1
|
Lovin LM, Langan LM, Scarlett KR, Taylor RB, Kim S, Kevin Chambliss C, Chatterjee S, Thad Scott J, Brooks BW. (+) Anatoxin-a elicits differential survival, photolocomotor behavior, and gene expression in two alternative vertebrate models. ENVIRONMENT INTERNATIONAL 2024; 193:109045. [PMID: 39442322 DOI: 10.1016/j.envint.2024.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Anatoxin-a is a globally occurring, yet understudied, chiral cyanobacterial toxin that threatens public health and the environment. It has led to numerous dog. livestock and bird poisonings and although it has been studied in rodent models, comparatively little research has occurred in aquatic species. To advance a comparative toxicology understanding of this toxin in alternative vertebrate models, developing zebrafish and fathead minnow were exposed to environmentally relevant and elevated levels (13-4400 μg/L) of (+) anatoxin-a to examine potential mortality and sublethal effects, including photolocomotor behavior and gene expression responses. We observed significantly higher mortality (p < 0.05) in fathead minnows exposed to ≥ 1400 μg/L (65 - 83 % survival versus 97 % in controls). Locomotor response profiles for zebrafish typically displayed hypoactivity after exposure to (+) anatoxin-a in both light and dark periods, while hyperactivity of fathead minnows was observed at the lowest treatment level, but only in light conditions. Gene expression in zebrafish was significantly (p < 0.05) downregulated for mbp, which is associated with myelin sheath formation, and elavl3, which is involved in neurogenesis, along with cyp3a65 and gst, two genes related to phase I and II metabolism. However, no significant (p > 0.05) transcriptional changes were observed in the fathead minnow model. These differential responses between commonly employed species employed as alternative vertebrate models in toxicology research and chemicals risk assessments highlight the need for more comparative studies to understand sensitivities and variations in organismal response. Furthermore, we identified higher mortality, refractory behavioral effects, and gene expression in (+) anatoxin-a exposed fish when compared to previously reported (±) anatoxin-a (racemic 50:50 enantiomer mixture) studies, which is frequently used as a surrogate chemical for experimental work. Our findings identify the importance of understanding species and enantiomer specific effects of natural toxins.
Collapse
Affiliation(s)
- Lea M Lovin
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA
| | - Laura M Langan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA
| | - Kendall R Scarlett
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA
| | - Raegyn B Taylor
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA; Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Sujin Kim
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA
| | - C Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA; Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Saurabh Chatterjee
- Department of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - J Thad Scott
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA.
| |
Collapse
|
2
|
Wejnerowski Ł, Dulić T, Akter S, Font-Nájera A, Rybak M, Kamiński O, Czerepska A, Dziuba MK, Jurczak T, Meriluoto J, Mankiewicz-Boczek J, Kokociński M. Community Structure and Toxicity Potential of Cyanobacteria during Summer and Winter in a Temperate-Zone Lake Susceptible to Phytoplankton Blooms. Toxins (Basel) 2024; 16:357. [PMID: 39195767 PMCID: PMC11359657 DOI: 10.3390/toxins16080357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Cyanobacterial blooms are increasingly common during winters, especially when they are mild. The goal of this study was to determine the summer and winter phytoplankton community structure, cyanotoxin presence, and toxigenicity in a eutrophic lake susceptible to cyanobacterial blooms throughout the year, using classical microscopy, an analysis of toxic cyanometabolites, and an analysis of genes involved in biosynthesis of cyanotoxins. We also assessed whether cyanobacterial diversity in the studied lake has changed compared to what was reported in previous reports conducted several years ago. Moreover, the bloom-forming cyanobacterial strains were isolated from the lake and screened for cyanotoxin presence and toxigenicity. Cyanobacteria were the main component of the phytoplankton community in both sampling times, and, in particular, Oscillatoriales were predominant in both summer (Planktothrix/Limnothrix) and winter (Limnothrix) sampling. Compared to the winter community, the summer community was denser; richer in species; and contained alien and invasive Nostocales, including Sphaerospermopsis aphanizomenoides, Raphidiopsis raciborskii, and Raphidiopsis mediterranea. In both sampling times, the blooms contained toxigenic species with genetic determinants for the production of cylindrospermopsin and microcystins. Toxicological screening revealed the presence of microcystins in the lake in summer but no cyanotoxins in the winter period of sampling. However, several cyanobacterial strains isolated from the lake during winter and summer produced anabaenopeptins and microcystins. This study indicates that summer and winter blooms of cyanobacteria in the temperate zone can differ in biomass, structure, and toxicity, and that the toxic hazards associated with cyanobacterial blooms may potentially exist during winter.
Collapse
Affiliation(s)
- Łukasz Wejnerowski
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.K.); (A.C.); (M.K.)
| | - Tamara Dulić
- Biochemistry and Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland;
| | - Sultana Akter
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, 20520 Turku, Finland;
| | - Arnoldo Font-Nájera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Łódź, Poland;
| | - Michał Rybak
- Department of Water Protection, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Oskar Kamiński
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.K.); (A.C.); (M.K.)
| | - Anna Czerepska
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.K.); (A.C.); (M.K.)
| | - Marcin Krzysztof Dziuba
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Tomasz Jurczak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (T.J.); (J.M.-B.)
| | - Jussi Meriluoto
- Biochemistry and Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland;
| | - Joanna Mankiewicz-Boczek
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (T.J.); (J.M.-B.)
| | - Mikołaj Kokociński
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.K.); (A.C.); (M.K.)
| |
Collapse
|
3
|
Jablonska M, Eleršek T, Kogovšek P, Skok S, Oarga-Mulec A, Mulec J. Molecular Screening for Cyanobacteria and Their Cyanotoxin Potential in Diverse Habitats. Toxins (Basel) 2024; 16:333. [PMID: 39195743 PMCID: PMC11360522 DOI: 10.3390/toxins16080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Cyanobacteria are adaptable and dominant organisms that exist in many harsh and extreme environments due to their great ecological tolerance. They produce various secondary metabolites, including cyanotoxins. While cyanobacteria are well studied in surface waters and some aerial habitats, numerous other habitats and niches remain underexplored. We collected 61 samples of: (i) biofilms from springs, (ii) aerial microbial mats from buildings and subaerial mats from caves, and (iii) water from borehole wells, caves, alkaline, saline, sulphidic, thermal, and iron springs, rivers, seas, and melted cave ice from five countries (Croatia, Georgia, Italy, Serbia, and Slovenia). We used (q)PCR to detect cyanobacteria (phycocyanin intergenic spacer-PC-IGS and cyanobacteria-specific 16S rRNA gene) and cyanotoxin genes (microcystins-mcyE, saxitoxins-sxtA, cylindrospermopsins-cyrJ), as well as amplicon sequencing and morphological observations for taxonomic identification. Cyanobacteria were detected in samples from caves, a saline spring, and an alkaline spring. While mcyE or sxtA genes were not observed in any sample, cyrJ results showed the presence of a potential cylindrospermopsin producer in a biofilm from a sulphidic spring in Slovenia. This study contributes to our understanding of cyanobacteria occurrence in diverse habitats, including rare and extreme ones, and provides relevant methodological considerations for future research in such environments.
Collapse
Affiliation(s)
- Maša Jablonska
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tina Eleršek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Polona Kogovšek
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Sara Skok
- Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 6230 Postojna, Slovenia;
| | - Andreea Oarga-Mulec
- Materials Research Laboratory, University of Nova Gorica, 5000 Nova Gorica, Slovenia;
| | - Janez Mulec
- Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 6230 Postojna, Slovenia;
- UNESCO Chair on Karst Education, University of Nova Gorica, 5271 Vipava, Slovenia
| |
Collapse
|
4
|
Li SC, Gu LH, Wang YF, Wang LM, Chen L, Giesy JP, Tuo X, Xu WL, Wu QH, Liu YQ, Wu MH, Diao YY, Zeng HH, Zhang QB. A proteomic study on gastric impairment in rats caused by microcystin-LR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:169306. [PMID: 38103614 DOI: 10.1016/j.scitotenv.2023.169306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Microcystins (MCs) are the most common cyanobacterial toxins. Epidemiological investigation showed that exposure to MCs can cause gastro-intestinal symptoms, gastroenteritis and gastric cancer. MCs can also accumulate in and cause histopathological damage to stomach. However, the exact mechanisms by which MCs cause gastric injury were unclear. In this study, Wistar rats were administrated 50, 75 or 100 μg microcystin-LR (MC-LR)/kg, body mass (bm) via tail vein, and histopathology, response of anti-oxidant system and the proteome of gastric tissues at 24 h after exposure were studied. Bleeding of fore-stomach and gastric corpus, inflammation and necrosis in gastric corpus and exfoliation of mucosal epithelial cells in gastric antrum were observed following acute MC-LR exposure. Compared with controls, activities of superoxide dismutase (SOD) were significantly greater in gastric tissues of exposed rats, while activities of catalase (CAT) were less in rats administrated 50 μg MC-LR/kg, bm, and concentrations of glutathione (GSH) and malondialdehyde (MDA) were greater in rats administrated 75 or 100 μg MC-LR/kg, bm. These results indicated that MC-LR could disrupt the anti-oxidant system and cause oxidative stress. The proteomic results revealed that MC-LR could affect expressions of proteins related to cytoskeleton, immune system, gastric functions, and some signaling pathways, including platelet activation, complement and coagulation cascades, and ferroptosis. Quantitative real-time PCR (qRT-PCR) analysis showed that transcriptions of genes for ferroptosis and gastric function were altered, which confirmed results of proteomics. Overall, this study illustrated that MC-LR could induce gastric dysfunction, and ferroptosis might be involved in MC-LR-induced gastric injury. This study provided novel insights into mechanisms of digestive diseases induced by MCs.
Collapse
Affiliation(s)
- Shang-Chun Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Li-Hong Gu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Yan-Fang Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Li-Mei Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Liang Chen
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences, Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Hui Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yi-Qing Liu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Ming-Huo Wu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Yang-Yang Diao
- Department of Pediatrics, Southwest Medical University, Luzhou 646000, China
| | - Hao-Hang Zeng
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Qing-Bi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
5
|
Muluye T, Fetahi T, Engdaw F, Mohammed A. Cyanotoxins in African waterbodies: occurrence, adverse effects, and potential risk to animal and human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7519-7542. [PMID: 37603139 DOI: 10.1007/s10653-023-01724-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Public concerns about cyanotoxins production in water and its detrimental impacts on human and animal health are growing primarily due to the widespread eutrophication observed in aquatic ecosystems. A review of relevant literature was done to determine the degree of cyanotoxin occurrence and its harmful effects in African waterbodies. Data were extracted from 64 published studies from 1990 to 2022 that quantified the concentration of cyanotoxins in African aquatic ecosystems. Cyanotoxins have been reported in 95 waterbodies (29 lakes, 41 reservoirs, 10 ponds, 9 rivers, 5 coastal waters, and 1 irrigation canal) from 15 African countries. Cyanotoxins were documented in all the regions of Africa except the central region. Microcystins have been reported in nearly all waterbodies (98.9%), but anatoxin-a (5.3%), cylindrospermopsin (2.1%), nodularins (2.1%), homoanatoxin-a (1.1%), and β-N-methylamino-L-alanine (1.1%) were encountered in a small number of water ecosystems, homoanatoxin-a and β-N-methylamino-L-alanine each occurred in one waterbody. The largest concentrations of microcystins and nodularins were reported in South African Lakes Nhlanganzwani (49,410 μg L-1) and Zeekoevlei (347,000 μg g-1). Microcystin concentrations exceeding the WHO guideline for lifetime drinking water (1 μg L-1) were reported in 63% of the aquatic ecosystems surveyed. The most frequently reported toxin-producing cyanobacteria genus is Microcystis spp. (73.7%), followed by Oscillatoria spp. (35.8%) and Dolichospermum spp. (33.7%). Cyanotoxin-related animal mortality and human illness were reported in the continent. Consequently, it is necessary to regularly monitor the level of nutrients, cyanobacteria, and cyanotoxins in African waterbodies in an integrated manner to devise a sustainable water resources management.
Collapse
Affiliation(s)
- Tesfaye Muluye
- Africa Centre of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Tadesse Fetahi
- Department of Zoological Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Flipos Engdaw
- Africa Centre of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Adem Mohammed
- Africa Centre of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Beach DG, Zamlynny L, MacArthur M, Miles CO. Liquid chromatography-high-resolution tandem mass spectrometry of anatoxins, including new conjugates and reduction products. Anal Bioanal Chem 2023; 415:5281-5296. [PMID: 37507466 PMCID: PMC10444699 DOI: 10.1007/s00216-023-04836-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Anatoxins (ATXs) are a potent class of cyanobacterial neurotoxins for which only a handful of structural analogues have been well characterized. Here, we report the development of an LC-HRMS/MS method for the comprehensive detection of ATXs. Application of this method to samples of benthic cyanobacterial mats and laboratory cultures showed detection of several new ATXs. Many of these result from nucleophilic addition to the olefinic bond of the α,β-unsaturated ketone functional group of anatoxin-a (ATX) and homoanatoxin-a (hATX), analogous to the conjugation chemistry of microcystins, which contain similar α,β-unsaturated amide functionality. Conjugates with glutathione, γ-glutamylcysteine, methanethiol, ammonia, methanol and water were detected, as well as putative C-10 alcohol derivatives. Structural confirmation was obtained by simple and selective analytical-scale semisynthetic reactions starting from available ATX standards. Methanol, water and ammonia conjugates were found to result primarily from sample preparation. Reduction products were found to result from enzymatic reactions occurring primarily after cell lysis in laboratory cultures of Kamptonema formosum and Cuspidothrix issatschenkoi. The relative contributions of the identified analogues to the anatoxin profiles in a set of 22 benthic-cyanobacterial-mat field samples were estimated, showing conjugates to account for up to 15% of total ATX peak area and 10-hydroxyanatoxins up to 38%. The developed methodology, new analogues and insight into the chemical and enzymatic reactivity of ATXs will enable a more comprehensive study of the class than possible previously.
Collapse
Affiliation(s)
- Daniel G Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, NS, Canada.
| | - Lydia Zamlynny
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, NS, Canada
| | - Melanie MacArthur
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, NS, Canada
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, NS, Canada
| |
Collapse
|
7
|
Shishido TK, Delbaje E, Wahlsten M, Vuori I, Jokela J, Gugger M, Fiore MF, Fewer DP. A cylindrospermopin-producing cyanobacterium isolated from a microbial mat in the Baltic Sea. Toxicon 2023:107205. [PMID: 37406865 DOI: 10.1016/j.toxicon.2023.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Toxic benthic mats of cyanobacteria are associated with water quality problems and animal poisonings around the world. A strain of the filamentous cyanobacterial genus Kamptonema was isolated from a water bloom in the Baltic Sea four decades ago and later shown to produce cylindrospermopsins. However, the exact habitat of this strain remains unclear and cylindrospermopsins have not yet been reported from water blooms in the Baltic Sea. Here, we report the isolation of Kamptonema sp. UHCC 0994 from a benthic microbial mat collected in shallow water on the coast of Helsinki. We obtained draft genome sequences for the Kamptonema spp. PCC 7926 and UHCC 0994 strains that were isolated from the Baltic Sea. These genomes were 90-96% similar to previously studied Kamptonema sp. PCC 6506 and Kamptonema formosum PCC 6407, which were isolated from benthic and North American freshwater environments, respectively. The genomes of all four Kamptonema strains encode complete cylindrospermopsin biosynthetic gene clusters. We detected the production of cylindrospermopsin and 7-epi-cylindrospermopsin in the four Kamptonema strains using high-resolution liquid chromatography mass spectrometry. The four strains encode genes for producing gas vesicles distributed in two to three different regions of their genomes. Kamptonema spp. UHCC 0994 and PCC 7926 have both retained the ability to regulate their buoyancy when grown in liquid culture. Together this suggests that these toxic cyanobacteria may exhibit a tychoplanktic lifestyle in the Baltic Sea. This study suggests that microbial mats containing cyanobacteria could be a source of environmental toxins in the Baltic Sea.
Collapse
Affiliation(s)
- Tania Keiko Shishido
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland
| | - Endrews Delbaje
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland; Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, 13400-970, São Paulo, Brazil
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland
| | - Inkeri Vuori
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland
| | - Jouni Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland
| | - Muriel Gugger
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, Paris, F-75015, France
| | - Marli F Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, 13400-970, São Paulo, Brazil
| | - David P Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland.
| |
Collapse
|
8
|
Gugger M, Boullié A, Laurent T. Cyanotoxins and Other Bioactive Compounds from the Pasteur Cultures of Cyanobacteria (PCC). Toxins (Basel) 2023; 15:388. [PMID: 37368689 DOI: 10.3390/toxins15060388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In tribute to the bicentenary of the birth of Louis Pasteur, this report focuses on cyanotoxins, other natural products and bioactive compounds of cyanobacteria, a phylum of Gram-negative bacteria capable of carrying out oxygenic photosynthesis. These microbes have contributed to changes in the geochemistry and the biology of Earth as we know it today. Furthermore, some bloom-forming cyanobacterial species are also well known for their capacity to produce cyanotoxins. This phylum is preserved in live cultures of pure, monoclonal strains in the Pasteur Cultures of Cyanobacteria (PCC) collection. The collection has been used to classify organisms within the Cyanobacteria of the bacterial kingdom and to investigate several characteristics of these bacteria, such as their ultrastructure, gas vacuoles and complementary chromatic adaptation. Thanks to the ease of obtaining genetic and further genomic sequences, the diversity of the PCC strains has made it possible to reveal some main cyanotoxins and to highlight several genetic loci dedicated to completely unknown natural products. It is the multidisciplinary collaboration of microbiologists, biochemists and chemists and the use of the pure strains of this collection that has allowed the study of several biosynthetic pathways from genetic origins to the structures of natural products and, eventually, their bioactivity.
Collapse
Affiliation(s)
- Muriel Gugger
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, 75015 Paris, France
| | - Anne Boullié
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, 75015 Paris, France
| | - Thierry Laurent
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, 75015 Paris, France
| |
Collapse
|
9
|
Zhao X, Liu Y, Guo YM, Xu C, Chen L, Codd GA, Chen J, Wang Y, Wang PZ, Yang LW, Zhou L, Li Y, Xiao SM, Wang HJ, Paerl HW, Jeppesen E, Xie P. Meta-analysis reveals cyanotoxins risk across African inland waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131160. [PMID: 36907061 DOI: 10.1016/j.jhazmat.2023.131160] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Global eutrophication and climate warming exacerbate production of cyanotoxins such as microcystins (MCs), presenting risks to human and animal health. Africa is a continent suffering from severe environmental crises, including MC intoxication, but with very limited understanding of the occurrence and extent of MCs. By analysing 90 publications from 1989 to 2019, we found that in various water bodies where MCs have been detected so far, the concentrations were 1.4-2803 times higher than the WHO provisional guideline for human lifetime exposure via drinking water (1 µg/L) in 12 of 15 African countries where data were available. MCs were relatively high in the Republic of South Africa (averaged 2803 μg/L) and Southern Africa as a whole (702 μg/L) when compared to other regions. Values were higher in reservoirs (958 μg/L) and lakes (159 μg/L) than in other water types, and much higher in temperate (1381 μg/L) than in arid (161 μg/L) and tropical (4 μg/L) zones. Highly significant positive relationships were found between MCs and planktonic chlorophyll a. Further assessment revealed high ecological risk for 14 of the 56 water bodies, with half used as human drinking water sources. Recognizing the extremely high MCs and exposure risk in Africa, we recommend routine monitoring and risk assessment of MCs be prioritized to ensure safe water use and sustainability in this region.
Collapse
Affiliation(s)
- Xu Zhao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Ying Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Yu-Ming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Chi Xu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Ying Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Pu-Ze Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Li-Wei Yang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Long Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Yan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shi-Man Xiao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Hai-Jun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China.
| | - Hans W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC 28557, USA
| | - Erik Jeppesen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Department of Ecoscience, Aarhus University, Aarhus, 8000, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100190, China; Limnology Laboratory, Department of Biological Sciences, and Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, Ankara, 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, 33731, Turkey
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| |
Collapse
|
10
|
Chia MA, Ameh I, George KC, Balogun EO, Akinyemi SA, Lorenzi AS. Genetic Diversity of Microcystin Producers (Cyanobacteria) and Microcystin Congeners in Aquatic Resources across Africa: A Review Paper. TOXICS 2022; 10:772. [PMID: 36548605 PMCID: PMC9783101 DOI: 10.3390/toxics10120772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Microcystins are produced by multifaceted organisms called cyanobacteria, which are integral to Africa's freshwater environments. The excessive proliferation of cyanobacteria caused by rising temperature and eutrophication leads to the production and release of copious amounts of microcystins, requiring critical management and control approaches to prevent the adverse environmental and public health problems associated with these bioactive metabolites. Despite hypotheses reported to explain the phylogeography and mechanisms responsible for cyanobacterial blooms in aquatic water bodies, many aspects are scarcely understood in Africa due to the paucity of investigations and lack of uniformity of experimental methods. Due to a lack of information and large-scale studies, cyanobacteria occurrence and genetic diversity are seldom reported in African aquatic ecosystems. This review covers the diversity and geographical distribution of potential microcystin-producing and non-microcystin-producing cyanobacterial taxa in Africa. Molecular analyses using housekeeping genes (e.g., 16S rRNA, ITS, rpoC1, etc.) revealed significant sequence divergence across several cyanobacterial strains from East, North, West, and South Africa, but the lack of uniformity in molecular markers employed made continent-wise phylogenetic comparisons impossible. Planktothrix agardhii, Microcystis aeruginosa, and Cylindrospermopsis raciborskii (presently known as Raphidiopsis raciborskii) were the most commonly reported genera. Potential microcystin (MCs)-producing cyanobacteria were detected using mcy genes, and several microcystin congeners were recorded. Studying cyanobacteria species from the African continent is urgent to effectively safeguard public and environmental health because more than 80% of the continent has no data on these important microorganisms and their bioactive secondary metabolites.
Collapse
Affiliation(s)
- Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Ilu Ameh
- Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Nigeria
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Korie Chibuike George
- Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Nigeria
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria 810107, Nigeria
| | | | | | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília—UnB, Brasília 70910-900, Brazil
| |
Collapse
|
11
|
Toxic Effects Produced by Anatoxin-a under Laboratory Conditions: A Review. Toxins (Basel) 2022; 14:toxins14120861. [PMID: 36548758 PMCID: PMC9784168 DOI: 10.3390/toxins14120861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The presence of cyanotoxins and its bioaccumulation in the food chain is an increasingly common problem worldwide. Despite the toxic effects produced by Anatoxin-a (ATX-a), this neurotoxin has been less studied compared to microcystins (MCs) and cylindrospermopsin (CYN). Studies conducted under laboratory conditions are of particular interest because these provide information which are directly related to the effects produced by the toxin. Currently, the World Health Organization (WHO) considers the ATX-a toxicological database inadequate to support the publication of a formal guideline reference value. Therefore, the aim of the present work is to compile all of the in vitro and in vivo toxicological studies performed so far and to identify potential data gaps. Results show that the number of reports is increasing in recent years. However, more in vitro studies are needed, mainly in standardized neuronal cell lines. Regarding in vivo studies, very few of them reflect conditions occurring in nature and further studies with longer periods of oral exposure would be of interest. Moreover, additional toxicological aspects of great interest such as mutagenicity, genotoxicity, immunotoxicity and alteration of hormonal balance need to be studied in depth.
Collapse
|
12
|
Rattner BA, Wazniak CE, Lankton JS, McGowan PC, Drovetski SV, Egerton TA. Review of harmful algal bloom effects on birds with implications for avian wildlife in the Chesapeake Bay region. HARMFUL ALGAE 2022; 120:102319. [PMID: 36470599 DOI: 10.1016/j.hal.2022.102319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/17/2023]
Abstract
The Chesapeake Bay, along the mid-Atlantic coast of North America, is the largest estuary in the United States and provides critical habitat for wildlife. In contrast to point and non-point source release of pesticides, metals, and industrial, personal care and household use chemicals on biota in this watershed, there has only been scant attention to potential exposure and effects of algal toxins on wildlife in the Chesapeake Bay region. As background, we first review the scientific literature on algal toxins and harmful algal bloom (HAB) events in various regions of the world that principally affected birds, and to a lesser degree other wildlife. To examine the situation for the Chesapeake, we compiled information from government reports and databases summarizing wildlife mortality events for 2000 through 2020 that were associated with potentially toxic algae and HAB events. Summary findings indicate that there have been few wildlife mortality incidents definitively linked to HABs, other mortality events that were suspected to be related to HABs, and more instances in which HABs may have indirectly contributed to or occurred coincident with wildlife mortality. The dominant toxins found in the Chesapeake Bay drainage that could potentially affect wildlife are microcystins, with concentrations in water approaching or exceeding human-based thresholds for ceasing recreational use and drinking water at a number of locations. As an increasing trend in HAB events in the U.S. and in the Chesapeake Bay have been reported, additional information on HAB toxin exposure routes, comparative sensitivity among species, consequences of sublethal exposure, and better diagnostic and risk criteria would greatly assist in predicting algal toxin hazard and risks to wildlife.
Collapse
Affiliation(s)
- Barnett A Rattner
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD 20705, USA.
| | - Catherine E Wazniak
- Maryland Department of Natural Resources, Resource Assessment Service, Annapolis, MD 21401, USA
| | - Julia S Lankton
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | - Peter C McGowan
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD 21401, USA
| | - Serguei V Drovetski
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD 20705, USA
| | - Todd A Egerton
- Virginia Department of Health, Division of Shellfish Safety and Waterborne Hazards, Norfolk, VA 23510, USA
| |
Collapse
|
13
|
Reporting of Freshwater Cyanobacterial Poisoning in Terrestrial Wildlife: A Systematic Map. Animals (Basel) 2022; 12:ani12182423. [PMID: 36139281 PMCID: PMC9494982 DOI: 10.3390/ani12182423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Harmful cyanobacterial blooms (cyanoHABs) have been reported globally, threatening human and animal health. They are encouraged by the warming climate and agricultural pollution creating nutrient-rich, warm environments, ideal for cyanobacterial proliferation. The cyanotoxins produced by these blooms have caused poisonings in many wildlife species; however, these cases are severely underreported, and many are likely missed. The aim of this systematic map was to collate, organise, and characterise all existing reports of cyanotoxin poisonings in terrestrial wildlife. We conducted a search of the published literature using online databases, yielding a total of 45 cases detailing incidents involving terrestrial wildlife. There is no current standard method for the reporting and diagnosis of cyanotoxin intoxication cases, and we provide recommendations on this to include both clinical diagnostic tools and investigative chemistry techniques. Less than half of all cases employed robust methods of detection and diagnosis based on our recommendations. Most cases were investigated after poisonings had already occurred, and only nine reports mentioned any effort to mitigate the effects of harmful cyanobacteria on terrestrial wildlife. This systematic map details terrestrial wildlife cyanotoxin intoxications from a diagnostic perspective, identifying how reporting can be improved, leading to more successful mitigation and investigative efforts in the future. Abstract Global warming and over-enrichment of freshwater systems have led to an increase in harmful cyanobacterial blooms (cyanoHABs), affecting human and animal health. The aim of this systematic map was to detail the current literature surrounding cyanotoxin poisonings in terrestrial wildlife and identify possible improvements to reports of morbidity and mortality from cyanotoxins. A systematic search was conducted using the electronic databases Scopus and Web of Science, yielding 5059 published studies identifying 45 separate case reports of wildlife poisonings from North America, Africa, Europe, and Asia. Currently, no gold standard for the diagnosis of cyanotoxin intoxication exists for wildlife, and we present suggested guidelines here. These involved immunoassays and analytical chemistry techniques to identify the toxin involved, PCR to identify the cyanobacterial species involved, and evidence of ingestion or exposure to cyanotoxins in the animals affected. Of the 45 cases, our recommended methods concurred with 48.9% of cases. Most often, cases were investigated after a mortality event had already occurred, and where mitigation was implemented, only three cases were successful in their efforts. Notably, only one case of invasive cyanobacteria was recorded in this review despite invasive species being known to occur throughout the globe; this could explain the underreporting of invasive cyanobacteria. This systematic map highlights the perceived absence of robust detection, surveillance, and diagnosis of cyanotoxin poisoning in wildlife. It may be true that wildlife is less susceptible to these poisoning events; however, the true rates of poisoning are likely much more than is reported in the literature.
Collapse
|
14
|
Physiological Response of the Freshwater Mussel Unio douglasiae in Microcystis aeruginosa Bloom Waters. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2928235. [PMID: 35434123 PMCID: PMC9007681 DOI: 10.1155/2022/2928235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
In the present study, we evaluated the effects of different environments on the filtering rate (FR), mortality, and biodeposition (BD) of the freshwater mussel Unio douglasiae in bloom waters containing the toxic cyanobacterium Microcystis aeruginosa. The mean FR of 19 selected individuals (shell length, 5.0–9.8 cm) was
(
). Shell length was strongly correlated with both net and gross BD of mussels (
). The mean FR was higher in river water (
) than in lake water (
). In contrast, the BD of mussels was higher in RW (
) than in LW (
). For algal species, the FR of mussels ranged from
to
. The FR of U. douglasiae was higher in river water (mainly diatoms), whereas BD was higher in lake water (mainly Microcystis). U. douglasiae did not prefer toxic M. aeruginosa, which was significantly accumulated in pseudofaeces and faeces. The maximum FR of U. douglasiae in algal bloom water was recorded at a water temperature of 25°C and water depth of 50 cm. Moreover, the in situ mortality of U. douglasiae was strongly affected by water temperature and nitrogen concentration. Overall, U. douglasiae can enhance water quality in eutrophic areas by removing dominant cyanobacteria, although its removal efficiency depends on environmental parameters and site of introduction.
Collapse
|
15
|
A Generic LC-HRMS Screening Method for Marine and Freshwater Phycotoxins in Fish, Shellfish, Water, and Supplements. Toxins (Basel) 2021; 13:toxins13110823. [PMID: 34822607 PMCID: PMC8619867 DOI: 10.3390/toxins13110823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Phycotoxins occur in various marine and freshwater environments, and can accumulate in edible species such as fish, crabs, and shellfish. Human exposure to these toxins can take place, for instance, through consumption of contaminated species or supplements and through the ingestion of contaminated water. Symptoms of phycotoxin intoxication include paralysis, diarrhea, and amnesia. When the cause of an intoxication cannot directly be found, a screening method is required to identify the causative toxin. In this work, such a screening method was developed and validated for marine and freshwater phycotoxins in different matrices: fish, shellfish, water, and food supplements. Two LC methods were developed: one for hydrophilic and one for lipophilic phycotoxins. Sample extracts were measured in full scan mode with an Orbitrap high resolution mass spectrometer. Additionally, a database was created to process the data. The method was successfully validated for most matrices, and in addition, regulated lipophilic phycotoxins, domoic acid, and some paralytic shellfish poisoning toxins could be quantified in shellfish. The method showed limitations for hydrophilic phycotoxins in sea water and for lipophilic phycotoxins in food supplements. The developed method is a screening method; in order to confirm suspected compounds, comparison with a standard or an additional analysis such as NMR is required.
Collapse
|
16
|
Abdallah MF, Van Hassel WHR, Andjelkovic M, Wilmotte A, Rajkovic A. Cyanotoxins and Food Contamination in Developing Countries: Review of Their Types, Toxicity, Analysis, Occurrence and Mitigation Strategies. Toxins (Basel) 2021; 13:786. [PMID: 34822570 PMCID: PMC8619289 DOI: 10.3390/toxins13110786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanotoxins have gained global public interest due to their potential to bioaccumulate in food, which threatens human health. Bloom formation is usually enhanced under Mediterranean, subtropical and tropical climates which are the dominant climate types in developing countries. In this context, we present an up-to-date overview of cyanotoxins (types, toxic effects, analysis, occurrence, and mitigation) with a special focus on their contamination in (sea)food from all the developing countries in Africa, Asia, and Latin America as this has received less attention. A total of 65 publications have been found (from 2000 until October 2021) reporting the contamination by one or more cyanotoxins in seafood and edible plants (five papers). Only Brazil and China conducted more research on cyanotoxin contamination in food in comparison to other countries. The majority of research focused on the detection of microcystins using different analytical methods. The detected levels mostly surpassed the provisional tolerable daily intake limit set by the World Health Organization, indicating a real risk to the exposed population. Assessment of cyanotoxin contamination in foods from developing countries still requires further investigations by conducting more survey studies, especially the simultaneous detection of multiple categories of cyanotoxins in food.
Collapse
Affiliation(s)
- Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Wannes H. R. Van Hassel
- Sciensano, Chemical and Physical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080 Tervuren, Belgium;
| | - Mirjana Andjelkovic
- Sciensano Research Institute, Chemical and Physical Health Risks, Risk and Health Impact Assessment, Ju-liette Wytsmanstreet 14, 1050 Brussels, Belgium;
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-Centre for Protein Engineering, Université de Liège, 4000 Liège, Belgium;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
17
|
Cyanotoxins and the Nervous System. Toxins (Basel) 2021; 13:toxins13090660. [PMID: 34564664 PMCID: PMC8472772 DOI: 10.3390/toxins13090660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are capable of producing a wide range of bioactive compounds with many considered to be toxins. Although there are a number of toxicological outcomes with respect to cyanobacterial exposure, this review aims to examine those which affect the central nervous system (CNS) or have neurotoxicological properties. Such exposures can be acute or chronic, and we detail issues concerning CNS entry, detection and remediation. Exposure can occur through a variety of media but, increasingly, exposure through air via inhalation may have greater significance and requires further investigation. Even though cyanobacterial toxins have traditionally been classified based on their primary mode of toxicity, increasing evidence suggests that some also possess neurotoxic properties and include known cyanotoxins and unknown compounds. Furthermore, chronic long-term exposure to these compounds is increasingly being identified as adversely affecting human health.
Collapse
|
18
|
Zervou SK, Moschandreou K, Paraskevopoulou A, Christophoridis C, Grigoriadou E, Kaloudis T, Triantis TM, Tsiaoussi V, Hiskia A. Cyanobacterial Toxins and Peptides in Lake Vegoritis, Greece. Toxins (Basel) 2021; 13:toxins13060394. [PMID: 34205997 PMCID: PMC8230288 DOI: 10.3390/toxins13060394] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/13/2023] Open
Abstract
Cyanotoxins (CTs) produced by cyanobacteria in surface freshwater are a major threat for public health and aquatic ecosystems. Cyanobacteria can also produce a wide variety of other understudied bioactive metabolites such as oligopeptides microginins (MGs), aeruginosins (AERs), aeruginosamides (AEGs) and anabaenopeptins (APs). This study reports on the co-occurrence of CTs and cyanopeptides (CPs) in Lake Vegoritis, Greece and presents their variant-specific profiles obtained during 3-years of monitoring (2018–2020). Fifteen CTs (cylindrospermopsin (CYN), anatoxin (ATX), nodularin (NOD), and 12 microcystins (MCs)) and ten CPs (3 APs, 4 MGs, 2 AERs and aeruginosamide (AEG A)) were targeted using an extended and validated LC-MS/MS protocol for the simultaneous determination of multi-class CTs and CPs. Results showed the presence of MCs (MC-LR, MC-RR, MC-YR, dmMC-LR, dmMC-RR, MC-HtyR, and MC-HilR) and CYN at concentrations of <1 μg/L, with MC-LR (79%) and CYN (71%) being the most frequently occurring. Anabaenopeptins B (AP B) and F (AP F) were detected in almost all samples and microginin T1 (MG T1) was the most abundant CP, reaching 47.0 μg/L. This is the first report of the co-occurrence of CTs and CPs in Lake Vegoritis, which is used for irrigation, fishing and recreational activities. The findings support the need for further investigations of the occurrence of CTs and the less studied cyanobacterial metabolites in lakes, to promote risk assessment with relevance to human exposure.
Collapse
Affiliation(s)
- Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Kimon Moschandreou
- The Goulandris Natural History Museum—Greek Biotope/Wetland Centre, 14th km Thessaloniki-Mihaniona, Thermi P.O. Box 60394, 57001 Thessaloniki, Greece; (K.M.); (V.T.)
| | - Aikaterina Paraskevopoulou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Christophoros Christophoridis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Elpida Grigoriadou
- Water Resources Management Agency of West Macedonia, 50100 Kozani, Decentralized Administration of Epirus—Western Macedonia, Greece;
| | - Triantafyllos Kaloudis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Theodoros M. Triantis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Vasiliki Tsiaoussi
- The Goulandris Natural History Museum—Greek Biotope/Wetland Centre, 14th km Thessaloniki-Mihaniona, Thermi P.O. Box 60394, 57001 Thessaloniki, Greece; (K.M.); (V.T.)
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
- Correspondence:
| |
Collapse
|
19
|
Comparative characterization of two cyanobacteria strains of the order Spirulinales isolated from the Baltic Sea - polyphasic approach in practice. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins (Basel) 2021; 13:toxins13050322. [PMID: 33946968 PMCID: PMC8145420 DOI: 10.3390/toxins13050322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life.
Collapse
|
21
|
Colas S, Marie B, Lance E, Quiblier C, Tricoire-Leignel H, Mattei C. Anatoxin-a: Overview on a harmful cyanobacterial neurotoxin from the environmental scale to the molecular target. ENVIRONMENTAL RESEARCH 2021; 193:110590. [PMID: 33307089 DOI: 10.1016/j.envres.2020.110590] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Anatoxin-a (ATX-a) is a neurotoxic alkaloid, produced by several freshwater planktonic and benthic cyanobacteria (CB). Such CB have posed human and animal health issues for several years, as this toxin is able to cause neurologic symptoms in humans following food poisoning and death in wild and domestic animals. Different episodes of animal intoxication have incriminated ATX-a worldwide, as confirmed by the presence of ATX-a-producing CB in the consumed water or biofilm, or the observation of neurotoxic symptoms, which match experimental toxicity in vivo. Regarding toxicity parameters, toxicokinetics knowledge is currently incomplete and needs to be improved. The toxin can passively cross biological membranes and act rapidly on nicotinic receptors, its main molecular target. In vivo and in vitro acute effects of ATX-a have been studied and make possible to draw its mode of action, highlighting its deleterious effects on the nervous systems and its effectors, namely muscles, heart and vessels, and the respiratory apparatus. However, very little is known about its putative chronic toxicity. This review updates available data on ATX-a, from the ecodynamic of the toxin to its physiological and molecular targets.
Collapse
Affiliation(s)
- Simon Colas
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptations des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France; Mitochondrial and Cardiovascular Pathophysiology - MITOVASC, UMR CNRS 6015, INSERM U1083, UBL/Angers University, Angers, France
| | - Benjamin Marie
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptations des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France
| | - Emilie Lance
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptations des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France
| | - Catherine Quiblier
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptations des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France; Université de Paris - Paris Diderot, 5 rue Thomas Mann, Paris, France
| | - Hélène Tricoire-Leignel
- Mitochondrial and Cardiovascular Pathophysiology - MITOVASC, UMR CNRS 6015, INSERM U1083, UBL/Angers University, Angers, France.
| | - César Mattei
- Mitochondrial and Cardiovascular Pathophysiology - MITOVASC, UMR CNRS 6015, INSERM U1083, UBL/Angers University, Angers, France.
| |
Collapse
|
22
|
Lovin LM, Kim S, Taylor RB, Scarlett KR, Langan LM, Chambliss CK, Chatterjee S, Scott JT, Brooks BW. Differential influences of (±) anatoxin-a on photolocomotor behavior and gene transcription in larval zebrafish and fathead minnows. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:40. [PMID: 34367861 PMCID: PMC8345817 DOI: 10.1186/s12302-021-00479-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Though anatoxin-a (antx-a) is a globally important cyanobacterial neurotoxin in inland waters, information on sublethal toxicological responses of aquatic organisms is limited. We examined influences of (±) antx-a (11-3490 μg/L) on photolocomotor behavioral responses and gene transcription associated with neurotoxicity, oxidative stress and hepatotoxicity, in two of the most common alternative vertebrate and fish models, Danio rerio (zebrafish) and Pimephales promelas (fathead minnow). We selected environmentally relevant treatment levels from probabilistic exposure distributions, employed standardized experimental designs, and analytically verified treatment levels using isotope-dilution liquid chromatography tandem mass spectrometry. Caffeine was examined as a positive control. RESULTS Caffeine influences on fish behavior responses were similar to previous studies. Following exposure to (±) antx-a, no significant photolocomotor effects were observed during light and dark transitions for either species. Though zebrafish behavioral responses profiles were not significantly affected by (±) antx-a at the environmentally relevant treatment levels examined, fathead minnow stimulatory behavior was significantly reduced in the 145-1960 μg/L treatment levels. In addition, no significant changes in transcription of target genes were observed in zebrafish; however, elavl3 and sod1 were upregulated and gst and cyp3a126 were significantly downregulated in fathead minnows. CONCLUSION We observed differential influences of (±) antx-a on swimming behavior and gene transcription in two of the most common larval fish models employed for prospective and retrospective assessment of environmental contaminants and water quality conditions. Sublethal responses of fathead minnows were consistently more sensitive than zebrafish to this neurotoxin at the environmentally relevant concentrations examined. Future studies are needed to understand such interspecies differences, the enantioselective toxicity of this compound, molecular initiation events within adverse outcome pathways, and subsequent individual and population risks for this emerging water quality threat.
Collapse
Affiliation(s)
- Lea M. Lovin
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Sujin Kim
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | | | | | - Laura M. Langan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | | | - Saurabh Chatterjee
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - J. Thad Scott
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
- Correspondence:
| |
Collapse
|
23
|
Understanding the Differences in the Growth and Toxin Production of Anatoxin-Producing Cuspidothrix issatschenkoi Cultured with Inorganic and Organic N Sources from a New Perspective: Carbon/Nitrogen Metabolic Balance. Toxins (Basel) 2020; 12:toxins12110724. [PMID: 33228063 PMCID: PMC7699347 DOI: 10.3390/toxins12110724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
Cyanotoxins are the underlying cause of the threat that globally pervasive Cyanobacteria Harmful algal blooms (CyanoHABs) pose to humans. Major attention has been focused on the cyanobacterial hepatotoxin microcystins (MCs); however, there is a dearth of studies on cyanobacterial neurotoxin anatoxins. In this study, we explored how an anatoxin-producing Cuspidothrix issatschenkoi strain responded to culture with inorganic and organic nitrogen sources in terms of growth and anatoxins production. The results of our study revealed that ʟ- alanine could greatly boost cell growth, and was associated with the highest cell productivity, while urea significantly stimulated anatoxin production with the maximum anatoxin yield reaching 25.86 μg/mg dry weight, which was 1.56-fold higher than that in the control group (BG11). To further understand whether the carbon/nitrogen balance in C. issatschenkoi would affect anatoxin production, we explored growth and toxin production in response to different carbon/nitrogen ratios (C/N). Anatoxin production was mildly promoted when the C/N ratio was within low range, and significantly inhibited when the C/N ratio was within high range, showing approximately a three-fold difference. Furthermore, the transcriptional profile revealed that anaC gene expression was significantly up-regulated over 2–24 h when the C/N ratio was increased, and was significantly down-regulated after 96 h. Overall, our results further enriched the evidence that urea can stimulate cyanotoxin production, and ʟ-alanine could boost C. issatschenkoi proliferation, thus providing information for better management of aquatic systems. Moreover, by focusing on the intracellular C/N metabolic balance, this study explained the anatoxin production dynamics in C. issatschenkoi in response to different N sources.
Collapse
|
24
|
Wood SA, Kelly L, Bouma-Gregson K, Humbert JF, Laughinghouse HD, Lazorchak J, McAllister T, McQueen A, Pokrzywinski K, Puddick J, Quiblier C, Reitz LA, Ryan K, Vadeboncoeur Y, Zastepa A, Davis TW. Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. FRESHWATER BIOLOGY 2020; 65:1824-1842. [PMID: 34970014 PMCID: PMC8715960 DOI: 10.1111/fwb.13532] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/05/2020] [Indexed: 05/05/2023]
Abstract
1. This review summarises knowledge on the ecology, toxin production, and impacts of toxic freshwater benthic cyanobacterial proliferations. It documents monitoring, management, and sampling strategies, and explores mitigation options. 2. Toxic proliferations of freshwater benthic cyanobacteria (taxa that grow attached to substrates) occur in streams, rivers, lakes, and thermal and meltwater ponds, and have been reported in 19 countries. Anatoxin- and microcystin-containing mats are most commonly reported (eight and 10 countries, respectively). 3. Studies exploring factors that promote toxic benthic cyanobacterial proliferations are limited to a few species and habitats. There is a hierarchy of importance in environmental and biological factors that regulate proliferations with variables such as flow (rivers), fine sediment deposition, nutrients, associated microbes, and grazing identified as key drivers. Regulating factors differ among colonisation, expansion, and dispersal phases. 4. New -omics-based approaches are providing novel insights into the physiological attributes of benthic cyanobacteria and the role of associated microorganisms in facilitating their proliferation. 5. Proliferations are commonly comprised of both toxic and non-toxic strains, and the relative proportion of these is the key factor contributing to the overall toxin content of each mat. 6. While these events are becoming more commonly reported globally, we currently lack standardised approaches to detect, monitor, and manage this emerging health issue. To solve these critical gaps, global collaborations are needed to facilitate the rapid transfer of knowledge and promote the development of standardised techniques that can be applied to diverse habitats and species, and ultimately lead to improved management.
Collapse
Affiliation(s)
| | | | - Keith Bouma-Gregson
- Office of Information Management and Analysis, California State Water Resources Control Board, Sacramento, California, United States of America
| | | | - H Dail Laughinghouse
- Fort Lauderdale Research and Education Center, University of Florida, Florida, USA
| | - James Lazorchak
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Monitoring and Modeling, Cincinnati, Ohio, United States of America
| | - Tara McAllister
- Te Pūnaha Matatini Centre of Research Excellence for Complex Systems, University of Auckland, Auckland, New Zealand
| | - Andrew McQueen
- Environmental Risk Assessment Branch, US Army Corps of Engineers, Engineering Research & Development Center, Vicksburg, Mississippi, United States of America
| | - Katyee Pokrzywinski
- Environmental Risk Assessment Branch, US Army Corps of Engineers, Engineering Research & Development Center, Vicksburg, Mississippi, United States of America
| | | | | | - Laura A Reitz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Ken Ryan
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Yvonne Vadeboncoeur
- Department of Biological Sciences, Wright State University, Ohio, United States of America
| | - Arthur Zastepa
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Ontario, Canada
| | - Timothy W Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
25
|
Metcalf JS, Codd GA. Co-Occurrence of Cyanobacteria and Cyanotoxins with Other Environmental Health Hazards: Impacts and Implications. Toxins (Basel) 2020; 12:E629. [PMID: 33019550 PMCID: PMC7601082 DOI: 10.3390/toxins12100629] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Toxin-producing cyanobacteria in aquatic, terrestrial, and aerial environments can occur alongside a wide range of additional health hazards including biological agents and synthetic materials. Cases of intoxications involving cyanobacteria and cyanotoxins, with exposure to additional hazards, are discussed. Examples of the co-occurrence of cyanobacteria in such combinations are reviewed, including cyanobacteria and cyanotoxins plus algal toxins, microbial pathogens and fecal indicator bacteria, metals, pesticides, and microplastics. Toxicity assessments of cyanobacteria, cyanotoxins, and these additional agents, where investigated in bioassays and in defined combinations, are discussed and further research needs are identified.
Collapse
Affiliation(s)
| | - Geoffrey A. Codd
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
26
|
A critical review of ionizing radiation technologies for the remediation of waters containing Microcystin-LR and M. aeruginosa. Radiat Phys Chem Oxf Engl 1993 2020; 177. [PMID: 34035564 DOI: 10.1016/j.radphyschem.2020.109128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Harmful algal and cyanobacterial blooms pose threats to human and ecological health due to their release of hazardous toxins. Microcystin-LR (MC-LR), a potent hepatotoxin, is the most prevalent cyanotoxin found in freshwater blooms. Although produced by many species of cyanobacteria, Microcystis aeruginosa is most commonly associated with MC-LR production. These blooms are increasing in occurrence in lakes, ponds, and other surface waters and, therefore, require efficient treatment methods to be removed from water supplies. Ionizing radiation technologies offer promising approaches for the removal of organic pollutants in water, including cyanotoxins and cyanobacteria. Gamma irradiation for the degradation of cyano-bacteria and toxins is effective for overall MC-LR degradation as well as reducing cell concentrations. However, gamma irradiation technology involves use of radioactive isotopes and, therefore, may not feasible commercially from a security perspective. Electron beam (eBeam) irradiation technology, which relies on regular electricity to generate highly energetic electrons, is able to achieve the same results without the confounding challenges of radioactive isotopes and related security issues. In this critical review, the current state of the science concerning the remediation of MC-LR and M. aeruginosa with ionizing radiation technologies is presented and future necessary research is discussed.
Collapse
|
27
|
Fiorucci L, Grande F, Macrelli R, Schnitzer P, Crosta L. Hand-Rearing of Three Lesser Flamingo Chicks ( Phoeniconaias minor). Animals (Basel) 2020; 10:ani10081251. [PMID: 32717958 PMCID: PMC7460415 DOI: 10.3390/ani10081251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Like many other colonial nesting waterbirds, all six flamingo species are considered of conservation concern because of their dependence on a limited number of wetlands, particularly for breeding. Population decreases of some species have been linked to changes in the ecosystem. Specifically, according to the International Union for Conservation of Nature (IUCN), the lesser flamingo (Phoeniconaias minor) population is declining and near threatened. The ability to hand-rear nestlings of this endangered species and return them to the wild is, therefore, an important aspect of the conservation of the lesser flamingo and of flamingos in general. Hand-rearing of abandoned chicks is recommended as a conservation tool to limit mortality and to bolster the population at specific colonies. When adults are not able to rear chicks, chicks must be offered a diet that allows them to maintain adequate growth and development. Successful hand-rearing is based on a formula that meets the nutritional needs of the chicks as they develop. The aim of this study is to describe the diet composition, dietary intake, feeding protocols, and growth index of three lesser flamingo chicks hand-reared with the diet described in the paper to share important data useful for the conservation of the populations in the wild. All the aforementioned parameters were recorded daily, from hatching to 2 months of age. Abstract There are few published studies regarding lesser flamingo (Phoeniconaias minor) reproduction, crop milk composition, and hand-rearing under human care. Between the end of June and the beginning of August of 2017, three eggs were laid in a group of 29 lesser flamingos kept under human care. Two eggs and one chick were abandoned by the parents, and three chicks were hand-reared. This report describes diet composition, dietary intake, feeding protocols, and growth index, from the first day to 60 days after hatching, for three lesser flamingo chicks.
Collapse
Affiliation(s)
- Letizia Fiorucci
- Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Arucas, 35416 Las Palmas de Gran Canaria, Spain
- Correspondence:
| | - Francesco Grande
- Loro Parque Fundación, Avenida Loro Parque, 38400 Puerto de la Cruz, Spain;
| | - Roberto Macrelli
- Dipartimento di Scienze Pure e Applicate, Università di Urbino, 61029 Urbino, Italy;
| | - Petra Schnitzer
- Avian, Reptile&Exotic Pet Hospital, Sydney School of Veterinary Science, The University of Sydney, Camden 2570, Australia; (P.S.); (L.C.)
| | - Lorenzo Crosta
- Avian, Reptile&Exotic Pet Hospital, Sydney School of Veterinary Science, The University of Sydney, Camden 2570, Australia; (P.S.); (L.C.)
| |
Collapse
|
28
|
Metcalf JS, Dunlop RA, Banack SA, Souza NR, Cox PA. Cyanotoxin Analysis and Amino Acid Profiles of Cyanobacterial Food Items from Chad. Neurotox Res 2020; 39:72-80. [PMID: 32654083 PMCID: PMC7904724 DOI: 10.1007/s12640-020-00240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 11/12/2022]
Abstract
In some parts of the world, cyanobacteria are used as a food in the human diet, due to their ready availability. Lake Chad, has long been a traditional site for the collection of Arthrospira fusiformis which is dried and processed at the lake into thin wafers called Dihé for later consumption or is transported to market for sale. However, Dihé purchased from markets in Chad has not been analyzed for known cyanobacterial toxins or assessed for total amino acid content. Since BMAA in traditional foodstuffs of the indigenous Chamorro people of Guam causes neurodegenerative illness, it is important that Dihé from Chad be analyzed for this neurotoxin. BMAA and its isomer AEG were not detected in our analyses, but a further isomer DAB was detected as both a free and bound amino acid, with an increase in the free concentration after acid hydrolysis of this fraction. Microcystins were present in 6 samples at up to 20 μg/g according to UPLC-PDA, although their presence could not be confirmed using PCR for known microcystin synthetic genes. Amino acid analysis of the cyanobacterial material from Chad showed the presence of large amounts of canonical amino acids, suggesting that this may supplement indigenous people on low protein diets, although regular monitoring of the foodstuffs for the presence of cyanotoxins should be performed.
Collapse
Affiliation(s)
- J S Metcalf
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA.
| | - R A Dunlop
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA
| | - S A Banack
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA
| | - N R Souza
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA
| | - P A Cox
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA
| |
Collapse
|
29
|
Biré R, Bertin T, Dom I, Hort V, Schmitt C, Diogène J, Lemée R, De Haro L, Nicolas M. First Evidence of the Presence of Anatoxin-A in Sea Figs Associated with Human Food Poisonings in France. Mar Drugs 2020; 18:md18060285. [PMID: 32485965 PMCID: PMC7344475 DOI: 10.3390/md18060285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022] Open
Abstract
From January 2011 to March 2018, 26 patients aged from 20 to 80 years old reported being sick in France after eating sea figs of the genus Microcosmus. The patients had symptoms evoking a cerebellar syndrome: blurred or double vision, ataxia and dizziness, asthenia, headache, muscle cramps, paresthesia and digestive disorders (nausea, vomiting and diarrhea). Three of the 18 food poisoning events recorded by the Poison Control Center in Marseille and involving four patients were further investigated as the meal leftovers were collected and analyzed. A previous study ruled out the presence of the regulated lipophilic marine toxins after high-resolution mass spectrometry, but further analyses were required to look for hydrophilic cyanotoxins. The sea fig leftovers from food poisoning case Numbers 1 (January 2011), 6 (December 2012) and 17 (March 2018) of this published case series were analyzed by hydrophilic interaction liquid chromatography coupled to low- and high-resolution mass spectrometry to investigate the presence of hydrophilic cyanotoxins. The sea fig samples showed anatoxin-a (ATX-a) concentrations ranging from 193.7 to 1240.2 µg/kg. The sea fig control sample analyzed was also contaminated with ATX-a but in a much smaller concentration (22.5 µg/kg). To the best of our knowledge, this is the first report of human food poisoning involving ATX-a as the possible causative toxin where the cyanotoxin could be unequivocally identified.
Collapse
Affiliation(s)
- Ronel Biré
- Laboratory for Food Safety, Université Paris-Est, ANSES, F-94701 Maisons-Alfort, France; (T.B.); (I.D.); (V.H.); (M.N.)
- Correspondence:
| | - Thomas Bertin
- Laboratory for Food Safety, Université Paris-Est, ANSES, F-94701 Maisons-Alfort, France; (T.B.); (I.D.); (V.H.); (M.N.)
| | - Inès Dom
- Laboratory for Food Safety, Université Paris-Est, ANSES, F-94701 Maisons-Alfort, France; (T.B.); (I.D.); (V.H.); (M.N.)
| | - Vincent Hort
- Laboratory for Food Safety, Université Paris-Est, ANSES, F-94701 Maisons-Alfort, France; (T.B.); (I.D.); (V.H.); (M.N.)
| | - Corinne Schmitt
- Clinical Pharmacology, Poison Control Center, St Marguerite Hospital, 13009 Marseille, France; (C.S.); (L.D.H.)
| | - Jorge Diogène
- Marine Continental Waters, IRTA, Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Spain;
| | - Rodolphe Lemée
- Laboratoire d’Océanographie de Villefranche, Sorbonne Université, CNRS, LOV, F-06230 Villefranche-sur-Mer, France;
| | - Luc De Haro
- Clinical Pharmacology, Poison Control Center, St Marguerite Hospital, 13009 Marseille, France; (C.S.); (L.D.H.)
| | - Marina Nicolas
- Laboratory for Food Safety, Université Paris-Est, ANSES, F-94701 Maisons-Alfort, France; (T.B.); (I.D.); (V.H.); (M.N.)
| |
Collapse
|
30
|
Xue Q, Steinman AD, Xie L, Yao L, Su X, Cao Q, Zhao Y, Cai Y. Seasonal variation and potential risk assessment of microcystins in the sediments of Lake Taihu, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113884. [PMID: 31918143 DOI: 10.1016/j.envpol.2019.113884] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
High concentrations of microcystins (MCs) in sediment pose a serious hazard to aquatic and terrestrial organisms. Hence, we investigated the seasonal variation of dominant MCs (MC-LR, MC-RR and MC-YR) in sediments of Lake Taihu over four seasons for the first time. Sediment MCs varied seasonally (p < 0.01) with concentrations highest in August and lowest in February. The MCs were dominated by MC-LR (61.47%) with the content ranging from 0.02 to 2.37 μg/g dry weight in sediment. The three MC congeners and their proportions were significantly correlated with latitude and longitude. Meiliang Bay in the north had the highest MCs of all sites, while the eastern part of the lake had a high level especially in August. Variation of MC-LR and MC-RR concentrations was significantly correlated (p < 0.05) with water temperature, dissolved total organic carbon, cyanobacteria density, total suspended solid particles, and total organic carbon and total nitrogen in sediment, while MC-YR was negatively correlated (p < 0.01) with nutrients in the water column and heavy metals in sediments. An ecological risk assessment suggested the MCs already pose significant adverse effects on Potamopyrgus antipodarum; although the adverse effects on humans were weak, children were at greater risk than adults.
Collapse
Affiliation(s)
- Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI, 49441, USA
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lei Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomei Su
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Cao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjiu Cai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
31
|
Protected Freshwater Ecosystem with Incessant Cyanobacterial Blooming Awaiting a Resolution. WATER 2019. [DOI: 10.3390/w12010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
For 50 years persistent cyanobacterial blooms have been observed in Lake Ludoš (Serbia), a wetland area of international significance listed as a Ramsar site. Cyanobacteria and cyanotoxins can affect many organisms, including valuable flora and fauna, such as rare and endangered bird species living or visiting the lake. The aim was to carry out monitoring, estimate the current status of the lake, and discuss potential resolutions. Results obtained showed: (a) the poor chemical state of the lake; (b) the presence of potentially toxic (genera Dolichospermum, Microcystis, Planktothrix, Chroococcus, Oscillatoria, Woronichinia and dominant species Limnothrix redekei and Pseudanabaena limnetica) and invasive cyanobacterial species Raphidiopsis raciborskii; (c) the detection of microcystin (MC) and saxitoxin (STX) coding genes in biomass samples; (d) the detection of several microcystin variants (MC-LR, MC-dmLR, MC-RR, MC-dmRR, MC-LF) in water samples; (e) histopathological alterations in fish liver, kidney and gills. The potential health risk to all organisms in the ecosystem and the ecosystem itself is thus still real and present. Although there is still no resolution in sight, urgent remediation measures are needed to alleviate the incessant cyanobacterial problem in Lake Ludoš to break this ecosystem out of the perpetual state of limbo in which it has been trapped for quite some time.
Collapse
|
32
|
Racine M, Saleem A, Pick FR. Metabolome Variation between Strains of Microcystis aeruginosa by Untargeted Mass Spectrometry. Toxins (Basel) 2019; 11:E723. [PMID: 31835794 PMCID: PMC6950387 DOI: 10.3390/toxins11120723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Cyanobacteria are notorious for their potential to produce hepatotoxic microcystins (MCs), but other bioactive compounds synthesized in the cells could be as toxic, and thus present interest for characterization. Ultra performance liquid chromatography and high-resolution accurate mass spectrometry (UPLC-QTOF-MS/MS) combined with untargeted analysis was used to compare the metabolomes of five different strains of the common bloom-forming cyanobacterium, Microcystis aeruginosa. Even in microcystin-producing strains, other classes of oligopeptides including cyanopeptolins, aeruginosins, and aerucyclamides, were often the more dominant compounds. The distinct and large variation between strains of the same widespread species highlights the need to characterize the metabolome of a larger number of cyanobacteria, especially as several metabolites other than microcystins can affect ecological and human health.
Collapse
Affiliation(s)
- Marianne Racine
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.S.); (F.R.P.)
- Current address: Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| | - Ammar Saleem
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.S.); (F.R.P.)
| | - Frances R. Pick
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.S.); (F.R.P.)
| |
Collapse
|
33
|
Bownik A, Pawlik-Skowrońska B. Early indicators of behavioral and physiological disturbances in Daphnia magna (Cladocera) induced by cyanobacterial neurotoxin anatoxin-a. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133913. [PMID: 31756843 DOI: 10.1016/j.scitotenv.2019.133913] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/23/2023]
Abstract
The majority of reports on the toxic effect of cyanobacterial metabolites on the freshwater invertebrates is based on determination of two endpoints: mortality or immobilization. However, detection of sub-lethal effects requires more sensitive indicators The aim of the present study was to evaluate the applicability of digital-video analysis for determination of early behavioral and physiological responses in the assessment of effects caused by the cyanobacterial neurotoxin, anatoxin-a (ANTX) at a broad range of its concentration (0.5-50 μg/mL). Swimming speed (SS), heart rate (HR), oxygen consumption (OC), thoracic limb activity (TLA) and abdominal claw movement (ACM) of Daphnia magna were evaluated. Swimming speed and abdominal claw movements were determined by digital analysis of video clips by Tracker® software; OC by Oxygraph Plus System® while HR, TLA and ACM by digital frame-by-frame analysis of video clips of microscopic view with the use of a media player software. The experimental study showed a concentration- and time-dependent decrease of SS, HR, OC, TLA and ACM. SS was inhibited as early as after 10 s of the exposure of Daphnia magna to ANTX, and the other physiological responses after 2 h. Further inhibition of these parameters was also noted after 24 h of the exposure. On the other hand, stimulation of ACM was noted at the lower (0.5 and 2.5 μg/mL) ANTX concentrations after both 2 h and 24 h of exposure. The results indicated that some behavioral and physiological biomarkers measured by video analysis may be a valuable tool for an early determination of toxic effects induced by cyanobacterial metabolites in zooplankters.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
34
|
Svirčev Z, Lalić D, Bojadžija Savić G, Tokodi N, Drobac Backović D, Chen L, Meriluoto J, Codd GA. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch Toxicol 2019; 93:2429-2481. [DOI: 10.1007/s00204-019-02524-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
|
35
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 86:139-209. [PMID: 31358273 DOI: 10.1016/j.hal.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/10/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
36
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 83:42-94. [PMID: 31097255 DOI: 10.1016/j.hal.2018.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
37
|
Díez-Quijada L, Prieto AI, Guzmán-Guillén R, Jos A, Cameán AM. Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: A review. Food Chem Toxicol 2018; 125:106-132. [PMID: 30597222 DOI: 10.1016/j.fct.2018.12.042] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/29/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
Abstract
The occurrence of cyanobacterial toxins is being increasingly reported. This is a reason for concern as they can induce toxic effects both in humans and in the environment. Among them, microcystins (MCs) are the best described and most diverse group of cyanobacterial toxins, and MC-LR and MC-RR are the congeners most widely investigated. However, the number of MC variants has also increased in recent years. Some of these minority variants have been shown to have a different toxicokinetic and toxicodynamic profile, but research focused on them is still limited. Moreover, in some water bodies these minority variants can be the predominant toxins. Nonetheless, MC-LR is the only one used for risk evaluation purposes at present. In order to contribute to more realistic risk assessments in the future, the aim of this review was to compile the available information in the scientific literature regarding the occurrence and concentration of minority MCs in water and food samples, and their toxic effects. The data retrieved demonstrate the congener-specific toxicity of MCs, as well as many data gaps in relation to analytical or mechanistic aspects, among others. Therefore, further research is needed to improve the toxicological characterization of these toxins and the exposure scenarios.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| |
Collapse
|
38
|
Foss AJ, Miles CO, Samdal IA, Løvberg KE, Wilkins AL, Rise F, Jaabæk JAH, McGowan PC, Aubel MT. Analysis of free and metabolized microcystins in samples following a bird mortality event. HARMFUL ALGAE 2018; 80:117-129. [PMID: 30502804 DOI: 10.1016/j.hal.2018.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
In the summer of 2012, over 750 dead and dying birds were observed at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island, Maryland, USA (Chesapeake Bay). Clinical signs suggested avian botulism, but an ongoing dense Microcystis bloom was present in an impoundment on the island. Enzyme-linked immunosorbent assay (ELISA) analysis of a water sample indicated 6000 ng mL-1 of microcystins (MCs). LC-UV/MS analysis confirmed the presence of MC-LR and a high concentration of an unknown MC congener (m/z 1037.5). The unknown MC was purified and confirmed to be [D-Leu1]MC-LR using NMR spectroscopy, LC-HRMS and LC-MS2, which slowly converted to [D-Leu1,Glu(OMe)6]MC-LR during storage in MeOH. Lyophilized algal material from the bloom was further characterized using LC-HRMS and LC-MS2 in combination with chemical derivatizations, and an additional 24 variants were detected, including MCs conjugated to Cys, GSH and γ-GluCys and their corresponding sulfoxides. Mallard (Anas platyrhynchos) livers were tested to confirm MC exposure. Two broad-specificity MC ELISAs and LC-MS2 were used to measure free MCs, while 'total' MCs were estimated by both MMPB (3-methoxy-2-methyl-4-phenylbutyric acid) and thiol de-conjugation techniques. Free microcystins in the livers (63-112 ng g-1) accounted for 33-41% of total microcystins detected by de-conjugation and MMPB techniques. Free [D-Leu1]MC-LR was quantitated in tissues at 25-67 ng g-1 (LC-MS2). The levels of microcystin varied based on analytical method used, highlighting the need to develop a comprehensive analysis strategy to elucidate the etiology of bird mortality events when microcystin-producing HABs are present.
Collapse
Affiliation(s)
- Amanda J Foss
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, United States.
| | - Christopher O Miles
- Norwegian Veterinary Institute, P. O. Box 750 Sentrum, N-0106, Oslo, Norway; Measurement Science and Standards, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Ingunn A Samdal
- Norwegian Veterinary Institute, P. O. Box 750 Sentrum, N-0106, Oslo, Norway
| | - Kjersti E Løvberg
- Norwegian Veterinary Institute, P. O. Box 750 Sentrum, N-0106, Oslo, Norway
| | - Alistair L Wilkins
- Norwegian Veterinary Institute, P. O. Box 750 Sentrum, N-0106, Oslo, Norway; Chemistry Department, University of Waikato, Private Bag 3105, 3240, Hamilton, New Zealand
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, N-0315, Oslo, Norway
| | - J Atle H Jaabæk
- Department of Chemistry, University of Oslo, P.O. Box 1033, N-0315, Oslo, Norway
| | - Peter C McGowan
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD, United States
| | - Mark T Aubel
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, United States
| |
Collapse
|
39
|
Dawood RS, Chidipudi SR, O'Connor DC, Lewis W, Hamza D, Pearce CA, Jones G, Wilkie RP, Georgiou I, Storr TE, Moore JC, Stockman RA. PdII
-Mediated Oxidative Amination for Access to a 9-Azabicyclo[4.2.1]nonane Compound Library and Anatoxin-a. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rafid S. Dawood
- School of Chemistry; University of Nottingham; University Park 2RD Nottingham, NG7 UK
- Department of Chemistry; College of Science; University of Baghdad; Al-Jadriya campus 10071 Baghdad Iraq
| | - Suresh R. Chidipudi
- School of Chemistry; University of Nottingham; University Park 2RD Nottingham, NG7 UK
| | - Daniel C. O'Connor
- School of Chemistry; University of Nottingham; University Park 2RD Nottingham, NG7 UK
| | - William Lewis
- School of Chemistry; University of Nottingham; University Park 2RD Nottingham, NG7 UK
| | - Daniel Hamza
- BioCity; College of Science; Sygnature Discovery Limited; Pennyfoot Street NG7 1GF Nottingham UK
| | - Christopher A. Pearce
- BioCity; College of Science; Sygnature Discovery Limited; Pennyfoot Street NG7 1GF Nottingham UK
| | - Geraint Jones
- BioCity; College of Science; Sygnature Discovery Limited; Pennyfoot Street NG7 1GF Nottingham UK
| | - Ross P. Wilkie
- School of Chemistry; University of Nottingham; University Park 2RD Nottingham, NG7 UK
| | - Irene Georgiou
- School of Chemistry; University of Nottingham; University Park 2RD Nottingham, NG7 UK
| | - Thomas E. Storr
- School of Chemistry; University of Nottingham; University Park 2RD Nottingham, NG7 UK
| | - Jonathan C. Moore
- School of Chemistry; University of Nottingham; University Park 2RD Nottingham, NG7 UK
| | - Robert A. Stockman
- School of Chemistry; University of Nottingham; University Park 2RD Nottingham, NG7 UK
| |
Collapse
|
40
|
Hematologic Values of Healthy and Sick Free-ranging Lesser Flamingos ( Phoeniconaias minor) in Kenya. J Wildl Dis 2018; 55:123-128. [PMID: 30235084 DOI: 10.7589/2016-04-079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We determined hematologic parameters of five healthy and nine sick free-ranging Lesser Flamingos ( Phoeniconaias minor) from Lake Nakuru, Kenya. Heterophilia and lymphopenia were evident in sick birds, with up to 7.5-fold higher heterophil-to-lymphocyte ratio in sick birds compared to healthy birds. Leucopenia was present in a few sick birds. A higher than normal packed cell volume was observed in birds that had evidence of acute disease, whereas a lower than normal packed cell volume was seen in birds with evidence of prolonged sickness. Healthy birds had higher total white blood cell counts and lymphocyte counts and lower heterophil counts than zoo flamingos. Most sick birds were diagnosed with septicemia, occasionally with fibrinous exudation into the coelomic cavities. One bird had mycobacterial granulomas, one had a corynebacterium-associated wing abscess, and one had a wing fracture. We provide hematologic data for free-ranging Lesser Flamingos and compare the parameters of sick and healthy birds.
Collapse
|
41
|
Acute Poisonings at a Regional Referral Hospital in Western Kenya. Trop Med Infect Dis 2018; 3:tropicalmed3030096. [PMID: 30274492 PMCID: PMC6161120 DOI: 10.3390/tropicalmed3030096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 12/05/2022] Open
Abstract
The emergency department (ED) of the Jaramogi Oginga Odinga Teaching and Referral Hospital (JOOTRH) handles many cases of poisoning. However, there is scant information on the factors, agents, and outcomes of poisoning at the hospital. The aim of this work was to determine the factors, agents, and outcomes of poisoning at JOOTRH. Records of patients who presented to JOOTRH with symptoms of poisoning between January 2011 and December 2016 were retrieved. Data on age, gender, offending agents, time, and season of exposure were collected. Information on the route of exposure, motive, and clinical symptoms of poisoning was also included. Other information included the laboratory evaluation, first aid measures, period of hospitalization, and outcome of poisoning. Mean, standard deviation, frequencies and bar graphs were used to describe the demographic factors of the study population. Multivariate logistic regression was used to determine the strength of association between risk factors and outcome of poisoning among patients. The level of significance for inferential analysis was set at 5%. There were 385 cases of poisoning: 57.9% (223/385) were male, 31.9% (123/385) were 13–24 years of age, and 83.9% (323/385) of exposures were in Kisumu County. The peak time of exposure was 6:00–00:00, and 23.6% (91/385) presented 1–4 h after exposure. About 62.9% (242/385) of the cases were due to accidental poisoning. Snakebites and organophosphates (OPPs) contributed to 33.0% (127/385) and 22.1% (85/385) of all cases, respectively. About 62.1% (239/385) of exposures were oral, and 63.9% (246/385) of all cases occurred in the rainy season. Additionally, 49.2% (60/122) of intentional poisoning was due to family disputes, and 16.1% (10/62) of pre-hospital first aid involved the use of tourniquets and herbal medicine. About 28.6% (110/385) of the victims were subjected to laboratory evaluation and 83.9% (323/385) were hospitalized for between 1–5 days. Other results indicated that 80.0% (308/385) responded well to therapy, while 7.3% (28/385) died, 68% (19/28) of whom were male. Furthermore, 39.3% (11/28) of the deaths were related to OPPs. Our findings suggest that the earlier the victims of poisoning get to the hospital, the more likely they are to survive after treatment is initiated. Similarly, victims of poisoning due to parental negligence are more likely to survive after treatment compared to other causes of poisoning, including family disputes, love affairs, snakebites, and psychiatric disorders. The management of JOOTRH should consider allocating resources to support the development of poison management and control.
Collapse
|
42
|
Major Y, Kifle D, Spoof L, Meriluoto J. Cyanobacteria and microcystins in Koka reservoir (Ethiopia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26861-26873. [PMID: 30003488 DOI: 10.1007/s11356-018-2727-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
The composition and abundance of cyanobacteria and their toxins, microcystins (MCs), and cylindrospermopsins (CYN) were investigated using samples collected at monthly intervals from the Amudde side of Koka Reservoir from May 2013 to April 2014. Cyanobacteria were the most abundant and persistent phytoplankton taxa with Microcystis and Cylindrospermopsis species alternately dominating the phytoplankton community of the reservoir and accounting for up to 84.3 and 11.9% of total cyanobacterial abundance, respectively. Analyses of cyanotoxins in filtered samples by HPLC-DAD and LC-MS/MS identified and quantified five variants of MCs (MC-LR, MC-YR, MC-RR, MC-dmLR, and MC-LA) in all samples, with their total concentrations ranging from 1.86 to 28.3 μg L-1 and from 1.71 to 33 μg L-1, respectively. Despite the presence and occasional abundance of Cylindrospermopsis sp., cylindrospermopsin was not detected. Redundancy analysis (RDA) showed that the environmental variables explained 82.7% of the total variance in cyanobacterial abundance and microcystin concentration. The presence of considerably high levels of MCs almost throughout the year represents a serious threat to public health and life of domestic and wild animals.
Collapse
Affiliation(s)
- Yeshiemebet Major
- Applied Biology Program, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Demeke Kifle
- Aquatic Science, Fisheries and Aquaculture stream, Department of Zoological Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Lisa Spoof
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| |
Collapse
|
43
|
Tokodi N, Drobac D, Meriluoto J, Lujić J, Marinović Z, Važić T, Nybom S, Simeunović J, Dulić T, Lazić G, Petrović T, Vuković-Gačić B, Sunjog K, Kolarević S, Kračun-Kolarević M, Subakov-Simić G, Miljanović B, Codd GA, Svirčev Z. Cyanobacterial effects in Lake Ludoš, Serbia - Is preservation of a degraded aquatic ecosystem justified? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1047-1062. [PMID: 29710560 DOI: 10.1016/j.scitotenv.2018.04.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria are present in many aquatic ecosystems in Serbia. Lake Ludoš, a wetland area of international significance and an important habitat for waterbirds, has become the subject of intense research interest because of practically continuous blooming of cyanobacteria. Analyses of water samples indicated a deterioration of ecological condition and water quality, and the presence of toxin-producing cyanobacteria (the most abundant Limnothrix redekei, Pseudanabaena limnetica, Planktothrix agardhii and Microcystis spp.). Furthermore, microcystins were detected in plants and animals from the lake: in macrophyte rhizomes (Phragmites communis, Typha latifolia and Nymphaea elegans), and in the muscle, intestines, kidneys, gonads and gills of fish (Carassius gibelio). Moreover, histopathological deleterious effects (liver, kidney, gills and intestines) and DNA damage (liver and gills) were observed in fish. A potential treatment for the reduction of cyanobacterial populations employing hydrogen peroxide was tested during this study. The treatment was not effective in laboratory tests although further in-lake trials are needed to make final conclusions about the applicability of the method. Based on our observations of the cyanobacterial populations and cyanotoxins in the water, as well as other aquatic organisms and, a survey of historical data on Lake Ludoš, it can be concluded that the lake is continuously in a poor ecological state. Conservation of the lake in order to protect the waterbirds (without urgent control of eutrophication) actually endangers them and the rest of the biota in this wetland habitat, and possibly other ecosystems. Thus, urgent measures for restoration are required, so that the preservation of this Ramsar site would be meaningful.
Collapse
Affiliation(s)
- Nada Tokodi
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Damjana Drobac
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520 Turku, Finland; Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jelena Lujić
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő 2100, Hungary
| | - Zoran Marinović
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő 2100, Hungary
| | - Tamara Važić
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Sonja Nybom
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520 Turku, Finland
| | - Jelica Simeunović
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Tamara Dulić
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Gospava Lazić
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, 21000 Novi Sad, Serbia
| | - Tamaš Petrović
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, 21000 Novi Sad, Serbia
| | - Branka Vuković-Gačić
- Center for Genotoxicology and Ecogenotoxicology, Chair of Microbiology, Faculty of Biology, Studenski Trg 16, University of Belgrade, Belgrade, Serbia
| | - Karolina Sunjog
- Center for Genotoxicology and Ecogenotoxicology, Chair of Microbiology, Faculty of Biology, Studenski Trg 16, University of Belgrade, Belgrade, Serbia
| | - Stoimir Kolarević
- Center for Genotoxicology and Ecogenotoxicology, Chair of Microbiology, Faculty of Biology, Studenski Trg 16, University of Belgrade, Belgrade, Serbia
| | - Margareta Kračun-Kolarević
- Institute for Biological Research "Siniša Stanković", Despota Stefana 142, University of Belgrade, Belgrade, Serbia
| | - Gordana Subakov-Simić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Branko Miljanović
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Geoffrey A Codd
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520 Turku, Finland
| |
Collapse
|
44
|
Wejnerowski Ł, Rzymski P, Kokociński M, Meriluoto J. The structure and toxicity of winter cyanobacterial bloom in a eutrophic lake of the temperate zone. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:752-760. [PMID: 29934736 PMCID: PMC6061131 DOI: 10.1007/s10646-018-1957-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2018] [Indexed: 05/22/2023]
Abstract
Winter cyanobacterial blooms have become increasingly common in eutrophic lakes advocating a need for their monitoring and risk assessment. The present study evaluated the toxicity of a winter cyanobacterial bloom in a eutrophicated freshwater lake located in Western Poland. The bloom was dominated by potentially toxic species: Planktothrix agardhii, Limnothrix redekei, and Aphanizomenon gracile. The toxin analysis revealed the presence of demethylated forms of microcystin-RR and microcystin-LR in ranges of 24.6-28.7 and 6.6-7.6 µg/L, respectively. The toxicity of sampled water was further evaluated in platelet-rich plasma isolated from healthy human subjects using lipid peroxidation and lactate dehydrogenase assays. No significant adverse effects were observed. The present study demonstrates that toxicity of some winter cyanobacterial blooms in the temperate zone, like that in Lubosińskie Lake, may not exhibit significant health risks despite microcystin production.
Collapse
Affiliation(s)
- Łukasz Wejnerowski
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznań, Poland
| | - Mikołaj Kokociński
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
45
|
|
46
|
Chia MA, Jankowiak JG, Kramer BJ, Goleski JA, Huang IS, Zimba PV, do Carmo Bittencourt-Oliveira M, Gobler CJ. Succession and toxicity of Microcystis and Anabaena (Dolichospermum) blooms are controlled by nutrient-dependent allelopathic interactions. HARMFUL ALGAE 2018; 74:67-77. [PMID: 29724344 DOI: 10.1016/j.hal.2018.03.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/03/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
Microcystis and Anabaena (Dolichospermum) are among the most toxic cyanobacterial genera and often succeed each other during harmful algal blooms. The role allelopathy plays in the succession of these genera is not fully understood. The allelopathic interactions of six strains of Microcystis and Anabaena under different nutrient conditions in co-culture and in culture-filtrate experiments were investigated. Microcystis strains significantly reduced the growth of Anabaena strains in mixed cultures with direct cell-to-cell contact and high nutrient levels. Cell-free filtrate from Microcystis cultures proved equally potent in suppressing the growth of nutrient replete Anabaena cultures while also significantly reducing anatoxin-a production. Allelopathic interactions between Microcystis and Anabaena were, however, partly dependent on ambient nutrient levels. Anabaena dominated under low N conditions and Microcystis dominated under nutrient replete and low P during which allelochemicals caused the complete suppression of nitrogen fixation by Anabaena and stimulated glutathione S-transferase activity. The microcystin content of Microcystis was lowered with decreasing N and the presence of Anabaena decreased it further under low P and high nutrient conditions. Collectively, these results indicate that strong allelopathic interactions between Microcystis and Anabaena are closely intertwined with the availability of nutrients and that allelopathy may contribute to the succession, nitrogen availability, and toxicity of cyanobacterial blooms.
Collapse
Affiliation(s)
- Mathias A Chia
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Postal code: 13418-900, Piracicaba, SP, Brazil; School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States
| | - Jennifer G Jankowiak
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States
| | - Benjamin J Kramer
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States
| | - Jennifer A Goleski
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States
| | - I-Shuo Huang
- Center for Coastal Studies (CCS), Texas A&M University, Corpus Christi, TX 78412 United States
| | - Paul V Zimba
- Center for Coastal Studies (CCS), Texas A&M University, Corpus Christi, TX 78412 United States
| | - Maria do Carmo Bittencourt-Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Postal code: 13418-900, Piracicaba, SP, Brazil
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States.
| |
Collapse
|
47
|
Selvarajan R, Sibanda T, Tekere M. Thermophilic bacterial communities inhabiting the microbial mats of "indifferent" and chalybeate (iron-rich) thermal springs: Diversity and biotechnological analysis. Microbiologyopen 2018; 7:e00560. [PMID: 29243409 PMCID: PMC5911995 DOI: 10.1002/mbo3.560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/13/2017] [Accepted: 10/24/2017] [Indexed: 11/08/2022] Open
Abstract
Microbial mats are occasionally reported in thermal springs and information on such mats is very scarce. In this study, microbial mats were collected from two hot springs (Brandvlei (BV) and Calitzdorp (CA)), South Africa and subjected to scanning electron microscopy (SEM) and targeted 16S rRNA gene amplicon analysis using Next Generation Sequencing (NGS). Spring water temperature was 55°C for Brandvlei and 58°C for Calitzdorp while the pH of both springs was slightly acidic, with an almost identical pH range (6.2-6.3). NGS analysis resulted in a total of 4943 reads, 517 and 736 OTUs for BV and CA at, respectively, a combined total of 14 different phyla in both samples, 88 genera in CA compared to 45 in BV and 37.64% unclassified sequences in CA compared to 27.32% recorded in BV. Dominant bacterial genera in CA microbial mat were Proteobacteria (29.19%), Bacteroidetes (9.41%), Firmicutes (9.01%), Cyanobacteria (6.89%), Actinobacteria (2.65%), Deinococcus-Thermus (2.57%), and Planctomycetes (1.94%) while the BV microbial mat was dominated by Bacteroidetes (47.3%), Deinococcus-Thermus (12.35%), Proteobacteria (7.98%), and Planctomycetes (2.97%). Scanning electron microscopy results showed the presence of microbial filaments possibly resembling cyanobacteria, coccids, rod-shaped bacteria and diatoms in both microbial mats. Dominant genera that were detected in this study have been linked to different biotechnological applications including hydrocarbon degradation, glycerol fermentation, anoxic-fermentation, dehalogenation, and biomining processes. Overall, the results of this study exhibited thermophilic bacterial community structures with high diversity in microbial mats, which have a potential for biotechnological exploitation.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Department of Environmental SciencesCollege of Agriculture and Environmental SciencesUNISA Science CampusFloridaSouth Africa
| | - Timothy Sibanda
- Department of Environmental SciencesCollege of Agriculture and Environmental SciencesUNISA Science CampusFloridaSouth Africa
| | - Memory Tekere
- Department of Environmental SciencesCollege of Agriculture and Environmental SciencesUNISA Science CampusFloridaSouth Africa
| |
Collapse
|
48
|
Papadimitriou T, Katsiapi M, Vlachopoulos K, Christopoulos A, Laspidou C, Moustaka-Gouni M, Kormas K. Cyanotoxins as the "common suspects" for the Dalmatian pelican (Pelecanus crispus) deaths in a Mediterranean reconstructed reservoir. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:779-787. [PMID: 29247940 DOI: 10.1016/j.envpol.2017.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/03/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Toxic cyanobacterial blooms have been implicated for their negative consequences on many terrestrial and aquatic organisms. Water birds belong to the most common members of the freshwater food chains and are most likely to be affected by the consumption of toxic cyanobacteria as food. However, the contribution of cyanotoxins in bird mortalities is under-studied. The aim of the study was to investigate the likely role of cyanotoxins in a mass mortality event of the Dalmatian pelican (Pelecanus crispus) in the Karla Reservoir, in Greece. Water, scum, tissues and stomach content of dead birds were examined for the presence of microcystins, cylindrospermopsins and saxitoxins by an enzyme-linked immunosorbent assay. High abundances of potential toxic cyanobacterial species and significant concentrations of cyanotoxins were recorded in the reservoir water. All examined tissues and stomach content of the Dalmatian pelicans contained significant concentrations of microcystins and saxitoxins. Cylindrospermopsin concentrations were detected in all tissues except from the brain. Our results suggest that cyanotoxins are a plausible cause for this bird mass mortality episode in the Karla Reservoir.
Collapse
Affiliation(s)
- T Papadimitriou
- Department of Civil Engineering, University of Thessaly, Volos, Greece
| | - M Katsiapi
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Greece
| | - K Vlachopoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | | | - C Laspidou
- Department of Civil Engineering, University of Thessaly, Volos, Greece
| | - M Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Greece
| | - K Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| |
Collapse
|
49
|
Vadeboncoeur Y, Power ME. Attached Algae: The Cryptic Base of Inverted Trophic Pyramids in Freshwaters. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-121415-032340] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It seems improbable that a thin veneer of attached algae coating submerged surfaces in lakes and rivers could be the foundation of many freshwater food webs, but increasing evidence from chemical tracers supports this view. Attached algae grow on any submerged surface that receives enough light for photosynthesis, but animals often graze attached algae down to thin, barely perceptible biofilms. Algae in general are more nutritious and digestible than terrestrial plants or detritus, and attached algae are particularly harvestable, being concentrated on surfaces. Diatoms, a major component of attached algal assemblages, are especially nutritious and tolerant of heavy grazing. Algivores can track attached algal productivity over a range of spatial scales and consume a high proportion of new attached algal growth in high-light, low-nutrient ecosystems. The subsequent efficient conversion of the algae into consumer production in freshwater food webs can lead to low-producer, high-consumer biomass, patterns that Elton (1927) described as inverted trophic pyramids. Human perturbations of nutrient, sediment, and carbon loading into freshwaters and of thermal and hydrologic regimes can weaken consumer control of algae and promote nuisance attached algal blooms.
Collapse
Affiliation(s)
- Yvonne Vadeboncoeur
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435
| | - Mary E. Power
- Department of Integrative Biology, University of California, Berkeley, California 94720-3140
| |
Collapse
|
50
|
Cirés S, Casero MC, Quesada A. Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments. Mar Drugs 2017; 15:md15070233. [PMID: 28737704 PMCID: PMC5532675 DOI: 10.3390/md15070233] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 01/06/2023] Open
Abstract
Cyanotoxins are secondary metabolites produced by cyanobacteria, of varied chemical nature and toxic effects. Although cyanobacteria thrive in all kinds of ecosystems on Earth even under very harsh conditions, current knowledge on cyanotoxin distribution is almost restricted to freshwaters from temperate latitudes. In this review, we bring to the forefront the presence of cyanotoxins in extreme environments. Cyanotoxins have been reported especially in polar deserts (both from the Arctic and Antarctica) and alkaline lakes, but also in hot deserts, hypersaline environments, and hot springs. Cyanotoxins detected in these ecosystems include neurotoxins-anatoxin-a, anatoxin-a (S), paralytic shellfish toxins, β-methylaminopropionic acid, N-(2-aminoethyl) glycine and 2,4-diaminobutyric acid- and hepatotoxins -cylindrospermopsins, microcystins and nodularins-with microcystins being the most frequently reported. Toxin production there has been linked to at least eleven cyanobacterial genera yet only three of these (Arthrospira, Synechococcus and Oscillatoria) have been confirmed as producers in culture. Beyond a comprehensive analysis of cyanotoxin presence in each of the extreme environments, this review also identifies the main knowledge gaps to overcome (e.g., scarcity of isolates and -omics data, among others) toward an initial assessment of ecological and human health risks in these amazing ecosystems developing at the very edge of life.
Collapse
Affiliation(s)
- Samuel Cirés
- Departamento de Biología, Darwin, 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - María Cristina Casero
- Museo Nacional de Ciencias Naturales, MNCN-CSIC, Calle Serrano 115, 28006 Madrid, Spain.
| | - Antonio Quesada
- Departamento de Biología, Darwin, 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|