1
|
Krieg CP. A unified framework to investigate and interpret hybrid and allopolyploid biodiversity across biological scales. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11612. [PMID: 39184201 PMCID: PMC11342226 DOI: 10.1002/aps3.11612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Premise Hybridization and polyploidization are common in vascular plants and important drivers of biodiversity by facilitating speciation and ecological diversification. A primary limitation to making broad synthetic discoveries in hybrid and allopolyploid biodiversity research is the absence of a standardized framework to compare data across studies and biological scales. Methods Here, I present a new quantitative framework to investigate and interpret patterns in hybrid and allopolyploid biology called the divergence index (DI). The DI framework produces standardized data that are comparable across studies and variables. To show how the DI framework can be used to synthesize data, I analyzed published biochemical, physiological, and ecological trait data of hybrids and allopolyploids. I also apply key ecological and evolutionary concepts in hybrid and polyploid biology to translate nominal outcomes, including transgression, intermediacy, expansion, and contraction, in continuous DI space. Results Biochemical, physiological, ecological, and evolutionary data can all be analyzed, visualized, and interpreted in the DI framework. The DI framework is particularly suited to standardize and compare variables with very different scales. When using the DI framework to understand niche divergence, a metric of niche overlap can be used to complement insights to centroid and breadth changes. Discussion The DI framework is an accessible framework for hybrid and allopolyploid biology and represents a flexible and intuitive tool that can be used to reconcile outstanding problems in plant biodiversity research.
Collapse
|
2
|
Lynn AM, Sullivan LL, Galen C. The cost of self-promotion: ecological and demographic implications of the mentor effect in natural plant populations. THE NEW PHYTOLOGIST 2023; 237:1418-1431. [PMID: 36412063 DOI: 10.1111/nph.18629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Under the mentor effect, compatible heterospecific pollen transfer induces self-pollen germination in otherwise self-incompatible plants. The mentor effect could be considered a novel mode of reproductive interference if it negatively impacts fitness. Yet to date, this phenomenon has predominately been investigated under experimental conditions rather than in situ. We address this gap in natural populations of the self-incompatible native dandelion, Taraxacum ceratophorum, where selfing only occurs in association with hybridization from exotic Taraxacum officinale. We tested whether self-fertilization rate increases in the hybrid zone, as predicted due to the mentor effect. Using results from these investigations, we created an exponential growth model to estimate the potential demographic impacts of the mentor effect on T. ceratophorum population growth. Our results demonstrate that the strength of the mentor effect in Taraxacum depends on the prevalence of pollinator-mediated outcross pollen deposition rather than self-pollination. Demographic models suggest that reduced outcrossing in T. ceratophorum under exotic invasion could negatively impact population growth through inbreeding depression. We demonstrate the mentor effect is rare in natural populations of T. ceratophorum due to masking by early life cycle inbreeding depression, prevalent outcrossing, and ovule usurpation by heterospecific pollen.
Collapse
Affiliation(s)
- Austin M Lynn
- Department of Oceanography and Coastal Sciences, Louisiana State University, 3173 Energy, Coast, and Environment Building, Baton Rouge, LA, 70803, USA
| | - Lauren L Sullivan
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 368, East Lansing, MI, 48824, USA
| | - Candace Galen
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, MO, 65211, USA
| |
Collapse
|
3
|
Rushworth CA, Wagner MR, Mitchell-Olds T, Anderson JT. The Boechera model system for evolutionary ecology. AMERICAN JOURNAL OF BOTANY 2022; 109:1939-1961. [PMID: 36371714 DOI: 10.1002/ajb2.16090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions.
Collapse
Affiliation(s)
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
4
|
Owens GL, Todesco M, Bercovich N, Légaré JS, Mitchell N, Whitney KD, Rieseberg LH. Standing variation rather than recent adaptive introgression probably underlies differentiation of the texanus subspecies of Helianthus annuus. Mol Ecol 2021; 30:6229-6245. [PMID: 34080243 DOI: 10.1111/mec.16008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
The origins of geographic races in wide-ranging species are poorly understood. In Texas, the texanus subspecies of Helianthus annuus has long been thought to have acquired its defining phenotypic traits via introgression from a local congener, H. debilis, but previous tests of this hypothesis were inconclusive. Here, we explore the origins of H. a. texanus using whole genome sequencing data from across the entire range of H. annuus and possible donor species, as well as phenotypic data from a common garden study. We found that although it is morphologically convergent with H. debilis, H. a. texanus has conflicting signals of introgression. Genome wide tests (Patterson's D and TreeMix) only found evidence of introgression from H. argophyllus (sister species to H. annuus and also sympatric), but not H. debilis, with the exception of one individual of 109 analysed. We further scanned the genome for localized signals of introgression using PCAdmix and found minimal but nonzero introgression from H. debilis and significant introgression from H. argophyllus in some populations. Given the paucity of introgression from H. debilis, we argue that the morphological convergence observed in Texas is probably from standing genetic variation. We also found that genomic differentiation in H. a. texanus is mostly driven by large segregating inversions, several of which have signatures of natural selection based on haplotype frequencies.
Collapse
Affiliation(s)
- Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Marco Todesco
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Natalia Bercovich
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jean-Sébastien Légaré
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Nora Mitchell
- Department of Biology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Abdelaziz M, Muñoz-Pajares AJ, Berbel M, García-Muñoz A, Gómez JM, Perfectti F. Asymmetric Reproductive Barriers and Gene Flow Promote the Rise of a Stable Hybrid Zone in the Mediterranean High Mountain. FRONTIERS IN PLANT SCIENCE 2021; 12:687094. [PMID: 34512685 PMCID: PMC8424041 DOI: 10.3389/fpls.2021.687094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/15/2021] [Indexed: 05/13/2023]
Abstract
Hybrid zones have the potential to shed light on evolutionary processes driving adaptation and speciation. Secondary contact hybrid zones are particularly powerful natural systems for studying the interaction between divergent genomes to understand the mode and rate at which reproductive isolation accumulates during speciation. We have studied a total of 720 plants belonging to five populations from two Erysimum (Brassicaceae) species presenting a contact zone in the Sierra Nevada mountains (SE Spain). The plants were phenotyped in 2007 and 2017, and most of them were genotyped the first year using 10 microsatellite markers. Plants coming from natural populations were grown in a common garden to evaluate the reproductive barriers between both species by means of controlled crosses. All the plants used for the field and greenhouse study were characterized by measuring traits related to plant size and flower size. We estimated the genetic molecular variances, the genetic differentiation, and the genetic structure by means of the F-statistic and Bayesian inference. We also estimated the amount of recent gene flow between populations. We found a narrow unimodal hybrid zone where the hybrid genotypes appear to have been maintained by significant levels of a unidirectional gene flow coming from parental populations and from weak reproductive isolation between them. Hybrid plants exhibited intermediate or vigorous phenotypes depending on the analyzed trait. The phenotypic differences between the hybrid and the parental plants were highly coherent between the field and controlled cross experiments and through time. The highly coherent results obtained by combining field, experimental, and genetic data demonstrate the existence of a stable and narrow unimodal hybrid zone between Erysimum mediohispanicum and Erysimum nevadense at the high elevation of the Sierra Nevada mountains.
Collapse
Affiliation(s)
- Mohamed Abdelaziz
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
- *Correspondence: Mohamed Abdelaziz
| | - A. Jesús Muñoz-Pajares
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
- Laboratório Associado, Plant Biology, Research Centre in Biodiversity and Genetic Resources, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade Do Porto, Campus Agrário de Vairão, Fornelo e Vairão, Portugal
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
| | - Modesto Berbel
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
| | - Ana García-Muñoz
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
| | - José M. Gómez
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Almeria, Spain
| | - Francisco Perfectti
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
| |
Collapse
|
6
|
Coughlan JM, Matute DR. The importance of intrinsic postzygotic barriers throughout the speciation process. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190533. [PMID: 32654642 DOI: 10.1098/rstb.2019.0533] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrinsic postzygotic barriers can play an important and multifaceted role in speciation, but their contribution is often thought to be reserved to the final stages of the speciation process. Here, we review how intrinsic postzygotic barriers can contribute to speciation, and how this role may change through time. We outline three major contributions of intrinsic postzygotic barriers to speciation. (i) reduction of gene flow: intrinsic postzygotic barriers can effectively reduce gene exchange between sympatric species pairs. We discuss the factors that influence how effective incompatibilities are in limiting gene flow. (ii) early onset of species boundaries via rapid evolution: intrinsic postzygotic barriers can evolve between recently diverged populations or incipient species, thereby influencing speciation relatively early in the process. We discuss why the early origination of incompatibilities is expected under some biological models, and detail how other (and often less obvious) incompatibilities may also serve as important barriers early on in speciation. (iii) reinforcement: intrinsic postzygotic barriers can promote the evolution of subsequent reproductive isolation through processes such as reinforcement, even between relatively recently diverged species pairs. We incorporate classic and recent empirical and theoretical work to explore these three facets of intrinsic postzygotic barriers, and provide our thoughts on recent challenges and areas in the field in which progress can be made. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Biology, University of North Carolina, 120 South Road, Coker Hall, Chapel Hill, NC 27599, USA
| | - Daniel R Matute
- Department of Biology, University of North Carolina, 120 South Road, Coker Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Hornych O, Ekrt L, Riedel F, Koutecký P, Košnar J. Asymmetric hybridization in Central European populations of the Dryopteris carthusiana group. AMERICAN JOURNAL OF BOTANY 2019; 106:1477-1486. [PMID: 31634425 DOI: 10.1002/ajb2.1369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Hybridization is a key process in plant speciation. Despite its importance, there is no detailed study of hybridization rates in fern populations. A proper estimate of hybridization rates is needed to understand factors regulating hybridization. METHODS We studied hybridization in the European Dryopteris carthusiana group, represented by one diploid and two tetraploid species and their hybrids. We sampled ~100 individuals per population in 40 mixed populations of the D. carthusiana group across Europe. All plants were identified by measuring genome size (DAPI staining) using flow cytometry. To determine the maternal parentage of hybrids, we sequenced the chloroplast region trnL-trnF of all taxa involved. RESULTS We found hybrids in 85% of populations. Triploid D. ×ambroseae occurred in every population that included both parent species and is most abundant when the parent species are equally abundant. By contrast, tetraploid D. ×deweveri was rare (15 individuals total) and triploid D. ×sarvelae was absent. The parentage of hybrid taxa is asymmetric. Despite expectations from previous studies, tetraploid D. dilatata is the predominant male parent of its triploid hybrid. CONCLUSIONS This is a thorough investigation of hybridization rates in natural populations of ferns. Hybridization rates differ greatly even among closely related fern taxa. In contrast to angiosperms, our data suggest that hybridization rates are highest in balanced parent populations and support the notion that some ferns possess very weak barriers to hybridization. Our results from sequencing cpDNA challenge established notions about the correlation of ploidy level and mating tendencies.
Collapse
Affiliation(s)
- Ondřej Hornych
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-37005, Czech Republic
| | - Libor Ekrt
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-37005, Czech Republic
| | - Felix Riedel
- Botanischer Garten der Universität Potsdam, Maulbeerallee 3, Potsdam, D-14469, Germany
- Arboretum der Humboldt-Universität zu Berlin, Späthstrasse 80/81, Berlin, D-12437, Germany
| | - Petr Koutecký
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-37005, Czech Republic
| | - Jiří Košnar
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
8
|
Pickup M, Brandvain Y, Fraïsse C, Yakimowski S, Barton NH, Dixit T, Lexer C, Cereghetti E, Field DL. Mating system variation in hybrid zones: facilitation, barriers and asymmetries to gene flow. THE NEW PHYTOLOGIST 2019; 224:1035-1047. [PMID: 31505037 PMCID: PMC6856794 DOI: 10.1111/nph.16180] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/19/2019] [Indexed: 05/11/2023]
Abstract
Plant mating systems play a key role in structuring genetic variation both within and between species. In hybrid zones, the outcomes and dynamics of hybridization are usually interpreted as the balance between gene flow and selection against hybrids. Yet, mating systems can introduce selective forces that alter these expectations; with diverse outcomes for the level and direction of gene flow depending on variation in outcrossing and whether the mating systems of the species pair are the same or divergent. We present a survey of hybridization in 133 species pairs from 41 plant families and examine how patterns of hybridization vary with mating system. We examine if hybrid zone mode, level of gene flow, asymmetries in gene flow and the frequency of reproductive isolating barriers vary in relation to mating system/s of the species pair. We combine these results with a simulation model and examples from the literature to address two general themes: (1) the two-way interaction between introgression and the evolution of reproductive systems, and (2) how mating system can facilitate or restrict interspecific gene flow. We conclude that examining mating system with hybridization provides unique opportunities to understand divergence and the processes underlying reproductive isolation.
Collapse
Affiliation(s)
- Melinda Pickup
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Yaniv Brandvain
- Department of Plant and Microbial BiologyUniversity of Minnesota1500 Gortner AveSt Paul, MinneapolisMN55108USA
| | - Christelle Fraïsse
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Sarah Yakimowski
- Department of BiologyQueen's University116 Barrie StKingstonONK7L 3N6Canada
| | - Nicholas H. Barton
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Tanmay Dixit
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUK
| | - Christian Lexer
- Department of Botany and Biodiversity ResearchFaculty of Life SciencesUniversity of ViennaA‐1030ViennaAustria
| | - Eva Cereghetti
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - David L. Field
- Department of Botany and Biodiversity ResearchFaculty of Life SciencesUniversity of ViennaA‐1030ViennaAustria
- School of ScienceEdith Cowan University270 Joondalup DriveJoondalupWestern Australia6027Australia
| |
Collapse
|
9
|
Mascagni F, Cavallini A, Giordani T, Natali L. Different histories of two highly variable LTR retrotransposons in sunflower species. Gene 2017; 634:5-14. [PMID: 28867564 DOI: 10.1016/j.gene.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/15/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022]
Abstract
In the Helianthus genus, very large intra- and interspecific variability related to two specific retrotransposons of Helianthus annuus (Helicopia and SURE) exists. When comparing these two sequences to sunflower sequence databases recently produced by our lab, the Helicopia family was shown to belong to the Maximus/SIRE lineage of the Sirevirus genus of the Copia superfamily, whereas the SURE element (whose superfamily was not even previously identified) was classified as a Gypsy element of the Ogre/Tat lineage of the Metavirus genus. Bioinformatic analysis of the two retrotransposon families revealed their genomic abundance and relative proliferation timing. The genomic abundance of these families differed significantly among 12 Helianthus species. The ratio between the abundance of long terminal repeats and their reverse transcriptases suggested that the SURE family has relatively more solo long terminal repeats than does Helicopia. Pairwise comparisons of Illumina reads encoding the reverse transcriptase domain indicated that SURE amplification may have occurred more recently than that of Helicopia. Finally, the analysis of population structure based on the SURE and Helicopia polymorphisms of 32 Helianthus species evidenced two subpopulations, which roughly corresponded to species of the Helianthus and Divaricati/Ciliares sections. However, a number of species showed an admixed structure, confirming the importance of interspecific hybridisation in the evolution of this genus. In general, these two retrotransposon families differentially contributed to interspecific variability, emphasising the need to refer to specific families when studying genome evolution.
Collapse
Affiliation(s)
- Flavia Mascagni
- Dept. of Agriculture, Food, and Environment, University of Pisa, Via delBorghetto 80, I-56124 Pisa, Italy
| | - Andrea Cavallini
- Dept. of Agriculture, Food, and Environment, University of Pisa, Via delBorghetto 80, I-56124 Pisa, Italy
| | - Tommaso Giordani
- Dept. of Agriculture, Food, and Environment, University of Pisa, Via delBorghetto 80, I-56124 Pisa, Italy
| | - Lucia Natali
- Dept. of Agriculture, Food, and Environment, University of Pisa, Via delBorghetto 80, I-56124 Pisa, Italy.
| |
Collapse
|
10
|
Palma-Silva C, Cozzolino S, Paggi GM, Lexer C, Wendt T. Mating system variation and assortative mating of sympatric bromeliads (Pitcairnia spp.) endemic to neotropical inselbergs. AMERICAN JOURNAL OF BOTANY 2015; 102:758-764. [PMID: 26022489 DOI: 10.3732/ajb.1400513] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
PREMISE OF THE STUDY The mating system is an important component of the complex set of reproductive isolation barriers causing plant speciation. However, empirical evidence showing that the mating system may promote reproductive isolation in co-occurring species is limited. The mechanisms by which the mating system can act as a reproductive isolation barrier are also largely unknown. METHODS Here we studied progeny arrays genotyped with microsatellites and patterns of stigma-anther separation (herkogamy) to understand the role of mating system shifts in promoting reproductive isolation between two hybridizing taxa with porous genomes, Pitcairnia albiflos and P. staminea (Bromeliaceae). KEY RESULTS In P. staminea, we detected increased selfing and reduced herkogamy in one sympatric relative to two allopatric populations, consistent with mating system shifts in sympatry acting to maintain the species integrity of P. staminea when in contact with P. albiflos. CONCLUSIONS Mating system variation is a result of several factors acting simultaneously in these populations. We report mating system shifts as one possible reproductive barrier between these species, acting in addition to numerous other prezygotic (i.e., flower phenology and pollination syndromes) and postzygotic barriers (Bateson-Dobzhansky-Muller genetic incompatibilities).
Collapse
Affiliation(s)
- Clarisse Palma-Silva
- Departamento de Ecologia, IB/UNESP, Rio Claro, SP, 13506-900 Brazil Instituto de Botânica, São Paulo, SP, 04301-012 Brazil
| | - Salvatore Cozzolino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, 80126 Italy CNR Istituto per la Protezione Sostenibile delle Piante, Firenze, I-50019 Italy
| | | | - Christian Lexer
- Department of Biology, University of Fribourg, Fribourg, Switzerland Department of Botany and Biodiversity Research, University of Vienna, Vienna, A-1030 Austria
| | - Tânia Wendt
- Departamento de Botânica, CCS/IB/UFRJ, Rio de Janeiro, RJ, 21941-590 Brazil
| |
Collapse
|
11
|
Hersch-Green EI. Polyploidy in Indian paintbrush (Castilleja; Orobanchaceae) species shapes but does not prevent gene flow across species boundaries. AMERICAN JOURNAL OF BOTANY 2012; 99:1680-90. [PMID: 23032815 DOI: 10.3732/ajb.1200253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PREMISE OF STUDY A difference in chromosome numbers (ploidy variation) between species is usually considered a major barrier to gene flow. Therefore, it is surprising that little is known about whether ploidy variation, both within and among species, influences spatial patterns of interspecific hybridization. The role that polyploidy plays in structuring gene flow patterns between three co-occurring Indian paintbrush (Castilleja) species is investigated. • METHODS Reciprocal hand pollinations were performed in populations where the three species co-occur with and without variable plants (previous data tested the ancestral "hybrid" history of these variable plants). I measured fruit set, seed production, seed germination, and the DNA content of parent plants and 26 synthesized F(1) hybrids. Data were combined with pollinator fidelity data to estimate the contribution of individual barriers to reproductive isolation. • KEY RESULTS Interspecific gene flow could occur in all directions, but barriers were weaker for conspecific vs. heterospecific crosses. Species were nearly fixed for different ploidy levels, but some deviations occurred, primarily in populations with variable plants. Interspecific gene flow could occur across ploidy levels, but it was more likely when species had the same number of chromosomes or when resulting F(1) hybrids had even numbers of chromosomes. Postzygotic reproductive barriers were generally weaker than pollinator fidelity. • CONCLUSIONS Polyploidy likely plays a large role in shaping contemporary and historical patterns of gene flow among these species. This study suggests that differences in chromosome numbers among closely related, compatible species might help structure spatial patterns of hybridization.
Collapse
Affiliation(s)
- Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931 USA.
| |
Collapse
|
12
|
Rowe HC, Ro DK, Rieseberg LH. Response of sunflower (Helianthus annuus L.) leaf surface defenses to exogenous methyl jasmonate. PLoS One 2012; 7:e37191. [PMID: 22623991 PMCID: PMC3356381 DOI: 10.1371/journal.pone.0037191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/18/2012] [Indexed: 11/24/2022] Open
Abstract
Helianthus annuus, the common sunflower, produces a complex array of secondary compounds that are secreted into glandular trichomes, specialized structures found on leaf surfaces and anther appendages of flowers. The primary components of these trichome secretions are sesquiterpene lactones (STL), a diverse class of compounds produced abundantly by the plant family Compositae and believed to contribute to plant defense against herbivory. We treated wild and cultivated H. annuus accessions with exogenous methyl jasmonate, a plant hormone that mediates plant defense against insect herbivores and certain classes of fungal pathogens. The wild sunflower produced a higher density of glandular trichomes on its leaves than the cultivar. Comparison of the profiles of glandular trichome extracts obtained by liquid chromatography–mass spectroscopy (LC-MS) showed that wild and cultivated H. annuus were qualitatively similar in surface chemistry, although differing in the relative size and proportion of various compounds detected. Despite observing consistent transcriptional responses to methyl jasmonate treatment, we detected no significant effect on glandular trichome density or LC-MS profile in cultivated or wild sunflower, with wild sunflower exhibiting a declining trend in overall STL production and foliar glandular trichome density of jasmonate-treated plants. These results suggest that glandular trichomes and associated compounds may act as constitutive defenses or require greater levels of stimulus for induction than the observed transcriptional responses to exogenous jasmonate. Reduced defense investment in domesticated lines is consistent with predicted tradeoffs caused by selection for increased yield; future research will focus on the development of genetic resources to explicitly test the ecological roles of glandular trichomes and associated effects on plant growth and fitness.
Collapse
Affiliation(s)
- Heather C. Rowe
- Botany Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dae-kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Loren H. Rieseberg
- Botany Department, University of British Columbia, Vancouver, British Columbia, Canada
- Biology Department, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kawakami T, Dhakal P, Katterhenry AN, Heatherington CA, Ungerer MC. Transposable element proliferation and genome expansion are rare in contemporary sunflower hybrid populations despite widespread transcriptional activity of LTR retrotransposons. Genome Biol Evol 2011; 3:156-67. [PMID: 21282712 PMCID: PMC3048363 DOI: 10.1093/gbe/evr005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hybridization is a natural phenomenon that has been linked in several organismal groups to transposable element derepression and copy number amplification. A noteworthy example involves three diploid annual sunflower species from North America that have arisen via ancient hybridization between the same two parental taxa, Helianthus annuus and H. petiolaris. The genomes of the hybrid species have undergone large-scale increases in genome size attributable to long terminal repeat (LTR) retrotransposon proliferation. The parental species that gave rise to the hybrid taxa are widely distributed, often sympatric, and contemporary hybridization between them is common. Natural H. annuus × H. petiolaris hybrid populations likely served as source populations from which the hybrid species arose and, as such, represent excellent natural experiments for examining the potential role of hybridization in transposable element derepression and proliferation in this group. In the current report, we examine multiple H. annuus × H. petiolaris hybrid populations for evidence of genome expansion, LTR retrotransposon copy number increases, and LTR retrotransposon transcriptional activity. We demonstrate that genome expansion and LTR retrotransposon proliferation are rare in contemporary hybrid populations, despite independent proliferation events that took place in the genomes of the ancient hybrid species. Interestingly, LTR retrotransposon lineages that proliferated in the hybrid species genomes remain transcriptionally active in hybrid and nonhybrid genotypes across the entire sampling area. The finding of transcriptional activity but not copy number increases in hybrid genotypes suggests that proliferation and genome expansion in contemporary hybrid populations may be mitigated by posttranscriptional mechanisms of repression.
Collapse
|
14
|
Roberts DG, Gray CA, West RJ, Ayre DJ. Gamete compatibility between marine and estuarine Acanthopagrus spp. (Sparidae) and their hybrids. JOURNAL OF FISH BIOLOGY 2010; 77:425-431. [PMID: 20646166 DOI: 10.1111/j.1095-8649.2010.02649.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
On Australia's south-east coast, hybridization between estuary-restricted black bream Acanthopagrus butcheri Munro and its migratory coastal congener yellowfin bream Acanthopagrus australis (Günther) has led to estuarine populations largely composed of hybrids that are most genetically similar to A. butcheri. The fertilization success achieved when ova of estuary-caught A. butcheri were fertilized with the cryogenically preserved sperm of either ocean-caught A. australis or estuary-caught A. butcheri-like was compared. The experimental crosses, which by chance included both pure parental and hybrid bream, revealed no evidence that gametic incompatibility provides a barrier to fertilization among both pure species and their hybrids.
Collapse
Affiliation(s)
- D G Roberts
- Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | |
Collapse
|
15
|
Horvath D. Genomics for weed science. Curr Genomics 2010; 11:47-51. [PMID: 20808523 PMCID: PMC2851116 DOI: 10.2174/138920210790217972] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/08/2009] [Accepted: 07/08/2009] [Indexed: 12/29/2022] Open
Abstract
Numerous genomic-based studies have provided insight to the physiological and evolutionary processes involved in developmental and environmental processes of model plants such as arabidopsis and rice. However, far fewer efforts have been attempted to use genomic resources to study physiological and evolutionary processes of weedy plants. Genomics-based tools such as extensive EST databases and microarrays have been developed for a limited number of weedy species, although application of information and resources developed for model plants and crops are possible and have been exploited. These tools have just begun to provide insights into the response of these weeds to herbivore and pathogen attack, survival of extreme environmental conditions, and interaction with crops. The potential of these tools to illuminate mechanisms controlling the traits that allow weeds to invade novel habitats, survive extreme environments, and that make weeds difficult to eradicate have potential for both improving crops and developing novel methods to control weeds.
Collapse
Affiliation(s)
- David Horvath
- USDA-ARS, Bioscience Research Laboratory, 1605 Albrecht Blvd. Fargo, ND 58105, USA
| |
Collapse
|
16
|
Kane NC, King MG, Barker MS, Raduski A, Karrenberg S, Yatabe Y, Knapp SJ, Rieseberg LH. Comparative genomic and population genetic analyses indicate highly porous genomes and high levels of gene flow between divergent helianthus species. Evolution 2009; 63:2061-75. [PMID: 19473382 DOI: 10.1111/j.1558-5646.2009.00703.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While speciation can be found in the presence of gene flow, it is not clear what impact this gene flow has on genome- and range-wide patterns of differentiation. Here we examine gene flow across the entire range of the common sunflower, H. annuus, its historically allopatric sister species H. argophyllus and a more distantly related, sympatric relative H. petiolaris. Analysis of genotypes at 26 microsatellite loci in 1015 individuals from across the range of the three species showed substantial introgression between geographically proximal populations of H. annuus and H. petiolaris, limited introgression between H. annuus and H. argophyllus, and essentially no gene flow between the allopatric pair, H. argophyllus and H. petiolaris. Analysis of sequence divergence levels among the three species in 1420 orthologs identified from EST databases identified a subset of loci showing extremely low divergence between H. annuus and H. petiolaris and extremely high divergence between the sister species H. annuus and H. argophyllus, consistent with introgression between H. annuus and H. petiolaris at these loci. Thus, at many loci, the allopatric sister species are more genetically divergent than the more distantly related sympatric species, which have exchanged genes across much of the genome while remaining morphologically and ecologically distinct.
Collapse
Affiliation(s)
- Nolan C Kane
- Department of Biology, Indiana University, Bloomington, Indiana, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gagnaire PA, Albert V, Jónsson B, Bernatchez L. Natural selection influences AFLP intraspecific genetic variability and introgression patterns in Atlantic eels. Mol Ecol 2009; 18:1678-91. [PMID: 19302349 DOI: 10.1111/j.1365-294x.2009.04142.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Investigating patterns of genetic variation in hybridizing species provides an opportunity to understand the impact of natural selection on intraspecific genetic variability and interspecific gene exchange. The Atlantic eels Anguilla rostrata and A. anguilla each occupy a large heterogeneous habitat upon which natural selection could differentially shape genetic variation. They also produce viable hybrids only found in Iceland. However, the possible footprint of natural selection on patterns of genetic variation within species and introgressive hybridization in Icelandic eels has never been assessed. We revisited amplified fragment length polymorphism data collected previously using population genomics and admixture analyses to test if (i) genetic variation could be influenced by non-neutral mechanisms at both the intra- and interspecific levels, and if (ii) selection could shape the spatio-temporal distribution of Icelandic hybrids. We first found candidate loci for directional selection within both species. Spatial distributions of allelic frequencies displayed by some of these loci were possibly related with the geographical patterns of life-history traits in A. rostrata, and could have been shaped by natural selection associated with an environmental gradient along European coasts in A. anguilla. Second, we identified outlier loci at the interspecific level. Non-neutral introgression was strongly suggested for some of these loci. We detected a locus at which typical A. rostrata allele hardly crossed the species genetic barrier, whereas three other loci showed accelerated patterns of introgression into A. anguilla in Iceland. Moreover, the level of introgression at these three loci increased from the glass eel to the yellow eel stage, supporting the hypothesis that differential survival of admixed genotypes partly explains the spatio-temporal pattern of hybrid abundance previously documented in Iceland.
Collapse
Affiliation(s)
- P A Gagnaire
- Institut des Sciences de l'Evolution (ISEM UMR 5554 CNRS-UMII), Université de Montpellier II, Place E. Bataillon, Montpellier cedex 5, France
| | | | | | | |
Collapse
|
18
|
Mir C, Jarne P, Sarda V, Bonin A, Lumaret R. Contrasting nuclear and cytoplasmic exchanges between phylogenetically distant oak species (Quercus suber L. and Q. ilex L.) in Southern France: inferring crosses and dynamics. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:213-26. [PMID: 19228328 DOI: 10.1111/j.1438-8677.2008.00106.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Gene flow is particularly frequent in the genus Quercus (oaks), especially between closely related species. We focus here on Quercus ilex and the cork-producing Quercus suber, which occasionally hybridize although they are phylogenetically markedly separated. Morphological observations were combined with both allozymic and chloroplastic diagnostic markers to characterize hybridization and introgression and to infer their dynamics in two French regions (French Catalonia and Provence), which are separated by several hundred kilometres. Some hybrids were found in both regions, indicating recent hybridization events. As expected from previous studies, most hybrids resulted from female symbol Q. ilex x male symbol Q. suber crosses, but our data showed that the reciprocal cross is also possible. Partial independence between nuclear and chloroplastic introgression was observed in the two species. Nuclear introgression was limited in both species and both regions, with no preferred direction. In Provence, chloroplastic introgression was very rare in both species. Conversely, all Q. suber individuals from French Catalonia were introgressed by Q. ilex chlorotypes. This might be explained by introgression in the Iberian Peninsula antedating the first occurrence of the two species in French Catalonia. We also observed a new chlorotype that was created locally, and was exchanged between the two species. However, the two species still remain genetically differentiated. The dynamics and complexity of exchanges and the factors determining them (including human management of Q. suber) are discussed.
Collapse
Affiliation(s)
- C Mir
- UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive, Centre National de la Recherche Scientifique, Montpellier, France.
| | | | | | | | | |
Collapse
|
19
|
Gompert Z, Buerkle CA. A powerful regression-based method for admixture mapping of isolation across the genome of hybrids. Mol Ecol 2009; 18:1207-24. [PMID: 19243513 DOI: 10.1111/j.1365-294x.2009.04098.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We propose a novel method that uses natural admixture between divergent lineages (hybridization) to investigate the genetic architecture of reproductive isolation and adaptive introgression. Our method employs multinomial regression to estimate genomic clines and to quantify introgression for individual loci relative to the genomic background (clines in genotype frequency along a genomic admixture gradient). Loci with patterns of introgression that deviate significantly from null expectations based on the remainder of the genome are potentially subject to selection and thus of interest to understanding adaptation and the evolution of reproductive isolation. Using simulations, we show that different forms of selection modify these genomic clines in predictable ways and that our method has good power to detect moderate to strong selection for multiple forms of selection. Using individual-based simulations, we demonstrate that our method generally has a low false positive rate, except when genetic drift is particularly pronounced (e.g. low population size, low migration rates from parental populations, and substantial time since initial admixture). Additional individual-based simulations reveal that moderate selection against heterozygotes can be detected as much as 50 cm away from the focal locus directly experiencing selection, but is not detected at unlinked loci. Finally, we apply our analytical method to previously published data sets from a mouse (Mus musculus and M. domesticus) and two sunflower (Helianthus petiolaris and H. annuus) hybrid zones. This method should be applicable to numerous species that are currently the focus of research in evolution and ecology and should help bring about new insights regarding the processes underlying the origin and maintenance of biological diversity.
Collapse
Affiliation(s)
- Zachariah Gompert
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, 82071, USA
| | | |
Collapse
|
20
|
Ito M, Suyama Y, Ohsawa TA, Watano Y. Airborne-pollen pool and mating pattern in a hybrid zone between Pinus pumila and P. parviflora var. pentaphylla. Mol Ecol 2009; 17:5092-103. [PMID: 19120991 DOI: 10.1111/j.1365-294x.2008.03966.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reproductive isolation barriers and the mating patterns among Pinus pumila, P. parviflora var. pentaphylla and their hybrids were examined by flowering phenology and genetic assays of three life stages: airborne-pollen grains, adults and seeds, in a hybrid zone on Mount Apoi, Hokkaido, Japan. Chloroplast DNA composition of the airborne-pollen was determined by single-pollen polymerase chain reaction. Mating patterns were analysed by estimating the molecular hybrid index of the seed parent, their seed embryos and pollen parents. The observation of flowering phenology showed that the flowering of P. pumila precedes that of P. parviflora var. pentaphylla by about 6 to 10 days within the same altitudinal ranges. Although this prezygotic isolation barrier is effective, the genetic assay of airborne-pollen showed that the two pine species, particularly P. pumila, still have chances to form F(1) hybrid seeds. Both parental species showed a strong assortative mating pattern; F(1) seeds were found in only 1.4% of seeds from P. pumila mother trees and not at all in P. parviflora var. pentaphylla. The assortative mating was concluded as the combined result of flowering time differentiation and cross-incompatibility. In contrast to the parental species, hybrids were fertilized evenly by the two parental species and themselves. The breakdown of prezygotic barriers (intermediate flowering phenology) and cross-incompatibility may account for the unselective mating. It is suggested that introgression is ongoing on Mount Apoi through backcrossing between hybrids and parental species, despite strong isolation barriers between the parental species.
Collapse
Affiliation(s)
- Megumi Ito
- Department of Biology, Graduate School of Science, Chiba University, Yayoi, Inage, Chiba 263-8522, Japan
| | | | | | | |
Collapse
|
21
|
Campbell DR, Waser NM, Pederson GT. Predicting patterns of mating and potential hybridization from pollinator behavior. Am Nat 2008; 159:438-50. [PMID: 18707428 DOI: 10.1086/339457] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hybridization in flowering plants is determined in part by the rate at which animal pollinators move between species and by the effectiveness of such movements in transferring pollen. Pollinator behavior can also influence hybrid fitness by determining receipt and export of pollen. We incorporated information on pollinator effectiveness and visitation behavior into a simulation model that predicts pollen transfer between Ipomopsis aggregata, Ipomopsis tenuituba, and hybrids. These predictions were compared with estimates of pollen transfer derived from movement of fluorescent dyes in experimental plant arrays. Interspecific pollen transfer was relatively uncommon in these arrays, whereas transfer between hybrids and the parental species was at least as common as conspecific transfer. Backcrossing was asymmetrical; I. aggregata flowers frequently received mixed loads of hybrid and conspecific pollen. The simulation suggests that these patterns of pollen transfer are largely explained by the visitation sequences of hummingbird and insect pollinators, with little contribution from mechanical isolation. Pollen receipt by hybrids exceeded that of both parental species in a year when pollinators preferred to visit F(1) and F(2) hybrids and was intermediate in another year when they preferred to visit I. aggregata. This suggests that natural variation in pollination may produce spatiotemporal variation in hybridization and hybrid fitness.
Collapse
Affiliation(s)
- Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
22
|
Sambatti JBM, Ortiz-Barrientos D, Baack EJ, Rieseberg LH. Ecological selection maintains cytonuclear incompatibilities in hybridizing sunflowers. Ecol Lett 2008; 11:1082-91. [PMID: 18643842 DOI: 10.1111/j.1461-0248.2008.01224.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Despite the recent renaissance in studies of ecological speciation, the connection between ecological selection and the evolution of reproductive isolation remains tenuous. We tested whether habitat adaptation of cytoplasmic genomes contributes to the maintenance of reproductive barriers in hybridizing sunflower species, Helianthus annuus and Helianthus petiolaris. We transplanted genotypes of the parental species, reciprocal F1 hybrids and all eight possible backcross combinations of nuclear and cytoplasmic genomes into the contrasting xeric and mesic habitats of the parental species. Analysis of survivorship across two growing seasons revealed that the parental species' cytoplasms were strongly locally adapted and that cytonuclear interactions (CNIs) significantly affected the fitness and architecture of hybrid plants. A significant fraction of the CNIs have transgenerational effects, perhaps due to divergence in imprinting patterns. Our results suggest a common means by which ecological selection may contribute to speciation and have significant implications for the persistence of hybridizing species.
Collapse
Affiliation(s)
- Julianno B M Sambatti
- Department of Botany, University of British Columbia, 3529-6270 University Blvd., Vancouver, BC, Canada V6T1Z4
| | | | | | | |
Collapse
|
23
|
Strasburg JL, Rieseberg LH. Molecular demographic history of the annual sunflowers Helianthus annuus and H. petiolaris--large effective population sizes and rates of long-term gene flow. Evolution 2008; 62:1936-50. [PMID: 18462213 DOI: 10.1111/j.1558-5646.2008.00415.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hybridization between distinct species may lead to introgression of genes across species boundaries, and this pattern can potentially persist for extended periods as long as selection at some loci or genomic regions prevents thorough mixing of gene pools. However, very few reliable estimates of long-term levels of effective migration are available between hybridizing species throughout their history. Accurate estimates of divergence dates and levels of gene flow require data from multiple unlinked loci as well as an analytical framework that can distinguish between lineage sorting and gene flow and incorporate the effects of demographic changes within each species. Here we use sequence data from 18 anonymous nuclear loci in two broadly sympatric sunflower species, Helianthus annuus and H. petiolaris, analyzed within an "isolation with migration" framework to make genome-wide estimates of the ages of these two species, long-term rates of gene flow between them, and effective population sizes and historical patterns of population growth. Our results indicate that H. annuus and H. petiolaris are approximately one million years old and have exchanged genes at a surprisingly high rate (long-term N(ef)m estimates of approximately 0.5 in each direction), with somewhat higher rates of introgression from H. annuus into H. petiolaris than vice versa. In addition, each species has undergone dramatic population expansion since divergence, and both species have among the highest levels of genetic diversity reported for flowering plants. Our results provide the most comprehensive estimate to date of long-term patterns of gene flow and historical demography in a nonmodel plant system, and they indicate that species integrity can be maintained even in the face of extensive gene flow over a prolonged period.
Collapse
Affiliation(s)
- Jared L Strasburg
- Department of Biology, Indiana University, 915 E. 3rd Street #150, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
24
|
Buerkle CA, Rieseberg LH. LOW INTRASPECIFIC VARIATION FOR GENOMIC ISOLATION BETWEEN HYBRIDIZING SUNFLOWER SPECIES. Evolution 2007. [DOI: 10.1111/j.0014-3820.2001.tb00804.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
|
26
|
Moccia MD, Widmer A, Cozzolino S. The strength of reproductive isolation in two hybridizing food-deceptive orchid species. Mol Ecol 2007; 16:2855-66. [PMID: 17614902 DOI: 10.1111/j.1365-294x.2007.03240.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Reproductive isolation is of fundamental importance for maintaining species boundaries in sympatry. In orchids, the wide variety of pollination systems and highly diverse floral traits have traditionally suggested a prominent role for pollinator isolation, and thus for prezygotic isolation, as an effective barrier to gene flow among species. Here, we examined the nature of reproductive isolation between Anacamptis morio and Anacamptis papilionacea, two sister species of Mediterranean food-deceptive orchids, in two natural hybrid zones. Comparative analyses of the two hybrid zones that are located on soils with volcanic origin and have different and well-dated ages consistently revealed that all hybrid individuals were morphologically and genetically intermediate between the parental species, but had strongly reduced fitness. Molecular analyses based on nuclear ITS1 and (amplified fragment length polymorphism) AFLP markers clearly showed that all examined hybrids were F1 hybrids, and that no introgression occurred between parental species. The maternally inherited plastid DNA markers indicated that hybridization between A. morio and A. papilionacea was bidirectional, as confirmed by the molecular analysis of seed families. The genetic architecture of the two hybrid zones suggests that the two parental species easily and frequently hybridize in sympatry as a consequence of partial pollinator overlap but that strong postzygotic barriers reduce hybrid fitness and prevent gene introgression. These results corroborate that chromosomal divergence is instrumental for reproductive isolation between these food-deceptive orchids and suggest that hybridization is of limited importance for their diversification.
Collapse
Affiliation(s)
- Maria Domenica Moccia
- Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli Federico II, Via Foria, 223, I-80139 Naples, Italy
| | | | | |
Collapse
|
27
|
Yatabe Y, Kane NC, Scotti-Saintagne C, Rieseberg LH. Rampant gene exchange across a strong reproductive barrier between the annual sunflowers, Helianthus annuus and H. petiolaris. Genetics 2007; 175:1883-93. [PMID: 17277373 PMCID: PMC1855124 DOI: 10.1534/genetics.106.064469] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant species may remain morphologically distinct despite gene exchange with congeners, yet little is known about the genomewide pattern of introgression among species. Here we analyze the effects of persistent gene flow on genomic differentiation between the sympatric sunflower species Helianthus annuus and H. petiolaris. While the species are strongly isolated in testcrosses, genetic distances at 108 microsatellite loci and 14 sequenced genes are highly variable and much lower (on average) than for more closely related but historically allopatric congeners. Our analyses failed to detect a positive association between levels of genetic differentiation and chromosomal rearrangements (as reported in a prior publication) or proximity to QTL for morphological differences or hybrid sterility. However, a significant increase in differentiation was observed for markers within 5 cM of chromosomal breakpoints. Together, these results suggest that islands of differentiation between these two species are small, except in areas of low recombination. Furthermore, only microsatellites associated with ESTs were identified as outlier loci in tests for selection, which might indicate that the ESTs themselves are the targets of selection rather than linked genes (or that coding regions are not randomly distributed). In general, these results indicate that even strong and genetically complex reproductive barriers cannot prevent widespread introgression.
Collapse
Affiliation(s)
- Yoko Yatabe
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
28
|
Lexer C, Buerkle CA, Joseph JA, Heinze B, Fay MF. Admixture in European Populus hybrid zones makes feasible the mapping of loci that contribute to reproductive isolation and trait differences. Heredity (Edinb) 2006; 98:74-84. [PMID: 16985509 DOI: 10.1038/sj.hdy.6800898] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The use of admixed human populations to scan the genome for chromosomal segments affecting complex phenotypic traits has proved a powerful analytical tool. However, its potential in other organisms has not yet been evaluated. Here, we use DNA microsatellites to assess the feasibility of this approach in hybrid zones between two members of the 'model tree' genus Populus: Populus alba (white poplar) and Populus tremula (European aspen). We analyzed samples of both species and a Central European hybrid zone (N=544 chromosomes) for a genome-wide set of 19 polymorphic DNA microsatellites. Our results indicate that allele frequency differentials between the two species are substantial (mean delta=0.619+/-0.067). Background linkage disequilibrium (LD) in samples of the parental gene pools is moderate and should respond to sampling schemes that minimize drift and account for rare alleles. LD in hybrids decays with increasing number of backcross generations as expected from theory and approaches background levels of the parental gene pools in advanced generation backcrosses. Introgression from P. tremula into P. alba varies strongly across marker loci. For several markers, alleles from P. tremula are slightly over-represented relative to neutral expectations, whereas a single locus exhibits evidence of selection against P. tremula genotypes. We interpret our results in terms of the potential for admixture mapping in these two ecologically divergent Populus species, and we validate a modified approach of studying genotypic clines in 'mosaic' hybrid zones.
Collapse
Affiliation(s)
- C Lexer
- Jodrell Laboratory, Royal Botanic Gardens, Richmond, Surrey, UK.
| | | | | | | | | |
Collapse
|
29
|
Lai Z, Nakazato T, Salmaso M, Burke JM, Tang S, Knapp SJ, Rieseberg LH. Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genetics 2006; 171:291-303. [PMID: 16183908 PMCID: PMC1456521 DOI: 10.1534/genetics.105.042242] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New species may arise via hybridization and without a change in ploidy. This process, termed homoploid hybrid speciation, is theoretically difficult because it requires the development of reproductive barriers in sympatry or parapatry. Theory suggests that isolation may arise through rapid karyotypic evolution and/or ecological divergence of hybrid neospecies. Here, we investigate the role of karyotypic change in homoploid hybrid speciation by generating detailed genetic linkage maps for three hybrid sunflower species, Helianthus anomalus, H. deserticola, and H. paradoxus, and comparing these maps to those previously generated for the parental species, H. annuus and H. petiolaris. We also conduct a quantitative trait locus (QTL) analysis of pollen fertility in a BC2 population between the parental species and assess levels of pollen and seed fertility in all cross-combinations of the hybrid and parental species. The three hybrid species are massively divergent from their parental species in karyotype; gene order differences were observed for between 9 and 11 linkage groups (of 17 total), depending on the comparison. About one-third of the karyoypic differences arose through the sorting of chromosomal rearrangements that differentiate the parental species, but the remainder appear to have arisen de novo (six breakages/six fusions in H. anomalus, four breakages/three fusions in H. deserticola, and five breakages/five fusions in H. paradoxus). QTL analyses indicate that the karyotypic differences contribute to reproductive isolation. Nine of 11 pollen viability QTL occur on rearranged chromosomes and all but one map close to a rearrangement breakpoint. Finally, pollen and seed fertility estimates for F1's between the hybrid and parental species fall below 11%, which is sufficient for evolutionary independence of the hybrid neospecies.
Collapse
Affiliation(s)
- Zhao Lai
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Researchers in the field of molecular ecology and evolution require versatile and low-cost genetic typing methods. The AFLP (amplified fragment length polymorphism) method was introduced 10 years ago and shows many features that fulfil these requirements. With good quality genomic DNA at hand, it is relatively easy to generate anonymous multilocus DNA profiles in most species and the start-up time before data can be generated is often less than a week. Built-in dynamic, yet simple modifications make it possible to find a protocol suitable to the genome size of the species and to screen thousands of loci in hundreds of individuals for a relatively low cost. Until now, the method has primarily been applied in studies of plants, bacteria and fungi, with a strong bias towards economically important cultivated species and their pests. In this review we identify a number of research areas in the study of wild species of animals where the AFLP method, presently very much underused, should be a very valuable tool. These aspects include classical problems such as studies of population genetic structure and phylogenetic reconstructions, and also new challenges such as finding markers for genes governing adaptations in wild populations and modifications of the protocol that makes it possible to measure expression variation of multiple genes (cDNA-AFLP) and the distribution of DNA methylation. We hope this review will help molecular ecologists to identify when AFLP is likely to be superior to other more established methods, such as microsatellites, SNP (single nucleotide polymorphism) analyses and multigene DNA sequencing.
Collapse
Affiliation(s)
- Staffan Bensch
- Department of Animal Ecology, Ecology Building, Lund University, S-223 62 Lund, Sweden.
| | | |
Collapse
|
31
|
Chung MY, Nason JD, Chung MG. Patterns of hybridization and population genetic structure in the terrestrial orchids Liparis kumokiri and Liparis makinoana (Orchidaceae) in sympatric populations. Mol Ecol 2005; 14:4389-402. [PMID: 16313600 DOI: 10.1111/j.1365-294x.2005.02738.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We investigated the potential for gene flow and genetic assimilation via hybridization between common and rare species of the terrestrial orchid genus Liparis, focusing specifically on sympatric and allopatric populations of the common Liparis kumokiri and the rare Liparis makinoana. We utilized analyses of genetic diversity, morphology, and the spatial distributions of individuals and genotypes to quantify the dynamics of interspecific gene flow at within- and among-population scales. High levels of allozyme genetic diversity (HE) were found in populations of the rare L. makinoana (0.317), whereas the common L. kumokiri (N = 1744 from 14 populations) revealed a complete lack of variation. This contrast may reflect different breeding systems and associated rates of genetic drift (L. makinoana is self-incompatible, whereas L. kumokiri is self-compatible). At the two known sympatric sites, individuals were found that recombined parental phenotypes, possessing floral characteristics of L. kumokiri and vegetative characteristics of L. makinoana. These putative hybrids were the only individuals found segregating alleles diagnostic of both parental species. Analysis of these individuals indicated that hybrid genotypes were skewed towards L. kumokiri and later generation recombinants of L. kumokiri at both sympatric sites. Furthermore, Ripley's bivariate L(r) statistics revealed that at one site these hybrids are strongly spatially clustered with L. kumokiri. Nonetheless, the relatively low frequency of hybrids, absence of ongoing hybridization (no F1s or first generation backcrossess), and strong genetic differentiation between morphologically 'pure' parental populations at sympatric sites (FST = 0.708-0.816) indicates that hybridization was not an important bridge for gene flow. The results from these two species suggest that natural hybridization has not played an important role in the diversification of Liparis, but instead support the view that genetic drift and limited gene flow are primarily responsible for speciation in Liparis. Based on genetic data and current status of the species, implications of the research for conservation are considered to provide guidelines for appropriate conservation and management strategies.
Collapse
Affiliation(s)
- Mi Yoon Chung
- Department of Biology, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | |
Collapse
|
32
|
Baack EJ, Whitney KD, Rieseberg LH. Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. THE NEW PHYTOLOGIST 2005; 167:623-30. [PMID: 15998412 PMCID: PMC2442926 DOI: 10.1111/j.1469-8137.2005.01433.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hybridization and polyploidy can induce rapid genomic changes, including the gain or loss of DNA, but the magnitude and timing of such changes are not well understood. The homoploid hybrid system in Helianthus (three hybrid-derived species and their two parents) provides an opportunity to examine the link between hybridization and genome size changes in a replicated fashion. Flow cytometry was used to estimate the nuclear DNA content in multiple populations of three homoploid hybrid Helianthus species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus), the parental species (Helianthus annuus and Helianthus petiolaris), synthetic hybrids, and natural hybrid-zone populations. Results confirm that hybrid-derived species have 50% more nuclear DNA than the parental species. Despite multiple origins, hybrid species were largely consistent in their DNA content across populations, although H. deserticola showed significant interpopulation differences. First- and sixth-generation synthetic hybrids and hybrid-zone plants did not show an increase from parental DNA content. First-generation hybrids differed in DNA content according to the maternal parent. In summary, hybridization by itself does not lead to increased nuclear DNA content in Helianthus, and the evolutionary forces responsible for the repeated increases in DNA content seen in the hybrid-derived species remain mysterious.
Collapse
Affiliation(s)
- Eric J Baack
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
33
|
Peterson MA, Honchak BM, Locke SE, Beeman TE, Mendoza J, Green J, Buckingham KJ, White MA, Monsen KJ. RELATIVE ABUNDANCE AND THE SPECIES-SPECIFIC REINFORCEMENT OF MALE MATING PREFERENCE IN THE CHRYSOCHUS (COLEOPTERA: CHRYSOMELIDAE) HYBRID ZONE. Evolution 2005. [DOI: 10.1554/05-120.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Nürnberger B, Barton NH, Kruuk LEB, Vines TH. Mating patterns in a hybrid zone of fire-bellied toads (Bombina): inferences from adult and full-sib genotypes. Heredity (Edinb) 2004; 94:247-57. [PMID: 15536484 DOI: 10.1038/sj.hdy.6800607] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We present two novel methods to infer mating patterns from genetic data. They differ from existing statistical methods of parentage inference in that they apply to populations that deviate from Hardy-Weinberg and linkage equilibrium, and so are suited for the study of assortative mating in hybrid zones. The core data set consists of genotypes at several loci for a number of full-sib clutches of unknown parentage. Our inference is based throughout on estimates of allelic associations within and across loci, such as heterozygote deficit and pairwise linkage disequilibrium. In the first method, the most likely parents of a given clutch are determined from the genotypic distribution of the associated adult population, given an explicit model of nonrandom mating. This leads to estimates of the strength of assortment. The second approach is based solely on the offspring genotypes and relies on the fact that a linear relation exists between associations among the offspring and those in the population of breeding pairs. We apply both methods to a sample from the hybrid zone between the fire-bellied toads Bombina bombina and B. variegata (Anura: Disco glossidae) in Croatia. Consistently, both approaches provide no evidence for a departure from random mating, despite adequate statistical power. Instead, B. variegata-like individuals among the adults contributed disproportionately to the offspring cohort, consistent with their preference for the type of breeding habitat in which this study was conducted.
Collapse
Affiliation(s)
- B Nürnberger
- Department Biologie II, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| | | | | | | |
Collapse
|
35
|
Relationship between morphometric and genetic variation in pure and hybrid populations of the smooth and Montandons newt (Triturus vulgaris and T. montandoni). J Zool (1987) 2004. [DOI: 10.1017/s0952836903004369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
|
37
|
Phillips BL, Baird SJE, Moritz C. WHEN VICARS MEET: A NARROW CONTACT ZONE BETWEEN MORPHOLOGICALLY CRYPTIC PHYLOGEOGRAPHIC LINEAGES OF THE RAINFOREST SKINK, CARLIA RUBRIGULARIS. Evolution 2004. [DOI: 10.1554/02-498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Watano Y, Kanai A, Tani N. Genetic structure of hybrid zones between Pinus pumila and P. parviflora var. pentaphylla (Pinaceae) revealed by molecular hybrid index analysis. AMERICAN JOURNAL OF BOTANY 2004; 91:65-72. [PMID: 21653364 DOI: 10.3732/ajb.91.1.65] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pinus species have three differently inherited genomes: paternal chloroplast, maternal mitochondrial, and biparental nuclear. Our previous study on the hybrid zones between alpine Pinus pumila and montane to subalpine P. parviflora var. pentaphylla demonstrated contrasting patterns of introgression of two cytoplasmic genomes, i.e., the paternal cpDNA flowed from P. parviflora var. pentaphylla to P. pumila, and the maternal mtDNA flowed in the reverse direction. In the present study, we developed codominant nuclear DNA markers diagnostic or mostly diagnostic for each parental species by single-strand conformation polymorphism (SSCP) of polymerase chain reaction (PCR) products, using expressed sequence tag (EST) primers of Pinus taeda. To describe the introgressive patterns of the nuclear genes, the molecular hybrid index (MHI) showing the overall proportion of alleles inferred to be derived from P. pumila was determined for each plant collected in hybrid zones on Mt. Asahidake and Mt. Higashiazuma, Japan. At Mt. Asahidake, the MHI values changed clinally according to the altitudes at which the plants were collected. However, at Mt. Higashiazuma, there was a gap in the MHI values between the plants above and below the Abies and Tsuga forest zone (alt. 1800-1900 m). This suggested that the zone plays a role in creating an effective barrier to gene flow in the hybrid zone.
Collapse
Affiliation(s)
- Yasuyuki Watano
- Department of Biology, Faculty of Science, Chiba University, Yayoi, Inage, Chiba 263-8522, Japan
| | | | | |
Collapse
|
39
|
Gross BL, Schwarzbach AE, Rieseberg LH. Origin(s) of the diploid hybrid species Helianthus deserticola (Asteraceae). AMERICAN JOURNAL OF BOTANY 2003; 90:1708-19. [PMID: 21653347 DOI: 10.3732/ajb.90.12.1708] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Homoploid hybrid speciation has traditionally been considered a rare event, dependent on the establishment of both a novel, balanced genotype and reproductive isolating barriers between the new species and its progenitors. However, more recent studies have shown that synthetic hybrids converge toward the chromosomal structure of natural hybrids after only a few generations, suggesting that this phenomenon may be more frequent than previously assumed. Here, the possibility that the diploid hybrid species Helianthus deserticola arose from more than one hybrid speciation event was investigated using patterns of variation from cpDNA, 18 nuclear microsatellite loci, and population interfertility. Helianthus deserticola contains cpDNA haplotypes characteristic of both parental species, is polyphyletic with one parental species based on nine microsatellite loci, and has a high degree of interfertility among populations. The data are consistent with either a single origin followed by introgression with the parental species or multiple origins. Analysis of microsatellite variation places the origin of H. deserticola between 170 000 and 63 000 years before present, making it unlikely that anthropogenic disturbances influenced its origin. Finally, the hybrid species generally has lower levels of genetic diversity but higher levels of differentiation among populations than either parental species.
Collapse
Affiliation(s)
- Briana L Gross
- Department of Biology, Indiana University, Jordan Hall 142, 1001 East Third Street, Bloomington, Indiana 47405 USA
| | | | | |
Collapse
|
40
|
Redenbach Z, Taylor EB. Evidence for bimodal hybrid zones between two species of char (Pisces: Salvelinus) in northwestern North America. J Evol Biol 2003; 16:1135-48. [PMID: 14640405 DOI: 10.1046/j.1420-9101.2003.00619.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dolly Varden (Salvelinus malma, Pisces: Salmonidae) and bull trout (Salvelinus confluentus) have widely overlapping, but largely parapatric ranges in watersheds in northwestern North America from Washington State to northern British Columbia. Genetic analysis of natural populations using diagnostic molecular markers revealed widespread local sympatry and hybridization with hybrids comprising 0-25% of the local samples. In a detailed analysis of hybridization using four nuclear DNA markers and mitochondrial DNA within the Thutade Lake watershed, northcentral British Columbia, hybrid genotypes constituted up to 9% of the population of juvenile char. There were significant deviations from Hardy-Weinberg, gametic, and cytonuclear equilibria, and local samples showed bimodal frequency distributions of genotypes. Pure parental and inferred backcross genotypes were most common, and F1 and F(n) hybrids were comparatively rare. Interspecific hybridization was asymmetrical, with most F1 hybrids (five of six) bearing S. confluentus mtDNA. The introgression of nuclear and mitochondrial alleles was asymmetrical, with S. confluentus mtDNA and Growth Hormone 2 introgressing into S. malma significantly more than either introgression of the three other nuclear loci, or introgression of S. malma alleles into S. confluentus. Substantial prezygotic isolation between the species likely depends on the large body size difference between them in sympatry: S. malma have small bodies and a stream resident life history (12-21 cm adult fork length at maturity), while S. confluentus are larger and adfluvial, i.e., they migrate to Thutade Lake where they grow to maturity before returning to tributary streams to spawn (40-90 cm at maturity). These traits may limit interspecific pairings because of size assortative pairing and size-dependent reproductive habitat use.
Collapse
Affiliation(s)
- Z Redenbach
- Department of Zoology, Native Fish Research Group, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
41
|
Lamont BB, He T, Enright NJ, Krauss SL, Miller BP. Anthropogenic disturbance promotes hybridization between Banksia species by altering their biology. J Evol Biol 2003; 16:551-7. [PMID: 14632219 DOI: 10.1046/j.1420-9101.2003.00548.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Putative hybrids between Banksia hookeriana and B. prionotes were identified among 12 of 106 populations of B. hookeriana located at or near anthropogenically disturbed sites, mainly roadways, but none in 156 undisturbed populations. Morphometrics and AFLP markers confirmed that a hybrid swarm existed in a selected disturbed habitat, whereas no intermediates were present where the two species co-occurred in undisturbed vegetation. Individuals of both species in disturbed habitats at 12 sites were more vigorous, with greater size and more flower heads than their counterparts in undisturbed vegetation. These more fecund plants also showed a shift in season and duration of flowering. By promoting earlier flowering of B. hookeriana plants and prolonging flowering of B. prionotes, anthropogenic disturbance broke the phenological barrier between these two species. We conclude that anthropogenic disturbance promotes hybridization through increasing opportunities for gene flow by reducing interpopulation separation, increasing gamete production and, especially, promoting coflowering.
Collapse
Affiliation(s)
- B B Lamont
- Department of Environmental Biology, Curtin University of Technology, Perth, Australia.
| | | | | | | | | |
Collapse
|
42
|
Babik W, Szymura JM, Rafiński J. Nuclear markers, mitochondrial DNA and male secondary sexual traits variation in a newt hybrid zone (Triturus vulgaris x T. montandoni). Mol Ecol 2003; 12:1913-30. [PMID: 12803641 DOI: 10.1046/j.1365-294x.2003.01880.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The smooth and the Montandon's newts (Triturus vulgaris and T. montandoni) are genetically similar sister species with highly divergent male secondary sexual traits involved in complex courtship behaviour. Their parapatric ranges overlap at moderate elevations in the Carpathian Mountains where they hybridize readily. Here we present a detailed study of genetic and morphological variation in populations from the area of sympatry. Analysis of variation at seven nuclear markers, mtDNA and male sexual secondary traits was complemented with an ecological survey of breeding sites characteristics. Extensive hybridization was revealed with back-cross individuals similar to either parental species predominating among hybrids. The hybrid zone exhibited a mosaic pattern: the genetic composition of the populations was correlated only weakly with their geographical position. No association with habitat type was found. Departures from Hardy-Weinberg proportions, significant linkage disequilibria and bimodal distribution of genotypes suggest strongly that assortative mating is an important factor shaping the genetic composition of hybrid populations. The pattern of cytonuclear disequilibria did not indicate much asymmetry in interspecific matings. Changes in the frequency of nuclear markers were highly concordant, whereas mtDNA showed much wider bidirectional introgression with 14% excess of T. montandoni haplotype. We argue that the mosaic structure of the newt hybrid zone results mainly from stochastic processes related to extinction and recolonization. Microgeographical differences in mtDNA introgression are explained by historical range shifts. Since morphologically intermediate males were underrepresented when compared to hybrid males identified by genetic markers, sexual selection acting against the morphological intermediates is implied. We discuss the implications of these findings in the context of reinforcement of prezygotic isolation in newts.
Collapse
Affiliation(s)
- W Babik
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland.
| | | | | |
Collapse
|
43
|
|
44
|
Abstract
The recurrent origin of diploid hybrid species is theoretically improbable because of the enormous diversity of hybrid genotypes generated by recombination. Recent greenhouse experiments, however, indicate that the genomic composition of hybrid lineages is shaped in part by deterministic forces, and that recurrent diploid hybrid speciation may be more feasible than previously believed. Here we use patterns of variation from chloroplast DNA (cpDNA), nuclear microsatellite loci, cross-viability and chromosome structure to assess whether a well-characterized diploid hybrid sunflower species, Helianthus anomalus, was derived on multiple occasions from its parental species, H. annuus and H. petiolaris. Chloroplast DNA and crossability data were most consistent with a scenario in which H. anomalus arose three times: three different H. anomalus fertility groups were discovered, each with a unique cpDNA haplotype. In contrast, there was no clear signature of multiple, independent origins from the microsatellite loci. Given the age of H. anomalus (> 100 000 years bp), it may be that microsatellite evidence for recurrent speciation has been eroded by mutation and gene flow through pollen.
Collapse
Affiliation(s)
- A E Schwarzbach
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | |
Collapse
|
45
|
Rogers SM, Campbell D, Baird SJ, Danzmann RG, Bernatchez L. Combining the analyses of introgressive hybridisation and linkage mapping to investigate the genetic architecture of population divergence in the lake whitefish (Coregonus clupeaformis, Mitchill). Genetica 2002; 111:25-41. [PMID: 11841170 DOI: 10.1023/a:1013773600304] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adaptation and reproductive isolation, the engines of biological diversity, are still elusive when discussing the genetic bases of speciation. Namely, the number of genes and magnitude of selection acting positively or negatively on genomic traits implicated in speciation is contentious. Here, we describe the first steps of an ongoing research program aimed at understanding the genetic bases of population divergence and reproductive isolation in the lake whitefish (Coregonus clupeaformis). A preliminary linkage map originating from a hybrid cross between dwarf and normal ecotypes is presented, whereby some of the segregating AFLP markers were found to be conserved among natural populations. Maximum-likelihood was used to estimate hybrid indices from non-diagnostic markers at 998 AFLP loci. This allowed identification of the most likely candidate loci that have been under the influence of selection during the natural hybridisation of whitefish originating from different glacial races. As some of these loci could be identified on the linkage map, the possibility that selection of traits in natural populations may eventually be correlated to specific chromosomal regions was demonstrated. The future prospects and potential of these approaches to elucidate the genetic bases of adaptation and reproductive isolation among sympatric ecotypes of lake whitefish is discussed.
Collapse
Affiliation(s)
- S M Rogers
- Groupe interuniversitaire de recherches oceanographiques du Québec (GIROQ), Département de Biologie, Université Laval, Ste-Foy, Québec, Canada
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Nason JD, Heard SB, Williams FR. HOST-ASSOCIATED GENETIC DIFFERENTIATION IN THE GOLDENROD ELLIPTICAL-GALL MOTH, GNORIMOSCHEMA GALLAESOLIDAGINIS (LEPIDOPTERA: GELECHIIDAE). Evolution 2002. [DOI: 10.1554/0014-3820(2002)056[1475:hagdit]2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Abstract
Barriers to gene flow between species result from selection against foreign linkage blocks in hybrids. When the geographic ranges of taxa meet at multiple locations, the opportunity exists for variation in the genetic architecture of isolating barriers. Hybrid zones between two sunflower species (Helianthus annuus and H. petiolaris) in Nebraska and California exhibited remarkably similar patterns of introgression of mapped molecular markers. Congruence among hybrid zones may result from limited intraspecific variation at loci contributing to isolation and from similar selective effects of alleles in the heterospecific genetic background. The observed consistency of introgression patterns across distantly separated hybrid zones suggests that intrinsic forces predominate in determining hybrid zone dynamics and boundaries between these sunflower species.
Collapse
Affiliation(s)
- C A Buerkle
- Department of Biology, Indiana University, Bloomington 47405, USA.
| | | |
Collapse
|
49
|
Brumfield RT, Jernigan RW, McDonald DB, Braun MJ. EVOLUTIONARY IMPLICATIONS OF DIVERGENT CLINES IN AN AVIAN (MANACUS: AVES) HYBRID ZONE. Evolution 2001. [DOI: 10.1554/0014-3820(2001)055[2070:eiodci]2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Buerkle CA, Morris RJ, Asmussen MA, Rieseberg LH. The likelihood of homoploid hybrid speciation. Heredity (Edinb) 2000; 84 ( Pt 4):441-51. [PMID: 10849068 DOI: 10.1046/j.1365-2540.2000.00680.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New species may be formed through hybridization and without an increase in ploidy. The challenge is for hybrid derivatives to escape the homogenizing effects of gene flow from parental species. The mechanisms hypothesized to underlie this process were modelled using a computer simulation. The model is of recombinational speciation, in which chromosomal rearrangements between parental species result in poor fertility of F1 hybrids, but through recombination, novel homozygous types are formed that have restored fertility. In simulations, stable populations bearing the recombinant karyotypes originated frequently and were maintained when the fertility of F1 hybrids was high. However, this high rate of origination was offset by low genetic isolation, and lower F1 hybrid fertility increased the evolutionary independence of derived populations. In addition, simulations showed that ecological and spatial isolation were required to achieve substantial reproductive isolation of incipient species. In the model, the opportunity for ecological isolation arose as a result of adaptation to extreme habitats not occupied by parental species, and any form of spatial isolation (e.g. founder events) contributed to genetic isolation. Our results confirmed the importance of the combination of factors that had been emphasized in verbal models and illustrate the trade-off between the frequency at which hybrid species arise and the genetic integrity of incipient species.
Collapse
Affiliation(s)
- C A Buerkle
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|