1
|
Camaiti M, Hutchinson MN, Hipsley CA, Aguilar R, Black J, Chapple DG, Evans AR. Patterns of girdle shape and their correlates in Australian limb-reduced skinks. Proc Biol Sci 2024; 291:20241653. [PMID: 39353558 PMCID: PMC11444766 DOI: 10.1098/rspb.2024.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
The evolution of limb reduction in squamates is a classic example of convergence, but the skeletal morphological patterns associated with it are underexplored. To provide insights on the biomechanical and developmental consequences of transitions to limb reduction, we use geometric morphometrics to examine the morphology of pectoral and pelvic girdles in 90 species of limb-reduced skinks and their fully limbed relatives. Clavicle shapes converge towards an acute anterior bend when forelimbs are lost but hindlimbs are retained-a morphology typical of sand-swimmers. This may either indicate functional adaptations to locomotion in fine substrates, or a developmental consequence of complete limb loss. The shape of limb-bearing elements of both girdles (coracoid and pelvis) instead closely mirrors limb reduction, becoming more simplified as undulation replaces limbed locomotion. Integration between girdles decreases in taxa lacking elements of the forelimbs but not hindlimbs, indicating differential selection on each girdle in response to distinct locomotory strategies. However, this pattern becomes less clear when considering phylogenetic history, perhaps because it is limited to one specific clade (Lerista). We show how the functional demands of locomotion can induce changes at different levels of organismal organization, including both external and internal structures.
Collapse
Affiliation(s)
- Marco Camaiti
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Life Sciences, Natural History Museum, LondonSW7 5BD, UK
| | - Mark N. Hutchinson
- South Australian Museum, Adelaide, South Australia, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Faculty of Science and Engineering, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | | | - Rocio Aguilar
- Department of Sciences, Museums Victoria, Carlton, Victoria, Australia
| | - Jay Black
- School of Earth Sciences, University of Melbourne, Carlton, Victoria, Australia
| | - David G. Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Alistair R. Evans
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Itoh T, Kondo Y, Aoki K, Saito N. Revisiting the evolution of bow-tie architecture in signaling networks. NPJ Syst Biol Appl 2024; 10:70. [PMID: 38951549 PMCID: PMC11217396 DOI: 10.1038/s41540-024-00396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Bow-tie architecture is a layered network structure that has a narrow middle layer with multiple inputs and outputs. Such structures are widely seen in the molecular networks in cells, suggesting that a universal evolutionary mechanism underlies the emergence of bow-tie architecture. The previous theoretical studies have implemented evolutionary simulations of the feedforward network to satisfy a given input-output goal and proposed that the bow-tie architecture emerges when the ideal input-output relation is given as a rank-deficient matrix with mutations in network link intensities in a multiplicative manner. Here, we report that the bow-tie network inevitably appears when the link intensities representing molecular interactions are small at the initial condition of the evolutionary simulation, regardless of the rank of the goal matrix. Our dynamical system analysis clarifies the mechanisms underlying the emergence of the bow-tie structure. Further, we demonstrate that the increase in the input-output matrix reduces the width of the middle layer, resulting in the emergence of bow-tie architecture, even when evolution starts from large link intensities. Our data suggest that bow-tie architecture emerges as a side effect of evolution rather than as a result of evolutionary adaptation.
Collapse
Affiliation(s)
- Thoma Itoh
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Yohei Kondo
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Kazuhiro Aoki
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Nen Saito
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, 739-8511, Japan.
| |
Collapse
|
3
|
Kitano J, Ansai S, Takehana Y, Yamamoto Y. Diversity and Convergence of Sex-Determination Mechanisms in Teleost Fish. Annu Rev Anim Biosci 2024; 12:233-259. [PMID: 37863090 DOI: 10.1146/annurev-animal-021122-113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Sexual reproduction is prevalent across diverse taxa. However, sex-determination mechanisms are so diverse that even closely related species often differ in sex-determination systems. Teleost fish is a taxonomic group with frequent turnovers of sex-determining mechanisms and thus provides us with great opportunities to investigate the molecular and evolutionary mechanisms underlying the turnover of sex-determining systems. Here, we compile recent studies on the diversity of sex-determination mechanisms in fish. We demonstrate that genes in the TGF-β signaling pathway are frequently used for master sex-determining (MSD) genes. MSD genes arise via two main mechanisms, duplication-and-transposition and allelic mutations, with a few exceptions. We also demonstrate that temperature influences sex determination in many fish species, even those with sex chromosomes, with higher temperatures inducing differentiation into males in most cases. Finally, we review theoretical models for the turnover of sex-determining mechanisms and discuss what questions remain elusive.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan;
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
| | - Yusuke Takehana
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan;
| | - Yoji Yamamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan;
| |
Collapse
|
4
|
Wang X, Li J, Han L, Liang C, Li J, Shang X, Miao X, Luo Z, Zhu W, Li Z, Li T, Qi Y, Li H, Lu X, Li L. QTG-Miner aids rapid dissection of the genetic base of tassel branch number in maize. Nat Commun 2023; 14:5232. [PMID: 37633966 PMCID: PMC10460418 DOI: 10.1038/s41467-023-41022-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
Genetic dissection of agronomic traits is important for crop improvement and global food security. Phenotypic variation of tassel branch number (TBN), a major breeding target, is controlled by many quantitative trait loci (QTLs). The lack of large-scale QTL cloning methodology constrains the systematic dissection of TBN, which hinders modern maize breeding. Here, we devise QTG-Miner, a multi-omics data-based technique for large-scale and rapid cloning of quantitative trait genes (QTGs) in maize. Using QTG-Miner, we clone and verify seven genes underlying seven TBN QTLs. Compared to conventional methods, QTG-Miner performs well for both major- and minor-effect TBN QTLs. Selection analysis indicates that a substantial number of genes and network modules have been subjected to selection during maize improvement. Selection signatures are significantly enriched in multiple biological pathways between female heterotic groups and male heterotic groups. In summary, QTG-Miner provides a large-scale approach for rapid cloning of QTGs in crops and dissects the genetic base of TBN for further maize breeding.
Collapse
Affiliation(s)
- Xi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chengyong Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiaxin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tianhuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yongwen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Huihui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
5
|
Kitano J, Ishikawa A, Ravinet M, Courtier-Orgogozo V. Genetic basis of speciation and adaptation: from loci to causative mutations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200503. [PMID: 35634921 PMCID: PMC9149796 DOI: 10.1098/rstb.2020.0503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Does evolution proceed in small steps or large leaps? How repeatable is evolution? How constrained is the evolutionary process? Answering these long-standing questions in evolutionary biology is indispensable for both understanding how extant biodiversity has evolved and predicting how organisms and ecosystems will respond to changing environments in the future. Understanding the genetic basis of phenotypic diversification and speciation in natural populations is key to properly answering these questions. The leap forward in genome sequencing technologies has made it increasingly easier to not only investigate the genetic architecture but also identify the variant sites underlying adaptation and speciation in natural populations. Furthermore, recent advances in genome editing technologies are making it possible to investigate the functions of each candidate gene in organisms from natural populations. In this article, we discuss how these recent technological advances enable the analysis of causative genes and mutations and how such analysis can help answer long-standing evolutionary biology questions. This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Laboratory of Molecular Ecological Genetics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Chiba 277-8562, Japan
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
6
|
Luecke D, Rice G, Kopp A. Sex-specific evolution of a Drosophila sensory system via interacting cis- and trans-regulatory changes. Evol Dev 2022; 24:37-60. [PMID: 35239254 PMCID: PMC9179014 DOI: 10.1111/ede.12398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
Abstract
The evolution of gene expression via cis-regulatory changes is well established as a major driver of phenotypic evolution. However, relatively little is known about the influence of enhancer architecture and intergenic interactions on regulatory evolution. We address this question by examining chemosensory system evolution in Drosophila. Drosophila prolongata males show a massively increased number of chemosensory bristles compared to females and males of sibling species. This increase is driven by sex-specific transformation of ancestrally mechanosensory organs. Consistent with this phenotype, the Pox neuro transcription factor (Poxn), which specifies chemosensory bristle identity, shows expanded expression in D. prolongata males. Poxn expression is controlled by nonadditive interactions among widely dispersed enhancers. Although some D. prolongata Poxn enhancers show increased activity, the additive component of this increase is slight, suggesting that most changes in Poxn expression are due to epistatic interactions between Poxn enhancers and trans-regulatory factors. Indeed, the expansion of D. prolongata Poxn enhancer activity is only observed in cells that express doublesex (dsx), the gene that controls sexual differentiation in Drosophila and also shows increased expression in D. prolongata males due to cis-regulatory changes. Although expanded dsx expression may contribute to increased activity of D. prolongata Poxn enhancers, this interaction is not sufficient to explain the full expansion of Poxn expression, suggesting that cis-trans interactions between Poxn, dsx, and additional unknown genes are necessary to produce the derived D. prolongata phenotype. Overall, our results demonstrate the importance of epistatic gene interactions for evolution, particularly when pivotal genes have complex regulatory architecture.
Collapse
Affiliation(s)
- David Luecke
- Department of Evolution and Ecology, University of California – Davis,Current Address: Department of Integrative Biology, Michigan State University
| | - Gavin Rice
- Department of Evolution and Ecology, University of California – Davis,Current Address: Department of Biological Sciences, University of Pittsburgh
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California – Davis
| |
Collapse
|
7
|
Reeve J, Li Q, Lindtke D, Yeaman S. Comparing genome scans among species of the stickleback order reveals three different patterns of genetic diversity. Ecol Evol 2022; 12:e8502. [PMID: 35127027 PMCID: PMC8796908 DOI: 10.1002/ece3.8502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Comparing genome scans among species is a powerful approach for investigating the patterns left by evolutionary processes. In particular, this offers a way to detect candidate genes that drive convergent evolution. We compared genome scan results to investigate if patterns of genetic diversity and divergence are shared among divergent species within the stickleback order (Gasterosteiformes): the threespine stickleback (Gasterosteus aculeatus), ninespine stickleback (Pungitius pungitus), and tubesnout (Aulorhynchus flavidus). Populations were sampled from the southern and northern edges of each species' range, to identify patterns associated with latitudinal changes in genetic diversity. Weak correlations in genetic diversity (F ST and expected heterozygosity) and three different patterns in the genomic landscape were found among these species. Additionally, no candidate genes for convergent evolution were detected. This is a counterexample to the growing number of studies that have shown overlapping genetic patterns, demonstrating that genome scan comparisons can be noisy due to the effects of several interacting evolutionary forces.
Collapse
Affiliation(s)
- James Reeve
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Tjärnö Marina LaboratoriumGöteborgs UniversitetStrömstadSweden
| | - Qiushi Li
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Dorothea Lindtke
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Samuel Yeaman
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
8
|
Massey JH, Li J, Stern DL, Wittkopp PJ. Distinct genetic architectures underlie divergent thorax, leg, and wing pigmentation between Drosophila elegans and D. gunungcola. Heredity (Edinb) 2021; 127:467-474. [PMID: 34537820 PMCID: PMC8551284 DOI: 10.1038/s41437-021-00467-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pigmentation divergence between Drosophila species has emerged as a model trait for studying the genetic basis of phenotypic evolution, with genetic changes contributing to pigmentation differences often mapping to genes in the pigment synthesis pathway and their regulators. These studies of Drosophila pigmentation have tended to focus on pigmentation changes in one body part for a particular pair of species, but changes in pigmentation are often observed in multiple body parts between the same pair of species. The similarities and differences of genetic changes responsible for divergent pigmentation in different body parts of the same species thus remain largely unknown. Here we compare the genetic basis of pigmentation divergence between Drosophila elegans and D. gunungcola in the wing, legs, and thorax. Prior work has shown that regions of the genome containing the pigmentation genes yellow and ebony influence the size of divergent male-specific wing spots between these two species. We find that these same two regions of the genome underlie differences in leg and thorax pigmentation; however, divergent alleles in these regions show differences in allelic dominance and epistasis among the three body parts. These complex patterns of inheritance can be explained by a model of evolution involving tissue-specific changes in the expression of Yellow and Ebony between D. elegans and D. gunungcola.
Collapse
Affiliation(s)
- Jonathan H Massey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jun Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Bohutínská M, Vlček J, Yair S, Laenen B, Konečná V, Fracassetti M, Slotte T, Kolář F. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Proc Natl Acad Sci U S A 2021; 118:e2022713118. [PMID: 34001609 PMCID: PMC8166048 DOI: 10.1073/pnas.2022713118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parallel adaptation provides valuable insight into the predictability of evolutionary change through replicated natural experiments. A steadily increasing number of studies have demonstrated genomic parallelism, yet the magnitude of this parallelism varies depending on whether populations, species, or genera are compared. This led us to hypothesize that the magnitude of genomic parallelism scales with genetic divergence between lineages, but whether this is the case and the underlying evolutionary processes remain unknown. Here, we resequenced seven parallel lineages of two Arabidopsis species, which repeatedly adapted to challenging alpine environments. By combining genome-wide divergence scans with model-based approaches, we detected a suite of 151 genes that show parallel signatures of positive selection associated with alpine colonization, involved in response to cold, high radiation, short season, herbivores, and pathogens. We complemented these parallel candidates with published gene lists from five additional alpine Brassicaceae and tested our hypothesis on a broad scale spanning ∼0.02 to 18 My of divergence. Indeed, we found quantitatively variable genomic parallelism whose extent significantly decreased with increasing divergence between the compared lineages. We further modeled parallel evolution over the Arabidopsis candidate genes and showed that a decreasing probability of repeated selection on the same standing or introgressed alleles drives the observed pattern of divergence-dependent parallelism. We therefore conclude that genetic divergence between populations, species, and genera, affecting the pool of shared variants, is an important factor in the predictability of genome evolution.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic;
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - Jakub Vlček
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
- Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Sivan Yair
- Center for Population Biology, University of California, Davis, CA 95616
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Veronika Konečná
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - Marco Fracassetti
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic;
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| |
Collapse
|
10
|
Moore MP, Martin RA. Natural Selection on Adults Has Trait-Dependent Consequences for Juvenile Evolution in Dragonflies. Am Nat 2021; 197:677-689. [PMID: 33989138 DOI: 10.1086/714048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAlthough natural selection often fluctuates across ontogeny, it remains unclear what conditions enable selection in one life-cycle stage to shape evolution in others. Organisms that undergo metamorphosis are useful for addressing this topic because their highly specialized life-cycle stages cannot always evolve independently despite their dramatic life-history transition. Using a comparative study of dragonflies, we examined three conditions that are hypothesized to allow selection in one stage to affect evolution in others. First, we tested whether lineages with less dramatic metamorphosis (e.g., hemimetabolous insects) lack the capacity for stage-specific evolution. Rejecting this hypothesis, we found that larval body shape evolves independently from selection on adult shape. Next, we evaluated whether stage-specific evolution is limited for homologous and/or coadapted structures. Indeed, we found that selection for larger wings is associated with the evolution of coadapted larval sheaths that store developing wing tissue. Finally, we assessed whether stage-specific evolution is restricted for traits linked to a single biochemical pathway. Supporting this hypothesis, we found that species with more wing melanization in the adult stage have evolved weaker melanin immune defenses in the larval stage. Thus, our results collectively show that natural selection in one stage imposes trait-dependent constraints on evolution in others.
Collapse
|
11
|
Wheeler LC, Wing BA, Smith SD. Structure and contingency determine mutational hotspots for flower color evolution. Evol Lett 2021; 5:61-74. [PMID: 33552536 PMCID: PMC7857289 DOI: 10.1002/evl3.212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/26/2020] [Accepted: 11/25/2020] [Indexed: 01/26/2023] Open
Abstract
Evolutionary genetic studies have uncovered abundant evidence for genomic hotspots of phenotypic evolution, as well as biased patterns of mutations at those loci. However, the theoretical basis for this concentration of particular types of mutations at particular loci remains largely unexplored. In addition, historical contingency is known to play a major role in evolutionary trajectories, but has not been reconciled with the existence of such hotspots. For example, do the appearance of hotspots and the fixation of different types of mutations at those loci depend on the starting state and/or on the nature and direction of selection? Here, we use a computational approach to examine these questions, focusing the anthocyanin pigmentation pathway, which has been extensively studied in the context of flower color transitions. We investigate two transitions that are common in nature, the transition from blue to purple pigmentation and from purple to red pigmentation. Both sets of simulated transitions occur with a small number of mutations at just four loci and show strikingly similar peaked shapes of evolutionary trajectories, with the mutations of the largest effect occurring early but not first. Nevertheless, the types of mutations (biochemical vs. regulatory) as well as their direction and magnitude are contingent on the particular transition. These simulated color transitions largely mirror findings from natural flower color transitions, which are known to occur via repeated changes at a few hotspot loci. Still, some types of mutations observed in our simulated color evolution are rarely observed in nature, suggesting that pleiotropic effects further limit the trajectories between color phenotypes. Overall, our results indicate that the branching structure of the pathway leads to a predictable concentration of evolutionary change at the hotspot loci, but the types of mutations at these loci and their order is contingent on the evolutionary context.
Collapse
Affiliation(s)
- Lucas C. Wheeler
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| | - Boswell A. Wing
- Department of Geological SciencesUniversity of ColoradoBoulderCOUSA
| | - Stacey D. Smith
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| |
Collapse
|
12
|
Kakioka R, Mori S, Kokita T, Hosoki TK, Nagano AJ, Ishikawa A, Kume M, Toyoda A, Kitano J. Multiple waves of freshwater colonization of the three-spined stickleback in the Japanese Archipelago. BMC Evol Biol 2020; 20:143. [PMID: 33143638 PMCID: PMC7641863 DOI: 10.1186/s12862-020-01713-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/27/2020] [Indexed: 12/03/2022] Open
Abstract
Background The three-spined stickleback (Gasterosteus aculeatus) is a remarkable system to study the genetic mechanisms underlying parallel evolution during the transition from marine to freshwater habitats. Although the majority of previous studies on the parallel evolution of sticklebacks have mainly focused on postglacial freshwater populations in the Pacific Northwest of North America and northern Europe, we recently use Japanese stickleback populations for investigating shared and unique features of adaptation and speciation between geographically distant populations. However, we currently lack a comprehensive phylogeny of the Japanese three-spined sticklebacks, despite the fact that a good phylogeny is essential for any evolutionary and ecological studies. Here, we conducted a phylogenomic analysis of the three-spined stickleback in the Japanese Archipelago. Results We found that freshwater colonization occurred in multiple waves, each of which may reflect different interglacial isolations. Some of the oldest freshwater populations from the central regions of the mainland of Japan (hariyo populations) were estimated to colonize freshwater approximately 170,000 years ago. The next wave of colonization likely occurred approximately 100,000 years ago. The inferred origins of several human-introduced populations showed that introduction occurred mainly from nearby habitats. We also found a new habitat of the three-spined stickleback sympatric with the Japan Sea stickleback (Gasterosteus nipponicus). Conclusions These Japanese stickleback systems differ from those in the Pacific Northwest of North America and northern Europe in terms of divergence time and history. Stickleback populations in the Japanese Archipelago offer valuable opportunities to study diverse evolutionary processes in historical and contemporary timescales.
Collapse
Affiliation(s)
- Ryo Kakioka
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Nakagami-gun, Okinawa, 903-0213, Japan
| | - Seiichi Mori
- Biological Laboratory, Gifu Kyoritsu University, Ogaki, Gifu, 503-8550, Japan
| | - Tomoyuki Kokita
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Takuya K Hosoki
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan
| | - Manabu Kume
- Field Science Education and Research Center, Kyoto University, Kyoto, 606-8502, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
13
|
QTG-Finder2: A Generalized Machine-Learning Algorithm for Prioritizing QTL Causal Genes in Plants. G3-GENES GENOMES GENETICS 2020; 10:2411-2421. [PMID: 32430305 PMCID: PMC7341141 DOI: 10.1534/g3.120.401122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Linkage mapping has been widely used to identify quantitative trait loci (QTL) in many plants and usually requires a time-consuming and labor-intensive fine mapping process to find the causal gene underlying the QTL. Previously, we described QTG-Finder, a machine-learning algorithm to rationally prioritize candidate causal genes in QTLs. While it showed good performance, QTG-Finder could only be used in Arabidopsis and rice because of the limited number of known causal genes in other species. Here we tested the feasibility of enabling QTG-Finder to work on species that have few or no known causal genes by using orthologs of known causal genes as the training set. The model trained with orthologs could recall about 64% of Arabidopsis and 83% of rice causal genes when the top 20% ranked genes were considered, which is similar to the performance of models trained with known causal genes. The average precision was 0.027 for Arabidopsis and 0.029 for rice. We further extended the algorithm to include polymorphisms in conserved non-coding sequences and gene presence/absence variation as additional features. Using this algorithm, QTG-Finder2, we trained and cross-validated Sorghum bicolor and Setaria viridis models. The S. bicolor model was validated by causal genes curated from the literature and could recall 70% of causal genes when the top 20% ranked genes were considered. In addition, we applied the S. viridis model and public transcriptome data to prioritize a plant height QTL and identified 13 candidate genes. QTL-Finder2 can accelerate the discovery of causal genes in any plant species and facilitate agricultural trait improvement.
Collapse
|
14
|
Koshikawa S. Evolution of wing pigmentation in Drosophila: Diversity, physiological regulation, and cis-regulatory evolution. Dev Growth Differ 2020; 62:269-278. [PMID: 32171022 PMCID: PMC7384037 DOI: 10.1111/dgd.12661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
Fruit flies (Drosophila and its close relatives, or “drosophilids”) are a group that includes an important model organism, Drosophila melanogaster, and also very diverse species distributed worldwide. Many of these species have black or brown pigmentation patterns on their wings, and have been used as material for evo‐devo research. Pigmentation patterns are thought to have evolved rapidly compared with body plans or body shapes; hence they are advantageous model systems for studying evolutionary gains of traits and parallel evolution. Various groups of drosophilids, including genus Idiomyia (Hawaiian Drosophila), have a variety of pigmentations, ranging from simple black pigmentations around crossveins to a single antero‐distal spot and a more complex mottled pattern. Pigmentation patterns are sometimes obviously used for sexual displays; however, in some cases they may have other functions. The process of wing formation in Drosophila, the general mechanism of pigmentation formation, and the transport of substances necessary for pigmentation, including melanin precursors, through wing veins are summarized here. Lastly, the evolution of the expression of genes regulating pigmentation patterns, the role of cis‐regulatory regions, and the conditions required for the evolutionary emergence of pigmentation patterns are discussed. Future prospects for research on the evolution of wing pigmentation pattern formation in drosophilids are presented, particularly from the point of view of how they compare with other studies of the evolution of new traits.
Collapse
Affiliation(s)
- Shigeyuki Koshikawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan.,Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Pischedda A, Shahandeh MP, Turner TL. The Loci of Behavioral Evolution: Evidence That Fas2 and tilB Underlie Differences in Pupation Site Choice Behavior between Drosophila melanogaster and D. simulans. Mol Biol Evol 2020; 37:864-880. [PMID: 31774527 DOI: 10.1093/molbev/msz274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The behaviors of closely related species can be remarkably different, and these differences have important ecological and evolutionary consequences. Although the recent boom in genotype-phenotype studies has led to a greater understanding of the genetic architecture and evolution of a variety of traits, studies identifying the genetic basis of behaviors are, comparatively, still lacking. This is likely because they are complex and environmentally sensitive phenotypes, making them difficult to measure reliably for association studies. The Drosophila species complex holds promise for addressing these challenges, as the behaviors of closely related species can be readily assayed in a common environment. Here, we investigate the genetic basis of an evolved behavioral difference, pupation site choice, between Drosophila melanogaster and D. simulans. In this study, we demonstrate a significant contribution of the X chromosome to the difference in pupation site choice behavior between these species. Using a panel of X-chromosome deficiencies, we screened the majority of the X chromosome for causal loci and identified two regions associated with this X-effect. We then collect gene disruption and RNAi data supporting a single gene that affects pupation behavior within each region: Fas2 and tilB. Finally, we show that differences in tilB expression correlate with the differences in pupation site choice behavior between species. This evidence associating two genes with differences in a complex, environmentally sensitive behavior represents the first step toward a functional and evolutionary understanding of this behavioral divergence.
Collapse
Affiliation(s)
- Alison Pischedda
- Department of Biology, Barnard College, Columbia University, New York, NY
| | - Michael P Shahandeh
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA
| | - Thomas L Turner
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA
| |
Collapse
|
16
|
The Genetics of Male Pheromone Preference Difference Between Drosophila melanogaster and Drosophila simulans. G3-GENES GENOMES GENETICS 2020; 10:401-415. [PMID: 31748379 PMCID: PMC6945012 DOI: 10.1534/g3.119.400780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Species of flies in the genus Drosophila differ dramatically in their preferences for mates, but little is known about the genetic or neurological underpinnings of this evolution. Recent advances have been made to our understanding of one case: pheromone preference evolution between the species D. melanogaster and D. simulans. Males of both species are very sensitive to the pheromone 7,11-HD that is present only on the cuticle of female D. melanogaster. In one species this cue activates courtship, and in the other it represses it. This change in valence was recently shown to result from the modification of central processing neurons, rather than changes in peripherally expressed receptors, but nothing is known about the genetic changes that are responsible. In the current study, we show that a 1.35 Mb locus on the X chromosome has a major effect on male 7,11-HD preference. Unfortunately, when this locus is divided, the effect is largely lost. We instead attempt to filter the 159 genes within this region using our newfound understanding of the neuronal underpinnings of this phenotype to identify and test candidate genes. We present the results of these tests, and discuss the difficulty of identifying the genetic architecture of behavioral traits and the potential of connecting these genetic changes to the neuronal modifications that elicit different behaviors.
Collapse
|
17
|
Cooption of the pteridine biosynthesis pathway underlies the diversification of embryonic colors in water striders. Proc Natl Acad Sci U S A 2019; 116:19046-19054. [PMID: 31484764 PMCID: PMC6754612 DOI: 10.1073/pnas.1908316116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding how existing genomic content can be reused to generate new phenotypes is important for understanding how species diversify. Here, we address this question by studying the origin of a phenotype consisting of bright coloration in the embryos of water striders. We found that the pteridine biosynthesis pathway, originally active in the eyes, has been coopted in the embryo to produce various colors in the antennae and legs. The coopted pathway remained stable for over 200 million years, yet resulted in a striking diversification of colors and color patterns during the evolution of water striders. This work demonstrates how the activation of a complete pathway in new developmental contexts can drive the evolution of novelty and fuel species diversification. Naturalists have been fascinated for centuries by animal colors and color patterns. While widely studied at the adult stage, we know little about color patterns in the embryo. Here, we study a trait consisting of coloration that is specific to the embryo and absent from postembryonic stages in water striders (Gerromorpha). By combining developmental genetics with chemical and phylogenetic analyses across a broad sample of species, we uncovered the mechanisms underlying the emergence and diversification of embryonic colors in this group of insects. We show that the pteridine biosynthesis pathway, which ancestrally produces red pigment in the eyes, has been recruited during embryogenesis in various extraocular tissues including antennae and legs. In addition, we discovered that this cooption is common to all water striders and initially resulted in the production of yellow extraocular color. Subsequently, 6 lineages evolved bright red color and 2 lineages lost the color independently. Despite the high diversity in colors and color patterns, we show that the underlying biosynthesis pathway remained stable throughout the 200 million years of Gerromorpha evolutionary time. Finally, we identified erythropterin and xanthopterin as the pigments responsible for these colors in the embryo of various species. These findings demonstrate how traits can emerge through the activation of a biosynthesis pathway in new developmental contexts.
Collapse
|
18
|
Larter M, Dunbar‐Wallis A, Berardi AE, Smith SD. Developmental control of convergent floral pigmentation across evolutionary timescales. Dev Dyn 2019; 248:1091-1100. [DOI: 10.1002/dvdy.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 11/07/2022] Open
Affiliation(s)
- Maximilian Larter
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐Boulder Boulder Colorado
| | - Amy Dunbar‐Wallis
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐Boulder Boulder Colorado
| | - Andrea E. Berardi
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐Boulder Boulder Colorado
- Institute of Plant SciencesUniversity of Bern Bern Switzerland
| | - Stacey D. Smith
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐Boulder Boulder Colorado
| |
Collapse
|
19
|
Baucom RS. Evolutionary and ecological insights from herbicide-resistant weeds: what have we learned about plant adaptation, and what is left to uncover? THE NEW PHYTOLOGIST 2019; 223:68-82. [PMID: 30710343 DOI: 10.1111/nph.15723] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
The evolution of herbicide resistance in crop weeds presents one of the greatest challenges to agriculture and the production of food. Herbicide resistance has been studied for more than 60 yr, in the large part by researchers seeking to design effective weed control programs. As an outcome of this work, various unique questions in plant adaptation have been addressed. Here, I collate recent research on the herbicide-resistant problem in light of key questions and themes in evolution and ecology. I highlight discoveries made on herbicide-resistant weeds in three broad areas - the genetic basis of adaptation, evolutionary constraints, experimental evolution - and similarly discuss questions left to be answered. I then develop how one would use herbicide-resistance evolution as a model for studying eco-evolutionary dynamics within a community context. My overall goals are to highlight important findings in the weed science literature that are relevant to themes in plant adaptation and to stimulate the use of herbicide-resistant plants as models for addressing key questions within ecology and evolution.
Collapse
Affiliation(s)
- Regina S Baucom
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| |
Collapse
|
20
|
Seppey M, Ioannidis P, Emerson BC, Pitteloud C, Robinson-Rechavi M, Roux J, Escalona HE, McKenna DD, Misof B, Shin S, Zhou X, Waterhouse RM, Alvarez N. Genomic signatures accompanying the dietary shift to phytophagy in polyphagan beetles. Genome Biol 2019; 20:98. [PMID: 31101123 PMCID: PMC6525341 DOI: 10.1186/s13059-019-1704-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The diversity and evolutionary success of beetles (Coleoptera) are proposed to be related to the diversity of plants on which they feed. Indeed, the largest beetle suborder, Polyphaga, mostly includes plant eaters among its approximately 315,000 species. In particular, plants defend themselves with a diversity of specialized toxic chemicals. These may impose selective pressures that drive genomic diversification and speciation in phytophagous beetles. However, evidence of changes in beetle gene repertoires driven by such interactions remains largely anecdotal and without explicit hypothesis testing. RESULTS We explore the genomic consequences of beetle-plant trophic interactions by performing comparative gene family analyses across 18 species representative of the two most species-rich beetle suborders. We contrast the gene contents of species from the mostly plant-eating suborder Polyphaga with those of the mainly predatory Adephaga. We find gene repertoire evolution to be more dynamic, with significantly more adaptive lineage-specific expansions, in the more speciose Polyphaga. Testing the specific hypothesis of adaptation to plant feeding, we identify families of enzymes putatively involved in beetle-plant interactions that underwent adaptive expansions in Polyphaga. There is notable support for the selection hypothesis on large gene families for glutathione S-transferase and carboxylesterase detoxification enzymes. CONCLUSIONS Our explicit modeling of the evolution of gene repertoires across 18 species identifies putative adaptive lineage-specific gene family expansions that accompany the dietary shift towards plants in beetles. These genomic signatures support the popular hypothesis of a key role for interactions with plant chemical defenses, and for plant feeding in general, in driving beetle diversification.
Collapse
Affiliation(s)
- Mathieu Seppey
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Present address: Department of Genetic Medicine and Development, University of Geneva and Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Present address: Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, Heraklion, Greece
| | - Brent C. Emerson
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain
| | - Camille Pitteloud
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Present address: Department of Environmental Systems Science, ETHZ, 8092 Zurich, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Julien Roux
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Present address: Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Hermes E. Escalona
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Duane D. McKenna
- Department of Biological Sciences, University of Memphis, Memphis, TN 38111 USA
| | - Bernhard Misof
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Seunggwan Shin
- Department of Biological Sciences, University of Memphis, Memphis, TN 38111 USA
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Nadir Alvarez
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Geneva Natural History Museum, 1208 Geneva, Switzerland
| |
Collapse
|
21
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
22
|
Tripathi AM, Niranjan A, Roy S. Global gene expression and pigment analysis of two contrasting flower color cultivars of Canna. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:1-10. [PMID: 29544208 DOI: 10.1016/j.plaphy.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 05/19/2023]
Abstract
Development of flower color in plants is a complex process. Among others, it is an important trait for ornamental flowering plants. Canna is a flowering ornamental plant of family Cannaceae. To understand the molecular mechanism of flower color development in Canna, RNA sequencing from flower tissues of two contrasting flower color cultivars, Red President (RP) and Tropical Sunrise (TS) was performed. More than 27.0 million and 19.0 million clean reads were obtained from RP and TS, respectively. The combined clean reads were assembled into 147,295 unigenes. The Canna unigenes showed maximum homology with Populus trichocarpa (26.79%). A total of 2702 unigenes expressed differentially between the two cultivars of which 1972 were up-regulated and 730 were down-regulated in RP. Phenylpropanoid and flavonoid biosynthetic processes were the significant processes in RP. Expression of a vast number of transcription factors including MYB, bHLH, ARF, and WRKY were higher in RP than TS. The expression analysis of RNA sequencing data was validated by qRT-PCR analysis. Further, concentration of measured anthocyanidins and flavonols were very low or absent in TS, corroborating largely with our transcriptome data. These findings may help in understanding flower color development in Canna and in future crop breeding program.
Collapse
Affiliation(s)
- Abhinandan Mani Tripathi
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India
| | - Abhishek Niranjan
- Central Instrumental Facility, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Sribash Roy
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India.
| |
Collapse
|
23
|
Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution. PLoS Genet 2018; 14:e1007375. [PMID: 29723190 PMCID: PMC5953500 DOI: 10.1371/journal.pgen.1007375] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 05/15/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Convergent phenotypic evolution is often caused by recurrent changes at particular nodes in the underlying gene regulatory networks (GRNs). The genes at such evolutionary ‘hotspots’ are thought to maximally affect the phenotype with minimal pleiotropic consequences. This has led to the suggestion that if a GRN is understood in sufficient detail, the path of evolution may be predictable. The repeated evolutionary loss of larval trichomes among Drosophila species is caused by the loss of shavenbaby (svb) expression. svb is also required for development of leg trichomes, but the evolutionary gain of trichomes in the ‘naked valley’ on T2 femurs in Drosophila melanogaster is caused by reduced microRNA-92a (miR-92a) expression rather than changes in svb. We compared the expression and function of components between the larval and leg trichome GRNs to investigate why the genetic basis of trichome pattern evolution differs in these developmental contexts. We found key differences between the two networks in both the genes employed, and in the regulation and function of common genes. These differences in the GRNs reveal why mutations in svb are unlikely to contribute to leg trichome evolution and how instead miR-92a represents the key evolutionary switch in this context. Our work shows that variability in GRNs across different developmental contexts, as well as whether a morphological feature is lost versus gained, influence the nodes at which a GRN evolves to cause morphological change. Therefore, our findings have important implications for understanding the pathways and predictability of evolution. A major goal of biology is to identify the genetic causes of organismal diversity. Convergent evolution of traits is often caused by changes in the same genes–evolutionary ‘hotspots’. shavenbaby is a ‘hotspot’ for larval trichome loss in Drosophila, but microRNA-92a underlies the gain of leg trichomes. To understand this difference in the genetics of phenotypic evolution, we compared the expression and function of genes in the underlying regulatory networks. We found that the pathway of evolution is influenced by differences in gene regulatory network architecture in different developmental contexts, as well as by whether a trait is lost or gained. Therefore, hotspots in one context may not readily evolve in a different context. This has important implications for understanding the genetic basis of phenotypic change and the predictability of evolution.
Collapse
|
24
|
Genetic Basis of Body Color and Spotting Pattern in Redheaded Pine Sawfly Larvae ( Neodiprion lecontei). Genetics 2018; 209:291-305. [PMID: 29496749 DOI: 10.1534/genetics.118.300793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/22/2018] [Indexed: 11/18/2022] Open
Abstract
Pigmentation has emerged as a premier model for understanding the genetic basis of phenotypic evolution, and a growing catalog of color loci is starting to reveal biases in the mutations, genes, and genetic architectures underlying color variation in the wild. However, existing studies have sampled a limited subset of taxa, color traits, and developmental stages. To expand the existing sample of color loci, we performed QTL mapping analyses on two types of larval pigmentation traits that vary among populations of the redheaded pine sawfly (Neodiprion lecontei): carotenoid-based yellow body color and melanin-based spotting pattern. For both traits, our QTL models explained a substantial proportion of phenotypic variation and suggested a genetic architecture that is neither monogenic nor highly polygenic. Additionally, we used our linkage map to anchor the current N. lecontei genome assembly. With these data, we identified promising candidate genes underlying (1) a loss of yellow pigmentation in populations in the mid-Atlantic/northeastern United States [C locus-associated membrane protein homologous to a mammalian HDL receptor-2 gene (Cameo2) and lipid transfer particle apolipoproteins II and I gene (apoLTP-II/I)], and (2) a pronounced reduction in black spotting in Great Lakes populations [members of the yellow gene family, tyrosine hydroxylase gene (pale), and dopamine N-acetyltransferase gene (Dat)]. Several of these genes also contribute to color variation in other wild and domesticated taxa. Overall, our findings are consistent with the hypothesis that predictable genes of large effect contribute to color evolution in nature.
Collapse
|
25
|
Rice G, Barmina O, Hu K, Kopp A. Evolving doublesex expression correlates with the origin and diversification of male sexual ornaments in the Drosophila immigrans species group. Evol Dev 2018; 20:78-88. [PMID: 29372584 DOI: 10.1111/ede.12249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Male ornaments and other sex-specific traits present some of the most dramatic examples of evolutionary innovations. Comparative studies of similar but independently evolved traits are particularly important for identifying repeated patterns in the evolution of these traits. Male-specific modifications of the front legs have evolved repeatedly in Drosophilidae and other Diptera. The best understood of these novel structures is the sex comb of Drosophila melanogaster and its close relatives. Here, we examine the evolution of another male foreleg modification, the sex brush, found in the distantly related Drosophila immigrans species group. Similar to the sex comb, we find that the origin of the sex brush correlates with novel, spatially restricted expression of the doublesex (dsx) transcription factor, the primary effector of the Drosophila sex determination pathway. The diversity of Dsx expression patterns in the immigrans species group closely reflects the differences in the presence, position, and size of the sex brush. Together with previous work on sex comb evolution, these observations suggest that tissue-specific activation of dsx expression may be a common mechanism responsible for the evolution of sexual dimorphism and particularly for the origin of novel male-specific ornaments.
Collapse
Affiliation(s)
- Gavin Rice
- Department of Evolution and Ecology, University of California-Davis, Davis, California.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Olga Barmina
- Department of Evolution and Ecology, University of California-Davis, Davis, California
| | - Kevin Hu
- Department of Evolution and Ecology, University of California-Davis, Davis, California
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, California
| |
Collapse
|
26
|
Jiggins CD, Wallbank RWR, Hanly JJ. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns? Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0485. [PMID: 27994126 DOI: 10.1098/rstb.2015.0485] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard W R Wallbank
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Joseph J Hanly
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
27
|
Fukutomi Y, Matsumoto K, Agata K, Funayama N, Koshikawa S. Pupal development and pigmentation process of a polka-dotted fruit fly, Drosophila guttifera (Insecta, Diptera). Dev Genes Evol 2017; 227:171-180. [PMID: 28280924 DOI: 10.1007/s00427-017-0578-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022]
Abstract
Various organisms have color patterns on their body surfaces, and these color patterns are thought to contribute to physiological regulation, communication with conspecifics, and signaling with the environment. An adult fly of Drosophila guttifera (Insecta: Diptera: Drosophilidae) has melanin pigmentation patterns on its body and wings. Though D. guttifera has been used for research into color pattern formation, how its pupal development proceeds and when the pigmentation starts have not been well studied. In this study, we defined the pupal stages of D. guttifera and measured the pigment content of wing spots from the pupal period to the period after eclosion. Using a transgenic line which carries eGFP connected with an enhancer of yellow, a gene necessary for melanin synthesis, we analyzed the timing at which the yellow enhancer starts to drive eGFP. We also analyzed the distribution of Yellow-producing cells, as indicated by the expression of eGFP during pupal and young adult periods. The results suggested that Yellow-producing cells were removed from wings within 3 h after eclosion, and wing pigmentation continued without epithelial cells. Furthermore, the results of vein cutting experiments showed that the transport of melanin precursors through veins was necessary for wing pigmentation. These results showed the importance of melanin precursors transported through veins and of extracellular factors which were secreted from epithelial cells and left in the cuticle.
Collapse
Affiliation(s)
- Yuichi Fukutomi
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Keiji Matsumoto
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kiyokazu Agata
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Graduate School of Science, Gakushuin University, Mejiro 1-5-1, Toshima-ku, Tokyo, 171-8588, Japan
| | - Noriko Funayama
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shigeyuki Koshikawa
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-ku, Kyoto, 606-8502, Japan.
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
28
|
Fernández-Mazuecos M, Glover BJ. The evo-devo of plant speciation. Nat Ecol Evol 2017; 1:110. [DOI: 10.1038/s41559-017-0110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/07/2017] [Indexed: 11/09/2022]
|
29
|
Beldade P, Peralta CM. Developmental and evolutionary mechanisms shaping butterfly eyespots. CURRENT OPINION IN INSECT SCIENCE 2017; 19:22-29. [PMID: 28521939 DOI: 10.1016/j.cois.2016.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 06/07/2023]
Abstract
Butterfly eyespots are visually compelling models to study the reciprocal interactions between evolutionary and developmental processes that shape phenotypic variation. They are evolutionarily diversified, ecologically relevant, and developmentally tractable, and have made key contributions to linking genotype, development, phenotype and fitness. Advances in the availability of analytical tools (e.g. gene editing and visualization techniques) and resources (e.g. genomic and transcriptomic data) are boosting the detailed dissection of the mechanisms underlying eyespot development and evolution. Here, we review current knowledge on the ecology, development, and evolution of butterfly eyespots, with focus on recent advances. We also highlight a number of unsolved mysteries in our understanding of the patterns and processes underlying the diversification of these structures.
Collapse
Affiliation(s)
- Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; UMR5174, University of Toulouse, France.
| | | |
Collapse
|
30
|
|
31
|
Road Map to Study Convergent Evolution: A Proposition for Evolutionary Systems Biology Approaches. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
32
|
Genetic Convergence in the Evolution of Male-Specific Color Patterns in Drosophila. Curr Biol 2016; 26:2423-2433. [DOI: 10.1016/j.cub.2016.07.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/10/2016] [Accepted: 07/13/2016] [Indexed: 11/23/2022]
|
33
|
Massey JH, Wittkopp PJ. The Genetic Basis of Pigmentation Differences Within and Between Drosophila Species. Curr Top Dev Biol 2016; 119:27-61. [PMID: 27282023 DOI: 10.1016/bs.ctdb.2016.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Drosophila, as well as in many other plants and animals, pigmentation is highly variable both within and between species. This variability, combined with powerful genetic and transgenic tools as well as knowledge of how pigment patterns are formed biochemically and developmentally, has made Drosophila pigmentation a premier system for investigating the genetic and molecular mechanisms responsible for phenotypic evolution. In this chapter, we review and synthesize findings from a rapidly growing body of case studies examining the genetic basis of pigmentation differences in the abdomen, thorax, wings, and pupal cases within and between Drosophila species. A core set of genes, including genes required for pigment synthesis (eg, yellow, ebony, tan, Dat) as well as developmental regulators of these genes (eg, bab1, bab2, omb, Dll, and wg), emerge as the primary sources of this variation, with most genes having been shown to contribute to pigmentation differences both within and between species. In cases where specific genetic changes contributing to pigmentation divergence were identified in these genes, the changes were always located in noncoding sequences and affected cis-regulatory activity. We conclude this chapter by discussing these and other lessons learned from evolutionary genetic studies of Drosophila pigmentation and identify topics we think should be the focus of future work with this model system.
Collapse
Affiliation(s)
- J H Massey
- University of Michigan, Ann Arbor, MI, United States
| | - P J Wittkopp
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
34
|
Bourgeois YXC, Bertrand JAM, Delahaie B, Cornuault J, Duval T, Milá B, Thébaud C. Candidate Gene Analysis Suggests Untapped Genetic Complexity in Melanin-Based Pigmentation in Birds. J Hered 2016; 107:327-35. [PMID: 26995742 DOI: 10.1093/jhered/esw017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022] Open
Abstract
Studies on melanin-based color variation in a context of natural selection have provided a wealth of information on the link between phenotypic and genetic variation. Here, we evaluated associations between melanic plumage patterns and genetic polymorphism in the Réunion grey white-eye (Zosterops borbonicus), a species in which mutations on MC1R do not seem to play any role in explaining melanic variation. This species exhibits 5 plumage color variants that can be grouped into 3 color forms which occupy discrete geographic regions in the lowlands of Réunion, and a fourth high-elevation form which comprises 2 color morphs (grey and brown) and represents a true color polymorphism. We conducted a comprehensive survey of sequence variation in 96 individuals at a series of 7 candidate genes other than MC1R that have been previously shown to influence melanin-based color patterns in vertebrates, including genes that have rarely been studied in a wild bird species before: POMC, Agouti, TYR, TYRP1, DCT, Corin, and SLC24A5 Of these 7 genes, 2 (Corin and TYRP1) displayed an interesting shift in allele frequencies between lowland and highland forms and a departure from mutation-drift equilibrium consistent with balancing selection in the polymorphic highland form only. Sequence variation at Agouti, a gene frequently involved in melanin-based pigmentation patterning, was not associated with color forms or morphs. Thus, we suggest that functionally important changes in loci other than those classically studied are involved in the color polymorphism exhibited by the Réunion grey white-eye and possibly many other nonmodel species.
Collapse
Affiliation(s)
- Yann X C Bourgeois
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá).
| | - Joris A M Bertrand
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá)
| | - Boris Delahaie
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá)
| | - Josselin Cornuault
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá)
| | - Thomas Duval
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá)
| | - Borja Milá
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá)
| | - Christophe Thébaud
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá)
| |
Collapse
|
35
|
Casimiro-Soriguer I, Narbona E, Buide ML, del Valle JC, Whittall JB. Transcriptome and Biochemical Analysis of a Flower Color Polymorphism in Silene littorea (Caryophyllaceae). FRONTIERS IN PLANT SCIENCE 2016; 7:204. [PMID: 26973662 PMCID: PMC4770042 DOI: 10.3389/fpls.2016.00204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/06/2016] [Indexed: 05/23/2023]
Abstract
Flower color polymorphisms are widely used as model traits from genetics to ecology, yet determining the biochemical and molecular basis can be challenging. Anthocyanin-based flower color variations can be caused by at least 12 structural and three regulatory genes in the anthocyanin biosynthetic pathway (ABP). We use mRNA-Seq to simultaneously sequence and estimate expression of these candidate genes in nine samples of Silene littorea representing three color morphs (dark pink, light pink and white) across three developmental stages in hopes of identifying the cause of flower color variation. We identified 29 putative paralogs for the 15 candidate genes in the ABP. We assembled complete coding sequences for 16 structural loci and nine of ten regulatory loci. Among these 29 putative paralogs, we identified 622 SNPs, yet only nine synonymous SNPs in Ans had allele frequencies that differentiated pigmented petals (dark pink and light pink) from white petals. These Ans allele frequency differences were further investigated with an expanded sequencing survey of 38 individuals, yet no SNPs consistently differentiated the color morphs. We also found one locus, F3h1, with strong differential expression between pigmented and white samples (>42x). This may be caused by decreased expression of Myb1a in white petal buds. Myb1a in S. littorea is a regulatory locus closely related to Subgroup 7 Mybs known to regulate F3h and other loci in the first half of the ABP in model species. We then compare the mRNA-Seq results with petal biochemistry which revealed cyanidin as the primary anthocyanin and five flavonoid intermediates. Concentrations of three of the flavonoid intermediates were significantly lower in white petals than in pigmented petals (rutin, quercetin and isovitexin). The biochemistry results for rutin, quercetin, luteolin and apigenin are consistent with the transcriptome results suggesting a blockage at F3h, possibly caused by downregulation of Myb1a.
Collapse
Affiliation(s)
- Inés Casimiro-Soriguer
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide UniversitySeville, Spain
- Department of Plant Biology and Ecology, University of SevilleSeville, Spain
| | - Eduardo Narbona
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide UniversitySeville, Spain
| | - M. L. Buide
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide UniversitySeville, Spain
| | - José C. del Valle
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide UniversitySeville, Spain
| | - Justen B. Whittall
- Department of Biology, Santa Clara University, College of Arts and SciencesSanta Clara, CA, USA
| |
Collapse
|
36
|
Yassin A, Bastide H, Chung H, Veuille M, David JR, Pool JE. Ancient balancing selection at tan underlies female colour dimorphism in Drosophila erecta. Nat Commun 2016; 7:10400. [PMID: 26778363 PMCID: PMC4735637 DOI: 10.1038/ncomms10400] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/08/2015] [Indexed: 12/30/2022] Open
Abstract
Dimorphic traits are ubiquitous in nature, but the evolutionary factors leading to dimorphism are largely unclear. We investigate a potential case of sexual mimicry in Drosophila erecta, in which females show contrasting resemblance to males. We map the genetic basis of this sex-limited colour dimorphism to a region containing the gene tan. We find a striking signal of ancient balancing selection at the ‘male-specific enhancer' of tan, with exceptionally high sequence divergence between light and dark alleles, suggesting that this dimorphism has been adaptively maintained for millions of years. Using transgenic reporter assays, we confirm that these enhancer alleles encode expression differences that are predicted to generate this pigmentation dimorphism. These results are compatible with the theoretical prediction that divergent phenotypes maintained by selection can evolve simple genetic architectures. Sexual dimorphism is common in nature. Here, the authors combine population genetics and functional experiments to show that a region containing the gene tan contributes to sex-limited colour dimorphism in Drosophila erecta and that this dimorphism has likely been adaptively maintained for millions of years.
Collapse
Affiliation(s)
- Amir Yassin
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Héloïse Bastide
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Henry Chung
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michel Veuille
- Institut Systématique Evolution Biodiversité ISYEB-UMR 7205-CNRS-MNHN-UPMC-EPHE, Ecole Pratique des Hautes Etudes, Paris-Sciences-Lettres, Paris 75005, France
| | - Jean R David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), CNRS, IRD, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
37
|
Abstract
Should the tape of life be replayed, would it produce similar living beings? A classical answer has long been ‘no’, but accumulating data are now challenging this view. Repeatability in experimental evolution, in phenotypic evolution of diverse species and in the genes underlying phenotypic evolution indicates that despite unpredictability at the level of basic evolutionary processes (such as apparition of mutations), a certain kind of predictability can emerge at higher levels over long time periods. For instance, a survey of the alleles described in the literature that cause non-deleterious phenotypic differences among animals, plants and yeasts indicates that similar phenotypes have often evolved in distinct taxa through independent mutations in the same genes. Does this mean that the range of possibilities for evolution is limited? Does this mean that we can predict the outcomes of a replayed tape of life? Imagining other possible paths for evolution runs into four important issues: (i) resolving the influence of contingency, (ii) imagining living organisms that are different from the ones we know, (iii) finding the relevant concepts for predicting evolution, and (iv) estimating the probability of occurrence for complex evolutionary events that occurred only once during the evolution of life on earth.
Collapse
Affiliation(s)
- Virginie Orgogozo
- CNRS, UMR7592, Institut Jacques Monod , Univ Paris Diderot, Sorbonne Paris Cité , 15 rue Hélène Brion, 75013 Paris , France
| |
Collapse
|
38
|
Moczek AP, Sears KE, Stollewerk A, Wittkopp PJ, Diggle P, Dworkin I, Ledon-Rettig C, Matus DQ, Roth S, Abouheif E, Brown FD, Chiu CH, Cohen CS, Tomaso AWD, Gilbert SF, Hall B, Love AC, Lyons DC, Sanger TJ, Smith J, Specht C, Vallejo-Marin M, Extavour CG. The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evol Dev 2015; 17:198-219. [PMID: 25963198 DOI: 10.1111/ede.12125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Karen E Sears
- School of Integrative Biology and Institute for Genomic Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main St. West Hamilton, Ontario, L8S 4K1, Canada
| | - Cristina Ledon-Rettig
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 412 Life Sciences Building, Stony Brook, NY, 11794-5215, USA
| | - Siegfried Roth
- University of Cologne, Institute of Developmental Biology, Biocenter, Zülpicher Straße 47b, D-50674, Cologne, Germany
| | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal Québec, H3A 1B1, Canada
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no. 101, 05508-090, São Paulo, Brazil
| | - Chi-Hua Chiu
- Department of Biological Sciences, Kent State University, OH, USA
| | - C Sarah Cohen
- Biology Department, Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3150 Paradise Drive, Tiburon, CA, 94920, USA
| | | | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA and Biotechnology Institute, University of Helsinki, 00014, Helsinki, Finland
| | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CA, B3H 4R2, USA
| | - Alan C Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, USA
| | - Deirdre C Lyons
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Thomas J Sanger
- Department of Molecular Genetics and Microbiology, University of Florida, P.O. Box 103610, Gainesville, FL, 32610, USA
| | - Joel Smith
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Chelsea Specht
- Plant and Microbial Biology, Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Scotland, UK
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, BioLabs 4103, Cambridge, MA, 02138, USA
| |
Collapse
|
39
|
Rausher MD, Delph LF. Commentary: When does understanding phenotypic evolution require identification of the underlying genes? Evolution 2015; 69:1655-64. [PMID: 25973520 DOI: 10.1111/evo.12687] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
Abstract
Adaptive evolution is fundamentally a genetic process. Over the past three decades, characterizing the genes underlying adaptive phenotypic change has revealed many important aspects of evolutionary change. At the same time, natural selection is often fundamentally an ecological process that can often be studied without identifying the genes underlying the variation on which it acts. This duality has given rise to disagreement about whether, and under what circumstances, it is necessary to identify specific genes associated with phenotypic change. This issue is of practical concern, especially for researchers who study nonmodel organisms, because of the often enormous cost and labor required to "go for the genes." We here consider a number of situations and questions commonly addressed by researchers. Our conclusion is that although gene identification can be crucial for answering some questions, there are others for which definitive answers can be obtained without finding underlying genes. It should thus not be assumed that considerations of "empirical completeness" dictate that gene identification is always desirable.
Collapse
Affiliation(s)
- Mark D Rausher
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708.
| | - Lynda F Delph
- Department of Biology, 1001 East Third Street, Indiana University, Bloomington, Indiana, 47405
| |
Collapse
|
40
|
Twyford AD, Streisfeld MA, Lowry DB, Friedman J. Genomic studies on the nature of species: adaptation and speciation inMimulus. Mol Ecol 2015; 24:2601-9. [DOI: 10.1111/mec.13190] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Alex D. Twyford
- Ashworth Laboratories; Institute of Evolutionary Biology; The University of Edinburgh; Charlotte Auerbach Road Edinburgh EH9 3FL UK
- Department of Biology; Syracuse University; 107 College Place Syracuse NY 13244 USA
| | | | - David B. Lowry
- Plant Biology Laboratories; Department of Plant Biology; Michigan State University; 612 Wilson Road Room 166 East Lansing MI 48824 USA
| | - Jannice Friedman
- Department of Biology; Syracuse University; 107 College Place Syracuse NY 13244 USA
| |
Collapse
|
41
|
Pardo-Diaz C, Salazar C, Jiggins CD. Towards the identification of the loci of adaptive evolution. Methods Ecol Evol 2015; 6:445-464. [PMID: 25937885 PMCID: PMC4409029 DOI: 10.1111/2041-210x.12324] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022]
Abstract
1. Establishing the genetic and molecular basis underlying adaptive traits is one of the major goals of evolutionary geneticists in order to understand the connection between genotype and phenotype and elucidate the mechanisms of evolutionary change. Despite considerable effort to address this question, there remain relatively few systems in which the genes shaping adaptations have been identified. 2. Here, we review the experimental tools that have been applied to document the molecular basis underlying evolution in several natural systems, in order to highlight their benefits, limitations and suitability. In most cases, a combination of DNA, RNA and functional methodologies with field experiments will be needed to uncover the genes and mechanisms shaping adaptation in nature.
Collapse
Affiliation(s)
- Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del RosarioCarrera 24 No 63C-69, Bogotá 111221, Colombia
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del RosarioCarrera 24 No 63C-69, Bogotá 111221, Colombia
| | - Chris D Jiggins
- Department of Zoology, University of CambridgeDowning Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
42
|
Santos ME, Berger CS, Refki PN, Khila A. Integrating evo-devo with ecology for a better understanding of phenotypic evolution. Brief Funct Genomics 2015; 14:384-95. [PMID: 25750411 PMCID: PMC4652033 DOI: 10.1093/bfgp/elv003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions.
Collapse
|
43
|
Abstract
Genetic mutations are the main fuel of evolution. In each generation, they produce new variations, which may be sorted out by natural or sexual selection. Mutations are generated by chance; yet which are the mutations actually sorted out by evolution, and why? This review presents some recent advances regarding this question. First, we gather results obtained at molecular and cellular levels, through synthetic experiments and under artificial selection paradigms. Next, we highlight studies at the multi-cellular level, especially studies of repeated evolution, whereby independent lineages acquire similar traits. Recent meta-analysis and quantifications are being presented; together they suggest that evolutionary relevant mutations accumulate around hotspots, spanning different levels of genetic organization. Pioneering work suggests that many causes, corresponding to many biological contexts, may explain the existence of these genetic hotspots. We finally discuss methodological limits, empirical challenges and a few future potential directions for this domain of research dedicated to the genetic path of evolution.
Collapse
|
44
|
Lorenz K, Cohen BA. Causal variation in yeast sporulation tends to reside in a pathway bottleneck. PLoS Genet 2014; 10:e1004634. [PMID: 25211152 PMCID: PMC4161353 DOI: 10.1371/journal.pgen.1004634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
There has been extensive debate over whether certain classes of genes are more likely than others to contain the causal variants responsible for phenotypic differences in complex traits between individuals. One hypothesis states that input/output genes positioned in signal transduction bottlenecks are more likely than other genes to contain causal natural variation. The IME1 gene resides at such a signaling bottleneck in the yeast sporulation pathway, suggesting that it may be more likely to contain causal variation than other genes in the sporulation pathway. Through crosses between natural isolates of yeast, we demonstrate that the specific causal nucleotides responsible for differences in sporulation efficiencies reside not only in IME1 but also in the genes that surround IME1 in the signaling pathway, including RME1, RSF1, RIM15, and RIM101. Our results support the hypothesis that genes at the critical decision making points in signaling cascades will be enriched for causal variants responsible for phenotypic differences. Distinguishing the small number of genetic variants that impact phenotypes from the huge number of innocuous variants within an individual's genome is a difficult problem. Several hypotheses concerning the location of causal variants have been put forward based on the fact that genes are often organized into signaling cascades where the activation of a gene at the top of a pathway in turn activates large numbers of downstream genes. One hypothesis states that causal variations are more likely to reside in the genes at the top of these pathways because their effects are amplified by the signaling cascade. Here we provide support for this hypothesis by showing that causal genetic variants in yeast sporulation cluster around a gene at the top of the sporulation signaling cascade. Our result suggests a way to focus the search for causal genetic variants, including those that cause disease, on a smaller number of genes that are more likely to harbor important variations.
Collapse
Affiliation(s)
- Kim Lorenz
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Barak A. Cohen
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
45
|
Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Dev Biol 2014; 395:367-78. [PMID: 25196151 DOI: 10.1016/j.ydbio.2014.08.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 11/23/2022]
Abstract
Most butterfly wing patterns are proposed to be derived from a set of conserved pattern elements known as symmetry systems. Symmetry systems are so-named because they are often associated with parallel color stripes mirrored around linear organizing centers that run between the anterior and posterior wing margins. Even though the symmetry systems are the most prominent and diverse wing pattern elements, their study has been confounded by a lack of knowledge regarding the molecular basis of their development, as well as the difficulty of drawing pattern homologies across species with highly derived wing patterns. Here we present the first molecular characterization of symmetry system development by showing that WntA expression is consistently associated with the major basal, discal, central, and external symmetry system patterns of nymphalid butterflies. Pharmacological manipulations of signaling gradients using heparin and dextran sulfate showed that pattern organizing centers correspond precisely with WntA, wingless, Wnt6, and Wnt10 expression patterns, thus suggesting a role for Wnt signaling in color pattern induction. Importantly, this model is supported by recent genetic and population genomic work identifying WntA as the causative locus underlying wing pattern variation within several butterfly species. By comparing the expression of WntA between nymphalid butterflies representing a range of prototypical symmetry systems, slightly deviated symmetry systems, and highly derived wing patterns, we were able to infer symmetry system homologies in several challenging cases. Our work illustrates how highly divergent morphologies can be derived from modifications to a common ground plan across both micro- and macro-evolutionary time scales.
Collapse
|
46
|
Glazer AM, Cleves PA, Erickson PA, Lam AY, Miller CT. Parallel developmental genetic features underlie stickleback gill raker evolution. EvoDevo 2014; 5:19. [PMID: 24851181 PMCID: PMC4029907 DOI: 10.1186/2041-9139-5-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023] Open
Abstract
Background Convergent evolution, the repeated evolution of similar phenotypes in independent lineages, provides natural replicates to study mechanisms of evolution. Cases of convergent evolution might have the same underlying developmental and genetic bases, implying that some evolutionary trajectories might be predictable. In a classic example of convergent evolution, most freshwater populations of threespine stickleback fish have independently evolved a reduction of gill raker number to adapt to novel diets. Gill rakers are a segmentally reiterated set of dermal bones important for fish feeding. A previous large quantitative trait locus (QTL) mapping study using a marine × freshwater F2 cross identified QTL on chromosomes 4 and 20 with large effects on evolved gill raker reduction. Results By examining skeletal morphology in adult and developing sticklebacks, we find heritable marine/freshwater differences in gill raker number and spacing that are specified early in development. Using the expression of the Ectodysplasin receptor (Edar) gene as a marker of raker primordia, we find that the differences are present before the budding of gill rakers occurs, suggesting an early change to a lateral inhibition process controlling raker primordia spacing. Through linkage mapping in F2 fish from crosses with three independently derived freshwater populations, we find in all three crosses QTL overlapping both previously identified QTL on chromosomes 4 and 20 that control raker number. These two QTL affect the early spacing of gill raker buds. Conclusions Collectively, these data demonstrate that parallel developmental genetic features underlie the convergent evolution of gill raker reduction in freshwater sticklebacks, suggesting that even highly polygenic adaptive traits can have a predictable developmental genetic basis.
Collapse
Affiliation(s)
- Andrew M Glazer
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Phillip A Cleves
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Priscilla A Erickson
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Angela Y Lam
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Craig T Miller
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
47
|
Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, Peichel CL, Saetre GP, Bank C, Brännström A, Brelsford A, Clarkson CS, Eroukhmanoff F, Feder JL, Fischer MC, Foote AD, Franchini P, Jiggins CD, Jones FC, Lindholm AK, Lucek K, Maan ME, Marques DA, Martin SH, Matthews B, Meier JI, Möst M, Nachman MW, Nonaka E, Rennison DJ, Schwarzer J, Watson ET, Westram AM, Widmer A. Genomics and the origin of species. Nat Rev Genet 2014; 15:176-92. [PMID: 24535286 DOI: 10.1038/nrg3644] [Citation(s) in RCA: 615] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.
Collapse
Affiliation(s)
- Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; and Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Roger K Butlin
- Department of Animal and Plant Sciences, the University of Sheffield, Sheffield S10 2TN, UK; and the Sven Lovén Centre - Tjärnö, University of Gothenburg, S-452 96 Strömstad, Sweden
| | - Irene Keller
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; the Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland; and the Institute of Integrative Biology, ETH Zürich, ETH Zentrum CHN, 8092 Zürich, Switzerland
| | - Catherine E Wagner
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; and the Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Janette W Boughman
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; and the Department of Zoology; Ecology, Evolutionary Biology and Behavior Program; BEACON Center, Michigan State University, 203 Natural Sciences, East Lansing, Michigan 48824, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute of Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho 83844-3051, USA
| | - Catherine L Peichel
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Glenn-Peter Saetre
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO BOX 1066, Blindern, N-0316 Oslo, Norway
| | - Claudia Bank
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ake Brännström
- Integrated Science Laboratory and the Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden
| | - Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Fabrice Eroukhmanoff
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO BOX 1066, Blindern, N-0316 Oslo, Norway
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369 USA
| | - Martin C Fischer
- Institute of Integrative Biology, ETH Zürich, ETH Zentrum CHN, 8092 Zürich, Switzerland
| | - Andrew D Foote
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark. Present address: the Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Anna K Lindholm
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Kay Lucek
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; and the Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Martine E Maan
- Behavioural Biology Group, Centre for Behaviour and Neurosciences, University of Groningen, PO BOX 11103, 9700 CC Groningen, The Netherlands
| | - David A Marques
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; the Division of Aquatic Ecology and Evolution, and the Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Simon H Martin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Blake Matthews
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland
| | - Joana I Meier
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; the Division of Aquatic Ecology and Evolution, and the Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Markus Möst
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; and the Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California 94720-3160, USA
| | - Etsuko Nonaka
- Integrated Science Laboratory and Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - Diana J Rennison
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Julia Schwarzer
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; the Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland; and Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany
| | - Eric T Watson
- Department of Biology, The University of Texas at Arlington, 76010-0498 Texas, USA
| | - Anja M Westram
- Department of Animal and Plant Sciences, the University of Sheffield, Sheffield S10 2TN, UK
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zürich, ETH Zentrum CHN, 8092 Zürich, Switzerland
| |
Collapse
|
48
|
Takahashi A. Pigmentation and behavior: potential association through pleiotropic genes in Drosophila. Genes Genet Syst 2014; 88:165-74. [PMID: 24025245 DOI: 10.1266/ggs.88.165] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The molecular basis of pigmentation variation within and among Drosophila species is largely attributed to genes in melanin biosynthesis pathway, which involves dopamine metabolism. Most of the genetic changes underlying pigmentation variations reported to date are changes at the expression levels of the structural genes in the pathway. Within D. melanogaster, changes in cis-regulatory regions of a gene, ebony, are responsible for the naturally occurring variation of the body pigmentation intensity. This gene is also known to be expressed in glia, and many visual and behavioral abnormalities of its mutants have been reported. This implies that the gene has pleiotropic functions in the nervous systems. In this review, current knowledge on pigmentation variation and melanin biosynthesis pathway are summarized, with some focus on pleiotropic features of ebony and other genes in the pathway. A potential association between pigmentation and behavior through such pleiotropic genes is discussed in light of cis-regulatory structure and pleiotropic mutations.
Collapse
Affiliation(s)
- Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
49
|
Abstract
Drosophila melanogaster, an ancestrally African species, has recently spread throughout the world, associated with human activity. The species has served as the focus of many studies investigating local adaptation relating to latitudinal variation in non-African populations, especially those from the United States and Australia. These studies have documented the existence of shared, genetically determined phenotypic clines for several life history and morphological traits. However, there are no studies designed to formally address the degree of shared latitudinal differentiation at the genomic level. Here we present our comparative analysis of such differentiation. Not surprisingly, we find evidence of substantial, shared selection responses on the two continents, probably resulting from selection on standing ancestral variation. The polymorphic inversion In(3R)P has an important effect on this pattern, but considerable parallelism is also observed across the genome in regions not associated with inversion polymorphism. Interestingly, parallel latitudinal differentiation is observed even for variants that are not particularly strongly differentiated, which suggests that very large numbers of polymorphisms are targets of spatially varying selection in this species.
Collapse
|
50
|
Martin A, McCulloch KJ, Patel NH, Briscoe AD, Gilbert LE, Reed RD. Multiple recent co-options of Optix associated with novel traits in adaptive butterfly wing radiations. EvoDevo 2014; 5:7. [PMID: 24499528 PMCID: PMC3922110 DOI: 10.1186/2041-9139-5-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/27/2013] [Indexed: 12/15/2022] Open
Abstract
Background While the ecological factors that drive phenotypic radiations are often well understood, less is known about the generative mechanisms that cause the emergence and subsequent diversification of novel features. Heliconius butterflies display an extraordinary diversity of wing patterns due in part to mimicry and sexual selection. Identifying the genetic drivers of this crucible of evolution is now within reach, as it was recently shown that cis-regulatory variation of the optix transcription factor explains red pattern differences in the adaptive radiations of the Heliconius melpomene and Heliconius erato species groups. Results Here, we compare the developmental expression of the Optix protein across a large phylogenetic sample of butterflies and infer that its color patterning role originated at the base of the neotropical passion-vine butterfly clade (Lepidoptera, Nymphalidae, Tribe: Heliconiini), shortly predating multiple Optix-driven wing pattern radiations in the speciose Heliconius and Eueides genera. We also characterize novel Optix and Doublesex expression in the male-specific pheromone wing scales of the basal heliconiines Dryas and Agraulis, thus illustrating that within the Heliconinii lineage, Optix has been evolutionarily redeployed in multiple contexts in association with diverse wing features. Conclusions Our findings reveal that the repeated co-option of Optix into various aspects of wing scale specification was associated with multiple evolutionary novelties over a relatively short evolutionary time scale. In particular, the recruitment of Optix expression in colored scale cell precursors was a necessary condition to the explosive diversification of passion-vine butterfly wing patterns. The novel deployment of a gene followed by spatial modulation of its expression in a given cell type could be a common mode of developmental innovation for triggering phenotypic radiations.
Collapse
Affiliation(s)
- Arnaud Martin
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|