Groves
- Structural Biology Unit, Department of Pharmacy, Faculty of Science and Engineering, University of Groningen, 9713AV, Antonius Deusinglaan 1, AV Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
3
|
Géry A, Basco LK, Heutte N, Guillamin M, N'Guyen HMT, Richard E, Garon D, Eldin de Pécoulas P. Long-Term In vitro Cultivation of Plasmodium falciparum in a Novel Cell Culture Device. Am J Trop Med Hyg 2019; 100:822-827. [PMID: 30693863 DOI: 10.4269/ajtmh.18-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The standard in vitro cultivation procedure for Plasmodium falciparum requires gas exchange and a microaerophilic atmosphere. A novel system using a commercially available cell culture device (Petaka G3™; Celartia Ltd., Powell, OH) was assessed for long-term cultivation of a P. falciparum reference laboratory clone in normal air. Parasite growth during 30 days was similar, or better, in Petaka G3 than that in the standard cultivation method with gas exchange in a CO2 incubator. The successful cultivation of P. falciparum in the Petaka G3 device suggests that low O2 content available in hemoglobin and dissolved gas in the blood is sufficient for long-term cultivation. This finding may open the way to novel methods to cultivate and adapt P. falciparum field isolates to in vitro conditions with more ease.
Collapse
Affiliation(s)
- Antoine Géry
- Centre François Baclesse, Normandie Université, UNICAEN, UR ABTE EA 4651, Caen, France
| | | | - Natacha Heutte
- Normandie Université, UNIROUEN, CETAPS EA 3832, Mont Saint Aignan Cedex, France
| | - Marilyne Guillamin
- Normandie Université, UNICAEN, Plateau de Cytométrie en Flux, ICORE, Caen, France.,Normandie Université, UNICAEN, INSERM U 1075 COMETE, Caen, France
| | - Ho-Mai-Thy N'Guyen
- Centre François Baclesse, Normandie Université, UNICAEN, UR ABTE EA 4651, Caen, France
| | - Estelle Richard
- Centre François Baclesse, Normandie Université, UNICAEN, UR ABTE EA 4651, Caen, France
| | - David Garon
- Centre François Baclesse, Normandie Université, UNICAEN, UR ABTE EA 4651, Caen, France
| | | |
Collapse
|
4
|
The Effect of Aqueous Extract of Cinnamon on the Metabolome of Plasmodium falciparum Using (1)HNMR Spectroscopy. J Trop Med 2016; 2016:3174841. [PMID: 26904134 PMCID: PMC4745969 DOI: 10.1155/2016/3174841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 12/19/2022] Open
Abstract
Malaria is responsible for estimated 584,000 deaths in 2013. Researchers are working on new drugs and medicinal herbs due to drug resistance that is a major problem facing them; the search is on for new medicinal herbs. Cinnamon is the bark of a tree with reported antiparasitic effects. Metabonomics is the simultaneous study of all the metabolites in biological fluids, cells, and tissues detected by high throughput technology. It was decided to determine the mechanism of the effect of aqueous extract of cinnamon on the metabolome of Plasmodium falciparum in vitro using (1)HNMR spectroscopy. Prepared aqueous extract of cinnamon was added to a culture of Plasmodium falciparum 3D7 and its 50% inhibitory concentration determined, and, after collection, their metabolites were extracted and (1)HNMR spectroscopy by NOESY method was done. The spectra were analyzed by chemometric methods. The differentiating metabolites were identified using Human Metabolome Database and the metabolic cycles identified by Metaboanalyst. 50% inhibitory concentration of cinnamon on Plasmodium falciparum was 1.25 mg/mL with p < 0.001. The metabolites were identified as succinic acid, glutathione, L-aspartic acid, beta-alanine, and 2-methylbutyryl glycine. The main metabolic cycles detected were alanine and aspartame and glutamate pathway and pantothenate and coenzyme A biosynthesis and lysine biosynthesis and glutathione metabolism, which are all important as drug targets.
Collapse
|
5
|
Jain SA, Basu H, Prabhu PS, Soni U, Joshi MD, Mathur D, Patravale VB, Pathak S, Sharma S. Parasite impairment by targeting Plasmodium-infected RBCs using glyceryl-dilaurate nanostructured lipid carriers. Biomaterials 2014; 35:6636-45. [DOI: 10.1016/j.biomaterials.2014.04.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/16/2014] [Indexed: 12/30/2022]
|
6
|
Next-generation sequencing reveals cryptic mtDNA diversity of Plasmodium relictum in the Hawaiian Islands. Parasitology 2013; 140:1741-50. [PMID: 23953131 DOI: 10.1017/s0031182013000905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Next-generation 454 sequencing techniques were used to re-examine diversity of mitochondrial cytochrome b lineages of avian malaria (Plasmodium relictum) in Hawaii. We document a minimum of 23 variant lineages of the parasite based on single nucleotide transitional changes, in addition to the previously reported single lineage (GRW4). A new, publicly available portal (Integroomer) was developed for initial parsing of 454 datasets. Mean variant prevalence and frequency was higher in low elevation Hawaii Amakihi (Hemignathus virens) with Avipoxvirus-like lesions (P = 0·001), suggesting that the variants may be biologically distinct. By contrast, variant prevalence and frequency did not differ significantly among mid-elevation Apapane (Himatione sanguinea) with or without lesions (P = 0·691). The low frequency and the lack of detection of variants independent of GRW4 suggest that multiple independent introductions of P. relictum to Hawaii are unlikely. Multiple variants may have been introduced in heteroplasmy with GRW4 or exist within the tandem repeat structure of the mitochondrial genome. The discovery of multiple mitochondrial lineages of P. relictum in Hawaii provides a measure of genetic diversity within a geographically isolated population of this parasite and suggests the origins and evolution of parasite diversity may be more complicated than previously recognized.
Collapse
|
7
|
Teguh SC, Klonis N, Duffy S, Lucantoni L, Avery VM, Hutton CA, Baell JB, Tilley L. Novel Conjugated Quinoline–Indoles Compromise Plasmodium falciparum Mitochondrial Function and Show Promising Antimalarial Activity. J Med Chem 2013; 56:6200-15. [DOI: 10.1021/jm400656s] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Sandra Duffy
- Eskitis Institute for Drug Discovery, Brisbane Innovation Park, Griffith University,
Nathan QLD 4111, Australia
| | - Leonardo Lucantoni
- Eskitis Institute for Drug Discovery, Brisbane Innovation Park, Griffith University,
Nathan QLD 4111, Australia
| | - Vicky M. Avery
- Eskitis Institute for Drug Discovery, Brisbane Innovation Park, Griffith University,
Nathan QLD 4111, Australia
| | | | - Jonathan B. Baell
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Science, Parkville
VIC 3052, Australia
| | | |
Collapse
|
8
|
Gibberellin biosynthetic inhibitors make human malaria parasite Plasmodium falciparum cells swell and rupture to death. PLoS One 2012; 7:e32246. [PMID: 22412858 PMCID: PMC3296703 DOI: 10.1371/journal.pone.0032246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/24/2012] [Indexed: 01/25/2023] Open
Abstract
Malaria remains as one of the most devastating infectious disease, and continues to exact an enormous toll in medical cost and days of labor lost especially in the tropics. Effective malaria control and eventual eradication remain a huge challenge, with efficacious antimalarials as important intervention/management tool. Clearly new alternative drugs that are more affordable and with fewer side effects are desirable. After preliminary in vitro assays with plant growth regulators and inhibitors, here, we focus on biosynthetic inhibitors of gibberellin, a plant hormone with many important roles in plant growth, and show their inhibitory effect on the growth of both apicomplexa, Plasmodium falciparum and Toxoplasma gondii. Treatment of P. falciparum cultures with the gibberellin biosynthetic inhibitors resulted in marked morphological changes that can be reversed to a certain degree under hyperosmotic environment. These unique observations suggest that changes in the parasite membrane permeability may explain the pleiotropic effects observed within the intracellular parasites.
Collapse
|
9
|
Dixit SK, Mishra N, Sharma M, Singh S, Agarwal A, Awasthi SK, Bhasin VK. Synthesis and in vitro antiplasmodial activities of fluoroquinolone analogs. Eur J Med Chem 2012; 51:52-9. [PMID: 22424611 DOI: 10.1016/j.ejmech.2012.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/04/2012] [Accepted: 02/03/2012] [Indexed: 10/28/2022]
Abstract
Fluoroquinolone analogs were synthesized by simple alkylation followed by click chemistry and evaluated for their antimalarial in vitro against chloroquine sensitive strain of Plasmodium falciparum while ciprofloxacin was used as standard. Our results showed that the compound 12 was found most active with IC(50) value of 1.33 μg/mL while ciprofloxacin showed IC(50) = 8.81 μg/mL. Therefore, screening of either known or unknown quinolone/fluoroquinolone analogs are worthwhile to find more potent antimalarial drugs which might prove useful in the treatment of mild or severe malaria in human either alone or in combination with existing antimalarial drugs.
Collapse
Affiliation(s)
- Sandeep K Dixit
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Mall Road, Delhi 110007, India
| | | | | | | | | | | | | |
Collapse
|
10
|
Torrentino-Madamet M, Almeras L, Travaillé C, Sinou V, Pophillat M, Belghazi M, Fourquet P, Jammes Y, Parzy D. Proteomic analysis revealed alterations of the Plasmodium falciparum metabolism following salicylhydroxamic acid exposure. Res Rep Trop Med 2011; 2:109-119. [PMID: 30881184 DOI: 10.2147/rrtm.s23127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Although human respiratory metabolism is characterized by the mitochondrial electron transport chain, some organisms present a "branched respiratory chain." This branched pathway includes both a classical and an alternative respiratory chain. The latter involves an alternative oxidase. Though the Plasmodium falciparum alternative oxidase is not yet identified, a specific inhibitor of this enzyme, salicylhydroxamic acid (SHAM), showed a drug effect on P. falciparum respiratory function using oxygen consumption measurements. The present study aimed to highlight the metabolic pathways that are affected in P. falciparum following SHAM exposure. DESIGN A proteomic approach was used to analyze the P. falciparum proteome and determine the metabolic pathways altered following SHAM treatment. To evaluate the SHAM effect on parasite growth, the phenotypic alterations of P. falciparum after SHAM or/and hyperoxia exposure were observed. RESULTS After SHAM exposure, 26 proteins were significantly deregulated using a fluorescent two dimensional-differential gel electrophoresis. Among these deregulated proteins, some were particularly involved in energetic metabolism. And the combinatory effect of SHAM/hyperoxia seems deleterious for the growth of P. falciparum. CONCLUSION Our results indicated that SHAM appears to activate glycolysis and decrease stress defense systems. These data provide a better understanding of parasite biology.
Collapse
Affiliation(s)
| | - Lionel Almeras
- Unité de Recherche en Biologie et Epidémiologie Parasitaires, Antenne IRBA de Marseille (IMTSSA, Le Pharo)
| | - Christelle Travaillé
- UMR-MD3, Université de la Méditerranée, Antenne IRBA de Marseille (IMTSSA, Le Pharo),
| | - Véronique Sinou
- UMR-MD3, Université de la Méditerranée, Antenne IRBA de Marseille (IMTSSA, Le Pharo),
| | - Matthieu Pophillat
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée
| | - Maya Belghazi
- Centre d'Analyse Protéomique de Marseille, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord
| | - Patrick Fourquet
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée
| | - Yves Jammes
- UMR-MD2, Physiologie et Physiopathologie en Conditions d'Oxygénations Extrêmes, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord, Marseille, France
| | - Daniel Parzy
- UMR-MD3, Université de la Méditerranée, Antenne IRBA de Marseille (IMTSSA, Le Pharo),
| |
Collapse
|
11
|
Abstract
Nonhuman primates (NHPs) are commonly used for biomedical research because of the high level of gene homology that underlies physiologic similarity to human beings. Malaria parasites of the genus Plasmodium cause one of the most frequent parasitic diseases of NHPs originating from tropical and subtropical areas and as such represent a significant research confounder. Malaria in NHPs presents a diagnostic challenge especially to those laboratories that see no more than a few malaria cases per year in NHPs. The accurate and timely diagnosis of malaria infection in NHPs facilitates the appropriate treatment of individuals infected with the malaria parasites. Conventional microscopy based on the examination of Giemsa-stained thick and thin blood films remains the mainstay of laboratory diagnosis of malaria infection because of the high diagnostic sensitivity and specificity and also the capability for Plasmodium species identification and parasite counts. This procedure is recognized as technically difficult and time-consuming, requiring considerable training to obtain the necessary skills. In the past few years, efforts to replace the traditional but tedious reading of blood films have led to different techniques for the detection of malaria parasites, including fluorescence microscopy, detection of intraleukocytic hemozoin or malaria pigment using automated blood cell analyzers, immunochromatographic rapid diagnostic tests based on malaria antigen detection, and PCR assays. These techniques offer new approaches for diagnosing malaria in NHPs. This review focuses on the available laboratory diagnostic tools for malaria in NHPs.
Collapse
Affiliation(s)
- Mehrdad Ameri
- Department of Clinical Pathology, Wyeth Research, Chazy, NY, USA.
| |
Collapse
|
12
|
Morisaki D, Kim HS, Inoue H, Terauchi H, Kuge S, Naganuma A, Wataya Y, Tokuyama H, Ihara M, Takasu K. Selective accumulation of rhodacyanine in plasmodial mitochondria is related to the growth inhibition of malaria parasites. Chem Sci 2010. [DOI: 10.1039/c0sc00125b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Artemisinin and a series of novel endoperoxide antimalarials exert early effects on digestive vacuole morphology. Antimicrob Agents Chemother 2007; 52:98-109. [PMID: 17938190 DOI: 10.1128/aac.00609-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Artermisinin and its derivatives are now the mainstays of antimalarial treatment; however, their mechanism of action is only poorly understood. We report on the synthesis of a novel series of epoxy-endoperoxides that can be prepared in high yields from simple starting materials. Endoperoxides that are disubstituted with alkyl or benzyl side chains show efficient inhibition of the growth of both chloroquine-sensitive and -resistant strains of Plasmodium falciparum. A trans-epoxide with respect to the peroxide linkage increases the activity compared to that of its cis-epoxy counterpart or the parent endoperoxide. The novel endoperoxides do not show a strong interaction with artemisinin. We have compared the mechanism of action of the novel endoperoxides with that of artemisinin. Electron microscopy reveals that the novel endoperoxides cause the early accumulation of endocytic vesicles, while artemisinin causes the disruption of the digestive vacuole membrane. At longer incubation times artemisinin causes extensive loss of organellar structures, while the novel endoperoxides cause myelin body formation as well as the accumulation of endocytic vesicles. An early event following endoperoxide treatment is the redistribution of the pH-sensitive probe LysoSensor Blue from the digestive vacuole to punctate structures. By contrast, neither artemisinin nor the novel endoperoxides caused alterations in the morphology of the endoplasmic reticulum nor showed antagonistic antimalarial activity when they were used with thapsigargin. Analysis of rhodamine 123 uptake by P. falciparum suggests that disruption of the mitochondrial membrane potential occurs as a downstream effect rather than as an initiator of parasite killing. The data suggest that the digestive vacuole is an important initial site of endoperoxide antimalarial activity.
Collapse
|
14
|
Fisher N, Bray PG, Ward SA, Biagini GA. The malaria parasite type II NADH:quinone oxidoreductase: an alternative enzyme for an alternative lifestyle. Trends Parasitol 2007; 23:305-10. [PMID: 17499024 DOI: 10.1016/j.pt.2007.04.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 03/27/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
The operation of a type II NADH:quinone oxidoreductase (PfNDH2), also known as alternative Complex I, in the mitochondrion of the human malaria parasite, Plasmodium falciparum, has recently been described. Unlike the Complex I of typical mitochondria, type II NADH:quinone oxidoreductases do not have transmembrane domains and are not involved directly in proton (H(+)) pumping. Here, we present a predictive model of PfNDH2, describing putative NADH-, flavin- and quinone-binding sites, as well as a possible membrane 'anchoring' region. In addition, we hypothesize that the alternative Complex I is an evolutionary adaptation to a microaerophilic lifestyle enabling (proton) uncoupled oxidation of NADH. This adaptive feature has several advantages, including: (i) a reduction of proton 'back-pressure' in the absence of extensive ATP synthesis; (ii) a reduction of mitochondrial superoxide generation; and (iii) a mechanism for the deregulated oxidation of cytosolic NADH.
Collapse
Affiliation(s)
- Nicholas Fisher
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | | | | |
Collapse
|
15
|
Dahl EL, Shock JL, Shenai BR, Gut J, DeRisi JL, Rosenthal PJ. Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 2006; 50:3124-31. [PMID: 16940111 PMCID: PMC1563505 DOI: 10.1128/aac.00394-06] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetracyclines are effective but slow-acting antimalarial drugs whose mechanism of action remains uncertain. To characterize the antimalarial mechanism of tetracyclines, we evaluated their stage-specific activities, impacts on parasite transcription, and effects on two predicted organelle targets, the apicoplast and the mitochondrion, in cultured Plasmodium falciparum. Antimalarial effects were much greater after two 48-h life cycles than after one cycle, even if the drugs were removed at the end of the first cycle. Doxycycline-treated parasites appeared morphologically normal until late in the second cycle of treatment but failed to develop into merozoites. Doxycycline specifically impaired the expression of apicoplast genes. Apicoplast morphology initially appeared normal in the presence of doxycycline. However, apicoplasts were abnormal in the progeny of doxycycline-treated parasites, as evidenced by a block in apicoplast genome replication, a lack of processing of an apicoplast-targeted protein, and failure to elongate and segregate during schizogeny. Replication of the nuclear and mitochondrial genomes and mitochondrial morphology appeared normal. Our results demonstrate that tetracyclines specifically block expression of the apicoplast genome, resulting in the distribution of nonfunctional apicoplasts into daughter merozoites. The loss of apicoplast function in the progeny of treated parasites leads to a slow but potent antimalarial effect.
Collapse
Affiliation(s)
- Erica L Dahl
- Department of Medicine, University of California - San Francisco, CA 94143-0811, USA
| | | | | | | | | | | |
Collapse
|
16
|
Ponpuak M, Klemba M, Park M, Gluzman IY, Lamppa GK, Goldberg DE. A role for falcilysin in transit peptide degradation in thePlasmodium falciparumapicoplast. Mol Microbiol 2006; 63:314-34. [PMID: 17074076 DOI: 10.1111/j.1365-2958.2006.05443.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Falcilysin (FLN) is a zinc metalloprotease thought to degrade globin peptides in the acidic vacuole of the human malaria parasite Plasmodium falciparum. The enzyme has been found to have acidic or neutral pH optima on different peptides and to have additional distribution outside the food vacuole. These data suggested that FLN has an additional function in the parasite. To further probe the functions of FLN, we created a transgenic parasite clone expressing a chromosomally encoded FLN-GFP fusion. Unexpectedly, FLN was found in the apicoplast, an essential chloroplast-like organelle. Nuclear encoded apicoplast proteins are targeted to the organelle by a bipartite N-terminal sequence comprised of a signal sequence followed by a positively charged transit peptide domain. Free transit peptides are thought to be toxic to the plastid and need to be rapidly degraded after proteolytic release from proproteins. We hypothesized that FLN may participate in transit peptide degradation in the apicoplast based on its preference for basic residues at neutral pH and on phylogenetic comparison with other M16 family metalloproteases. In vitro cleavage by FLN of the transit peptide from the apicoplast-resident acyl carrier protein supports this idea. The importance of FLN for parasite development is suggested by our inability to truncate the chromosomal FLN open reading frame. Our work indicates that FLN is an attractive target for antimalarial development.
Collapse
Affiliation(s)
- Marisa Ponpuak
- Howard Hughes Medical Institute, Washington University, Departments of Molecular Microbiology and Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
17
|
van Dooren GG, Stimmler LM, McFadden GI. Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev 2006; 30:596-630. [PMID: 16774588 DOI: 10.1111/j.1574-6976.2006.00027.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The mitochondrion of Plasmodium species is a validated drug target. However, very little is known about the functions of this organelle. In this review, we utilize data available from the Plasmodium falciparum genome sequencing project to piece together putative metabolic pathways that occur in the parasite, comparing this with the existing biochemical and cell biological knowledge. The Plasmodium mitochondrion contains both conserved and unusual features, including an active electron transport chain and many of the necessary enzymes for coenzyme Q and iron-sulphur cluster biosynthesis. It also plays an important role in pyrimidine metabolism. The mitochondrion participates in an unusual hybrid haem biosynthesis pathway, with enzymes localizing in both the mitochondrion and plastid organelles. The function of the tricarboxylic acid cycle in the mitochondrion is unclear. We discuss directions for future research into this fascinating, yet enigmatic, organelle.
Collapse
Affiliation(s)
- Giel G van Dooren
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
18
|
Biagini GA, Viriyavejakul P, O'neill PM, Bray PG, Ward SA. Functional characterization and target validation of alternative complex I of Plasmodium falciparum mitochondria. Antimicrob Agents Chemother 2006; 50:1841-51. [PMID: 16641458 PMCID: PMC1472221 DOI: 10.1128/aac.50.5.1841-1851.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 02/03/2006] [Indexed: 11/20/2022] Open
Abstract
This study reports on the first characterization of the alternative NADH:dehydrogenase (also known as alternative complex I or type II NADH:dehydrogenase) of the human malaria parasite Plasmodium falciparum, known as PfNDH2. PfNDH2 was shown to actively oxidize NADH in the presence of quinone electron acceptors CoQ(1) and decylubiquinone with an apparent K(m) for NADH of approximately 17 and 5 muM, respectively. The inhibitory profile of PfNDH2 revealed that the enzyme activity was insensitive to rotenone, consistent with recent genomic data indicating the absence of the canonical NADH:dehydrogenase enzyme. PfNDH2 activity was sensitive to diphenylene iodonium chloride and diphenyl iodonium chloride, known inhibitors of alternative NADH:dehydrogenases. Spatiotemporal confocal imaging of parasite mitochondria revealed that loss of PfNDH2 function provoked a collapse of mitochondrial transmembrane potential (Psi(m)), leading to parasite death. As with other alternative NADH:dehydrogenases, PfNDH2 lacks transmembrane domains in its protein structure, and therefore, it is proposed that this enzyme is not directly involved in mitochondrial transmembrane proton pumping. Rather, the enzyme provides reducing equivalents for downstream proton-pumping enzyme complexes. As inhibition of PfNDH2 leads to a depolarization of mitochondrial Psi(m), this enzyme is likely to be a critical component of the electron transport chain (ETC). This notion is further supported by proof-of-concept experiments revealing that targeting the ETC's Q-cycle by inhibition of both PfNDH2 and the bc(1) complex is highly synergistic. The potential of targeting PfNDH2 as a chemotherapeutic strategy for drug development is discussed.
Collapse
Affiliation(s)
- Giancarlo A Biagini
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, United Kingdom.
| | | | | | | | | |
Collapse
|
19
|
Köhler S. Multi-membrane-bound structures of Apicomplexa: II. the ovoid mitochondrial cytoplasmic (OMC) complex of Toxoplasma gondii tachyzoites. Parasitol Res 2006; 98:355-69. [PMID: 16470415 DOI: 10.1007/s00436-005-0066-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
Apicomplexa including the causative agents of toxoplasmosis and malaria reportedly possess one or few tubular-shaped mitochondria that permeate, more or less branched, throughout these unicellular parasites. Electron micrographs generated herein from serial-sectioned Toxoplasma gondii tachyzoites demonstrated, however, a greater diversity regarding both the shape of the cultured parasite's single mitochondrion and its sub-structural organization. Moreover, a unique subcellular construction was detected that basically comprised a pouch-shaped subdivision of the tachyzoite mitochondrion plus a fraction of parasitic cytoplasm enclosed therein. This composite assembling, termed ovoid mitochondrial cytoplasmic (OMC) complex, characteristically displayed a highly reduced matrix lumen of its mitochondrial border construction, which furthermore often failed to possess any cristae or contained tightly pleated cristae, thus creating a pouch-shaped multi-laminar wall of four or more membranous layers, respectively. Given this architecture, cross-sectioned OMC complexes of T. gondii tachyzoites frequently mimicked in size and shape the parasites' plastid-like organelle (apicoplast). Moreover, like the apicoplast, the OMC complex was often found adjacent to the tachyzoite's single Golgi complex and constantly located in close proximity to the outer membrane of the parasite's nuclear envelope. The T. gondii OMC complex differed, however, from the apicoplast in its exact fine structural organization and a stage-restricted presence that was apparently linked to mitochondrial growth and/or division. Any special function(s) possibly performed by the T. gondii OMC complex remains, nevertheless, to be elucidated.
Collapse
Affiliation(s)
- Sabine Köhler
- Institute for Zoomorphology, Cell Biology and Parasitology, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| |
Collapse
|
20
|
van Dooren GG, Marti M, Tonkin CJ, Stimmler LM, Cowman AF, McFadden GI. Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol 2005; 57:405-19. [PMID: 15978074 DOI: 10.1111/j.1365-2958.2005.04699.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plasmodium parasites are unicellular eukaryotes that undergo a series of remarkable morphological transformations during the course of a multistage life cycle spanning two hosts (mosquito and human). Relatively little is known about the dynamics of cellular organelles throughout the course of these transformations. Here we describe the morphology of three organelles (endoplasmic reticulum, apicoplast and mitochondrion) through the human blood stages of the parasite life cycle using fluorescent reporter proteins fused to organelle targeting sequences. The endoplasmic reticulum begins as a simple crescent-shaped organelle that develops into a perinuclear ring with two small protrusions, followed by transformation into an extensive reticulated network as the parasite enlarges. Similarly, the apicoplast and the mitochondrion grow from single, small, discrete organelles into highly branched structures in later-stage parasites. These branched structures undergo an ordered fission - apicoplast followed by mitochondrion - to create multiple daughter organelles that are apparently linked as pairs for packaging into daughter cells. This is the first in-depth examination of intracellular organelles in live parasites during the asexual life cycle of this important human pathogen.
Collapse
Affiliation(s)
- Giel G van Dooren
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Intracellular protozoan parasites of the genus Plasmodium spend much of the cell cycle inside the vertebrate host's erythrocytes. Recent studies on the metabolism of D-glucose in Plasmodium-infected erythrocytes have suggested that the parasite does not depend on the glycolytic activity of the host erythrocyte. Kazuyuki Tanabe describes how the intraerythrocytic parasite acquires extracellular D-glucose from the host and the pathways through which the sugar crosses the membranes of both the parasite and the host eruthrocyte. It appears that the parasite adapts itself to the host's physiological environment and modifies the functions of the host erythrocyte to be able to complete intraerythrocytic development.
Collapse
Affiliation(s)
- K Tanabe
- Laborotory of Biology, Osaka Institute of Technology, Ohmiya, Asahi-ku, Osaka 535, Japan
| |
Collapse
|
22
|
Bozdech Z, Ginsburg H. Data mining of the transcriptome of Plasmodium falciparum: the pentose phosphate pathway and ancillary processes. Malar J 2005; 4:17. [PMID: 15774020 PMCID: PMC1084361 DOI: 10.1186/1475-2875-4-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2005] [Accepted: 03/18/2005] [Indexed: 11/10/2022] Open
Abstract
The general paradigm that emerges from the analysis of the transcriptome of the malaria parasite Plasmodium falciparum is that the expression clusters of genes that code for enzymes engaged in the same cellular function is coordinated. Here the consistency of this perception is examined by analysing specific pathways that metabolically-linked. The pentose phosphate pathway (PPP) is a fundamental element of cell biochemistry since it is the major pathway for the recycling of NADP+ to NADPH and for the production of ribose-5-phosphate that is needed for the synthesis of nucleotides. The function of PPP depends on the synthesis of NADP+ and thiamine pyrophosphate, a co-enzyme of the PPP enzyme transketolase. In this essay, the transcription of gene coding for enzymes involved in the PPP, thiamine and NAD(P)+ syntheses are analysed. The genes coding for two essential enzymes in these pathways, transaldolase and NAD+ kinase could not be found in the genome of P. falciparum. It is found that the transcription of the genes of each pathway is not always coordinated and there is usually a gene whose transcription sets the latest time for the full deployment of the pathway's activity. The activity of PPP seems to involve only the oxidative arm of PPP that is geared for maximal NADP+ reduction and ribose-5-phosphate production during the early stages of parasite development. The synthesis of thiamine diphosphate is predicted to occur much later than the expression of transketolase. Later in the parasite cycle, the non-oxidative arm of PPP that can use fructose-6-phosphate and glyceraldehyde-3-phosphate supplied by glycolysis, becomes fully deployed allowing to maximize the production of ribose-5-phosphate. These discrepancies require direct biochemical investigations to test the activities of the various enzymes in the developing parasite. Notably, several transcripts of PPP enzyme-coding genes display biphasic pattern of transcription unlike most transcripts that peak only once during the parasite cycle. The physiological meaning of this pattern requires further investigation.
Collapse
Affiliation(s)
- Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Hagai Ginsburg
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
23
|
Gazarini ML, Garcia CRS. The malaria parasite mitochondrion senses cytosolic Ca2+ fluctuations. Biochem Biophys Res Commun 2004; 321:138-44. [PMID: 15358226 DOI: 10.1016/j.bbrc.2004.06.141] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Indexed: 10/26/2022]
Abstract
By using the fluorescent dye Rhod-2, we have investigated the ability of Plasmodium mitochondria to participate in cellular Ca2+ homeostasis. To this end, isolated parasites were simultaneously loaded with the mitochondrial Ca2+ probe Rhod-2 and the cytosolic Ca2+ dye Fluo-3 and their fluorescent intensities were monitored in the same cells by confocal microscopy. We here demonstrate that Ca2+ increases, as elicited by treatment of parasites with sarco-endoplasmic reticulum Ca2+ ATPase inhibitors or the hormone melatonin, induce rapid and reversible increases of the Ca2+ concentration in the mitochondria of both human and murine parasites. Pre-treatment of parasites with the mitochondrial uncoupler, FCCP, suppresses mitochondrial Ca2+ accumulation. Our data demonstrate that mitochondria of malaria parasites are able to reversibly accumulate part of the Ca2+ released in the cytoplasm by pharmacological and physiological agents and thus suggest that this organelle participate in the maintenance of Ca2+ homeostasis of Plasmodia.
Collapse
Affiliation(s)
- Marcos L Gazarini
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo. Av. Lineu Prestes 1374, Brazil
| | | |
Collapse
|
24
|
Abstract
Mitochondria of the malaria parasitePlasmodium falciparumare morphologically different between the asexual and sexual blood stages (gametocytes). In this paper recent findings of mitochondrial heterogeneity are reviewed based on their ultrastructural characteristics, metabolic activities and the differential expression of their genes in these 2 blood stages of the parasite. The existence of NADH dehydrogenase (complex I), succinate dehydrogenase (complex II), cytochrome c reductase (complex III) and cytochrome c oxidase (complex IV) suggests that the biochemically active electron transport system operates in this parasite. There is also an alternative electron transport branch pathway, including an anaerobic function of complex II. One of the functional roles of the mitochondrion in the parasite is the coordination of pyrimidine biosynthesis, the electron transport system and oxygen utilization via dihydroorotate dehydrogenase and coenzyme Q. Complete sets of genes encoding enzymes of the tricarboxylic acid cycle and the ATP synthase complex are predicted fromP. falciparumgenomics information. Other metabolic roles of this organelle include membrane potential maintenance, haem and coenzyme Q biosynthesis, and oxidative phosphorylation. Furthermore, the mitochondrion may be a chemotherapeutic target for antimalarial drug development. The antimalarial drug atovaquone targets the mitochondrion.
Collapse
Affiliation(s)
- J Krungkrai
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
25
|
Roberts CW, Roberts F, Henriquez FL, Akiyoshi D, Samuel BU, Richards TA, Milhous W, Kyle D, McIntosh L, Hill GC, Chaudhuri M, Tzipori S, McLeod R. Evidence for mitochondrial-derived alternative oxidase in the apicomplexan parasite Cryptosporidium parvum: a potential anti-microbial agent target. Int J Parasitol 2004; 34:297-308. [PMID: 15003491 DOI: 10.1016/j.ijpara.2003.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 11/06/2003] [Accepted: 11/06/2003] [Indexed: 10/26/2022]
Abstract
The observation that Plasmodium falciparum possesses cyanide insensitive respiration that can be inhibited by salicylhydroxamic acid (SHAM) and propyl gallate is consistent with the presence of an alternative oxidase (AOX). However, the completion and annotation of the P. falciparum genome project did not identify any protein with convincing similarity to the previously described AOXs from plants, fungi or protozoa. We undertook a survey of the available apicomplexan genome projects in an attempt to address this anomaly. Putative AOX sequences were identified and sequenced from both type 1 and 2 strains of Cryptosporidium parvum. The gene encodes a polypeptide of 336 amino acids and has a predicted N-terminal transit sequence similar to that found in proteins targeted to the mitochondria of other species. The potential of AOX as a target for new anti-microbial agents for C. parvum is evident by the ability of SHAM and 8-hydroxyquinoline to inhibit in vitro growth of C. parvum. In spite of the lack of a good candidate for AOX in either the P. falciparum or Toxoplasma gondii genome projects, SHAM and 8-hydroxyquinoline were found to inhibit the growth of these parasites. Phylogenetic analysis suggests that AOX and the related protein immutans are derived from gene transfers from the mitochondrial endosymbiont and the chloroplast endosymbiont, respectively. These data are consistent with the functional localisation studies conducted thus far, which demonstrate mitochondrial localisation for some AOX and chloroplastidic localization for immutans. The presence of a mitochondrial compartment is further supported by the prediction of a mitochondrial targeting sequence at the N-terminus of the protein and MitoTracker staining of a subcellular compartment in trophozoite and meront stages. These results give insight into the evolution of AOX and demonstrate the potential of targeting the alternative pathway of respiration in apicomplexans.
Collapse
Affiliation(s)
- Craig W Roberts
- Department of Immunology, Strathclyde Institute for Biomedical Life Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Uyemura SA, Luo S, Vieira M, Moreno SNJ, Docampo R. Oxidative Phosphorylation and Rotenone-insensitive Malate- and NADH-Quinone Oxidoreductases in Plasmodium yoelii yoelii Mitochondria in Situ. J Biol Chem 2004; 279:385-93. [PMID: 14561763 DOI: 10.1074/jbc.m307264200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Respiration, membrane potential, and oxidative phosphorylation of mitochondria of Plasmodium yoelii yoelii trophozoites were assayed in situ after permeabilization with digitonin. ADP induced an oligomycin-sensitive transition from resting to phosphorylating respiration in the presence of oxidizable substrates. A functional respiratory chain was demonstrated. In addition, the ability of the parasite to oxidize exogenous NADH, as well as the insensitivity of respiration to rotenone and its sensitivity to flavone, suggested the presence of an alternative NADH-quinone (NADH-Q) oxidoreductase. Rotenone-insensitive respiration and membrane potential generation in the presence of malate suggested the presence of a malate-quinone oxidoreductase. These results are in agreement with the presence of genes in P. yoelii encoding for proteins with homology to NADH-Q oxidoreductases of bacteria, plant, fungi, and protozoa and malate-quinone oxidoreductases of bacteria. The complete inhibition of respiration by antimycin A and cyanide excluded the presence of an alternative oxidase as described in other parasites. An uncoupling effect of fatty acids was partly reversed by bovine serum albumin and GTP but was unaffected by carboxyatractyloside. These results provide the first biochemical evidence of the presence of an alternative NADH-Q oxidoreductase and a malate-quinone oxidoreductase and confirm the operation of oxidative phosphorylation in malaria parasites.
Collapse
Affiliation(s)
- Sergio A Uyemura
- Laboratory of Molecular Parasitology, Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | |
Collapse
|
27
|
Bennett TN, Kosar AD, Ursos LMB, Dzekunov S, Singh Sidhu AB, Fidock DA, Roepe PD. Drug resistance-associated pfCRT mutations confer decreased Plasmodium falciparum digestive vacuolar pH. Mol Biochem Parasitol 2004; 133:99-114. [PMID: 14668017 DOI: 10.1016/j.molbiopara.2003.09.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Elucidating the altered physiology of various chloroquine resistant (CQR) strains of Plasmodium falciparum is essential for understanding the molecular basis of CQR. In this study, we have devised several new methods for analyzing digestive vacuolar (DV) pH for individual intraerythrocytic parasites under continuous perfusion. These use controlled illumination power and novel data acquisition software, and are based on either acridine orange (AO) emission spectra or ratiometric 5-(and 6-)carboxy-2',7'-dimethyl-3'-hydroxy-6'-N-ethylaminospiro [isobenzofuran-1(3H),9'-(9H)xanthen]-3-one (DM NERF) excitation. Results show that DV pH is more acidic for laboratory strains of CQR parasites relative to chloroquine sensitive (CQS). Using mutant pfcrt allelic exchange clones not previously exposed to chloroquine (CQ), we now show a direct association between acid DV pH, CQ resistance and mutation of pfcrt to either South American (7G8) or South East Asian (Dd2) CQR-associated alleles. Surprisingly, these alleles confer a similar degree of DV acidification. Verapamil (VPL) reversed acid DV pH for the Dd2 mutant C3(Dd2) clone, in a surprisingly rapid fashion, but did not reverse acid DV pH for the 7G8 mutant C6(7G8) clone. Thus, there is a direct link between expression of two major CQR-associated pfcrt alleles and altered parasite DV physiology. The data also support models that envision direct but allele-specific interaction between PfCRT and VPL.
Collapse
Affiliation(s)
- Tyler N Bennett
- Department of Chemistry, Biochemistry and Molecular Biology, and Program in Tumor Biology, Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Allen RJW, Kirk K. The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum. J Biol Chem 2003; 279:11264-72. [PMID: 14630911 DOI: 10.1074/jbc.m311110200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane potential (Deltapsi) of the mature asexual form of the human malaria parasite, Plasmodium falciparum, isolated from its host erythrocyte using a saponin permeabilization technique, was investigated using both the radiolabeled Deltapsi indicator tetraphenylphosphonium ([(3)H]TPP(+)) and the fluorescent Deltapsi indicator DiBAC(4)(3) (bis-oxonol). For isolated parasites suspended in a high Na(+), low K(+) solution, Deltapsi was estimated from the measured distribution of [(3)H]TPP(+) to be -95 +/- 2 mV. Deltapsi was reduced by the specific V-type H(+) pump inhibitor bafilomycin A(1), by the H(+) ionophore CCCP, and by glucose deprivation. Acidification of the parasite cytosol (induced by the addition of lactate) resulted in a transient hyperpolarization, whereas a cytosolic alkalinization (induced by the addition of NH(4)(+)) resulted in a transient depolarization. A decrease in the extracellular pH resulted in a membrane depolarization, whereas an increase in the extracellular pH resulted in a membrane hyperpolarization. The parasite plasma membrane depolarized in response to an increase in the extracellular K(+) concentration and hyperpolarized in response to a decrease in the extracellular K(+) concentration and to the addition of the K(+) channel blockers Ba(2+) or Cs(+) to the suspending medium. The data are consistent with Deltapsi of the intraerythrocytic P. falciparum trophozoite being due to the electrogenic extrusion of H(+) via the V-type H(+) pump at the parasite surface. The current associated with the efflux of H(+) is countered, in part, by the influx of K(+) via Ba(2+)- and Cs(+)-sensitive K(+) channels in the parasite plasma membrane.
Collapse
Affiliation(s)
- Richard J W Allen
- School of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | |
Collapse
|
29
|
Mi-Ichi F, Takeo S, Takashima E, Kobayashi T, Kim HS, Wataya Y, Matsuda A, Torrii M, Tsuboi T, Kita K. Unique properties of respiratory chain in Plasmodium falciparum mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 531:117-33. [PMID: 12916785 DOI: 10.1007/978-1-4615-0059-9_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Fumika Mi-Ichi
- Dept. of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Oliveira PL, Oliveira MF. Vampires, Pasteur and reactive oxygen species. Is the switch from aerobic to anaerobic metabolism a preventive antioxidant defence in blood-feeding parasites? FEBS Lett 2002; 525:3-6. [PMID: 12163151 DOI: 10.1016/s0014-5793(02)03026-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several species of parasites show a reduction of their respiratory activity along their developmental cycles after they start to feed on vertebrate blood, relying on anaerobic degradation of carbohydrates to achieve their energy requirements. Usually, these parasites choose not to breathe despite of living in an environment of high oxygen availability such as vertebrate blood. Absence of the 'Pasteur effect' in most of these parasites has been well documented. Interestingly, together with the switch from aerobic to anaerobic metabolism in these parasites, there is clear evidence pointing to an increase in their antioxidant defences. As the respiratory chain in mitochondria is a major site of production of reactive oxygen species (ROS), we propose here that the arrest of respiration constitutes an adaptation to avoid the toxic effects of ROS. This situation would be especially critical for blood-feeding parasites because ROS produced in mitochondria would interact with pro-oxidant products of blood digestion, such as haem and/or iron, and increase the oxidative damage to the parasite's cells.
Collapse
Affiliation(s)
- Pedro L Oliveira
- Departamento de Bioqui;mica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Brigadeiro Trompowsky, s/n, Cidade Universitária, Ilha do Fundão, RJ 21941-590, Rio de Janeiro, Brazil.
| | | |
Collapse
|
31
|
Jones K, Ward SA. Biguanide-atovaquone synergy against Plasmodium falciparum in vitro. Antimicrob Agents Chemother 2002; 46:2700-3. [PMID: 12121961 PMCID: PMC127339 DOI: 10.1128/aac.46.8.2700-2703.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The synergistic potential of a range of biguanides, their triazine metabolites, tetracyclines, and pyrimethamine in combination with atovaquone has been assessed. All five biguanides tested interacted synergistically with atovaquone against Plasmodium falciparum in vitro. All of the other compounds tested were either additive or antagonistic.
Collapse
Affiliation(s)
- K Jones
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L35QA, United Kingdom
| | | |
Collapse
|
32
|
Kita K, Hirawake H, Miyadera H, Amino H, Takeo S. Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:123-39. [PMID: 11803022 DOI: 10.1016/s0005-2728(01)00237-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parasites have developed a variety of physiological functions necessary for existence within the specialized environment of the host. Regarding energy metabolism, which is an essential factor for survival, parasites adapt to low oxygen tension in host mammals using metabolic systems that are very different from that of the host. The majority of parasites do not use the oxygen available within the host, but employ systems other than oxidative phosphorylation for ATP synthesis. In addition, all parasites have a life cycle. In many cases, the parasite employs aerobic metabolism during their free-living stage outside the host. In such systems, parasite mitochondria play diverse roles. In particular, marked changes in the morphology and components of the mitochondria during the life cycle are very interesting elements of biological processes such as developmental control and environmental adaptation. Recent research has shown that the mitochondrial complex II plays an important role in the anaerobic energy metabolism of parasites inhabiting hosts, by acting as quinol-fumarate reductase.
Collapse
Affiliation(s)
- Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
33
|
Nagaraj G, Uma MV, Shivayogi MS, Balaram H. Antimalarial activities of peptide antibiotics isolated from fungi. Antimicrob Agents Chemother 2001; 45:145-9. [PMID: 11120957 PMCID: PMC90252 DOI: 10.1128/aac.45.1.145-149.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria caused by Plasmodium falciparum is a major public health problem in the developing countries of the world. Clinical treatment of malaria has become complicated due to the occurrence of infections caused by drug resistant parasites. Secondary metabolites from fungi are an attractive source of chemotherapeutic agents. This work reports the isolation and in vitro antiplasmodial activities of peptide antibiotics of fungal origin. The three peptide antibiotics used in this study were efrapeptins, zervamicins, and antiamoebin. The high-performance liquid chromatography-purified peptides were characterized by nuclear magnetic resonance and mass spectral analysis. All three fungal peptides kill P. falciparum in culture with 50% inhibitory concentrations in the micromolar range. A possible mode of action of these peptide antibiotics on P. falciparum is presented.
Collapse
Affiliation(s)
- G Nagaraj
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | | | | | | |
Collapse
|
34
|
Kita K, Miyadera H, Saruta F, Miyoshi H. Parasite Mitochondria as a Target for Chemotherapy. ACTA ACUST UNITED AC 2001. [DOI: 10.1248/jhs.47.219] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Hiroko Miyadera
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Fumiko Saruta
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Hideto Miyoshi
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
35
|
Abstract
The infective tachyzoite form of the protozoan Toxoplasma gondii is able to penetrate into vertebrate host cells and to survive and multiply within a cytoplasmic vacuole known as the parasitophorous vacuole. Previous observations, confirmed in the present study, showed that extracellular, but not intravacuolar, tachyzoites are labeled with rhodamine 123, a dye that specifically binds to functional mitochondria, which present a high transmembrane potential. These observations led to the suggestion that intravacuolar tachyzoites do not possess functional mitochondria. However, our present observations using the new dye CMXRos and observation by confocal laser scanning microscopy (CLSM) showed that the mitochondria of both extracellular and intravacuolar tachyzoites were intensely labeled, indicating that they were functional. In addition, cytochrome c activity could be cytochemically detected in the inner mitochondrial membrane of intravacuolar tachyzoites. Three-dimensional reconstruction of serial optical sections of CMXRos-stained tachyzoites observed by CLSM and of serial thin sections examined by transmission electron microscopy revealed that the protozoan presented only one ramified mitochondrion, reinforcing previous observations by Seeber et al. (1998, Exp. Parasitol. 89, 137-139) Petitprez and Vivier (1972, Protistologica VIII, 199-221).
Collapse
Affiliation(s)
- E J Melo
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28015-620, Brazil
| | | | | |
Collapse
|
36
|
Takeo S, Kokaze A, Ng CS, Mizuchi D, Watanabe JI, Tanabe K, Kojima S, Kita K. Succinate dehydrogenase in Plasmodium falciparum mitochondria: molecular characterization of the SDHA and SDHB genes for the catalytic subunits, the flavoprotein (Fp) and iron-sulfur (Ip) subunits. Mol Biochem Parasitol 2000; 107:191-205. [PMID: 10779596 DOI: 10.1016/s0166-6851(00)00185-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mitochondria of malaria parasites generate a membrane potential through an electron transport system that is a possible target of primaquine and a new anti-malarial drug, atovaquone. However, little information is available for conclusive understanding of the respiratory chain in Plasmodium mitochondria. In the present study, we cloned and characterized from Plasmodium falciparum the genes for the catalytic subunits, SDHA for the flavoprotein (Fp) and SDHB for iron-sulfur protein (Ip), of succinate-ubiquinone oxidoreductase (complex II), which is a marker enzyme for mitochondria and links the TCA cycle and respiratory chain directly. Each of the two genes contains a single open reading frame (ORF), which are located on different chromosomes, 1860 nucleotides on chromosome 10 for SDHA and 963 nucleotides on chromosome 12 for SDHB. The expression of these genes in asynchronous erythrocytic stage cells was confirmed by observation of 3.3 and 2.4 kb transcripts from the SDHA and SDHB genes, respectively. The SDHA and SDHB genes encode proteins of 620 (Fp) and 321 (Ip) amino acids with molecular masses of 69.2 and 37.8 kDa, respectively. A mitochondrial presequence essential for the import of mitochondrial proteins encoded by nuclear DNA, as well as almost all the conserved amino acids indispensable for substrate binding and the catalytic reaction were found in these peptides, indicating the functional importance of this enzyme in the parasite. Interestingly, a P. falciparum-specific insertion and a unicellular organism-specific deletion were found in the amino acid sequence of Fp. This is the first report of the primary structure of the protozoan succinate dehydrogenase.
Collapse
Affiliation(s)
- S Takeo
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Learngaramkul P, Petmitr S, Krungkrai SR, Prapunwattana P, Krungkrai J. Molecular characterization of mitochondria in asexual and sexual blood stages of Plasmodium falciparum. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 1999; 2:15-20. [PMID: 10527885 DOI: 10.1006/mcbr.1999.0145] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular mechanisms that regulate gene expression during development of asexual stage to sexual stage of Plasmodium falciparum in the human erythrocyte are largely unknown. There were apparent variations in ultrastructural characteristics of the mitochondrion between the two developing stages. The asexual stage's mitochondrion had developed less than that of the sexual stage. The respiratory complexes of the mitochondrial electron transport system in the asexual stage were approximately 8-10 times less active than those in the sexual stage. Using quantitative polymerase chain reaction to amplify the cytochrome b gene encoding a subunit of mitochondrial cytochrome c reductase, the amount of the cytochrome b gene of the sexual stage was calculated to be approximately 3 times higher than that obtained from the asexual stage. Moreover, using quantitative reverse-transcription polymerase chain reaction, a relatively high level of approximately 1.3-kb transcript mRNA of the cytochrome b gene was observed in the sexual stage compared to the asexual stage. A known single-copy chromosomal dihydrofolate reductase gene was found to have a similar amount in the two stages. These results suggest that the copy number of the mitochondrial gene, including transcriptional and translational mechanisms, plays a major regulatory role in differential expression during the development of the asexual to sexual stage of P. falciparum in the human cell.
Collapse
Affiliation(s)
- P Learngaramkul
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
38
|
Lang-Unnasch N, Murphy AD. Metabolic changes of the malaria parasite during the transition from the human to the mosquito host. Annu Rev Microbiol 1999; 52:561-90. [PMID: 9891808 DOI: 10.1146/annurev.micro.52.1.561] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmodium falciparum is an obligate human parasite that is the causative agent of the most lethal form of human malaria. Transmission of P. falciparum to a new human host requires a mosquito vector within which sexual replication occurs. P. falciparum replicates as an intracellular parasite in man and as an extracellular parasite in the mosquito, and it undergoes multiple developmental changes in both hosts. Changes in the environment and the activities of parasites in these various life-cycle stages are likely to be reflected in changes in the metabolic needs and capabilities of the parasite. Most of our knowledge of the metabolic capabilities of P. falciparum is derived from studies of the asexual erythrocytic cycle of the parasite, the portion of the parasite life cycle found in infected humans that is responsible for malarial symptoms. Efforts to control transmission and to understand the sometimes unique biology of this parasite have led to information about the metabolic capabilities of sexual and/or sporogonic stages of these parasites. This review focuses on comparing and contrasting the carbohydrate, nucleic acid, and protein synthetic capabilities of asexual erythrocytic stages and sexual stages of P. falciparum.
Collapse
Affiliation(s)
- N Lang-Unnasch
- Department of Medicine, University of Alabama at Birmingham 35294-2170, USA.
| | | |
Collapse
|
39
|
Sharma I, Pasha ST, Sharma YD. Complete nucleotide sequence of the Plasmodium vivax 6 kb element. Mol Biochem Parasitol 1998; 97:259-63. [PMID: 9879907 DOI: 10.1016/s0166-6851(98)00140-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- I Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Delhi
| | | | | |
Collapse
|
40
|
Nicolas E, Goodyer ID, Taraschi TF. An additional mechanism of ribosome-inactivating protein cytotoxicity: degradation of extrachromosomal DNA. Biochem J 1997; 327 ( Pt 2):413-7. [PMID: 9359409 PMCID: PMC1218809 DOI: 10.1042/bj3270413] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inhibition of protein synthesis by cleavage of the N-glycosidic bond of a specific adenine of 28 S rRNA has been accepted as the mechanism by which plant ribosome-inactivating proteins (RIPs) cause cytotoxicity. The cytotoxic action of gelonin on Plasmodium falciparum malaria parasites appears to occur by a different mechanism. Parasite intoxication, which is manifested by mitochondrial dysfunction and lack of nucleic acid synthesis in the erythrocytic cycle following exposure to the toxin, is caused by the elimination of the parasite 6 kb extrachromosomal (mitochondrial) DNA. This is the first report which demonstrates that the DNA-damaging activities of RIPs observed in vitro can contribute to their cytotoxicity.
Collapse
Affiliation(s)
- E Nicolas
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, 1020 Locust St., Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
41
|
Murphy AD, Doeller JE, Hearn B, Lang-Unnasch N. Plasmodium falciparum: cyanide-resistant oxygen consumption. Exp Parasitol 1997; 87:112-20. [PMID: 9326886 DOI: 10.1006/expr.1997.4194] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been hypothesized that Plasmodium parasites utilize a branched chain respiratory pathway, consisting of a classical cyanide-sensitive branch and an alternative cyanide-resistant branch. To further explore this hypothesis, the effect of cyanide on Plasmodium falciparum was determined using a polarographic assay. The rate of oxygen consumption by saponin-freed parasites was approximately 5% that of control human white blood cells or of Toxoplasma gondii, consistent with an anabolic role for P. falciparum respiration. However, while all of the oxygen consumption of the control white blood cells and of T. gondii could be inhibited by cyanide, 25% of the oxygen consumption of the P. falciparum parasites was found to be insensitive to high concentrations of cyanide. The cyanide-resistant portion of the parasite oxygen consumption was completely inhibited by two inhibitors of alternative oxidase activities in other systems, propyl gallate and salicyclhydroxamic acid. These studies provide the first direct evidence for a branched chain respiratory pathway in P. falciparum. Furthermore, salicyclhydroxamic acid, propyl gallate, and related inhibitors of alternative oxidase activities were shown to inhibit the growth of P. falciparum in vitro. These results support the need for further investigation of alternative oxidase activity as an antimalarial chemotherapeutic target.
Collapse
Affiliation(s)
- A D Murphy
- Department of Medicine, University of Alabama at Birmingham 35294, USA
| | | | | | | |
Collapse
|
42
|
Trager W, Jensen JB. Continuous culture of Plasmodium falciparum: its impact on malaria research. Int J Parasitol 1997; 27:989-1006. [PMID: 9363481 DOI: 10.1016/s0020-7519(97)00080-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The methods developed by us in 1976 for the continuous culture of the erythrocytic stages of Plasmodium falciparum make this organism available to a large variety of scientists. As a result, much has been learned about P. falciparum during the past 20 years. Here we attempt to emphasize recent developments in the diverse aspects for which the culture method has been particularly useful: chemotherapy; drug resistance; vaccine development; pathogenesis; export of proteins into the host cell; cell biology, the mitochondrion and the plastid; innate resistance involving mutant human erythrocytes; gametocytogenesis; genetics, transfection; molecular biology; biochemistry; extracellular cultivation.
Collapse
Affiliation(s)
- W Trager
- Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
43
|
Maarouf M, de Kouchkovsky Y, Brown S, Petit PX, Robert-Gero M. In vivo interference of paromomycin with mitochondrial activity of Leishmania. Exp Cell Res 1997; 232:339-48. [PMID: 9168810 DOI: 10.1006/excr.1997.3500] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Paromomycin is an aminocyclitol aminoglycoside antibiotic used for the treatment of leishmaniasis. In view of the central role of mitochondria in cellular energetics and metabolism, its effect on in vivo mitochondrial activities of Leishmania donovani promastigotes-the parasite flagellate form-was investigated. The approach used flow cytometry, amperometric measure of O2 consumption, and, as a global estimate of mitochondrial dehydrogenases, thiazolyl blue reduction (MTT test); some in vitro controls were also made. When added to promastigote cultures for 24-72 h at 150-200 microM (= LC50), paromomycin doubled the generation time, inhibited respiration, and lowered its associated electric potential difference across mitochondrial membranes, as measured by rhodamine 123 fluorescence. The chemical analogue neomycin was ineffective. Furthermore, the in vivo mitochondrial dehydrogenase activities were lower, seemingly because of the shortage of respiratory substrates. Indeed, succinate addition to paromomycin-treated cultures partly restored mitochondrial membrane potential. However, no immediate effect of paromomycin on respiration was observed, neither inhibition of redox chain nor increase of membrane permeability (uncoupling). It is proposed that paromomycin acts at a metabolic level upstream of the respiratory chain itself. This would have the observed delayed consequence because the cell energy supply would progressively decline since it depends upon the proton gradient-viz., membrane potential-generated by respiration. In conclusion, paromomycin is an antibiotic affecting the cell's energetic metabolism; the respiratory dysfunction it induces may be a crucial aspect of its action against Leishmania and possibly other cells.
Collapse
Affiliation(s)
- M Maarouf
- Institut de Chimie des Substances Naturelles (UPR 2301), Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
44
|
Srivastava IK, Rottenberg H, Vaidya AB. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem 1997; 272:3961-6. [PMID: 9020100 DOI: 10.1074/jbc.272.7.3961] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
At present, approaches to studying mitochondrial functions in malarial parasites are quite limited because of the technical difficulties in isolating functional mitochondria in sufficient quantity and purity. We have developed a flow cytometric assay as an alternate means to study mitochondrial functions in intact erythrocytes infected with Plasmodium yoelii, a rodent malaria parasite. By using a very low concentration (2 nM) of a lipophilic cationic fluorescent probe, 3,3'dihexyloxacarbocyanine iodide, we were able to measure mitochondrial membrane potential(DeltaPsim) in live intact parasitized erythrocytes through flow cytometry. The accumulation of the probe into parasite mitochondria was dependent on the presence of a membrane potential since inclusion of carbonyl cyanide m-chlorophenylhydrazone, a protonophore, dissipated the membrane potential and abolished the probe accumulation. We tested the effect of standard mitochondrial inhibitors such as myxothiazole, antimycin, cyanide and rotenone. All of them except rotenone collapsed the DeltaPsim and inhibited respiration. The assay was validated by comparing the EC50 of these compounds for inhibiting DeltaPsim and respiration. This assay was used to investigate the effect of various antimalarial drugs such as chloroquine, tetracycline and a broad spectrum antiparasitic drug atovaquone. We observed that only atovaquone collapsed DeltaPsim and inhibited parasite respiration within minutes after drug treatment. Furthermore, atovaquone had no effect on mammalian DeltaPsim. This suggests that atovaquone, shown to inhibit mitochondrial electron transport, also depolarizes malarial mitochondria with consequent cellular damage and death.
Collapse
Affiliation(s)
- I K Srivastava
- Department of Microbiology and Immunology, MCP Hahnemann School of Medicine, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19102-1192, USA
| | | | | |
Collapse
|
45
|
McConkey GA, Rogers MJ, McCutchan TF. Inhibition of Plasmodium falciparum protein synthesis. Targeting the plastid-like organelle with thiostrepton. J Biol Chem 1997; 272:2046-9. [PMID: 8999899 DOI: 10.1074/jbc.272.4.2046] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum has two extrachromosomal DNAs associated with organelles whose function is unclear. Both genomes encode ribosomal RNAs (rRNAs) that are distinct from the nuclear-encoded rRNAs. Secondary structure analysis of all the P. falciparum rRNAs indicates that only the large subunit (LSU) rRNA encoded by the plastid-like genome is the target for thiostrepton. Indeed we find that thiostrepton inhibits growth of the parasite in the micromolar range which is 10-fold below concentrations with observable effects on total protein synthesis. We have further examined selective effects of thiostrepton on the plastid function by comparing differential effects of the drug on cytoplasmic and organellar encoded transcripts. Treatment with either thiostrepton or rifampin, an inhibitor of organellar and eubacterial RNA polymerase, both showed disappearance of organellar-encoded RNA transcripts within 6 h of treatment while transcripts of a nuclear-encoded mRNA remained constant for at least 8 h of treatment. Hence, we show a selective effect on organelle function that is suggestive of interference in the protein synthesis apparatus of the plastid. Sensitivity of P. falciparum to thiostrepton confirms that the plastid-like genome is essential for the erythrocytic cycle and presents a novel therapeutic site for this class of antibiotics.
Collapse
Affiliation(s)
- G A McConkey
- Growth and Development Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| | | | | |
Collapse
|
46
|
Bhaduri-McIntosh S, Vaidya AB. Molecular characterization of a Plasmodium falciparum gene encoding the mitochondrial phosphate carrier. Mol Biochem Parasitol 1996; 78:297-301. [PMID: 8813702 DOI: 10.1016/s0166-6851(96)02631-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S Bhaduri-McIntosh
- Department of Microbiology and Immunology, Hahnemann University, Philadelphia, PA 19102, USA
| | | |
Collapse
|
47
|
Vennerstrom JL, Makler MT, Angerhofer CK, Williams JA. Antimalarial dyes revisited: xanthenes, azines, oxazines, and thiazines. Antimicrob Agents Chemother 1995; 39:2671-7. [PMID: 8593000 PMCID: PMC163010 DOI: 10.1128/aac.39.12.2671] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In 1891 Guttmann and Ehrlich (P. Guttmann and P. Ehrlich, Berlin Klin. Wochenschr. 28:953-956, 1891) were the first to report the antimalarial properties of a synthetic, rather than a natural, material when they described the clinical cure of two patients after oral administration of a thiazine dye, methylene blue. Since that time, sporadic reports of the antimalarial properties of several xanthene and azine dyes related to methylene blue have been noted. We report here the results from a reexamination of the antimalarial properties of methylene blue. Janus green B, and three rhodamine dyes and disclose new antimalarial data for 16 commercially available structural analogs of these dyes. The 50% inhibitory concentrations for the chloroquine-susceptible D6 clone and SN isolate and the chloroquine-resistant W2 clone of Plasmodium falciparum were determined by the recently described parasite lactate dehydrogenase enzyme assay. No cross-resistance to chloroquine was observed for any of the dyes. For the 21 dyes tested, no correlation was observed between antimalarial activity and cytotoxicity against KB cells. No correlation between log P (where P is the octanol/water partition coefficient) or relative catalyst efficiency for glucose oxidation and antimalarial activity or cytotoxicity was observed for the dyes as a whole or for the thiazine dyes. The thiazine dyes were the most uniformly potent structural class tested, and among the dyes in this class, methylene blue was notable for both its high antimalarial potency and selectivity.
Collapse
Affiliation(s)
- J L Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, Omaha, USA
| | | | | | | |
Collapse
|
48
|
Krungkrai J. Purification, characterization and localization of mitochondrial dihydroorotate dehydrogenase in Plasmodium falciparum, human malaria parasite. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1243:351-60. [PMID: 7727509 DOI: 10.1016/0304-4165(94)00158-t] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mitochondrial dihydroorotate dehydrogenase (DHODase), the single redox reaction in the pyrimidine de novo synthetic pathway, was purified to near homogeneity by detergent solubilization and fast protein liquid chromatography (FPLC) techniques from the mature trophozoites and schizonts of Plasmodium falciparum, human malaria parasite. The purified DHODase was monofunctional protein with a M(r) of 56,000 +/- 4000, based on Superose 12 gel filtration FPLC and SDS-PAGE analyses. Polyclonal antibodies raised against the purified P. falciparum protein was cross-reacted with P. berghei, rodent malaria parasite. The optimal activity of DHODase required long chain of coenzyme Q (CoQ6-10) which were essential for electron transfer. The Km and kcat values for L-dihydroorotate were 14.4 +/- 5.9 microM and 15.0 +/- 1.4 min-1, respectively; for CoQ6, they were 22.5 +/- 6.4 microM and 21.6 +/- 3.4 min-1. L-Orotate, an enzymatic product, was a strong competitive inhibitor with Ki of 18.2 +/- 3.6 microM. The 5-substituted L-orotates having antimalarial activities against P. falciparum in vitro were found to be competitive inhibitors. The inhibitory effect by these 5-substituted L-orotates on the malarial DHODase was different from the mammalian enzyme. Various benzoquinones and naphthoquinones were found to inhibit the purified DHODase activity at a different degree. Mitochondria from erythrocytic cycle of P. falciparum were purified, using differential centrifugation and followed by Percoll density gradient separation, with purifications of 13-fold and overall yields of 33%. The double-membraned mitochondria had a few tubular-like cristae structure as what found in many protozoan parasites. DHODase was localized inside the mitochondria as probed by immunogold labeling with the polyclonal antibodies and selective solubilization by digitonin.
Collapse
Affiliation(s)
- J Krungkrai
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
49
|
Smeijsters LJ, Zijlstra NM, de Vries E, Franssen FF, Janse CJ, Overdulve JP. The effect of (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl) adenine on nuclear and organellar DNA synthesis in erythrocytic schizogony in malaria. Mol Biochem Parasitol 1994; 67:115-24. [PMID: 7838172 DOI: 10.1016/0166-6851(94)90101-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The very effective (ID50 = 47 nM) and selective antimalarial compound (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl) adenine (HPMPA) abruptly arrests Plasmodium falciparum-cultured schizonts at concentrations between 1 and 10 x ID50 as soon as their DNA content reaches 8 times that of the haploid ringform stage. Even very high HPMPA concentrations do not inhibit the first 2-3 rounds of schizogonic DNA replication. Also, in the presence of HPMPA, replication of the 6-kb mitochondrial and 35-kb chloroplast-like DNA proceeds normally and in close concert with each other, both to a 16-fold amount within 5 h during the trophozoite stage. Hence the in in vitro assays HPMPApp-sensitive plasmodial DNA polymerase gamma-like enzyme (IC50 = 1 microM)--assumed to be involved in mitochondrial DNA replication--is not the target of HPMPA in vivo (living parasites), nor seems to be the DNA polymerization activities of the--in vitro also HPMPA-sensitive (IC50 = 38 microM)--DNA polymerase alpha or of any other nuclear DNA polymerase of Plasmodium. In vitro assays demonstrated that HPMPApp does not act as an alternative substrate for plasmodial polymerases, contradicting the suggestion that the observed delayed inhibition of plasmodial schizogony might be the result of DNA strand breakage caused by HPMPApp incorporation. Neither do results support the idea that the HPMPA-induced arrest of DNA replication might be due to chain termination as a result of such incorporation. We investigated whether arrest of DNA replication by HPMPA in schizonts could be explained by inhibition of the DNA synthesis rate limiting ribonucleotide reductase enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L J Smeijsters
- Department of Parasitology, Faculty of Veterinary Medicine, University of Utrecht, Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Basco LK, Le Bras J. In vitro activity of mitochondrial ATP synthetase inhibitors against Plasmodium falciparum. J Eukaryot Microbiol 1994; 41:179-83. [PMID: 8049680 DOI: 10.1111/j.1550-7408.1994.tb01493.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mitochondrion appears to be essential for the growth of asexual, intraerythrocytic stages of Plasmodium falciparum and may thus be a suitable chemotherapeutic target. The in vitro activity of almitrine, a mitochondrial ATP synthetase inhibitor used for the treatment of hypoxemia, was compared with other mitochondrial inhibitors against chloroquine-susceptible and chloroquine-resistant P. falciparum using an isotopic semimicro drug susceptibility assay. The 50% inhibitory concentration (IC50) values of almitrine (range: 2.6-19.8 microM) were within similar range of values of other mitochondrial ATP synthetase inhibitors and doxycycline, a mitochondrial protein synthesis inhibitor. Almitrine was equally active against chloroquine-susceptible and chloroquine-resistant parasites. Drug combination studies showed no interaction between chloroquine and almitrine. Our results suggest that almitrine, a clinically safe drug, may represent a lead compound with a specific target against the mitochondrial ATP synthetase which may be useful for antimalarial chemotherapy.
Collapse
Affiliation(s)
- L K Basco
- Centre National de Référence pour la Chimiosensibilité du Paludisme, Hôpital Bichat-Claude Bernard, Paris, France
| | | |
Collapse
|