1
|
Panszczyk D, Dale C, Kurth F, Luders E. Hemispheric asymmetry in language-related brain regions. Brain Res 2025; 1857:149606. [PMID: 40157414 DOI: 10.1016/j.brainres.2025.149606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Structural asymmetries of the human brain have been widely studied in previous research. However, there is a lack of consistency across studies in terms of whether brain regions are larger in the left hemisphere than the right (leftward asymmetry), larger in the right hemisphere than the left (rightward asymmetry), or similar in both hemispheres (no asymmetry). Moreover, some of the existing studies exploring brain asymmetry were based on only small sample sizes and/or restricted to younger participants. Thus, here we analysed brain asymmetry in a well-powered sample (n = 532) later in life (mean age: 67 years). Given that language is known to be strongly lateralized in the brain, the current study focused on regions related to language. When assessing cortical volumes and surface areas, we observed significant leftward asymmetries for the superior temporal gyrus, superior temporal sulcus, supramarginal gyrus, pars opercularis, transverse gyrus, and temporal gyrus, whereas the pars triangularis showed a significant rightward asymmetry. In contrast, when assessing cortical thickness, we detected a significant leftward asymmetry for the pars triangularis and a significant rightward asymmetry for the superior temporal sulcus. The present observations on asymmetry in language-related brain regions in a large sample of older but neurologically healthy participants may serve as a normative framework against which data from clinical samples can be compared.
Collapse
Affiliation(s)
- Daniel Panszczyk
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Caitlin Dale
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, New Zealand; Department of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland, New Zealand; Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; Swedish Collegium for Advanced Study (SCAS), Uppsala 75238, Sweden; Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
2
|
Aydin H, Aytac A, Bulbul E, Yanik B, Korkut O, Gulcen B. A Comparison of Pre- and Post-Treatment Cranial MRI Characteristics in Patients with Pediatric Epilepsy Receiving Levetiracetam. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1355. [PMID: 39202636 PMCID: PMC11356224 DOI: 10.3390/medicina60081355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: This study was performed for the purpose of assessing whether antiepileptic levetiracetam treatment produces a change in brain volumes in children with epilepsy. To that end, we compared the volumes of the basal ganglia (caudate nucleus, putamen, globus, hip-pocampus, and thalamus) at magnetic resonance imaging (MRI) before and after treatment (months 18-24) in pediatric epilepsy patients using levetiracetam. Materials and Methods: This retrospective study involved a volumetric comparison of patients presenting to the Balikesir University Medical Faculty pediatric neurology clinic between 01.08.2019 and 01.11.2023 and diagnosed with epilepsy, and who underwent cranial MRI before and 18-24 months after treatment at the radiology department. The demographic and clinical characteristics (age, sex, family history of epilepsy, type of epilepsy, and EEG features (normal, abnormal, epileptiform)) of the patients included in the study were recorded. Results: The comparison of basal ganglia volumes at cranial MRI before and at months 18-24 of treatment revealed significant differences in the left caudate nucleus, right putamen, left putamen, left globus pallidus, right thalamus, left thalamus, and right hippocampal regions. Conclusions: In conclusion, differing findings are encountered at cranial imaging in patients with epilepsy, depending on the seizure frequency, activity, and the type of antiepileptic drugs used. This study compared basal ganglia volumes on cranial MRIs taken before and 18-24 months after treatment in pediatric epilepsy patients using levetiracetam. A significant increase was observed in the volumes of basal ganglia (caudate nucleus, putamen, globus pallidus, hippocampus, and thalamus) on the MRIs of pediatric epilepsy patients using levetiracetam.
Collapse
Affiliation(s)
- Hilal Aydin
- Department of Pediatrics, Faculty of Medicine, Balikesir University, Balikesir 10145, Türkiye
| | - Adil Aytac
- Department of Radiology, Faculty of Medicine, Balikesir University, Balikesir 10145, Türkiye; (A.A.); (E.B.); (B.Y.)
| | - Erdogan Bulbul
- Department of Radiology, Faculty of Medicine, Balikesir University, Balikesir 10145, Türkiye; (A.A.); (E.B.); (B.Y.)
| | - Bahar Yanik
- Department of Radiology, Faculty of Medicine, Balikesir University, Balikesir 10145, Türkiye; (A.A.); (E.B.); (B.Y.)
| | - Oguzhan Korkut
- Department of Medical Pharmacology, Faculty of Medicine, Balikesir University, Balikesir 10145, Türkiye;
| | - Burak Gulcen
- Department of Anatomy, Faculty of Medicine, Balikesir University, Balikesir 10145, Türkiye;
| |
Collapse
|
3
|
Işıklar S, Sağlam D. Volumetric analysis of age- and sex-related changes in the corpus striatum and thalamus in the 1-18 age group: a retrospective magnetic resonance imaging study. Cereb Cortex 2024; 34:bhae142. [PMID: 38602741 DOI: 10.1093/cercor/bhae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 04/12/2024] Open
Abstract
Studies of the development and asymmetry of the corpus striatum and thalamus in early childhood are rare. Studies investigating these structures across the lifespan have not presented their changes during childhood and adolescence in detail. For these reasons, this study investigated the effect of age and sex factors on the development and asymmetry of the corpus striatum and thalamus in the 1-18 age group. In this retrospective study, we included 652 individuals [362 (56%) males] aged 1-18 years with normal brain MRI between 2012 and 2021. Absolute and relative volumes of the corpus striatum and thalamus were obtained by segmentation of three-dimensional T1-weighted MRIs with volBrain1.0. We created age-specific volume data and month-based development models with the help of SPSS (ver.28). The corpus striatum and thalamus had cubic absolute volumetric developmental models. The relative volume of the caudate and thalamus (only males) is consistent with the decreasing "growth" model, the others with the decreasing cubic model. The absolute volumes of the males' bilateral corpus striatum and thalamus and the relative volumes of the caudate and thalamus of the females were significantly larger (P < 0.05). The caudate showed right > left lateralization; putamen, globus pallidus, and thalamus showed left > right lateralization.
Collapse
Affiliation(s)
- Sefa Işıklar
- Medical Imaging Techniques Program, Vocational School of Health Services, Bursa Uludag University, Bursa 16059, Turkey
| | - Dilek Sağlam
- Department of Radiology, Faculty of Medicine, Bursa Uludag University, Bursa 16059, Turkey
| |
Collapse
|
4
|
Tian M, Xu F, Xia Q, Tang Y, Zhang Z, Lin X, Meng H, Feng L, Liu S. Morphological development of the human fetal striatum during the second trimester. Cereb Cortex 2022; 32:5072-5082. [PMID: 35078212 DOI: 10.1093/cercor/bhab532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/27/2022] Open
Abstract
The morphological development of the fetal striatum during the second trimester has remained poorly described. We manually segmented the striatum using 7.0-T MR images of the fetal specimens ranging from 14 to 22 gestational weeks. The global development of the striatum was evaluated by volume measurement. The absolute volume (Vabs) of the caudate nucleus (CN) increased linearly with gestational age, while the relative volume (Vrel) showed a quadratic growth. Both Vabs and Vrel of putamen increased linearly. Through shape analysis, the changes of local structure in developing striatum were specifically demonstrated. Except for the CN tail, the lateral and medial parts of the CN grew faster than the middle regions, with a clear rostral-caudal growth gradient as well as a distinct "outside-in" growth gradient. For putamen, the dorsal and ventral regions grew obviously faster than the other regions, with a dorsal-ventral bidirectional developmental pattern. The right CN was larger than the left, whereas there was no significant hemispheric asymmetry in the putamen. By establishing the developmental trajectories, spatial heterochrony, and hemispheric dimorphism of human fetal striatum, these data bring new insight into the fetal striatum development and provide detailed anatomical references for future striatal studies.
Collapse
Affiliation(s)
- Mimi Tian
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
| | - Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
| | - Qing Xia
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
| | - Zhonghe Zhang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Xiangtao Lin
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Haiwei Meng
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
| | - Lei Feng
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
5
|
Drori E, Berman S, Mezer AA. Mapping microstructural gradients of the human striatum in normal aging and Parkinson's disease. SCIENCE ADVANCES 2022; 8:eabm1971. [PMID: 35857492 PMCID: PMC9286505 DOI: 10.1126/sciadv.abm1971] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mapping structural spatial change (i.e., gradients) in the striatum is essential for understanding the function of the basal ganglia in both health and disease. We developed a method to identify and quantify gradients of microstructure in the single human brain in vivo. We found spatial gradients in the putamen and caudate nucleus of the striatum that were robust across individuals, clinical conditions, and datasets. By exploiting multiparametric quantitative MRI, we found distinct, spatially dependent, aging-related alterations in water content and iron concentration. Furthermore, we found cortico-striatal microstructural covariation, showing relations between striatal structural gradients and cortical hierarchy. In Parkinson's disease (PD) patients, we found abnormal gradients in the putamen, revealing changes in the posterior putamen that explain patients' dopaminergic loss and motor dysfunction. Our work provides a noninvasive approach for studying the spatially varying, structure-function relationship in the striatum in vivo, in normal aging and PD.
Collapse
Affiliation(s)
- Elior Drori
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shai Berman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Qin Y, Zhang N, Chen Y, Tan Y, Yang Z, Shi Y, Luo C, Liu T, Yao D. Probing the Functional and Structural Connectivity Underlying EEG Traveling Waves. Brain Topogr 2021; 35:66-78. [PMID: 34291338 DOI: 10.1007/s10548-021-00862-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
Neural oscillations play an important role in the maintenance of brain function by regulating multi-scale neural activity. Characterizing the traveling properties of EEG is helpful for understanding the spatiotemporal dynamics of neural oscillations. However, traveling EEG based on non-invasive approach has little been investigated, and the relationship with brain intrinsic connectivity is not well known. In this study, traveling EEG of different frequency bands on the scalp in terms of the center of mass (EEG-CM) was examined. Then, two quantitative indexes describing the spatiotemporal features of EEG-CM were proposed, i.e., the traveling lateralization and velocity of EEG-CM. Further, based on simultaneous EEG-MRI approach, the relationship between traveling EEG-CM and the resting-state functional networks, as well as the microstructural connectivity of white matter was investigated. The results showed that there was similar spatial distribution of EEG-CM under different frequency bands, while the velocity of rhythmic EEG-CM increased in higher frequency bands. The lateralization of EEG-CM in low frequency bands (< 30 Hz) demonstrated negative relationship with the basal ganglia network (BGN). In addition, the velocity of the traveling EEG-CM was associated with the fractional anisotropy (FA) in corpus callosum and corona radiate. These results provided valid quantitative EEG index for understanding the spatiotemporal characteristics of the scalp EEG, and implied that the EEG dynamics were representations of functional and structural organization of cortical and subcortical structures.
Collapse
Affiliation(s)
- Yun Qin
- MOE Key Lab for NeuroInformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, P.R. China
| | - Nan Zhang
- MOE Key Lab for NeuroInformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Chen
- MOE Key Lab for NeuroInformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Tan
- MOE Key Lab for NeuroInformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenglin Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Yi Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Cheng Luo
- MOE Key Lab for NeuroInformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Tiejun Liu
- MOE Key Lab for NeuroInformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, P.R. China
| | - Dezhong Yao
- MOE Key Lab for NeuroInformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China. .,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China. .,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, P.R. China.
| |
Collapse
|
7
|
Interhemispheric co-alteration of brain homotopic regions. Brain Struct Funct 2021; 226:2181-2204. [PMID: 34170391 PMCID: PMC8354999 DOI: 10.1007/s00429-021-02318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/07/2021] [Indexed: 11/11/2022]
Abstract
Asymmetries in gray matter alterations raise important issues regarding the pathological co-alteration between hemispheres. Since homotopic areas are the most functionally connected sites between hemispheres and gray matter co-alterations depend on connectivity patterns, it is likely that this relationship might be mirrored in homologous interhemispheric co-altered areas. To explore this issue, we analyzed data of patients with Alzheimer’s disease, schizophrenia, bipolar disorder and depressive disorder from the BrainMap voxel-based morphometry database. We calculated a map showing the pathological homotopic anatomical co-alteration between homologous brain areas. This map was compared with the meta-analytic homotopic connectivity map obtained from the BrainMap functional database, so as to have a meta-analytic connectivity modeling map between homologous areas. We applied an empirical Bayesian technique so as to determine a directional pathological co-alteration on the basis of the possible tendencies in the conditional probability of being co-altered of homologous brain areas. Our analysis provides evidence that: the hemispheric homologous areas appear to be anatomically co-altered; this pathological co-alteration is similar to the pattern of connectivity exhibited by the couples of homologues; the probability to find alterations in the areas of the left hemisphere seems to be greater when their right homologues are also altered than vice versa, an intriguing asymmetry that deserves to be further investigated and explained.
Collapse
|
8
|
Mao CP, Chen FR, Sun HH, Shi MJ, Yang HJ, Li XH, Ding D. Larger regional volume of the thalamus in diarrhea-predominant irritable bowel syndrome: a cross-sectional study. Brain Imaging Behav 2019; 14:2302-2310. [PMID: 31468373 DOI: 10.1007/s11682-019-00181-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As a relay center between the cerebral cortex and various subcortical brain areas, the thalamus is repeatedly associated with the dysfunction of brain-gut interaction in patients with irritable bowel syndrome (IBS). However, the regional morphological alterations of the thalamus in IBS are not well defined. We acquired structural magnetic resonance data from 34 patients with IBS and 34 demographically similar healthy subjects. Data processing was performed using FMRIB's Integrated Registration and Segmentation Tool (FIRST). Volumetric analysis and surface-based vertex analysis were both carried out to characterize the morphology of the thalamus and other subcortical structures. Our results suggested that the majority (31 cases) of the patients with IBS had diarrhea-predominant symptoms. Volumetric analysis revealed a larger normalized volume of the right thalamus and left caudate nucleus in patients with IBS than in healthy controls. Surface analysis indicated that the difference arose mainly from the laterodorsal nucleus of the right thalamus, and the body of the left caudate nucleus. In addition, patients with IBS had different hemispheric asymmetries of the thalamus (rightward) and caudate nucleus (leftward) from controls (leftward for the thalamus and rightward for the caudate nucleus). In general, our results indicated that patients with diarrhea-predominant IBS had enlarged thalamus and caudate nucleus volumes, as well as altered hemispheric asymmetries of these two structures, compared with healthy controls. The neuroimaging evidence of these structural alterations helps clarify the underlying pathophysiology of diarrhea-predominant IBS.
Collapse
Affiliation(s)
- Cui Ping Mao
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China.
| | - Fen Rong Chen
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, Xi'an, Shaanxi, People's Republic of China
| | - Hong Hong Sun
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China.
| | - Mei Juan Shi
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China
| | - Hua Juan Yang
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China
| | - Xiao Hui Li
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China
| | - Dun Ding
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
9
|
Esteves M, Moreira PS, Marques P, Castanho TC, Magalhães R, Amorim L, Portugal‐Nunes C, Soares JM, Coelho A, Almeida A, Santos NC, Sousa N, Leite‐Almeida H. Asymmetrical subcortical plasticity entails cognitive progression in older individuals. Aging Cell 2019; 18:e12857. [PMID: 30578611 PMCID: PMC6351824 DOI: 10.1111/acel.12857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/05/2018] [Accepted: 09/15/2018] [Indexed: 01/05/2023] Open
Abstract
Structural brain asymmetries have been associated with cognition. However, it is not known to what extent neuropsychological parameters and structural laterality covary with aging. Seventy‐five subjects drawn from a larger normal aging cohort were evaluated in terms of MRI and neuropsychological parameters at two moments (M1 and M2), 18 months apart. In this time frame, asymmetry as measured by structural laterality index (ΔLI) was stable regarding both direction and magnitude in all areas. However, a significantly higher dispersion for this variation was observed in subcortical over cortical areas. Subjects with extreme increase in rightward lateralization of the caudate revealed increased M1 to M2 Stroop interference scores, but also a worsening of general cognition (MMSE). In contrast, subjects showing extreme increase in leftward lateralization of the thalamus presented higher increase in Stroop interference scores. In conclusion, while a decline in cognitive function was observed in the entire sample, regional brain asymmetries were relatively stable. Neuropsychological trajectories were associated with laterality changes in subcortical regions.
Collapse
Affiliation(s)
- Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Pedro S. Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Teresa C. Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Liliana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Carlos Portugal‐Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - José M. Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Nadine C. Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Hugo Leite‐Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| |
Collapse
|
10
|
Yan T, Wang W, Yang L, Chen K, Chen R, Han Y. Rich club disturbances of the human connectome from subjective cognitive decline to Alzheimer's disease. Theranostics 2018; 8:3237-3255. [PMID: 29930726 PMCID: PMC6010989 DOI: 10.7150/thno.23772] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/08/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) has a preclinical phase that can last for decades prior to clinical dementia onset. Subjective cognitive decline (SCD) is regarded as the last preclinical AD stage prior to the development of amnestic mild cognitive decline (aMCI) and AD dementia (d-AD). The analysis of brain structural networks based on diffusion tensor imaging (DTI) has identified the so-called 'rich club', a set of cortical regions highly connected to each other, with other regions referred to as peripheral. It has been reported that rich club architecture is affected by regional atrophy and connectivity, which are reduced in patients with aMCI and d-AD. Methods: We recruited 62 normal controls, 47 SCD patients, 60 aMCI patients and 55 d-AD patients and collected DTI data to analyze rich-club organization. Results: We demonstrated that rich club organization was disrupted, with reduced structural connectivity among rich club nodes, in aMCI and d-AD patients but remained stable in SCD patients. In addition, SCD, aMCI and d-AD patients showed similar patterns of disrupted peripheral regions and reduced connectivity involving these regions, suggesting that peripheral regions might contribute to cognitive decline and that disruptions here could be regarded as an early marker of SCD. This organization could provide the fundamental structural architecture for complex cognitive functions and explain the low prevalence of cognitive problems in SCD patients. Conclusions: These findings reveal a disrupted pattern of the AD connectome that starts in peripheral regions and then hierarchically propagates to rich club regions, when patients show clinical symptoms. This pattern provides evidence that disruptions in rich club organization are a key factor in the progression of AD that can dynamically reflect the progression of AD, thus representing a potential biomarker for early diagnosis.
Collapse
Affiliation(s)
- Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, China
| | - Wenhui Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, China
| | - Liu Yang
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Kewei Chen
- Banner Alzheimer's Institute and Banner Good Samaritan PET center, Phoenix, AZ, USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, USA
| | - Ying Han
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Institute of Geriatrics, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
11
|
Alterations in Normal Aging Revealed by Cortical Brain Network Constructed Using IBASPM. Brain Topogr 2018; 31:577-590. [PMID: 29663098 DOI: 10.1007/s10548-018-0642-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
Abstract
Normal aging has been linked with the decline of cognitive functions, such as memory and executive skills. One of the prominent approaches to investigate the age-related alterations in the brain is by examining the cortical brain connectome. IBASPM is a toolkit to realize individual atlas-based volume measurement. Hence, this study seeks to determine what further alterations can be revealed by cortical brain networks formed by IBASPM-extracted regional gray matter volumes. We found the reduced strength of connections between the superior temporal pole and middle temporal pole in the right hemisphere, global hubs as the left fusiform gyrus and right Rolandic operculum in the young and aging groups, respectively, and significantly reduced inter-module connection of one module in the aging group. These new findings are consistent with the phenomenon of normal aging mentioned in previous studies and suggest that brain network built with the IBASPM could provide supplementary information to some extent. The individualization of morphometric features extraction deserved to be given more attention in future cortical brain network research.
Collapse
|
12
|
Guadalupe T, Mathias SR, vanErp TGM, Whelan CD, Zwiers MP, Abe Y, Abramovic L, Agartz I, Andreassen OA, Arias-Vásquez A, Aribisala BS, Armstrong NJ, Arolt V, Artiges E, Ayesa-Arriola R, Baboyan VG, Banaschewski T, Barker G, Bastin ME, Baune BT, Blangero J, Bokde ALW, Boedhoe PSW, Bose A, Brem S, Brodaty H, Bromberg U, Brooks S, Büchel C, Buitelaar J, Calhoun VD, Cannon DM, Cattrell A, Cheng Y, Conrod PJ, Conzelmann A, Corvin A, Crespo-Facorro B, Crivello F, Dannlowski U, de Zubicaray GI, de Zwarte SMC, Deary IJ, Desrivières S, Doan NT, Donohoe G, Dørum ES, Ehrlich S, Espeseth T, Fernández G, Flor H, Fouche JP, Frouin V, Fukunaga M, Gallinat J, Garavan H, Gill M, Suarez AG, Gowland P, Grabe HJ, Grotegerd D, Gruber O, Hagenaars S, Hashimoto R, Hauser TU, Heinz A, Hibar DP, Hoekstra PJ, Hoogman M, Howells FM, Hu H, Hulshoff Pol HE, Huyser C, Ittermann B, Jahanshad N, Jönsson EG, Jurk S, Kahn RS, Kelly S, Kraemer B, Kugel H, Kwon JS, Lemaitre H, Lesch KP, Lochner C, Luciano M, Marquand AF, Martin NG, Martínez-Zalacaín I, Martinot JL, Mataix-Cols D, Mather K, McDonald C, McMahon KL, Medland SE, Menchón JM, Morris DW, Mothersill O, Maniega SM, Mwangi B, Nakamae T, Nakao T, Narayanaswaamy JC, Nees F, Nordvik JE, Onnink AMH, Opel N, Ophoff R, Paillère Martinot ML, Papadopoulos Orfanos D, Pauli P, Paus T, Poustka L, Reddy JY, Renteria ME, Roiz-Santiáñez R, Roos A, Royle NA, Sachdev P, Sánchez-Juan P, Schmaal L, Schumann G, Shumskaya E, Smolka MN, Soares JC, Soriano-Mas C, Stein DJ, Strike LT, Toro R, Turner JA, Tzourio-Mazoyer N, Uhlmann A, Hernández MV, van den Heuvel OA, van der Meer D, van Haren NEM, Veltman DJ, Venkatasubramanian G, Vetter NC, Vuletic D, Walitza S, Walter H, Walton E, Wang Z, Wardlaw J, Wen W, Westlye LT, Whelan R, Wittfeld K, Wolfers T, Wright MJ, Xu J, Xu X, Yun JY, Zhao J, Franke B, Thompson PM, Glahn DC, Mazoyer B, Fisher SE, Francks C. Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging Behav 2017; 11:1497-1514. [PMID: 27738994 PMCID: PMC5540813 DOI: 10.1007/s11682-016-9629-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.
Collapse
Affiliation(s)
- Tulio Guadalupe
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- International Max Planck Research School for Language Sciences, Nijmegen, The Netherlands
| | - Samuel R Mathias
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Theo G M vanErp
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Christopher D Whelan
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
- Molecular and Cellular Therapeutics, The Royal College of Surgeons, Dublin 2, Ireland
| | - Marcel P Zwiers
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Yoshinari Abe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Lucija Abramovic
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ingrid Agartz
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Research and Development, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm, Sweden
| | - Ole A Andreassen
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Alejandro Arias-Vásquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benjamin S Aribisala
- Department of Computer Science, Lagos State University, Lagos, Nigeria
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - Nicola J Armstrong
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
- Mathematics and Statistics, Murdoch University, Murdoch, Australia
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud, University Paris Descartes -Sorbonne Paris Cité, Paris, France
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Vatche G Baboyan
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Gareth Barker
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mark E Bastin
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neurosciences, Trinity College Dublin, Dublin, Ireland
| | - Premika S W Boedhoe
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands
| | - Anushree Bose
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Silvia Brem
- University Clinic for and Adolescent Psychiatry UCCAP, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), & Dementia Collaborative Research Centre, School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Samantha Brooks
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry, Radboud university medical center, Nijmegen, The Netherlands
| | - Vince D Calhoun
- Departments of Electrical and Computer Engineering,Neurosciences, Computer Science, and Psychiatry, The University of New Mexico, Albuquerque, NM, USA
- The Mind Research Network, Albuquerque, NM, USA
| | - Dara M Cannon
- Centre for Neuroimaging, Cognition & Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Anna Cattrell
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Patricia J Conrod
- Department of Psychiatry, Universite de Montreal, CHU Ste Justine Hospital, Montréal, Canada
- Department of Psychological Medicine and Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Annette Conzelmann
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Germany, Tübingen, Würzburg, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Aiden Corvin
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | | | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Greig I de Zubicaray
- Faculty of Health and Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane City, Australia
| | - Sonja M C de Zwarte
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
| | - Sylvane Desrivières
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nhat Trung Doan
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition & Genomics Centre (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, SW4 794, Galway, Ireland
- Department of Psychiatry & trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Erlend S Dørum
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
- Department of Psychiatry, Massachusetts General Hospital, Boston, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Thomas Espeseth
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT - KG Jebsen Centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Guillén Fernández
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Vincent Frouin
- Neurospin, Commissariat à l'Energie Atomique, CEA-Saclay Center, Paris, France
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Michael Gill
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Andrea Gonzalez Suarez
- Service of Neurology, University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria (UC), Santander, Spain
- CIBERNED, Centro de Investigación Biomédica en red Enfermedades Neurodegenerativas, Madrid, Spain
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Hans J Grabe
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, HELIOS Hospital Stralsund, Stralsund, Germany
| | | | - Oliver Gruber
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, D-37075, Göttingen, Germany
| | - Saskia Hagenaars
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tobias U Hauser
- University Clinic for Child and Adolescent Psychiatry (UCCAP), University of Zurich, Zurich, Switzerland
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- UCL Max Planck Centre for Computational Psychiatry and Ageing, University College London, London, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Derrek P Hibar
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Pieter J Hoekstra
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Fleur M Howells
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Hao Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 Wan Ping Nan Road, Shanghai, 200030, China
| | | | - Chaim Huyser
- De Bascule, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
- AMC, department of child and adolescent psychiatry, Amsterdam, The Netherlands
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Neda Jahanshad
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Erik G Jönsson
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm, Sweden
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine. Psychiatry section, University of Oslo, Oslo, Norway
| | - Sarah Jurk
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Rene S Kahn
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sinead Kelly
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Los Angeles, 90292, USA
| | - Bernd Kraemer
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, D-37075, Göttingen, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Jun Soo Kwon
- Department of Psychiatry & Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
- Department of Brain & Cognitive Sciences, College of Natural Science, Seoul National University, Seoul, Republic of Korea
| | - Herve Lemaitre
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud, University Paris Descartes -Sorbonne Paris Cité, Paris, France
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Christine Lochner
- Department of Psychiatry, University of Stellenbosch and MRC Unit on Anxiety & Stress Disorders, Tygerberg, Cape Town, South Africa
| | - Michelle Luciano
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
| | - Andre F Marquand
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | | | - Ignacio Martínez-Zalacaín
- Department of Psychiatry, Bellvitge University Hospital - Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud, University Paris Descartes - Sorbonne Paris Cité, and Maison de Solenn, Paris, France
- Maison de Solenn, Paris, France
| | - David Mataix-Cols
- Department of Clinical Neuroscience,Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
| | - Karen Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Colm McDonald
- Centre for Neuroimaging, Cognition & Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Katie L McMahon
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - José M Menchón
- Department of Psychiatry, Bellvitge University Hospital - Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- CIBER Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Derek W Morris
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition & Genomics Centre (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, SW4 794, Galway, Ireland
| | - Omar Mothersill
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition & Genomics Centre (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, SW4 794, Galway, Ireland
| | - Susana Munoz Maniega
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Benson Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - Takashi Nakamae
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Neural Computation for Decision-Making, ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Jan E Nordvik
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - A Marten H Onnink
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Roel Ophoff
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
- Center for Neurobehavioral Genetics, University of California, Los Angeles, USA
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud, University Paris Descartes -Sorbonne Paris Cité, Paris, France
- AP-HP, Department of Adolescent Psychopathology and Medicine, Maison de Solenn, Cochin Hospital, Paris, France
| | | | - Paul Pauli
- Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, M6A 2E1, Toronto, ON, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Janardhan Yc Reddy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Roberto Roiz-Santiáñez
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Annerine Roos
- Department of Psychiatry, University of Stellenbosch and MRC Unit on Anxiety & Stress Disorders, Tygerberg, Cape Town, South Africa
| | - Natalie A Royle
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Pascual Sánchez-Juan
- Service of Neurology, University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria (UC), Santander, Spain
- CIBERNED, Centro de Investigación Biomédica en red Enfermedades Neurodegenerativas, Madrid, Spain
| | - Lianne Schmaal
- Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Gunter Schumann
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Elena Shumskaya
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital - Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- CIBER Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dan J Stein
- Department of Psychiatry, University of Cape Town and MRC Unit on Anxiety & Stress Disorders, Cape Town, South Africa
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Roberto Toro
- Laboratory of Human Genetics and Cognitive Functions, Institut Pasteur, 75015, Paris, France
| | - Jessica A Turner
- The Mind Research Network, Albuquerque, NM, USA
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Department of Neuroscience, Georgia State University, Atlanta, GA, USA
| | | | - Anne Uhlmann
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa
| | - Maria Valdés Hernández
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Odile A van den Heuvel
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Dennis van der Meer
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Neeltje E M van Haren
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Nora C Vetter
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Daniella Vuletic
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Susanne Walitza
- University Clinic for Child and Adolescent Psychiatry (UCCAP), University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Esther Walton
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 Wan Ping Nan Road, Shanghai, 200030, China
| | - Joanna Wardlaw
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Lars T Westlye
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Robert Whelan
- Department of Psychology, University College Dublin, Dublin, Ireland
| | - Katharina Wittfeld
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock, Greifswald, Germany
| | - Thomas Wolfers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands
| | - Margaret J Wright
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Jian Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea
| | - JingJing Zhao
- Cognitive Genetics and Therapy Group, School of Psychology & Discipline of Biochemistry, National University of Ireland Galway, Galway, SW4 794, Ireland
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - David C Glahn
- Department of Psychiatry, Yale University, New Haven, CT, 06511, USA
- Olin Neuropsychiatric Research Center, Hartford, CT, 06114, USA
| | - Bernard Mazoyer
- UMR5296 CNRS, CEA and University of Bordeaux, Bordeaux, France
| | - Simon E Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Chen R, Krejza J, Arkuszewski M, Zimmerman RA, Herskovits EH, Melhem ER. Brain morphometric analysis predicts decline of intelligence quotient in children with sickle cell disease: A preliminary study. Adv Med Sci 2017; 62:151-157. [PMID: 28279885 DOI: 10.1016/j.advms.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 09/06/2016] [Accepted: 09/14/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE For children with sickle cell disease (SCD) and at low risk category of stroke, we aim to build a predictive model to differentiate those with decline of intelligence-quotient (IQ) from counterparts without decline, based on structural magnetic-resonance (MR) imaging volumetric analysis. MATERIALS AND METHODS This preliminary prospective cohort study included 25 children with SCD, homozygous for hemoglobin S, with no history of stroke and transcranial Doppler mean velocities below 170cm/s at baseline. We administered the Kaufman Brief Intelligence Test (K-BIT) to each child at yearly intervals for 2-4 years. Each child underwent MR examination within 30 days of the baseline K-BIT evaluation date. We calculated K-BIT change rates, and used rate of change in K-BIT to classify children into two groups: a decline group and a non-decline group. We then generated predictive models to predict K-BIT decline/non-decline based on regional gray-matter (GM) volumes computed from structural MR images. RESULTS We identified six structures (the left median cingulate gyrus, the right middle occipital gyrus, the left inferior occipital gyrus, the right fusiform gyrus, the right middle temporal gyrus, the right inferior temporal gyrus) that, when assessed for volume at baseline, are jointly predictive of whether a child would suffer subsequent K-BIT decline. Based on these six regional GM volumes and the baseline K-BIT, we built a prognostic model using the K* algorithm. The accuracy, sensitivity and specificity were 0.84, 0.78 and 0.86, respectively. CONCLUSIONS GM volumetric analysis predicts subsequent IQ decline for children with SCD.
Collapse
|
14
|
Elkattan A, Mahdy A, Eltomey M, Ismail R. A Study of volumetric variations of basal nuclei in the normal human brain by magnetic resonance imaging. Clin Anat 2017; 30:175-182. [DOI: 10.1002/ca.22813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Amal Elkattan
- Department of Anatomy; Tanta University of Medical Sciences; Tanta Egypt
| | - Amal Mahdy
- Department of Anatomy; Tanta University of Medical Sciences; Tanta Egypt
| | - Mohamed Eltomey
- Department of Radiology; Tanta University of Medical Sciences; Tanta Egypt
| | - Radwa Ismail
- Department of Anatomy; Tanta University of Medical Sciences; Tanta Egypt
| |
Collapse
|
15
|
Okada N, Fukunaga M, Yamashita F, Koshiyama D, Yamamori H, Ohi K, Yasuda Y, Fujimoto M, Watanabe Y, Yahata N, Nemoto K, Hibar DP, van Erp TGM, Fujino H, Isobe M, Isomura S, Natsubori T, Narita H, Hashimoto N, Miyata J, Koike S, Takahashi T, Yamasue H, Matsuo K, Onitsuka T, Iidaka T, Kawasaki Y, Yoshimura R, Watanabe Y, Suzuki M, Turner JA, Takeda M, Thompson PM, Ozaki N, Kasai K, Hashimoto R. Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol Psychiatry 2016; 21:1460-6. [PMID: 26782053 PMCID: PMC5030462 DOI: 10.1038/mp.2015.209] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022]
Abstract
Subcortical structures, which include the basal ganglia and parts of the limbic system, have key roles in learning, motor control and emotion, but also contribute to higher-order executive functions. Prior studies have reported volumetric alterations in subcortical regions in schizophrenia. Reported results have sometimes been heterogeneous, and few large-scale investigations have been conducted. Moreover, few large-scale studies have assessed asymmetries of subcortical volumes in schizophrenia. Here, as a work completely independent of a study performed by the ENIGMA consortium, we conducted a large-scale multisite study of subcortical volumetric differences between patients with schizophrenia and controls. We also explored the laterality of subcortical regions to identify characteristic similarities and differences between them. T1-weighted images from 1680 healthy individuals and 884 patients with schizophrenia, obtained with 15 imaging protocols at 11 sites, were processed with FreeSurfer. Group differences were calculated for each protocol and meta-analyzed. Compared with controls, patients with schizophrenia demonstrated smaller bilateral hippocampus, amygdala, thalamus and accumbens volumes as well as intracranial volume, but larger bilateral caudate, putamen, pallidum and lateral ventricle volumes. We replicated the rank order of effect sizes for subcortical volumetric changes in schizophrenia reported by the ENIGMA consortium. Further, we revealed leftward asymmetry for thalamus, lateral ventricle, caudate and putamen volumes, and rightward asymmetry for amygdala and hippocampal volumes in both controls and patients with schizophrenia. Also, we demonstrated a schizophrenia-specific leftward asymmetry for pallidum volume. These findings suggest the possibility of aberrant laterality in neural pathways and connectivity patterns related to the pallidum in schizophrenia.
Collapse
Affiliation(s)
- N Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - M Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - F Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - D Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - H Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - K Ohi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Y Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - M Fujimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Y Watanabe
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - N Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - K Nemoto
- Department of Neuropsychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - D P Hibar
- Imaging Genetics Center, University of Southern California, Marina del Rey, CA, USA
| | - T G M van Erp
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - H Fujino
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - M Isobe
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - S Isomura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T Natsubori
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - H Narita
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - N Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - J Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - S Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Office for Mental Health Support, Division for Counseling and Support, The University of Tokyo, Tokyo, Japan
| | - T Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - H Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - K Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - T Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T Iidaka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Y Kawasaki
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - R Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Y Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - M Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - J A Turner
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Department of Neuroscience, Georgia State University, Atlanta, GA, USA
| | - M Takeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - P M Thompson
- Imaging Genetics Center, University of Southern California, Marina del Rey, CA, USA
| | - N Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - K Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - R Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - COCORO
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
- Department of Neuropsychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
- Imaging Genetics Center, University of Southern California, Marina del Rey, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
- Office for Mental Health Support, Division for Counseling and Support, The University of Tokyo, Tokyo, Japan
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Aichi, Japan
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Department of Neuroscience, Georgia State University, Atlanta, GA, USA
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| |
Collapse
|
16
|
Mao CP, Bai ZL, Zhang XN, Zhang QJ, Zhang L. Abnormal Subcortical Brain Morphology in Patients with Knee Osteoarthritis: A Cross-sectional Study. Front Aging Neurosci 2016; 8:3. [PMID: 26834629 PMCID: PMC4717185 DOI: 10.3389/fnagi.2016.00003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/04/2016] [Indexed: 02/05/2023] Open
Abstract
Despite the involvement of subcortical brain structures in the pathogenesis of chronic pain and persistent pain as the defining symptom of knee osteoarthritis (KOA), little attention has been paid to the morphometric measurements of these subcortical nuclei in patients with KOA. The purpose of this study is to explore the potential morphological abnormalities of subcortical brain structures in patients with KOA as compared to the healthy control subjects by using high-resolution MRI. Structural MR data were acquired from 26 patients with KOA and 31 demographically similar healthy individuals. The MR data were analyzed by using FMRIB’s integrated registration and segmentation tool. Both volumetric analysis and surface-based shape analysis were performed to characterize the subcortical morphology. The normalized volumes of bilateral caudate nucleus were significantly smaller in the KOA group than in the control group (P = 0.004). There was also a trend toward smaller volume of the hippocampus in KOA as compared to the control group (P = 0.027). Detailed surface analyses further localized these differences with a greater involvement of the left hemisphere (P < 0.05, corrected) for the caudate nucleus. Hemispheric asymmetry (right larger than left) of the caudate nucleus was found in both KOA and control groups. Besides, no significant correlation was found between the structural data and pain intensities. Our results indicated that patients with KOA had statistically significant smaller normalized volumes of bilateral caudate nucleus and a trend toward smaller volume of the hippocampus as compared to the control subjects. Further investigations are necessary to characterize the role of caudate nucleus in the course of chronicity of pain associated with KOA.
Collapse
Affiliation(s)
- Cui Ping Mao
- Department of Medical Imaging, the Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine , Xi'an , China
| | - Zhi Lan Bai
- Department of Medical Imaging, the Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine , Xi'an , China
| | - Xiao Na Zhang
- Department of Medical Imaging, the Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine , Xi'an , China
| | - Qiu Juan Zhang
- Department of Medical Imaging, the Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine , Xi'an , China
| | - Lei Zhang
- Department of Medical Imaging, the Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine , Xi'an , China
| |
Collapse
|
17
|
Wyciszkiewicz A, Pawlak MA. Basal Ganglia Volumes: MR-Derived Reference Ranges and Lateralization Indices for Children and Young Adults. Neuroradiol J 2014; 27:595-612. [PMID: 25260207 DOI: 10.15274/nrj-2014-10073] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/29/2014] [Indexed: 11/12/2022] Open
Abstract
SUMMARY - Previous studies indicate rightward asymmetry of the caudate nucleus (CN) volume and leftward asymmetry of the putamen (PN) and globus pallidus (GP). This study aimed to estimate reference ranges for basal ganglia asymmetry in a large cohort of healthy individuals (n= 949), aged seven to 21 years. MRI images of 949 (320 female, mean age 12.6 +/- 3.3, range 7-21) healthy individuals were reviewed. Volumetric measurements of the basal ganglia were obtained using automated segmentation (FreeSurfer). We computed two lateralization indices: (L-R)/(L+R) (LI) and right/left ratio (RLR). Tolerance interval estimates were used to calculate reference ranges. Rightward asymmetry of the CN and leftward asymmetry of the PN and GP were confirmed. PN and GP volume decreased with age, but CN volume did not. The lateralization index decreased with age for PN, but not for CN and GP. RLR increased with age for PN and not for CN or GP. Females were associated with smaller volume, but not with either LI or RLR difference. Reference ranges obtained in this study provide useful resources for power analysis and a reference group for future studies using basal ganglia asymmetry indices.
Collapse
Affiliation(s)
- Aleksandra Wyciszkiewicz
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences; Poznan, Poland -
| | - Mikolaj A Pawlak
- Department of Neurology and Cerebrovascular Disorders, Poznan University of Medical Sciences; Poznan, Poland
| |
Collapse
|
18
|
Chen R, Arkuszewski M, Krejza J, Zimmerman RA, Herskovits EH, Melhem ER. A prospective longitudinal brain morphometry study of children with sickle cell disease. AJNR Am J Neuroradiol 2014; 36:403-10. [PMID: 25234033 DOI: 10.3174/ajnr.a4101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Age-related changes in brain morphology are crucial to understanding the neurobiology of sickle cell disease. We hypothesized that the growth trajectories for total GM volume, total WM volume, and regional GM volumes are altered in children with sickle cell disease compared with controls. MATERIALS AND METHODS We analyzed T1-weighted images of the brains of 28 children with sickle cell disease (mean baseline age, 98 months; female/male ratio, 15:13) and 28 healthy age- and sex-matched controls (mean baseline age, 99 months; female/male ratio, 16:12). The total number of MR imaging examinations was 141 (2-4 for each subject with sickle cell disease, 2-3 for each control subject). Total GM volume, total WM volume, and regional GM volumes were measured by using an automated method. We used the multilevel-model-for-change approach to model growth trajectories. RESULTS Total GM volume in subjects with sickle cell disease decreased linearly at a rate of 411 mm(3) per month. For controls, the trajectory of total GM volume was quadratic; we did not observe a significant linear decline. For subjects with sickle cell disease, we found 35 brain structures that demonstrated age-related GM volume reduction. Total WM volume in subjects with sickle cell disease increased at a rate of 452 mm(3) per month, while the trajectory of controls was quadratic. CONCLUSIONS There was a significant age-related decrease in total GM volume in children with sickle cell disease. The GM volume reduction was spatially distributed widely across the brain, primarily in the frontal, parietal, and occipital lobes. Total WM volume in subjects with sickle cell disease increased at a lower rate than for controls.
Collapse
Affiliation(s)
- R Chen
- From the Department of Diagnostic Radiology and Nuclear Medicine (R.C., J.K., E.H.H., E.R.M.), University of Maryland, Baltimore, Maryland Department of Radiology (R.C., R.A.Z.), Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - M Arkuszewski
- Department of Neurology (M.A.), Medical University of Silesia, Katowice, Poland
| | - J Krejza
- From the Department of Diagnostic Radiology and Nuclear Medicine (R.C., J.K., E.H.H., E.R.M.), University of Maryland, Baltimore, Maryland
| | - R A Zimmerman
- Department of Radiology (R.A.Z.), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania Department of Radiology (R.C., R.A.Z.), Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - E H Herskovits
- From the Department of Diagnostic Radiology and Nuclear Medicine (R.C., J.K., E.H.H., E.R.M.), University of Maryland, Baltimore, Maryland
| | - E R Melhem
- From the Department of Diagnostic Radiology and Nuclear Medicine (R.C., J.K., E.H.H., E.R.M.), University of Maryland, Baltimore, Maryland
| |
Collapse
|
19
|
Mao C, Wei L, Zhang Q, Liao X, Yang X, Zhang M. Differences in brain structure in patients with distinct sites of chronic pain: A voxel-based morphometric analysis. Neural Regen Res 2014; 8:2981-90. [PMID: 25206618 PMCID: PMC4146206 DOI: 10.3969/j.issn.1673-5374.2013.32.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/28/2013] [Indexed: 11/18/2022] Open
Abstract
A reduction in gray matter volume is common in patients with chronic back pain, and different types of pain are associated with gray matter abnormalities in distinct brain regions. To examine differences in brain morphology in patients with low back pain or neck and upper back pain, we investigated changes in gray matter volume in chronic back pain patients having different sites of pain using voxel-based morphometry. A reduction in cortical gray matter volume was found primarily in the left postcentral gyrus and in the left precuneus and bilateral cuneal cortex of patients with low back pain. In these patients, there was an increase in subcortical gray matter volume in the bilateral putamen and accumbens, right pallidum, right caudate nucleus, and left amygdala. In upper back pain patients, reduced cortical gray matter volume was found in the left precentral and left postcentral cortices. Our findings suggest that regional gray matter volume abnormalities in low back pain patients are more extensive than in upper back pain patients. Subcortical gray matter volume increases are found only in patients with low back pain.
Collapse
Affiliation(s)
- Cuiping Mao
- Department of Radiology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Longxiao Wei
- Department of Radiology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Qiuli Zhang
- Department of Radiology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xia Liao
- Department of Pain, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xiaoli Yang
- Department of Pain, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Ming Zhang
- Department of Radiology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
20
|
Nguyen HD, McLachlan GJ, Cherbuin N, Janke AL. False discovery rate control in magnetic resonance imaging studies via Markov random fields. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1735-1748. [PMID: 24816549 DOI: 10.1109/tmi.2014.2322369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Magnetic resonance imaging (MRI) is widely used to study population effects of factors on brain morphometry. Inference from such studies often require the simultaneous testing of millions of statistical hypotheses. Such scale of inference is known to lead to large numbers of false positive results. Control of the false discovery rate (FDR) is commonly employed to mitigate against such outcomes. However, current methodologies in FDR control only account for the marginal significance of hypotheses, and are not able to explicitly account for spatial relationships, such as those between MRI voxels. In this article, we present novel methods that incorporate spatial dependencies into the process of controlling FDR through the use of Markov random fields. Our method is able to automatically estimate the relationships between spatially dependent hypotheses by means of maximum pseudo-likelihood estimation and the pseudo-likelihood information criterion. We show that our methods have desirable statistical properties with regards to FDR control and are able to outperform noncontexual methods in simulations of dependent hypothesis scenarios. Our method is applied to investigate the effects of aging on brain morphometry using data from the PATH study. Evidence of whole brain and component level effects that correspond to similar findings in the literature is found in our investigation.
Collapse
|
21
|
Guadalupe T, Zwiers MP, Teumer A, Wittfeld K, Vasquez AA, Hoogman M, Hagoort P, Fernandez G, Buitelaar J, Hegenscheid K, Völzke H, Franke B, Fisher SE, Grabe HJ, Francks C. Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Hum Brain Mapp 2013; 35:3277-89. [PMID: 24827550 DOI: 10.1002/hbm.22401] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/29/2013] [Accepted: 08/26/2013] [Indexed: 11/06/2022] Open
Abstract
Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10(-8) ). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries.
Collapse
Affiliation(s)
- Tulio Guadalupe
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; International Max Planck Research School for Language Sciences, Max Planck Insitute for Psycholinguistics, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abedelahi A, Hasanzadeh H, Hadizadeh H, Joghataie MT. Morphometric and volumetric study of caudate and putamen nuclei in normal individuals by MRI: Effect of normal aging, gender and hemispheric differences. Pol J Radiol 2013; 78:7-14. [PMID: 24115954 PMCID: PMC3789937 DOI: 10.12659/pjr.889364] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 06/20/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to determine age, gender, and hemispheric differences in the volume of the human neostriatum (striatum) nucleus in healthy humans. MATERIAL/METHODS This study was performed on 120 normal human subjects (60 males, 60 females, right-handed) 15-65 years old, divided into two groups: young (<40 yrs) and old (=≥40 yrs). Sectional brain images were obtained via magnetic resonance imaging (MRI), analyzed and processed using the Image-J software, and the striatum volume was calculated using the Cavalieri's principle, retrospectively. RESULTS The analyses revealed bilateral age-related shrinkage of the putamen in both genders and the putamen and caudate nucleus were significantly smaller in older than in younger subjects (P-value <0.001). The age-related shrinkage of the caudate and putamen nucleus in men and women was about 5%, 5% and 4%, 4%, respectively, and there were statistically significant volume differences between males and females (P-value <0.05). In both genders, a significant rightward asymmetry was observed in the caudate and putamen nucleus (3.89%, 4.21% in men and 4.51%, 3.32% in women). CONCLUSIONS Bilateral age-related shrinkage and rightward asymmetry of the striate nucleus was found in healthy adults and there were significant volume differences between men and women. Obtained results provide useful baseline data on age and gender-related changes of the volume of the striatum.
Collapse
Affiliation(s)
- Ali Abedelahi
- Department of Anatomy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
23
|
Choe MS, Ortiz-Mantilla S, Makris N, Gregas M, Bacic J, Haehn D, Kennedy D, Pienaar R, Caviness VS, Benasich AA, Grant PE. Regional infant brain development: an MRI-based morphometric analysis in 3 to 13 month olds. Cereb Cortex 2013; 23:2100-17. [PMID: 22772652 PMCID: PMC3729199 DOI: 10.1093/cercor/bhs197] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Elucidation of infant brain development is a critically important goal given the enduring impact of these early processes on various domains including later cognition and language. Although infants' whole-brain growth rates have long been available, regional growth rates have not been reported systematically. Accordingly, relatively less is known about the dynamics and organization of typically developing infant brains. Here we report global and regional volumetric growth of cerebrum, cerebellum, and brainstem with gender dimorphism, in 33 cross-sectional scans, over 3 to 13 months, using T1-weighted 3-dimensional spoiled gradient echo images and detailed semi-automated brain segmentation. Except for the midbrain and lateral ventricles, all absolute volumes of brain regions showed significant growth, with 6 different patterns of volumetric change. When normalized to the whole brain, the regional increase was characterized by 5 differential patterns. The putamen, cerebellar hemispheres, and total cerebellum were the only regions that showed positive growth in the normalized brain. Our results show region-specific patterns of volumetric change and contribute to the systematic understanding of infant brain development. This study greatly expands our knowledge of normal development and in future may provide a basis for identifying early deviation above and beyond normative variation that might signal higher risk for neurological disorders.
Collapse
Affiliation(s)
- Myong-sun Choe
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Children's HospitalBoston
- Division of Newborn Medicine, Department of Medicine, Children's Hospital Boston
- Department of Neurology, Center for Morphometric Analysis, Massachusetts General Hospital
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, and
| | - Silvia Ortiz-Mantilla
- Department of Neuroscience, Rutgers, Center for Molecular and Behavioral Neuroscience, The State University of New Jersey, Newark, NJ, USA and
| | - Nikos Makris
- Department of Neurology, Center for Morphometric Analysis, Massachusetts General Hospital
| | - Matt Gregas
- Clinical Research Program, Department of Neurology, Children's Hospital Boston
| | - Janine Bacic
- Clinical Research Program, Department of Neurology, Children's Hospital Boston
| | - Daniel Haehn
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Children's HospitalBoston
- Division of Neuroradiology, Department of Radiology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - David Kennedy
- Department of Neurology, Center for Morphometric Analysis, Massachusetts General Hospital
- Child and Adolescent NeuroDevelopment Initiative (CANDI), Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rudolph Pienaar
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Children's HospitalBoston
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, and
- Division of Neuroradiology, Department of Radiology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Verne S. Caviness
- Department of Neurology, Center for Morphometric Analysis, Massachusetts General Hospital
| | - April A. Benasich
- Department of Neuroscience, Rutgers, Center for Molecular and Behavioral Neuroscience, The State University of New Jersey, Newark, NJ, USA and
| | - P. Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Children's HospitalBoston
- Division of Newborn Medicine, Department of Medicine, Children's Hospital Boston
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, and
- Division of Neuroradiology, Department of Radiology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Foundas AL, Cindass R, Mock JR, Corey DM. ATYPICAL CAUDATE ANATOMY IN CHILDREN WHO STUTTER 1, 2. Percept Mot Skills 2013. [DOI: 10.2466/15.10.pms.116.2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Foundas AL, Cindass R, Mock JR, Corey DM. Atypical Caudate Anatomy in Children Who Stutter. Percept Mot Skills 2013; 116:528-43. [PMID: 24032328 DOI: 10.2466/15.10.pms.116.2.528-543] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A temporal motor defect in speech preparation and/or planning may contribute to the development of stuttering. This defect may be linked to a dysfunctional cortical-subcortical network at the level of the striatum. To determine whether structural differences exist and whether group differences are associated with stuttering severity or manual laterality, the caudate was measured in 14 children who stutter (CWS) and in a control group of right-handed boys, ages 8–13 years. There was a statistically significant hemisphere by group effect for caudate volume. CWS had reduced right caudate volume and atypical leftward asymmetry compared to controls. Nine of the 13 CWS with atypical caudate asymmetry had atypical manual laterality. These anomalies may represent a vulnerability that perturbs speech planning/preparation and contributes to inefficiencies in action-perception coupling that may be an indicator of stuttering susceptibility. These results suggest that right-handed boys who stutter may have a defect in the feedforward cortico-striato-thalamo-cortical networks.
Collapse
Affiliation(s)
- Anne L. Foundas
- Brain and Behavior Program at Children's, Hospital and Department of Neurology and Cognitive, Neuroscience University of Missouri - Kansas City
| | - Renford Cindass
- Brain and Behavior Program at Children's Hospital, LSU Health Sciences Center
| | - Jeffrey R. Mock
- Brain and Behavior Program at Children's Hospital, Department of Psychology Tulane University
| | | |
Collapse
|
26
|
Wartolowska K, Hough MG, Jenkinson M, Andersson J, Wordsworth BP, Tracey I. Structural changes of the brain in rheumatoid arthritis. ACTA ACUST UNITED AC 2012; 64:371-9. [PMID: 21905009 DOI: 10.1002/art.33326] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To investigate whether structural changes are present in the cortical and subcortical gray matter of the brains of patients with rheumatoid arthritis (RA). METHODS We used two surface-based style morphometry analysis programs and a voxel-based style analysis program to compare high-resolution structural magnetic resonance imaging data obtained for 31 RA patients and 25 age- and sex-matched healthy control subjects. RESULTS We observed an increase in gray matter content in the basal ganglia of RA patients, mainly in the nucleus accumbens and caudate nucleus. There were no differences in the cortical gray matter. Moreover, patients had a smaller intracranial volume. CONCLUSION Our results suggest that RA is associated with changes in the subcortical gray matter rather than with cortical gray matter atrophy. Since the basal ganglia play an important role in motor control as well as in pain processing and in modulating behavior in response to aversive stimuli, we suggest that these changes may result from altered motor control or prolonged pain processing. The differences in brain volume may reflect either generalized atrophy or differences in brain development.
Collapse
Affiliation(s)
- Karolina Wartolowska
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain and University of Oxford, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Li M, Chen Z, Deng W, He Z, Wang Q, Jiang L, Ma X, Wang Y, Chua SE, Cheung C, McAlonan GM, Sham PC, Collier DA, Gong Q, Li T. Volume increases in putamen associated with positive symptom reduction in previously drug-naive schizophrenia after 6 weeks antipsychotic treatment. Psychol Med 2012; 42:1475-1483. [PMID: 22030695 DOI: 10.1017/s0033291711002157] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Brain structure appears to alter after antipsychotic administration, but it is unknown whether these alterations are associated with improvement of psychopathology in patients with schizophrenia. In this study, the authors explore this relationship. METHOD Altogether, 66 first-episode, drug-naive patients with schizophrenia and 23 well-matched healthy controls underwent brain magnetic resonance imaging scans at baseline. All 23 healthy controls and 42 of the patients were rescanned after 6 weeks follow-up. The patients received regular antipsychotic treatment during the 6-week period and their psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS) at baseline and 6 weeks. The difference in PANSS scores between baseline and 6 weeks was expressed as a ratio of the scores at baseline - 'PANSS reduction ratio'. A modified tensor-based morphometry procedure was applied to analyse longitudinal images. Correlations between regional volume changes, PANSS reduction ratio and antipsychotic drug dosages were explored. RESULTS Compared with healthy controls, there was a significant increase in grey-matter volume of the right putamen in patients after 6 weeks treatment. This volume change was positively correlated with a positive PANSS reduction score but not related to drug dosages. CONCLUSIONS Putaminal volume increased after 6 weeks antipsychotic treatment in first-episode schizophrenia. The increased volume was closely correlated with improved psychopathology, suggesting the putamen might be a biomarker to predict the treatment response in schizophrenia.
Collapse
Affiliation(s)
- M Li
- The Mental Health Center & Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Amiez C, Hadj-Bouziane F, Petrides M. Response selection versus feedback analysis in conditional visuo-motor learning. Neuroimage 2012; 59:3723-35. [DOI: 10.1016/j.neuroimage.2011.10.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 08/09/2011] [Accepted: 10/17/2011] [Indexed: 10/16/2022] Open
|
29
|
Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N=1198) using genome-wide search. Mol Psychiatry 2011; 16:927-37, 881. [PMID: 21502949 PMCID: PMC3140560 DOI: 10.1038/mp.2011.32] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The caudate is a subcortical brain structure implicated in many common neurological and psychiatric disorders. To identify specific genes associated with variations in caudate volume, structural magnetic resonance imaging and genome-wide genotypes were acquired from two large cohorts, the Alzheimer's Disease NeuroImaging Initiative (ADNI; N=734) and the Brisbane Adolescent/Young Adult Longitudinal Twin Study (BLTS; N=464). In a preliminary analysis of heritability, around 90% of the variation in caudate volume was due to genetic factors. We then conducted genome-wide association to find common variants that contribute to this relatively high heritability. Replicated genetic association was found for the right caudate volume at single-nucleotide polymorphism rs163030 in the ADNI discovery sample (P=2.36 × 10⁻⁶) and in the BLTS replication sample (P=0.012). This genetic variation accounted for 2.79 and 1.61% of the trait variance, respectively. The peak of association was found in and around two genes, WDR41 and PDE8B, involved in dopamine signaling and development. In addition, a previously identified mutation in PDE8B causes a rare autosomal-dominant type of striatal degeneration. Searching across both samples offers a rigorous way to screen for genes consistently influencing brain structure at different stages of life. Variants identified here may be relevant to common disorders affecting the caudate.
Collapse
|
30
|
Madsen SK, Ho AJ, Hua X, Saharan PS, Toga AW, Jack CR, Weiner MW, Thompson PM. 3D maps localize caudate nucleus atrophy in 400 Alzheimer's disease, mild cognitive impairment, and healthy elderly subjects. Neurobiol Aging 2010; 31:1312-25. [PMID: 20538376 DOI: 10.1016/j.neurobiolaging.2010.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/29/2010] [Accepted: 05/01/2010] [Indexed: 10/19/2022]
Abstract
MRI research examining structural brain atrophy in Alzheimer's disease (AD) generally focuses on medial temporal and cortical structures, but amyloid and tau deposits also accumulate in the caudate. Here we mapped the 3D profile of caudate atrophy using a surface mapping approach in subjects with AD and mild cognitive impairment (MCI) to identify potential clinical and pathological correlates. 3D surface models of the caudate were automatically extracted from 400 baseline MRI scans (100 AD, 200 MCI, 100 healthy elderly). Compared to controls, caudate volumes were lower in MCI (2.64% left, 4.43% right) and AD (4.74% left, 8.47% right). Caudate atrophy was associated with age, sum-of-boxes and global Clinical Dementia Ratings, Delayed Logical Memory scores, MMSE decline 1 year later, and body mass index. Reduced right (but not left) volume was associated with MCI-to-AD conversion and CSF tau levels. Normal caudate asymmetry (with the right 3.9% larger than left) was lost in AD, suggesting preferential right caudate atrophy. Automated caudate maps may complement other MRI-derived measures of disease burden in AD.
Collapse
Affiliation(s)
- S K Madsen
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|