1
|
Garrido Zornoza M, Mitarai N, Haerter JO. Stochastic microbial dispersal drives local extinction and global diversity. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231301. [PMID: 39076806 PMCID: PMC11285425 DOI: 10.1098/rsos.231301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 07/31/2024]
Abstract
Airborne dispersal of microorganisms is a ubiquitous migration mechanism, allowing otherwise independent microbial habitats to interact via biomass exchange. Here, we study the ecological implications of such advective transport using a simple spatial model for bacteria-phage interactions: the population dynamics at each habitat are described by classical Lotka-Volterra equations; however, species populations are taken as integer, that is, a discrete, positive extinction threshold exists. Spatially, species can spread from habitat to habitat by stochastic airborne dispersal. In any given habitat, the spatial biomass exchange causes incessant population density oscillations, which, as a consequence, occasionally drive species to extinction. The balance between local extinction events and dispersal-induced migration allows species to persist globally, even though diversity would be depleted by competitive exclusion, locally. The disruptive effect of biomass dispersal thus acts to increase microbial diversity, allowing system-scale coexistence of multiple species that would not coexist locally.
Collapse
Affiliation(s)
| | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jan O. Haerter
- The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Constructor University, Bremen, Germany
- Leibniz Centre for Tropical Marine Research, Bremen, Germany
- Department of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| |
Collapse
|
2
|
Huang Z, Yu X, Liu Q, Maki T, Alam K, Wang Y, Xue F, Tang S, Du P, Dong Q, Wang D, Huang J. Bioaerosols in the atmosphere: A comprehensive review on detection methods, concentration and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168818. [PMID: 38036132 DOI: 10.1016/j.scitotenv.2023.168818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
In the past few decades, especially since the outbreak of the coronavirus disease (COVID-19), the effects of atmospheric bioaerosols on human health, the environment, and climate have received great attention. To evaluate the impacts of bioaerosols quantitatively, it is crucial to determine the types of bioaerosols in the atmosphere and their spatial-temporal distribution. We provide a concise summary of the online and offline observation strategies employed by the global research community to sample and analyze atmospheric bioaerosols. In addition, the quantitative distribution of bioaerosols is described by considering the atmospheric bioaerosols concentrations at various time scales (daily and seasonal changes, for example), under various weather, and different underlying surfaces. Finally, a comprehensive summary of the reasons for the spatiotemporal distribution of bioaerosols is discussed, including differences in emission sources, the impact process of meteorological factors and environmental factors. This review of information on the latest research progress contributes to the emergence of further observation strategies that determine the quantitative dynamics of public health and ecological effects of bioaerosols.
Collapse
Affiliation(s)
- Zhongwei Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Xinrong Yu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiantao Liu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Teruya Maki
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Khan Alam
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan
| | - Yongkai Wang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fanli Xue
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shihan Tang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pengyue Du
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qing Dong
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Wang
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Jianping Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Tastassa AC, Sharaby Y, Lang-Yona N. Aeromicrobiology: A global review of the cycling and relationships of bioaerosols with the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168478. [PMID: 37967625 DOI: 10.1016/j.scitotenv.2023.168478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Airborne microorganisms and biological matter (bioaerosols) play a key role in global biogeochemical cycling, human and crop health trends, and climate patterns. Their presence in the atmosphere is controlled by three main stages: emission, transport, and deposition. Aerial survival rates of bioaerosols are increased through adaptations such as ultra-violet radiation and desiccation resistance or association with particulate matter. Current research into modern concerns such as climate change, global gene transfer, and pathogenicity often neglects to consider atmospheric involvement. This comprehensive review outlines the transpiring of bioaerosols across taxa in the atmosphere, with significant focus on their interactions with environmental elements including abiotic factors (e.g., atmospheric composition, water cycle, and pollution) and events (e.g., dust storms, hurricanes, and wildfires). The aim of this review is to increase understanding and shed light on needed research regarding the interplay between global atmospheric phenomena and the aeromicrobiome. The abundantly documented bacteria and fungi are discussed in context of their cycling and human health impacts. Gaps in knowledge regarding airborne viral community, the challenges and importance of studying their composition, concentrations and survival in the air are addressed, along with understudied plant pathogenic oomycetes, and archaea cycling. Key methodologies in sampling, collection, and processing are described to provide an up-to-date picture of ameliorations in the field. We propose optimization to microbiological methods, commonly used in soil and water analysis, that adjust them to the context of aerobiology, along with other directions towards novel and necessary advancements. This review offers new perspectives into aeromicrobiology and calls for advancements in global-scale bioremediation, insights into ecology, climate change impacts, and pathogenicity transmittance.
Collapse
Affiliation(s)
- Ariel C Tastassa
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Yehonatan Sharaby
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Naama Lang-Yona
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel.
| |
Collapse
|
4
|
Archer SDJ, Lee KC, Caruso T, Alcami A, Araya JG, Cary SC, Cowan DA, Etchebehere C, Gantsetseg B, Gomez-Silva B, Hartery S, Hogg ID, Kansour MK, Lawrence T, Lee CK, Lee PKH, Leopold M, Leung MHY, Maki T, McKay CP, Al Mailem DM, Ramond JB, Rastrojo A, Šantl-Temkiv T, Sun HJ, Tong X, Vandenbrink B, Warren-Rhodes KA, Pointing SB. Contribution of soil bacteria to the atmosphere across biomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162137. [PMID: 36775167 DOI: 10.1016/j.scitotenv.2023.162137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The dispersion of microorganisms through the atmosphere is a continual and essential process that underpins biogeography and ecosystem development and function. Despite the ubiquity of atmospheric microorganisms globally, specific knowledge of the determinants of atmospheric microbial diversity at any given location remains unresolved. Here we describe bacterial diversity in the atmospheric boundary layer and underlying soil at twelve globally distributed locations encompassing all major biomes, and characterise the contribution of local and distant soils to the observed atmospheric community. Across biomes the diversity of bacteria in the atmosphere was negatively correlated with mean annual precipitation but positively correlated to mean annual temperature. We identified distinct non-randomly assembled atmosphere and soil communities from each location, and some broad trends persisted across biomes including the enrichment of desiccation and UV tolerant taxa in the atmospheric community. Source tracking revealed that local soils were more influential than distant soil sources in determining observed diversity in the atmosphere, with more emissive semi-arid and arid biomes contributing most to signatures from distant soil. Our findings highlight complexities in the atmospheric microbiota that are relevant to understanding regional and global ecosystem connectivity.
Collapse
Affiliation(s)
- Stephen D J Archer
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Kevin C Lee
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Tancredi Caruso
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Jonathan G Araya
- Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - S Craig Cary
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Claudia Etchebehere
- Biological Research Institute Clemente Estable, Ministry of Education, Montevideo, Uruguay
| | | | - Benito Gomez-Silva
- Departamento Biomédico and CeBiB, Universidad de Antofagasta, Antofagasta, Chile
| | - Sean Hartery
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ian D Hogg
- School of Science, University of Waikato, Hamilton, New Zealand; Canadian High Arctic Research Station, Cambridge Bay, Nunavut, Canada
| | - Mayada K Kansour
- Department of Biological Sciences, Kuwait University, Kuwait City, Kuwait
| | - Timothy Lawrence
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Charles K Lee
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Matthias Leopold
- UWA School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Teruya Maki
- Department of Life Sciences, Kindai University, Osaka, Japan
| | | | - Dina M Al Mailem
- Department of Biological Sciences, Kuwait University, Kuwait City, Kuwait
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa; Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Henry J Sun
- Desert Research Institute, Las Vegas, NV, USA
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Bryan Vandenbrink
- Canadian High Arctic Research Station, Cambridge Bay, Nunavut, Canada
| | | | - Stephen B Pointing
- Yale-NUS College, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
5
|
Guillemette R, Harwell MC, Brown CA. Metabolically active bacteria detected with click chemistry in low organic matter rainwater. PLoS One 2023; 18:e0285816. [PMID: 37200308 DOI: 10.1371/journal.pone.0285816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Rain contains encapsulated bacteria that can be transported over vast distances during relatively short periods of time. However, the ecological significance of bacteria in "precontact" rainwater-rainwater prior to contact with non-atmospheric surfaces-remains relatively undefined given the methodological challenges of studying low-abundance microbes in a natural assemblage. Here, we implement single-cell "click" chemistry in a novel application to detect the protein synthesis of bacteria in precontact rainwater samples as a measure of metabolic activity. Using epifluorescence microscopy, we find approximately 103-104 bacteria cells mL-1 with up to 7.2% of the observed cells actively synthesizing protein. Additionally, our measurement of less than 30 μM total organic carbon in the samples show that some rainwater bacteria can metabolize substrates in very low organic matter conditions, comparable to extremophiles in the deep ocean. Overall, our results raise new questions for the field of rainwater microbiology and may help inform efforts to develop quantitative microbial risk assessments for the appropriate use of harvested rainwater.
Collapse
Affiliation(s)
- Ryan Guillemette
- Pacific Coastal Ecology Branch, United States Environmental Protection Agency, Newport, Oregon, United States of America
| | - Matthew C Harwell
- Pacific Coastal Ecology Branch, United States Environmental Protection Agency, Newport, Oregon, United States of America
| | - Cheryl A Brown
- Pacific Coastal Ecology Branch, United States Environmental Protection Agency, Newport, Oregon, United States of America
| |
Collapse
|
6
|
Rodríguez-Arias RM, Rojo J, Fernández-González F, Pérez-Badia R. Desert dust intrusions and their incidence on airborne biological content. Review and case study in the Iberian Peninsula. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120464. [PMID: 36273688 DOI: 10.1016/j.envpol.2022.120464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Desert dust intrusions cause the transport of airborne particulate matter from natural sources, with important consequences for climate regulation, biodiversity, ecosystem functioning and dynamics, human health, and socio-economic activities. Some effects of desert intrusions are reinforced or aggravated by the bioaerosol content of the air during these episodes. The influence of desert intrusions on airborne bioaerosol content has been very little studied from a scientific point of view. In this study, a systematic review of scientific literature during 1970-2021 was carried out following the standard protocol Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). After this literature review, only 6% of the articles on airborne transport from desert areas published in the last 50 years are in some way associated with airborne pollen, and of these, only a small proportion focus on the study of pollen-related parameters. The Iberian Peninsula is affected by Saharan intrusions due to its proximity to the African continent and is seeing an increasing trend the number of intrusion events. There is a close relationship among the conditions favouring the occurrence of intrusion episodes, the transport of particulate matter, and the transport of bioaerosols such as pollen grains, spores, or bacteria. The lack of linearity in this relationship and the different seasonal patterns in the occurrence of intrusion events and the pollen season of most plants hinders the study of the correspondence between both phenomena. It is therefore important to analyse the proportion of pollen that comes from regional sources and the proportion that travels over long distances, and the atmospheric conditions that cause greater pollen emission during dust episodes. Current advances in aerobiological techniques make it possible to identify bioaerosols such as pollen and spores that serve as indicators of long-distance transport from remote areas belonging to other bioclimatic and biogeographical units. A greater incidence of desert intrusion episodes may pose a challenge for both traditional systems and for the calibration and correct validation of automatic aerobiological monitoring methods.
Collapse
Affiliation(s)
- R M Rodríguez-Arias
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - J Rojo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - F Fernández-González
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - R Pérez-Badia
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain.
| |
Collapse
|
7
|
González AG, Bianco A, Boutorh J, Cheize M, Mailhot G, Delort AM, Planquette H, Chaumerliac N, Deguillaume L, Sarthou G. Influence of strong iron-binding ligands on cloud water oxidant capacity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154642. [PMID: 35306063 DOI: 10.1016/j.scitotenv.2022.154642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Iron (Fe) plays a dual role in atmospheric chemistry: it is involved in chemical and photochemical reactivity and serves as a micronutrient for microorganisms that have recently been shown to produce strong organic ligands. These ligands control the reactivity, mobility, solubility and speciation of Fe, which have a potential impact on Fe bioavailability and cloud water oxidant capacity. In this work, the concentrations of Fe-binding ligands and the conditional stability constants were experimentally measured for the first time by Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) technique in cloud water samples collected at puy de Dôme (France). The conditional stability constants, which indicate the strength of the Fe-ligand complexes, are higher than those considered until now in cloud chemistry (mainly Fe-oxalate). To understand the effect of Fe complexation on cloud water reactivity, we used the CLEPS cloud chemistry model. According to the model results, we found that Fe complexation impacts the hydroxyl radical formation rate: contrary to our expectations, Fe complexation by natural organic ligands led to an increase in hydroxyl radical production. These findings have important impacts on cloud chemistry and the global iron cycle.
Collapse
Affiliation(s)
- Aridane G González
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain; CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280 Plouzane, France.
| | - Angelica Bianco
- Laboratoire de Météorologie Physique, UMR 6016, CNRS, Université Clermont Auvergne, 63178 Aubière, France.
| | - Julia Boutorh
- CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| | - Marie Cheize
- CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| | - Gilles Mailhot
- CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Anne-Marie Delort
- CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | | | - Nadine Chaumerliac
- Laboratoire de Météorologie Physique, UMR 6016, CNRS, Université Clermont Auvergne, 63178 Aubière, France
| | - Laurent Deguillaume
- Laboratoire de Météorologie Physique, UMR 6016, CNRS, Université Clermont Auvergne, 63178 Aubière, France; Observatoire de Physique du Globe de Clermont-Ferrand, UAR 833, CNRS, Université Clermont Auvergne, 63178 Aubière, France
| | | |
Collapse
|
8
|
Sasaki S, Yamagishi A, Yoshimura Y, Enya K, Miyakawa A, Ohno S, Fujita K, Usui T, Limaye S. In situ bio/chemical characterization of Venus cloud particles using Life-signature Detection Microscope for Venus (Venus LDM). Can J Microbiol 2022; 68:413-425. [PMID: 35235433 DOI: 10.1139/cjm-2021-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much of the information about the size and shape of aerosols forming haze and the cloud layer of Venus is obtained from indirect inferences from nephelometers on probes and from analysis of the variation of polarization with the phase angle and the glory feature from images of Venus. Microscopic imaging of Venus' aerosols has been advocated recently. Direct measurements from a fluorescence microscope can provide information on the morphology, density, and biochemical characteristics of the particles; thus, the fluorescence microscope is attractive for the in situ particle characterization of Venus' cloud layer. Fluorescence imaging of Venus' cloud particles presents several challenges due to the sulfuric acid composition and the corrosive effects. In this article, we identify the challenges and describe our approach to overcoming them for a fluorescence microscope based on an in situ bio/chemical and physical characterization instrument for use in the clouds of Venus from a suitable aerial platform. We report that a pH adjustment using alkali was effective for obtaining fluorescence images, and that fluorescence attenuation was observed after the adjustment, even when the acidophile suspension in the concentrated sulfuric acid was used as a sample.
Collapse
Affiliation(s)
- Satoshi Sasaki
- Tokyo University of Technology, 13097, Hachioji, Japan, 192-0914;
| | - Akihiko Yamagishi
- Tokyo University of Pharmacy and Life Sciences, 13115, Hachioji, Tokyo, Japan;
| | | | - Keigo Enya
- JAXA, 13557, Sagamihara, Kanagawa, Japan;
| | - Atsuo Miyakawa
- Tokyo University of Pharmacy and Life Sciences, 13115, Hachioji, Tokyo, Japan;
| | - Sohsuke Ohno
- Chiba Institute of Technology, 12829, Chiba, Chiba, Japan;
| | | | | | - Sanjay Limaye
- University of Wisconsin-Madison, 5228, Madison, Wisconsin, United States;
| |
Collapse
|
9
|
Moore RA, Martinetti D, Bigg EK, Christner BC, Morris CE. Climatic and landscape changes as drivers of environmental feedback that influence rainfall frequency in the United States. GLOBAL CHANGE BIOLOGY 2021; 27:6381-6393. [PMID: 34553813 PMCID: PMC9292682 DOI: 10.1111/gcb.15876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have identified regions where the occurrence of rainfall significantly increases or decreases the probability for subsequent rainfall over periods that range from a few days to several weeks. These observable phenomena are termed "rainfall feedback" (RF). To better understand the land-atmosphere interactions involved in RF, the behavior of RF patterns was analyzed using data from 1849 to 2016 at ~3000 sites in the contiguous United States. We also considered changes in major land-use types and applied a geographically weighted regression model technique for analyzing the predictors of RF. This approach identified non-linear and spatially non-stationary relationships between RF, climate, land use, and land type. RF patterns in certain regions of the United States are predictable by modeling variables associated with climate, season, and land use. The model outputs also demonstrate the extent to which the effect of precipitation, temperature, and land use on RF depend on season and location. Specifically, major changes were observed for land use associated with agriculture in the western United States, which had negative and positive influences on RF in summer and winter, respectively. In contrast, developed land in the eastern United States correlated with positive RF values in summer but with negative ones in winter. We discuss how changes in climate and land use would be expected to affect land-atmosphere interactions, as well as the possible role that physical mechanisms and rain-enhanced bioaerosol emissions may play in the spatiotemporal changes observed for historical patterns of rainfall frequency in the United States.
Collapse
Affiliation(s)
- Rachel A. Moore
- School of Earth and Atmospheric Sciences at the Georgia Institute of TechnologyAtlantaGA30318
| | | | | | - Brent C. Christner
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleFLUSA
| | | |
Collapse
|
10
|
Alsante AN, Thornton DCO, Brooks SD. Ocean Aerobiology. Front Microbiol 2021; 12:764178. [PMID: 34777320 PMCID: PMC8586456 DOI: 10.3389/fmicb.2021.764178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Ocean aerobiology is defined here as the study of biological particles of marine origin, including living organisms, present in the atmosphere and their role in ecological, biogeochemical, and climate processes. Hundreds of trillions of microorganisms are exchanged between ocean and atmosphere daily. Within a few days, tropospheric transport potentially disperses microorganisms over continents and between oceans. There is a need to better identify and quantify marine aerobiota, characterize the time spans and distances of marine microorganisms’ atmospheric transport, and determine whether microorganisms acclimate to atmospheric conditions and remain viable, or even grow. Exploring the atmosphere as a microbial habitat is fundamental for understanding the consequences of dispersal and will expand our knowledge of biodiversity, biogeography, and ecosystem connectivity across different marine environments. Marine organic matter is chemically transformed in the atmosphere, including remineralization back to CO2. The magnitude of these transformations is insignificant in the context of the annual marine carbon cycle, but may be a significant sink for marine recalcitrant organic matter over long (∼104 years) timescales. In addition, organic matter in sea spray aerosol plays a significant role in the Earth’s radiative budget by scattering solar radiation, and indirectly by affecting cloud properties. Marine organic matter is generally a poor source of cloud condensation nuclei (CCN), but a significant source of ice nucleating particles (INPs), affecting the formation of mixed-phase and ice clouds. This review will show that marine biogenic aerosol plays an impactful, but poorly constrained, role in marine ecosystems, biogeochemical processes, and the Earth’s climate system. Further work is needed to characterize the connectivity and feedbacks between the atmosphere and ocean ecosystems in order to integrate this complexity into Earth System models, facilitating future climate and biogeochemical predictions.
Collapse
Affiliation(s)
- Alyssa N Alsante
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Daniel C O Thornton
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Sarah D Brooks
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
11
|
Péguilhan R, Besaury L, Rossi F, Enault F, Baray JL, Deguillaume L, Amato P. Rainfalls sprinkle cloud bacterial diversity while scavenging biomass. FEMS Microbiol Ecol 2021; 97:6420242. [PMID: 34734249 DOI: 10.1093/femsec/fiab144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/27/2021] [Indexed: 11/15/2022] Open
Abstract
Bacteria circulate in the atmosphere, through clouds and precipitation to surface ecosystems. Here, we conducted a coordinated study of bacteria assemblages in clouds and precipitation at two sites distant of ∼800 m in elevation in a rural vegetated area around puy de Dôme Mountain, France, and analysed them in regard to meteorological, chemical and air masses' history data. In both clouds and precipitation, bacteria generally associated with vegetation or soil dominated. Elevated ATP-to-cell ratio in clouds compared with precipitation suggested a higher proportion of viable cells and/or specific biological processes. The increase of bacterial cell concentration from clouds to precipitation indicated strong below-cloud scavenging. Using ions as tracers, we derive that 0.2 to 25.5% of the 1.1 × 107 to 6.6 × 108 bacteria cell/m2/h1 deposited with precipitation originated from the source clouds. Yet, the relative species richness decreased with the proportion of inputs from clouds, pointing them as sources of distant microbial diversity. Biodiversity profiles, thus, differed between clouds and precipitation in relation with distant/local influencing sources, and potentially with bacterial phenotypic traits. Notably Undibacterium, Bacillus and Staphylococcus were more represented in clouds, while epiphytic bacteria such as Massilia, Sphingomonas, Rhodococcus and Pseudomonas were enriched in precipitation.
Collapse
Affiliation(s)
- Raphaëlle Péguilhan
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| | - Ludovic Besaury
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| | - Florent Rossi
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| | - François Enault
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000 CLERMONT-FERRAND, France
| | - Jean-Luc Baray
- Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont-Ferrand , UMS 833, F-63000 CLERMONT-FERRAND, France.,Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique , UMR 6016, F-63000 CLERMONT-FERRAND, France
| | - Laurent Deguillaume
- Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont-Ferrand , UMS 833, F-63000 CLERMONT-FERRAND, France.,Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique , UMR 6016, F-63000 CLERMONT-FERRAND, France
| | - Pierre Amato
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| |
Collapse
|
12
|
Limaye SS, Mogul R, Baines KH, Bullock MA, Cockell C, Cutts JA, Gentry DM, Grinspoon DH, Head JW, Jessup KL, Kompanichenko V, Lee YJ, Mathies R, Milojevic T, Pertzborn RA, Rothschild L, Sasaki S, Schulze-Makuch D, Smith DJ, Way MJ. Venus, an Astrobiology Target. ASTROBIOLOGY 2021; 21:1163-1185. [PMID: 33970019 DOI: 10.1089/ast.2020.2268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a case for the exploration of Venus as an astrobiology target-(1) investigations focused on the likelihood that liquid water existed on the surface in the past, leading to the potential for the origin and evolution of life, (2) investigations into the potential for habitable zones within Venus' present-day clouds and Venus-like exo atmospheres, (3) theoretical investigations into how active aerobiology may impact the radiative energy balance of Venus' clouds and Venus-like atmospheres, and (4) application of these investigative approaches toward better understanding the atmospheric dynamics and habitability of exoplanets. The proximity of Venus to Earth, guidance for exoplanet habitability investigations, and access to the potential cloud habitable layer and surface for prolonged in situ extended measurements together make the planet a very attractive target for near term astrobiological exploration.
Collapse
Affiliation(s)
- Sanjay S Limaye
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rakesh Mogul
- Chemistry and Biochemistry Department, Cal Poly Pomona, Pomona, California, USA
| | - Kevin H Baines
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Charles Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, Scotland
| | - James A Cutts
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Diana M Gentry
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - James W Head
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | | | - Vladimir Kompanichenko
- Institute for Complex Analysis of Regional Problems, Russian Academy of Sciences, Birobidzhan, Russia
| | - Yeon Joo Lee
- Zentrum für Astronomie und Astrophysik, Technical University of Berlin, Berlin, Germany
| | - Richard Mathies
- Chemistry Department and Space Sciences Lab, University of California, Berkeley, Berkeley, California, USA
| | - Tetyana Milojevic
- Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Rosalyn A Pertzborn
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Satoshi Sasaki
- School of Health Sciences, Tokyo University of Technology, Hachioji, Japan
| | - Dirk Schulze-Makuch
- Center for Astronomy and Astrophysics (ZAA), Technische Universität Berlin, Berlin, Germany
- German Research Centre for Geosciences (GFZ), Potsdam, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - David J Smith
- NASA Ames Research Center, Moffett Field, California, USA
| | - Michael J Way
- NASA Goddard Institute for Space Studies, New York, New York, USA
| |
Collapse
|
13
|
Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5. Microorganisms 2021; 9:microorganisms9040768. [PMID: 33917603 PMCID: PMC8067484 DOI: 10.3390/microorganisms9040768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 02/08/2023] Open
Abstract
An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Tyrolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%). Its genomic DNA G + C content is 65.9%. Further, in silico DNA-DNA hybridization and calculation of the average nucleotide identity speaks for the close phylogenetic relationship of AAP5 and Sphingomonas glacialis. The high percentage (76.2%) of shared orthologous gene clusters between strain AAP5 and Sphingomonas paucimobilis NCTC 11030T, the type species of the genus, supports the classification of the two strains into the same genus. Strain AAP5 was found to contain C18:1ω7c (64.6%) as a predominant fatty acid (>10%) and the polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, six unidentified glycolipids, one unidentified phospholipid, and two unidentified lipids. The main respiratory quinone was ubiquinone-10. Strain AAP5 is a facultative photoheterotroph containing type-2 photosynthetic reaction centers and, in addition, contains a xathorhodopsin gene. No CO2-fixation pathways were found.
Collapse
|
14
|
Woo C, Yamamoto N. Falling bacterial communities from the atmosphere. ENVIRONMENTAL MICROBIOME 2020; 15:22. [PMID: 33902752 PMCID: PMC8066439 DOI: 10.1186/s40793-020-00369-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/28/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Bacteria emitted into the atmosphere eventually settle to the pedosphere via sedimentation (dry deposition) or precipitation (wet deposition), constituting a part of the global cycling of substances on Earth, including the water cycle. In this study, we aim to investigate the taxonomic compositions and flux densities of bacterial deposition, for which little is known regarding the relative contributions of each mode of atmospheric deposition, the taxonomic structures and memberships, and the aerodynamic properties in the atmosphere. RESULTS Precipitation was found to dominate atmospheric bacterial deposition, contributing to 95% of the total flux density at our sampling site in Korea, while bacterial communities in precipitation were significantly different from those in sedimentation, in terms of both their structures and memberships. Large aerodynamic diameters of atmospheric bacteria were observed, with an annual mean of 8.84 μm, which appears to be related to their large sedimentation velocities, with an annual mean of 1.72 cm s- 1 for all bacterial taxa combined. The observed mean sedimentation velocity for atmospheric bacteria was larger than the previously reported mean sedimentation velocities for fungi and plants. CONCLUSIONS Large aerodynamic diameters of atmospheric bacteria, which are likely due to the aggregation and/or attachment to other larger particles, are thought to contribute to large sedimentation velocities, high efficiencies as cloud nuclei, and large amounts of precipitation of atmospheric bacteria. Moreover, the different microbiotas between precipitation and sedimentation might indicate specific bacterial involvement and/or selective bacterial growth in clouds. Overall, our findings add novel insight into how bacteria participate in atmospheric processes and material circulations, including hydrological circulation, on Earth.
Collapse
Affiliation(s)
- Cheolwoon Woo
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Naomichi Yamamoto
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Health and Environment, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
15
|
Schröer L, De Kock T, Cnudde V, Boon N. Differential colonization of microbial communities inhabiting Lede stone in the urban and rural environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139339. [PMID: 32446079 DOI: 10.1016/j.scitotenv.2020.139339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Air pollution is one of the main actors of stone deterioration. It influences not only the material itself but also prokaryotes colonizing rocks. Prokaryotes can affect rock substrates and biological colonization will most likely become relatively more important during the course of the 21st century. Therefore, it is necessary to understand the effects of air pollution on biological colonization and on the impact of this colonization on rock weathering. For this reason, we studied the prokaryotic community of Lede stone from two deteriorated monuments in Belgium: one in the urban and one in the rural environment. This research conducts 16S rRNA gene Next Generation Sequencing combined with an isolation campaign. It revealed diverse and complex prokaryotic communities with more specialized bacteria present in the urban environment, while archaea were barely detected. Some genera could cause biodeterioration but the isolates did not produce a significant amount of acid. Soluble salts analysis revealed an important effect of salts on the prokaryotic community. Colour measurements at least indicate that a main effect of prokaryotes might be on the aesthetics: In the countryside prokaryotic communities seemed to discolour Lede stone, while pollution most likely blackened building stones in the urban environment.
Collapse
Affiliation(s)
- Laurenz Schröer
- PProGRess, Department of Geology, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium; Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Tim De Kock
- PProGRess, Department of Geology, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium; Antwerp Cultural Heritage Sciences (ARCHES), University of Antwerp, Mutsaardstraat 31, 2000 Antwerp, Belgium.
| | - Veerle Cnudde
- PProGRess, Department of Geology, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium; Environmental Hydrogeology, Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 Utrecht, the Netherlands.
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
16
|
Community Structure and Influencing Factors of Airborne Microbial Aerosols over Three Chinese Cities with Contrasting Social-Economic Levels. ATMOSPHERE 2020. [DOI: 10.3390/atmos11040317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As an important part of atmospheric aerosol, airborne bacteria have major impacts on human health. However, variations of airborne community structure due to human-induced activities and their possible impact on human health have not been well understood. In this study, we sampled atmospheric microbial aerosols in three Chinese cities (Shanghai, Xiamen, and Zhangzhou) with contrasting social-economic levels and analyzed the bacterial composition using high-throughput sequencing methods. A high similarity of the predominant phyla was observed in three cities but the relative abundances were quite different. At the genus level, the most dominant genus in Shanghai and Xiamen was Deinococcus while the most dominant genus in Zhangzhou was Clostridium. The different characteristics of airborne bacterial in the three cities above may be ascribed to the environmental variables affected by human over-activities such as the vehicle exhausts and coal-burning emissions in Shanghai, the tourist aggregation and construction works in Xiamen, the extensive uses of chemical fertilizers, and agricultural activities in Zhangzhou. The variation of the bacterial community and the pathogenic bacteria detected in three cities would have a potential threat to human health.
Collapse
|
17
|
Sharma Ghimire P, Tripathee L, Zhang Q, Guo J, Ram K, Huang J, Sharma CM, Kang S. Microbial mercury methylation in the cryosphere: Progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134150. [PMID: 32380618 DOI: 10.1016/j.scitotenv.2019.134150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is one of the most toxic heavy metals, and its cycle is mainly controlled by oxidation-reduction reactions carried out by photochemical or microbial process under suitable conditions. The deposition and accumulation of methylmercury (MeHg) in various ecosystems, including the cryospheric components such as snow, meltwater, glaciers, and ice sheet, and subsequently in the food chain pose serious health concerns for living beings. Unlike the abundance of knowledge about the processes of MeHg production over land and oceans, little is known about the sources and production/degradation rate of MeHg in cryosphere systems. In addition, processes controlling the concentration of Hg and MeHg in the cryosphere remains poorly understood, and filling this scientific gap has been challenging. Therefore, it is essential to study and review the deposition and accumulation by biological, physical, and chemical mechanisms involved in Hg methylation in the cryosphere. This review attempts to address knowledge gaps in understanding processes, especially biotic and abiotic, applicable for Hg methylation in the cryosphere. First, we focus on the variability in Hg concentration and mechanisms of Hg methylation, including physical, chemical, microbial, and biological processes, and transportation in the cryosphere. Then, we elaborate on the mechanism of redox reactions and biotic and abiotic factors controlling Hg methylation and biogeochemistry of Hg in the cryosphere. We also present possible mechanisms of Hg methylation with an emphasis on microbial transformation and molecular function to understand variability in Hg concentration in the cryosphere. Recent advancements in the genetic and physicochemical mechanisms of Hg methylation are also presented. Finally, we summarize and propose a method to study the unsolved issues of Hg methylation in the cryosphere.
Collapse
Affiliation(s)
- Prakriti Sharma Ghimire
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal.
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Kirpa Ram
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Jie Huang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chhatra Mani Sharma
- Himalayan Environment Research Institute (HERI), Kathmandu, Nepal; Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China.
| |
Collapse
|
18
|
Metabolic modulations of Pseudomonas graminis in response to H 2O 2 in cloud water. Sci Rep 2019; 9:12799. [PMID: 31488860 PMCID: PMC6728378 DOI: 10.1038/s41598-019-49319-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/26/2019] [Indexed: 12/26/2022] Open
Abstract
In cloud water, microorganisms are exposed to very strong stresses especially related to the presence of reactive oxygen species including H2O2 and radicals, which are the driving force of cloud chemistry. In order to understand how the bacterium Pseudomonas graminis isolated from cloud water respond to this oxidative stress, it was incubated in microcosms containing a synthetic solution of cloud water in the presence or in the absence of H2O2. P. graminis metabolome was examined by LC-MS and NMR after 50 min and after 24 hours of incubation. After 50 min, the cells were metabolizing H2O2 while this compound was still present in the medium, and it was completely biodegraded after 24 hours. Cells exposed to H2O2 had a distinct metabolome as compared to unexposed cells, revealing modulations of certain metabolic pathways in response to oxidative stress. These data indicated that the regulations observed mainly involved carbohydrate, glutathione, energy, lipid, peptides and amino-acids metabolisms. When cells had detoxified H2O2 from the medium, their metabolome was not distinguishable anymore from unexposed cells, highlighting the capacity of resilience of this bacterium. This work illustrates the interactions existing between the cloud microbial metabolome and cloud chemistry.
Collapse
|
19
|
Survival and ice nucleation activity of Pseudomonas syringae strains exposed to simulated high-altitude atmospheric conditions. Sci Rep 2019; 9:7768. [PMID: 31123327 PMCID: PMC6533367 DOI: 10.1038/s41598-019-44283-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/07/2019] [Indexed: 12/01/2022] Open
Abstract
Pseudomonas syringae produces highly efficient biological ice nuclei (IN) that were proposed to influence precipitation by freezing water in clouds. This bacterium may be capable of dispersing through the atmosphere, having been reported in rain, snow, and cloud water samples. This study assesses its survival and maintenance of IN activity under stressing conditions present at high altitudes, such as UV radiation within clouds. Strains of the pathovars syringae and garcae were compared to Escherichia coli. While UV-C effectively inactivated these cells, the Pseudomonas were much more tolerant to UV-B. The P. syringae strains were also more resistant to radiation from a solar simulator, composed of UV-A and UV-B, while only one of them suffered a decline in IN activity at −5 °C after long exposures. Desiccation at different relative humidity values also affected the IN, but some activity at −5 °C was always maintained. The pathovar garcae tended to be more resistant than the pathovar syringae, particularly to desiccation, though its IN were found to be generally more sensitive. Compared to E. coli, the P. syringae strains appear to be better adapted to survival under conditions present at high altitudes and in clouds.
Collapse
|
20
|
Wei M, Xu C, Xu X, Zhu C, Li J, Lv G. Size distribution of bioaerosols from biomass burning emissions: Characteristics of bacterial and fungal communities in submicron (PM 1.0) and fine (PM 2.5) particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:37-46. [PMID: 30594755 DOI: 10.1016/j.ecoenv.2018.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 05/21/2023]
Abstract
The North China Plain is the agricultural heartland in China. High PM2.5 levels and elevated chemical pollutants have been observed during crop harvest seasons due to open biomass burning. Biomass burning in the wheat-harvest season may significantly deteriorate the regional air quality. The harmful ingredients in smoke particles also have severe implications for toxicity and health effects. Previous studies have illustrated the potential role of bioaerosols as ice-nuclei and cloud condensation nuclei and highlighted their influence on biochemical cycles and human health effects. In a monthly field observation campaign of biomass burning conducted at the summit of Mount Tai in July 2015, we reported the composition, potential role, size distribution of microorganisms in particulate matters PM1.0, PM2.5, and estimated their contribution to particles. The wide-range particle spectrometer suggested that the predominant particles were distributed in submicron particles (PM1.0), which resulted in a similar community structure for bacteria and fungi in PM1.0 and PM2.5. Among bacteria, the predominant Pseudomonas accounted for 18.06% and 21.29% in PM1.0 and PM2.5, respectively. Alternaria covered up to 69.01% and 72.76% of the fungal community in PM1.0 and PM2.5, respectively. A disparity between bacterial communities was identified by the abundance of rare species, such as Bacilli being higher in PM1.0 (2.4%) than in PM2.5 (1.8%), and Defluviicoccus being higher in PM2.5 (2.5%) than in PM1.0 (0.5%), which may be related to cell size and cell growth patterns. Quantitative PCR revealed that microbial cell numbers in PM2.5 were higher than in PM1.0, and that the bacterial cell number was about an order of magnitude greater than the fungal cell number. However, the mass concentration and contribution of fungi to particulate matter was much higher than that of bacteria, suggesting the underestimated role of fungi in atmospheric aerosols. Airborne microorganisms in alpine areas remained less characterized. The findings presented here illustrated the potentially important impacts on air quality and bioaerosol pollution by biomass burning, which provides an essential reference for understanding the transmission and health effects of bioaerosols.
Collapse
Affiliation(s)
- Min Wei
- College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China; Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China.
| | - Caihong Xu
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Xianmang Xu
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Chao Zhu
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Jiarong Li
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Ganglin Lv
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| |
Collapse
|
21
|
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front Microbiol 2019; 10:780. [PMID: 31037068 PMCID: PMC6476344 DOI: 10.3389/fmicb.2019.00780] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/27/2019] [Indexed: 01/21/2023] Open
Abstract
Prokaryotic life has dominated most of the evolutionary history of our planet, evolving to occupy virtually all available environmental niches. Extremophiles, especially those thriving under multiple extremes, represent a key area of research for multiple disciplines, spanning from the study of adaptations to harsh conditions, to the biogeochemical cycling of elements. Extremophile research also has implications for origin of life studies and the search for life on other planetary and celestial bodies. In this article, we will review the current state of knowledge for the biospace in which life operates on Earth and will discuss it in a planetary context, highlighting knowledge gaps and areas of opportunity.
Collapse
Affiliation(s)
- Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, United States
| | - Heidi S Aronson
- Department of Biology, University of Southern California, Los Angeles, CA, United States
| | - Diana P Bojanova
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jayme Feyhl-Buska
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michael L Wong
- Department of Astronomy - Astrobiology Program, University of Washington, Seattle, WA, United States.,NASA Astrobiology Institute's Virtual Planetary Laboratory, University of Washington, Seattle, WA, United States
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, United States
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Biology, University of Naples "Federico II", Naples, Italy.,Department of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Institute for Biological Resources and Marine Biotechnology, National Research Council of Italy, Ancona, Italy
| |
Collapse
|
22
|
Souagui S, Djoudi W, Boudries H, Béchet M, Leclère V, Kecha M. Modeling and Statistical Optimization of Culture Conditions for Improvement of Antifungal Compounds Production by Streptomyces albidoflavus S19 Strain of Wastewater Origin. ANTI-INFECTIVE AGENTS 2019; 17:39-49. [PMID: 31328084 PMCID: PMC6596383 DOI: 10.2174/2211352516666180813102424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/20/2018] [Accepted: 08/08/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND The actinomycetes strains isolated from unexplored ecosystems are a promising alternative for the biosynthesis of novel antimicrobial compounds. Depending on the interesting antifungal activity of the studied strain S19, the statistical method seems to be an effective tool for optimizing the production of anticandidal molecules. INTRODUCTION This study was conducted in order to optimize the culture parameters (medium nutrients concentrations and initial pH value) affecting the production of antifungal metabolites from S. albidoflavus strain S19 (obtained from wastewater collected in Bejaia region, Algeria) using Response Surface Metho-dology (RSM). The best conditions for anti-Candida albicans compounds biosynthesis were determined. METHODS AND RESULTS The antimicrobial producer strain S. albidoflavus S19 was identified on the basis of morphological, chemicals characters and physiological characteristics along with 16S rRNA gene se-quencing analysis.Response Surface Methodology by Central Composite Design (CCD) was employed to improve the anti-C. albicans agents production through the optimization of medium parameters. The highest antifungal ac-tivity was obtained by using a mixture of 2g l-1 starch, 4g l-1 yeast extract, 2g l-1 peptone at pH 11. CONCLUSION The strain S19 isolated from wastewater showed a significant anti-C. albicans activity and this study revealed the effectiveness of RSM and CCD for increasing bioactive compounds production, rising the diameter of inhibition zones from 13 to 34 mm.
Collapse
Affiliation(s)
- S. Souagui
- Address correspondence to this author at the Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie; E-mail:
| | | | | | | | | | | |
Collapse
|
23
|
Šantl-Temkiv T, Gosewinkel U, Starnawski P, Lever M, Finster K. Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiol Ecol 2019; 94:4898009. [PMID: 29481623 DOI: 10.1093/femsec/fiy031] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/21/2018] [Indexed: 01/18/2023] Open
Abstract
The Arctic is undergoing dramatic climatic changes that cause profound transformations in its terrestrial ecosystems and consequently in the microbial communities that inhabit them. The assembly of these communities is affected by aeolian deposition. However, the abundance, diversity, sources and activity of airborne microorganisms in the Arctic are poorly understood. We studied bacteria in the atmosphere over southwest Greenland and found that the diversity of bacterial communities correlated positively with air temperature and negatively with relative humidity. The communities consisted of 1.3×103 ± 1.0×103 cells m-3, which were aerosolized from local terrestrial environments or transported from marine, glaciated and terrestrial surfaces over long distances. On average, airborne bacterial cells displayed a high activity potential, reflected in the high 16S rRNA copy number (590 ± 300 rRNA cell-1), that correlated positively with water vapor pressure. We observed that bacterial clades differed in their activity potential. For instance, a high activity potential was seen for Rubrobacteridae and Clostridiales, while a low activity potential was observed for Proteobacteria. Of those bacterial families that harbor ice-nucleation active species, which are known to facilitate freezing and may thus be involved in cloud and rain formation, cells with a high activity potential were rare in air, but were enriched in rain.
Collapse
Affiliation(s)
- Tina Šantl-Temkiv
- Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark.,Department of Bioscience, Microbiology Section, Aarhus University, Ny Munkegade 116, 8000 Aarhus, Denmark
| | - Ulrich Gosewinkel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Piotr Starnawski
- Centre for Geomicrobiology, Aarhus University, 116 Ny Munkegade, 8000 Aarhus, Denmark
| | - Mark Lever
- Centre for Geomicrobiology, Aarhus University, 116 Ny Munkegade, 8000 Aarhus, Denmark.,ETH Zürich, Department of Environmental Systems Science, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Kai Finster
- Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark.,Department of Bioscience, Microbiology Section, Aarhus University, Ny Munkegade 116, 8000 Aarhus, Denmark
| |
Collapse
|
24
|
Draft Genome Sequence of the UV-Resistant Antarctic Bacterium Sphingomonas sp. Strain UV9. Microbiol Resour Announc 2019; 8:MRA01651-18. [PMID: 30801068 PMCID: PMC6376427 DOI: 10.1128/mra.01651-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/23/2019] [Indexed: 12/02/2022] Open
Abstract
We report the draft genome sequence of the Antarctic UV-resistant bacterium Sphingomonas sp. strain UV9. The strain has a genome size of 4.25 Mb, a 65.62% GC content, and 3,879 protein-coding sequences. We report the draft genome sequence of the Antarctic UV-resistant bacterium Sphingomonas sp. strain UV9. The strain has a genome size of 4.25 Mb, a 65.62% GC content, and 3,879 protein-coding sequences. Among others, genes encoding the resolving of the DNA damage produced by the UV irradiation were identified.
Collapse
|
25
|
Xu C, Wei M, Chen J, Zhu C, Li J, Xu X, Wang W, Zhang Q, Ding A, Kan H, Zhao Z, Mellouki A. Profile of inhalable bacteria in PM 2.5 at Mt. Tai, China: Abundance, community, and influence of air mass trajectories. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:110-119. [PMID: 30384158 DOI: 10.1016/j.ecoenv.2018.10.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 05/27/2023]
Abstract
Bacteria are ubiquitous in the near-surface atmosphere where they constitute an important component of aerosols with the potential to affect climate change, ecosystems, atmospheric process and human health. Limitation in tracking bacterial diversity accurately has thus far prevented the knowledge of airborne bacteria and their pathogenic properties. We performed a comprehensive assessment of bacterial abundance and diverse community in PM2.5 collected at Mt. Tai, via high-throughput sequencing and real-time PCR. The samples exhibited a high microbial biodiversity and complex chemical composition. The dominating populations were gram-negative bacteria including Burkholderia, Delftia, Bradyrhizobium, and Methylobacterium. The PM mass concentration, chemical composition, bacterial concentration and community structure varied under the influence of different air-mass trajectories. The highest mass concentration of PM2.5 (61 μg m-3) and major chemical components were recorded during periods when marine southeasterly air masses were dominant. The local terrestrial air masses from Shandong peninsula and its adjacent areas harbored highest bacterial concentration loading (602 cells m-3) and more potential pathogens at the site. In contrast, samples influenced by the long-distance air flow from Siberia and Outer Mongolia were found to have a highest richness and diversity as an average, which was also marked by the increase of dust-associated bacteria (Brevibacillus and Staphylococcus). The primary research may serve as an important reference for the environmental microbiologist, health workers, and city planners.
Collapse
Affiliation(s)
- Caihong Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP, Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Min Wei
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP, Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; College of Geography and Environment, Shandong Normal University, Jinan 250100, China; Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, Jiangsu, China; School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Chao Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP, Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Jiarong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP, Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xianmang Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250100, China
| | - Wenxing Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250100, China
| | - Qingzhu Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250100, China
| | - Aijun Ding
- Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Abdelwahid Mellouki
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP, Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; College of Geography and Environment, Shandong Normal University, Jinan 250100, China; Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS, 45071 Orléans Cedex 02, France
| |
Collapse
|
26
|
Evans SE, Dueker ME, Logan JR, Weathers KC. The biology of fog: results from coastal Maine and Namib Desert reveal common drivers of fog microbial composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1547-1556. [PMID: 30180359 DOI: 10.1016/j.scitotenv.2018.08.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/28/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Fog supplies water and nutrients to systems ranging from coastal forests to inland deserts. Fog droplets can also contain bacterial and fungal aerosols, but our understanding of fog biology is limited. Using metagenomic tools and culturing, we provide a unique look at fungal and bacterial communities in fog at two fog-dominated sites: coastal Maine (USA) and the Namib Desert (Namibia). Microbial communities in the fog at both sites were diverse, distinct from clear aerosols, and influenced by both soil and marine sources. Fog from both sites contained Actinobacteria and Firmicutes, commonly soil- and air-associated phyla, but also contained bacterial taxa associated with marine environments including Cyanobacteria, Oceanospirillales, Novosphingobium, Pseudoalteromonas, and Bradyrhizobiaceae. Marine influence on fog communities was greatest near the coast, but still evident in Namib fogs 50 km inland. In both systems, differences between pre- and post-fog aerosol communities suggest that fog events can significantly alter microbial aerosol diversity and composition. Fog is likely to enhance viability of transported microbes and facilitate their deposition, making fog biology ecologically important in fog-dominated environments. Fog may introduce novel species to terrestrial ecosystems, including human and plant pathogens, warranting further work on the drivers of this important and underrecognized aerobiological transfer between marine and terrestrial systems.
Collapse
Affiliation(s)
- Sarah E Evans
- Kellogg Biological Station, Department of Integrative Biology, Department of Microbiology and Molecular Genetics, Michigan State University, Hickory Corners, MI, USA.
| | - M Elias Dueker
- Biology Program & Environmental and Urban Studies Program, Bard College, Campus Road, PO Box 5000, Annandale-on-Hudson, NY 12504, USA; Cary Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545-0129, USA; Bard Center for the Study of Land, Air, and Water, Bard College, Campus Road, PO Box 5000, Annandale-on-Hudson, NY 12504, USA.
| | - J Robert Logan
- Kellogg Biological Station, Department of Integrative Biology, Department of Microbiology and Molecular Genetics, Michigan State University, Hickory Corners, MI, USA
| | | |
Collapse
|
27
|
Alsved M, Holm S, Christiansen S, Smidt M, Rosati B, Ling M, Boesen T, Finster K, Bilde M, Löndahl J, Šantl-Temkiv T. Effect of Aerosolization and Drying on the Viability of Pseudomonas syringae Cells. Front Microbiol 2018; 9:3086. [PMID: 30619167 PMCID: PMC6305290 DOI: 10.3389/fmicb.2018.03086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/29/2018] [Indexed: 11/13/2022] Open
Abstract
Airborne dispersal of microorganisms influences their biogeography, gene flow, atmospheric processes, human health and transmission of pathogens that affect humans, plants and animals. The extent of their impact depends essentially on cell-survival rates during the process of aerosolization. A central factor for cell-survival is water availability prior to and upon aerosolization. Also, the ability of cells to successfully cope with stress induced by drying determines their chances of survival. In this study, we used the ice-nucleation active, plant pathogenic Pseudomonas syringae strain R10.79 as a model organism to investigate the effect of drying on cell survival. Two forms of drying were simulated: drying of cells in small droplets aerosolized from a wet environment by bubble bursting and drying of cells in large droplets deposited on a surface. For drying of cells both in aerosol and surface droplets, the relative humidity (RH) was varied in the range between 10 and 90%. The fraction of surviving cells was determined by live/dead staining followed by flow cytometry. We also evaluated the effect of salt concentration in the water droplets on the survival of drying cells by varying the ionic strength between 0 and 700 mM using NaCl and sea salt. For both aerosol and surface drying, cell survival increased with decreasing RH (p < 0.01), and for surface drying, survival was correlated with increasing salt concentration (p < 0.001). Imaging cells with TEM showed shrunk cytoplasm and cell wall damage for a large fraction of aerosolized cells. Ultimately, we observed a 10-fold higher fraction of surviving cells when dried as aerosol compared to when dried on a surface. We conclude that the conditions, under which cells dry, significantly affect their survival and thus their success to spread through the atmosphere and colonize new environments as well as their ability to affect atmospheric processes.
Collapse
Affiliation(s)
- Malin Alsved
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden.,NanoLund, Lund University, Lund, Sweden
| | - Stine Holm
- Department of Physics and Astronomy, Stellar Astrophysics Centre, Aarhus University, Aarhus, Denmark.,Microbiology Section, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Sigurd Christiansen
- Atmospheric Physical Chemistry, Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Mads Smidt
- Department of Physics and Astronomy, Stellar Astrophysics Centre, Aarhus University, Aarhus, Denmark.,Microbiology Section, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Bernadette Rosati
- Atmospheric Physical Chemistry, Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Meilee Ling
- Department of Physics and Astronomy, Stellar Astrophysics Centre, Aarhus University, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kai Finster
- Department of Physics and Astronomy, Stellar Astrophysics Centre, Aarhus University, Aarhus, Denmark.,Microbiology Section, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Merete Bilde
- Atmospheric Physical Chemistry, Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Jakob Löndahl
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden.,NanoLund, Lund University, Lund, Sweden
| | - Tina Šantl-Temkiv
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden.,Department of Physics and Astronomy, Stellar Astrophysics Centre, Aarhus University, Aarhus, Denmark.,Microbiology Section, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Bardin M, Leyronas C, Troulet C, Morris CE. Striking Similarities Between Botrytis cinerea From Non-agricultural and From Agricultural Habitats. FRONTIERS IN PLANT SCIENCE 2018; 9:1820. [PMID: 30568671 PMCID: PMC6290265 DOI: 10.3389/fpls.2018.01820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Investigations into life history of microorganisms that cause plant diseases have been limited mostly to contexts where they are in interaction with plants, and with cropped or otherwise managed vegetation. Therefore, knowledge about the diversity of plant pathogens, about potential reservoirs of inoculum and about the processes that contribute to their survival and adaptation is limited to these contexts. The agro-centric perspective of plant pathogen life histories is incoherent with respect to the capacity of many of them to persist as saprophytes on various substrates. In this context we have investigated the ubiquity of the broad host range necrotrophic fungus Botrytis cinerea, outside of agricultural settings and have determined if the populations in these natural habitats can be distinguished phenotypically and phylogenetically from populations isolated from diseased crops. Over a period of 5 years, we isolated B. cinerea from 235 samples of various substrates collected in France including rainfall, snowpack, river, and lake water, epilithic biofilms in mountain streams, leaf litter and plant debris, rock surfaces, bird feathers and healthy wild plants from outside of agricultural fields. All substrates except rock surfaces harbored B. cinerea leading us to establish a collection of purified strains that were compared to B. cinerea from diseased tomato, grapes and various other crops in France. Phylogenetic comparisons of 321 strains from crop plants and 100 strains from environmental substrates based on sequences of 9 microsatellite markers revealed that strains from crops and the environment could not be distinguished. Furthermore, the genetic diversity of strains outside of agriculture was just as broad as within agriculture. In tests to determine the aggressiveness of strains on tomato stems, the mean disease severity caused by strains from environmental substrates was statistically identical to the severity of disease caused by strains from tomato, but was significantly greater than the severity caused by strains from grape or other crops. Our results suggest that highly diverse populations of this plant pathogen persist outside of agriculture in association with substrates other than plants and that this part of their life history is compatible with its capacity to maintain its potential as plant pathogen.
Collapse
Affiliation(s)
- Marc Bardin
- Pathologie Végétale, INRA, Montfavet, France
| | | | | | | |
Collapse
|
29
|
Lallement A, Vinatier V, Brigante M, Deguillaume L, Delort AM, Mailhot G. First evaluation of the effect of microorganisms on steady state hydroxyl radical concentrations in atmospheric waters. CHEMOSPHERE 2018; 212:715-722. [PMID: 30179836 DOI: 10.1016/j.chemosphere.2018.08.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Clouds are complex multiphasic media where efficient chemical reactions take place and where microorganisms have been found to be metabolically active. Hydroxyl radical is the main oxidant in cloud water, and more generally in the atmosphere, during the day and drives the cloud oxidative capacity. However, only one measurement of the steady state hydroxyl radical concentrations in cloud water has been reported so far. Cloud chemistry models are used to estimate the hydroxyl radical concentrations with values ranging from 10-12 to 10-15 M that are surely overestimated due to a lack of knowledge about the speciation of the organic matter acting as a sink for hydroxyl radicals. The aim of this work is to quantify the concentration of hydroxyl radicals at steady state in rain and cloud waters and to measure the impact of native microflora on this concentration. First, the non-toxicity of terephthalic acid as probe is controlled before the analysis in real atmospheric water samples. Higher concentrations of hydroxyl radicals are found in cloud waters than in rain waters, with a mean value "1.6 ± 1.5" × 10-16 M and "7.2 ± 5.0" × 10-16 M for rain and cloud waters respectively and no real impact of microorganisms was observed. This method allows the measurement of steady state hydroxyl radical levels at very low concentrations (down to 10-17 M) and it is biocompatible, fast and easy to handle. It is a useful tool, complementary to other methods, to give a better overview of atmospheric water oxidant capacity.
Collapse
Affiliation(s)
- A Lallement
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - V Vinatier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - M Brigante
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - L Deguillaume
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, 63000, Clermont-Ferrand, France
| | - A M Delort
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France.
| | - G Mailhot
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France.
| |
Collapse
|
30
|
Pulschen AA, de Araujo GG, de Carvalho ACSR, Cerini MF, Fonseca LDM, Galante D, Rodrigues F. Survival of Extremophilic Yeasts in the Stratospheric Environment during Balloon Flights and in Laboratory Simulations. Appl Environ Microbiol 2018; 84:e01942-18. [PMID: 30266724 PMCID: PMC6238051 DOI: 10.1128/aem.01942-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
The high-altitude atmosphere is a harsh environment with extremely low temperatures, low pressure, and high UV irradiation. For this reason, it has been proposed as an analogue for Mars, presenting deleterious factors similar to those on the surface of that planet. We evaluated the survival of extremophilic UV-resistant yeasts isolated from a high-elevation area in the Atacama Desert under stratospheric conditions. As biological controls, intrinsically resistant Bacillus subtilis spores were used. Experiments were performed in two independent stratospheric balloon flights and with an environmental simulation chamber. The three following different conditions were evaluated: (i) desiccation, (ii) desiccation plus exposure to stratospheric low pressure and temperature, and (3) desiccation plus exposure to the full stratospheric environment (UV, low pressure, and temperature). Two strains, Naganishia (Cryptococcus) friedmannii 16LV2 and Exophiala sp. strain 15LV1, survived full exposures to the stratosphere in larger numbers than did B. subtilis spores. Holtermanniella watticus (also known as Holtermanniella wattica) 16LV1, however, suffered a substantial loss in viability upon desiccation and did not survive the stratospheric UV exposure. The remarkable resilience of N. friedmannii and Exophiala sp. 15LV1 under the extreme Mars-like conditions of the stratosphere confirms its potential as a eukaryotic model for astrobiology. Additionally, our results with N. friedmannii strengthen the recent hypothesis that yeasts belonging to the Naganishia genus are fit for aerial dispersion, which might account for the observed abundance of this species in high-elevation soils.IMPORTANCE Studies of eukaryotic microorganisms under conditions of astrobiological relevance, as well as the aerial dispersion potential of extremophilic yeasts, are still lacking in the literature compared to works with bacteria. Using stratospheric balloon flights and a simulation chamber, we demonstrate that yeasts isolated from an extreme environment are capable of surviving all stressors found in the stratosphere, including intense UV irradiation, scoring an even higher survival than B. subtilis spores. Notably, the yeast N. friedmannii, which displayed one of the highest tolerances to the stratospheric environment in the experiments, was recently proposed to be adapted to airborne transportation, although such a hypothesis had not yet been tested. Our results strengthen such an assumption and can help explain the observed distribution and ecology of this particular yeast species.
Collapse
Affiliation(s)
| | | | | | - Maria Fernanda Cerini
- Graduate Program in Biomolecular Physics, São Carlos Institute of Physics, University of São Paulo, São Paulo, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | | | - Douglas Galante
- Graduate Program in Biomolecular Physics, São Carlos Institute of Physics, University of São Paulo, São Paulo, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Fabio Rodrigues
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Honeyman AS, Day ML, Spear JR. Regional fresh snowfall microbiology and chemistry are driven by geography in storm-tracked events, Colorado, USA. PeerJ 2018; 6:e5961. [PMID: 30498637 PMCID: PMC6252068 DOI: 10.7717/peerj.5961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/16/2018] [Indexed: 01/15/2023] Open
Abstract
Snowfall is a global phenomenon highly integrated with hydrology and ecology. Forays into studying bioaerosols and their dependence on aeolian movement are largely constrained to either precipitation-independent analyses or in silico models. Though snowpack and glacial microbiological studies have been conducted, little is known about the biological component of meteoric snow. Through culture-independent phylogenetic and geochemical analyses, we show that the geographical location at which snow precipitates determines snowfall’s geochemical and microbiological composition. Storm-tracking, furthermore, can be used as a valuable environmental indicator to trace down what factors are influencing bioaerosols. We estimate annual aeolian snowfall deposits of up to ∼10 kg of bacterial/archaeal biomass per hectare along our study area of the eastern Front Range in Colorado. The dominant kinds of microbiota captured in an analysis of seven snow events at two different locations, one urban, one rural, across the winter of 2016/2017 included phyla Proteobacteria, Bacteroidetes, Firmicutes, and Acidobacteria, though a multitude of different kinds of organisms were found in both. Taxonomically, Bacteroidetes were more abundant in Golden (urban plain) snow while Proteobacteria were more common in Sunshine (rural mountain) samples. Chemically, Golden snowfall was positively correlated with some metals and anions. The work also hints at better informing the “everything is everywhere” hypotheses of the microbial world and that atmospheric transport of microbiota is not only common, but is capable of disseminating vast amounts of microbiota of different physiologies and genetics that then affect ecosystems globally. Snowfall, we conclude, is a significant repository of microbiological material with strong implications for both ecosystem genetic flux and general bio-aerosol theory.
Collapse
Affiliation(s)
| | - Maria L Day
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - John R Spear
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| |
Collapse
|
32
|
Zhong ZP, Solonenko NE, Gazitúa MC, Kenny DV, Mosley-Thompson E, Rich VI, Van Etten JL, Thompson LG, Sullivan MB. Clean Low-Biomass Procedures and Their Application to Ancient Ice Core Microorganisms. Front Microbiol 2018; 9:1094. [PMID: 29910780 PMCID: PMC5992382 DOI: 10.3389/fmicb.2018.01094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Microorganisms in glacier ice provide tens to hundreds of thousands of years archive for a changing climate and microbial responses to it. Analyzing ancient ice is impeded by technical issues, including limited ice, low biomass, and contamination. While many approaches have been evaluated and advanced to remove contaminants on ice core surfaces, few studies leverage modern sequencing to establish in silico decontamination protocols for glacier ice. Here we sought to apply such “clean” sampling techniques with in silico decontamination approaches used elsewhere to investigate microorganisms archived in ice at ∼41 (D41, ∼20,000 years) and ∼49 m (D49, ∼30,000 years) depth in an ice core (GS3) from the summit of the Guliya ice cap in the northwestern Tibetan Plateau. Four “background” controls were established – a co-processed sterile water artificial ice core, two air samples collected from the ice processing laboratories, and a blank, sterile water sample – and used to assess contaminant microbial diversity and abundances. Amplicon sequencing revealed 29 microbial genera in these controls, but quantitative PCR showed that the controls contained about 50–100-times less 16S DNA than the glacial ice samples. As in prior work, we interpreted these low-abundance taxa in controls as “contaminants” and proportionally removed them in silico from the GS3 ice amplicon data. Because of the low biomass in the controls, we also compared prokaryotic 16S DNA amplicons from pre-amplified (by re-conditioning PCR) and standard amplicon sequencing, and found the resulting microbial profiles to be repeatable and nearly identical. Ecologically, the contaminant-controlled ice microbial profiles revealed significantly different microorganisms across the two depths in the GS3 ice core, which is consistent with changing climate, as reported for other glacier ice samples. Many GS3 ice core genera, including Methylobacterium, Sphingomonas, Flavobacterium, Janthinobacterium, Polaromonas, and Rhodobacter, were also abundant in previously studied ice cores, which suggests wide distribution across glacier environments. Together these findings help further establish “clean” procedures for studying low-biomass ice microbial communities and contribute to a baseline understanding of microorganisms archived in glacier ice.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Natalie E Solonenko
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Maria C Gazitúa
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Donald V Kenny
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States
| | - Ellen Mosley-Thompson
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States.,Department of Geography, The Ohio State University, Columbus, OH, United States
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, AZ, United States
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Lonnie G Thompson
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States.,School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
33
|
Sarmiento-Vizcaíno A, Espadas J, Martín J, Braña AF, Reyes F, García LA, Blanco G. Atmospheric Precipitations, Hailstone and Rainwater, as a Novel Source of Streptomyces Producing Bioactive Natural Products. Front Microbiol 2018; 9:773. [PMID: 29740412 PMCID: PMC5924784 DOI: 10.3389/fmicb.2018.00773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
A cultivation-dependent approach revealed that highly diverse populations of Streptomyces were present in atmospheric precipitations from a hailstorm event sampled in February 2016 in the Cantabrian Sea coast, North of Spain. A total of 29 bioactive Streptomyces strains isolated from small samples of hailstone and rainwater, collected from this hailstorm event, were studied here. Taxonomic identification by 16S rRNA sequencing revealed more than 20 different Streptomyces species, with their closest homologs displaying mainly oceanic but also terrestrial origins. Backward trajectory analysis revealed that the air-mass sources of the hailstorm event, with North Western winds, were originated in the Arctic Ocean (West Greenland and North Iceland) and Canada (Labrador), depending on the altitude. After traveling across the North Atlantic Ocean during 4 days the air mass reached Europe and precipitated as hailstone and rain water at the sampling place in Spain. The finding of Streptomyces species able to survive and disperse through the atmosphere increases our knowledge of the biogeography of genus Streptomyces on Earth, and reinforces our previous dispersion model, suggesting a generalized feature for the genus which could have been essential in his evolution. This unique atmospheric-derived Streptomyces collection was screened for production of bioactive secondary metabolites. Analyses of isolates ethyl acetate extracts by LC-UV-MS and further database comparison revealed an extraordinary diversity of bioactive natural products. One hundred molecules were identified, mostly displaying contrasted antibiotic and antitumor/cytotoxic activities, but also antiparasitic, antiviral, anti-inflammatory, neuroprotector, and insecticide properties. More interestingly, 38 molecules not identified in natural products databases might represent new natural products. Our results revealed for the first time an extraordinary diversity of Streptomyces species in the atmosphere able to produce an extraordinary repertoire of bioactive molecules, thus providing a very promising source for the discovery of novel pharmaceutical natural products.
Collapse
Affiliation(s)
- Aida Sarmiento-Vizcaíno
- Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Julia Espadas
- Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Luis A García
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Área de Ingeniería Química, Universidad de Oviedo, Oviedo, Spain
| | - Gloria Blanco
- Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
34
|
Dorati F, Barrett GA, Sanchez-Contreras M, Arseneault T, José MS, Studholme DJ, Murillo J, Caballero P, Waterfield NR, Arnold DL, Shaw LJ, Jackson RW. Coping with Environmental Eukaryotes; Identification of Pseudomonas syringae Genes during the Interaction with Alternative Hosts or Predators. Microorganisms 2018; 6:microorganisms6020032. [PMID: 29690522 PMCID: PMC6027264 DOI: 10.3390/microorganisms6020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular mechanisms underpinning the ecological success of plant pathogens is critical to develop strategies for controlling diseases and protecting crops. Recent observations have shown that plant pathogenic bacteria, particularly Pseudomonas, exist in a range of natural environments away from their natural plant host e.g., water courses, soil, non-host plants. This exposes them to a variety of eukaryotic predators such as nematodes, insects and amoebae present in the environment. Nematodes and amoeba in particular are bacterial predators while insect herbivores may act as indirect predators, ingesting bacteria on plant tissue. We therefore postulated that bacteria are probably under selective pressure to avoid or survive predation and have therefore developed appropriate coping mechanisms. We tested the hypothesis that plant pathogenic Pseudomonas syringae are able to cope with predation pressure and found that three pathovars show weak, but significant resistance or toxicity. To identify the gene systems that contribute to resistance or toxicity we applied a heterologous screening technique, called Rapid Virulence Annotation (RVA), for anti-predation and toxicity mechanisms. Three cosmid libraries for P. syringae pv. aesculi, pv. tomato and pv. phaseolicola, of approximately 2000 cosmids each, were screened in the susceptible/non-toxic bacterium Escherichia coli against nematode, amoebae and an insect. A number of potential conserved and unique genes were identified which included genes encoding haemolysins, biofilm formation, motility and adhesion. These data provide the first multi-pathovar comparative insight to how plant pathogens cope with different predation pressures and infection of an insect gut and provide a foundation for further study into the function of selected genes and their role in ecological success.
Collapse
Affiliation(s)
- Federico Dorati
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | - Glyn A Barrett
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | | | - Tanya Arseneault
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Research and Development Centre, Quebec, J3B 3E6, Canada.
| | - Mateo San José
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | | | - Jesús Murillo
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, 31192 Mutilva, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, 31192 Mutilva, Spain.
| | - Nicholas R Waterfield
- Department of Biology and Biochemistry, University of Bath, Bath, BA1 9BJ, UK.
- Warwick Medical School, University of Warwick, Warwick, CV4 7AL, UK.
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| | - Liz J Shaw
- School of Archaeology, Geography and Environmental Science, University of Reading, Reading, RG6 6AX, UK.
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| |
Collapse
|
35
|
Zhai Y, Li X, Wang T, Wang B, Li C, Zeng G. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. ENVIRONMENT INTERNATIONAL 2018; 113:74-90. [PMID: 29421410 DOI: 10.1016/j.envint.2018.01.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 05/21/2023]
Abstract
Airborne microorganisms (AM), vital components of particulate matters (PM), are widespread in the atmosphere. Since some AM have pathogenicity, they can lead to a wide range of diseases in human and other organisms, meanwhile, some AM act as cloud condensation nuclei and ice nuclei which let them can affect the climate. The inherent characteristics of AM play critical roles in many aspects which, in turn, can decide microbial traits. The uncertain factors bring various influences on AM, which make it difficult to elaborate effect trends as whole. Because of the potential roles of AM in environment and potent effects of factors on AM, detailed knowledge of them is of primary significance. This review highlights the issues of composition and characteristics of AM with size-distribution, species diversity, variation and so on, and summarizes the main factors which affect airborne microbial features. This general information is a knowledge base for further thorough researches of AM and relevant aspects. Besides, current knowledge gaps and new perspectives are offered to roundly understand the impacts and application of AM in nature and human health.
Collapse
Affiliation(s)
- Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Xue Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Tengfei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Bei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Caiting Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
36
|
Jousse C, Dalle C, Canet I, Lagrée M, Traïkia M, Lyan B, Mendes C, Sancelme M, Amato P, Delort AM. Metabolomic study of the response to cold shock in a strain of Pseudomonas syringae isolated from cloud water. Metabolomics 2017; 14:11. [PMID: 30830325 DOI: 10.1007/s11306-017-1295-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/07/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Active microorganisms have been recently discovered in clouds, thus demonstrating the capacity of microorganisms to exist in harsh environments, including exposure to UV and oxidants, osmotic and cold shocks, etc. It is important to understand how microorganisms respond to and survive such stresses at the metabolic level. OBJECTIVES The objective of this work is to assess metabolome modulation in a strain of Pseudomonas syringae isolated from cloud water and facing temperature downshift from 17 to 5 °C by identifying key molecules and pathways of the response/adaptation to cold shock. METHODS Bacterial extracts from suspensions of cells grown at 17 °C and further incubated in microcosms at 5 and 17 °C to mimic cloud conditions were analysed by combining LC-MS and NMR; the results were evaluated in comparison to similar suspensions kept at constant temperature. The differences in the metabolome profiles were deciphered using multivariate statistics (PLS-DA). RESULTS Key cold shock biomarkers were observed, including cryoprotectants (trehalose, glucose, glycerol, carnitine, glutamate), antioxidants (glutathione and carnitine) and their precursors, alkaloids (bellendine and slaframine) and metabolites involved in energy metabolism (ATP, carbohydrates). Furthermore, new short peptides (nine dipeptides and a tetrapeptide) were found that have no known function. CONCLUSIONS This study shows that in response to cold temperatures, Pseudomonas syringae PDD-32b-74 demonstrates numerous metabolism modifications to counteract the impacts of low temperatures.
Collapse
Affiliation(s)
- Cyril Jousse
- Université Clermont Auvergne - CNRS - SIGMA-Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
- Université Clermont Auvergne - INRA, MetaboHUB/Plateforme d'exploration du métabolisme, Clermont-Ferrand, France
| | - Céline Dalle
- Université Clermont Auvergne - CNRS - SIGMA-Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
- Université Clermont Auvergne - INRA, MetaboHUB/Plateforme d'exploration du métabolisme, Clermont-Ferrand, France
| | - Isabelle Canet
- Université Clermont Auvergne - CNRS - SIGMA-Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Marie Lagrée
- Université Clermont Auvergne - CNRS - SIGMA-Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
- Université Clermont Auvergne - INRA, MetaboHUB/Plateforme d'exploration du métabolisme, Clermont-Ferrand, France
| | - Mounir Traïkia
- Université Clermont Auvergne - CNRS - SIGMA-Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
- Université Clermont Auvergne - INRA, MetaboHUB/Plateforme d'exploration du métabolisme, Clermont-Ferrand, France
| | - Bernard Lyan
- Université Clermont Auvergne - INRA, UNH, 63000, Clermont-Ferrand, France
- Université Clermont Auvergne - INRA, MetaboHUB/Plateforme d'exploration du métabolisme, Clermont-Ferrand, France
| | - Cédric Mendes
- Université Clermont Auvergne - INRA, MetaboHUB/Plateforme d'exploration du métabolisme, Clermont-Ferrand, France
| | - Martine Sancelme
- Université Clermont Auvergne - CNRS - SIGMA-Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Pierre Amato
- Université Clermont Auvergne - CNRS - SIGMA-Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Anne-Marie Delort
- Université Clermont Auvergne - CNRS - SIGMA-Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France.
- Université Clermont Auvergne - INRA, MetaboHUB/Plateforme d'exploration du métabolisme, Clermont-Ferrand, France.
| |
Collapse
|
37
|
McHugh TA, Compson Z, van Gestel N, Hayer M, Ballard L, Haverty M, Hines J, Irvine N, Krassner D, Lyons T, Musta EJ, Schiff M, Zint P, Schwartz E. Climate controls prokaryotic community composition in desert soils of the southwestern United States. FEMS Microbiol Ecol 2017; 93:4111145. [DOI: 10.1093/femsec/fix116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/07/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Theresa A. McHugh
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011-5620, USA
- Department of Biological Sciences, Colorado Mesa University, Grand Junction, CO 81501, USA
| | - Zacchaeus Compson
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011-5620, USA
- Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Natasja van Gestel
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011-5620, USA
- Texas Tech University Climate Science Center, Lubbock, TX 79409, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011-5620, USA
| | | | | | - Jeffrey Hines
- Northland Preparatory Academy, Flagstaff, AZ 86004, USA
| | - Nick Irvine
- Northland Preparatory Academy, Flagstaff, AZ 86004, USA
| | | | - Ted Lyons
- Coconino High School, Flagstaff, AZ 86004, USA
| | | | | | | | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011-5620, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA
| |
Collapse
|
38
|
Chaignaud P, Maucourt B, Weiman M, Alberti A, Kolb S, Cruveiller S, Vuilleumier S, Bringel F. Genomic and Transcriptomic Analysis of Growth-Supporting Dehalogenation of Chlorinated Methanes in Methylobacterium. Front Microbiol 2017; 8:1600. [PMID: 28919881 PMCID: PMC5585157 DOI: 10.3389/fmicb.2017.01600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterial adaptation to growth with toxic halogenated chemicals was explored in the context of methylotrophic metabolism of Methylobacterium extorquens, by comparing strains CM4 and DM4, which show robust growth with chloromethane and dichloromethane, respectively. Dehalogenation of chlorinated methanes initiates growth-supporting degradation, with intracellular release of protons and chloride ions in both cases. The core, variable and strain-specific genomes of strains CM4 and DM4 were defined by comparison with genomes of non-dechlorinating strains. In terms of gene content, adaptation toward dehalogenation appears limited, strains CM4 and DM4 sharing between 75 and 85% of their genome with other strains of M. extorquens. Transcript abundance in cultures of strain CM4 grown with chloromethane and of strain DM4 grown with dichloromethane was compared to growth with methanol as a reference C1 growth substrate. Previously identified strain-specific dehalogenase-encoding genes were the most transcribed with chlorinated methanes, alongside other genes encoded by genomic islands (GEIs) and plasmids involved in growth with chlorinated compounds as carbon and energy source. None of the 163 genes shared by strains CM4 and DM4 but not by other strains of M. extorquens showed higher transcript abundance in cells grown with chlorinated methanes. Among the several thousand genes of the M. extorquens core genome, 12 genes were only differentially abundant in either strain CM4 or strain DM4. Of these, 2 genes of known function were detected, for the membrane-bound proton translocating pyrophosphatase HppA and the housekeeping molecular chaperone protein DegP. This indicates that the adaptive response common to chloromethane and dichloromethane is limited at the transcriptional level, and involves aspects of the general stress response as well as of a dehalogenation-specific response to intracellular hydrochloric acid production. Core genes only differentially abundant in either strain CM4 or strain DM4 total 13 and 58 CDS, respectively. Taken together, the obtained results suggest different transcriptional responses of chloromethane- and dichloromethane-degrading M. extorquens strains to dehalogenative metabolism, and substrate- and pathway-specific modes of growth optimization with chlorinated methanes.
Collapse
Affiliation(s)
- Pauline Chaignaud
- Department of Molecular Genetics, Genomics, and Microbiology, UMR 7156 Université de Strasbourg (UNISTRA)-Centre National de la Recherche ScientifiqueStrasbourg, France.,Department of Ecological Microbiology, University of BayreuthBayreuth, Germany
| | - Bruno Maucourt
- Department of Molecular Genetics, Genomics, and Microbiology, UMR 7156 Université de Strasbourg (UNISTRA)-Centre National de la Recherche ScientifiqueStrasbourg, France
| | - Marion Weiman
- UMR 8030 Centre National de la Recherche Scientifique-CEA, DSV/IG/Genoscope, LABGeMEvry, France
| | - Adriana Alberti
- UMR 8030 Centre National de la Recherche Scientifique-CEA, DSV/IG/Genoscope, LABGeMEvry, France
| | - Steffen Kolb
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany.,Institute of Landscape Biogeochemistry-Leibniz Centre for Agricultural Landscape Research (ZALF)Müncheberg, Germany
| | - Stéphane Cruveiller
- UMR 8030 Centre National de la Recherche Scientifique-CEA, DSV/IG/Genoscope, LABGeMEvry, France
| | - Stéphane Vuilleumier
- Department of Molecular Genetics, Genomics, and Microbiology, UMR 7156 Université de Strasbourg (UNISTRA)-Centre National de la Recherche ScientifiqueStrasbourg, France
| | - Françoise Bringel
- Department of Molecular Genetics, Genomics, and Microbiology, UMR 7156 Université de Strasbourg (UNISTRA)-Centre National de la Recherche ScientifiqueStrasbourg, France
| |
Collapse
|
39
|
Active microorganisms thrive among extremely diverse communities in cloud water. PLoS One 2017; 12:e0182869. [PMID: 28792539 PMCID: PMC5549752 DOI: 10.1371/journal.pone.0182869] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/25/2017] [Indexed: 12/27/2022] Open
Abstract
Clouds are key components in Earth’s functioning. In addition of acting as obstacles to light radiations and chemical reactors, they are possible atmospheric oases for airborne microorganisms, providing water, nutrients and paths to the ground. Microbial activity was previously detected in clouds, but the microbial community that is active in situ remains unknown. Here, microbial communities in cloud water collected at puy de Dôme Mountain’s meteorological station (1465 m altitude, France) were fixed upon sampling and examined by high-throughput sequencing from DNA and RNA extracts, so as to identify active species among community members. Communities consisted of ~103−104 bacteria and archaea mL-1 and ~102−103 eukaryote cells mL-1. They appeared extremely rich, with more than 28 000 distinct species detected in bacteria and 2 600 in eukaryotes. Proteobacteria and Bacteroidetes largely dominated in bacteria, while eukaryotes were essentially distributed among Fungi, Stramenopiles and Alveolata. Within these complex communities, the active members of cloud microbiota were identified as Alpha- (Sphingomonadales, Rhodospirillales and Rhizobiales), Beta- (Burkholderiales) and Gamma-Proteobacteria (Pseudomonadales). These groups of bacteria usually classified as epiphytic are probably the best candidates for interfering with abiotic chemical processes in clouds, and the most prone to successful aerial dispersion.
Collapse
|
40
|
Schmidt SK, Vimercati L, Darcy JL, Arán P, Gendron EM, Solon AJ, Porazinska D, Dorador C. A Naganishia in high places: functioning populations or dormant cells from the atmosphere? Mycology 2017; 8:153-163. [PMID: 30123637 PMCID: PMC6059072 DOI: 10.1080/21501203.2017.1344154] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Here, we review the current state of knowledge concerning high-elevation members of the extremophilic Cryptococcus albidus clade (now classified as the genus Naganishia). These fungi dominate eukaryotic microbial communities across the highest elevation, soil-like material (tephra) on volcanoes such as Llullaillaco, Socompa, and Saírecabur in the Atacama region of Chile, Argentina, and Bolivia. Recent studies indicate that Naganishia species are among the most resistant organisms to UV radiation, and a strain of N. friedmannii from Volcán Llullaillaco is the first organism that is known to grow during the extreme, diurnal freeze-thaw cycles that occur on a continuous basis at elevations above 6000 m.a.s.l. in the Atacama region. These and other extremophilic traits discussed in this review may serve a dual purpose of allowing Naganishia species to survive long-distance transport through the atmosphere and to survive the extreme conditions found at high elevations. Current evidence indicates that there are frequent dispersal events between high-elevation volcanoes of Atacama region and the Dry Valleys of Antarctica via "Rossby Wave" merging of the polar and sub-tropical jet streams. This dispersal hypothesis needs further verification, as does the hypothesis that Naganishia species are flexible "opportunitrophs" that can grow during rare periods of water (from melting snow) and nutrient availability (from Aeolian inputs) in one of the most extreme terrestrial habitats on Earth.
Collapse
Affiliation(s)
- Steven K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - John L Darcy
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Pablo Arán
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Eli M.S Gendron
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Molecular, Cellular, and Developmental Biology Department, University of Colorado, Boulder, CO, USA
| | - Adam J Solon
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Dorota Porazinska
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
41
|
Draft Genome Sequence of Pseudomonas graminis PDD-13b-3, a Model Strain Isolated from Cloud Water. GENOME ANNOUNCEMENTS 2017; 5:5/26/e00464-17. [PMID: 28663290 PMCID: PMC5638274 DOI: 10.1128/genomea.00464-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The whole genome of Pseudomonas graminis PDD-13b-3, a strain of bacteria isolated from cloud water, was sequenced. This showed that this microorganism is equipped with genes that could potentially be involved in its survival in the atmosphere and clouds: those for oxidative stress and carbon starvation responses, DNA repair, and iron uptake.
Collapse
|
42
|
Blanchard LS, Monin A, Ouertani H, Touaibia L, Michel E, Buret F, Simonet P, Morris CE, Demanèche S. Survival and electrotransformation of Pseudomonas syringae strains under simulated cloud-like conditions. FEMS Microbiol Ecol 2017; 93:3778241. [PMID: 28459967 DOI: 10.1093/femsec/fix057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/27/2017] [Indexed: 11/13/2022] Open
Abstract
To diversify their genetic material, and thereby allow adaptation to environmental disturbances and colonization of new ecological niches, bacteria use various evolutionary processes, including the acquisition of new genetic material by horizontal transfer mechanisms such as conjugation, transduction and transformation. Electrotransformation mediated by lightning-related electrical phenomena may constitute an additional gene-transfer mechanism occurring in nature. The presence in clouds of bacteria such as Pseudomonas syringae capable of forming ice nuclei that lead to precipitation, and that are likely to be involved in triggering lightning, led us to postulate that natural electrotransformation in clouds may contribute to the adaptive potential of these bacteria. Here, we quantify the survival rate of 10 P. syringae strains in liquid and icy media under such electrical pulses and their capacity to acquire exogenous DNA. In comparison to two other bacteria (Pseudomonas sp. N3 and Escherichia coli TOP10), P. syringae CC0094 appears to be best adapted for survival and for genetic electrotransformation under these conditions, which suggests that this bacterium would be able to survive and to get a boost in its adaptive potential while being transported in clouds and falling back to Earth with precipitation from storms.
Collapse
Affiliation(s)
- Laurine S Blanchard
- Université de Lyon, École Centrale de Lyon, Laboratoire Ampére (CNRS UMR5005), Environmental Microbial Genomics, 69134 Ecully Cedex, France
| | - Anaïs Monin
- Université de Lyon, École Centrale de Lyon, Laboratoire Ampére (CNRS UMR5005), Environmental Microbial Genomics, 69134 Ecully Cedex, France
| | - Hounaïda Ouertani
- Université de Lyon, École Centrale de Lyon, Laboratoire Ampére (CNRS UMR5005), Environmental Microbial Genomics, 69134 Ecully Cedex, France
| | - Lamia Touaibia
- Université de Lyon, École Centrale de Lyon, Laboratoire Ampére (CNRS UMR5005), Environmental Microbial Genomics, 69134 Ecully Cedex, France
| | - Elisa Michel
- Université de Lyon, École Centrale de Lyon, Laboratoire Ampére (CNRS UMR5005), Environmental Microbial Genomics, 69134 Ecully Cedex, France
| | - François Buret
- Université de Lyon, École Centrale de Lyon, Laboratoire Ampére (CNRS UMR5005), Environmental Microbial Genomics, 69134 Ecully Cedex, France
| | - Pascal Simonet
- Université de Lyon, École Centrale de Lyon, Laboratoire Ampére (CNRS UMR5005), Environmental Microbial Genomics, 69134 Ecully Cedex, France
| | - Cindy E Morris
- INRA, UR0407 Pathologie Végétale, 84143 Montfavet Cedex, France
| | - Sandrine Demanèche
- Université de Lyon, École Centrale de Lyon, Laboratoire Ampére (CNRS UMR5005), Environmental Microbial Genomics, 69134 Ecully Cedex, France
| |
Collapse
|
43
|
Weerasundara L, Amarasekara RWK, Magana-Arachchi DN, Ziyath AM, Karunaratne DGGP, Goonetilleke A, Vithanage M. Microorganisms and heavy metals associated with atmospheric deposition in a congested urban environment of a developing country: Sri Lanka. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:803-812. [PMID: 28185730 DOI: 10.1016/j.scitotenv.2017.01.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
The presence of bacteria and heavy metals in atmospheric deposition were investigated in Kandy, Sri Lanka, which is a typical city in the developing world with significant traffic congestion. Atmospheric deposition samples were analyzed for Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb which are heavy metals common to urban environments. Al and Fe were found in high concentrations due to the presence of natural sources, but may also be re-suspended by vehicular traffic. Relatively high concentrations of toxic metals such as Cr and Pb in dissolved form were also found. High Zn loads can be attributed to vehicular emissions and the wide use of Zn coated roofing materials. The metal loads in wet deposition showed higher concentrations compared to dry deposition. The metal concentrations among the different sampling sites significantly differ from each other depending on the traffic conditions. Industrial activities are not significant in Kandy City. Consequently, the traffic exerts high influence on heavy metal loadings. As part of the bacterial investigations, nine species of culturable bacteria, namely; Sphingomonas sp., Pseudomonas aeruginosa, Pseudomonas monteilii, Klebsiella pneumonia, Ochrobactrum intermedium, Leclercia adecarboxylata, Exiguobacterium sp., Bacillus pumilus and Kocuria kristinae, which are opportunistic pathogens, were identified. This is the first time Pseudomonas monteilii and Ochrobactrum intermedium has been reported from a country in Asia. The culturable fraction constituted ~0.01 to 10%. Pigmented bacteria and endospore forming bacteria were copious in the atmospheric depositions due to their capability to withstand harsh environmental conditions. The presence of pathogenic bacteria and heavy metals creates potential human and ecosystem health risk.
Collapse
Affiliation(s)
- Lakshika Weerasundara
- Environmental Chemodynamics Project, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - R W K Amarasekara
- Cell Biology, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | | | - Abdul M Ziyath
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
| | - D G G P Karunaratne
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Sri Lanka
| | - Ashantha Goonetilleke
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
| | - Meththika Vithanage
- Environmental Chemodynamics Project, National Institute of Fundamental Studies, Kandy, Sri Lanka.
| |
Collapse
|
44
|
Xu C, Wei M, Chen J, Sui X, Zhu C, Li J, Zheng L, Sui G, Li W, Wang W, Zhang Q, Mellouki A. Investigation of diverse bacteria in cloud water at Mt. Tai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:258-265. [PMID: 28011017 DOI: 10.1016/j.scitotenv.2016.12.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Bacteria are abundant in atmospheric water phase with the potential to influence atmospheric processes and human health, yet relatively little information is known about the bacterial characteristics at high altitudes. Here we investigated the bacterial community by high throughput sequencing in 24 cloud water samples collected from September 26 to October 31, at the summit of Mt. Tai (36°15' N, 117°06' E, 1534m a.s.l) in China. Diverse bacterial population were identified and the gram-negative bacteria contributed the majority of total bacteria including Proteobacteria (81.6%) and Bacteroidetes (3.9%), followed by gram-positive bacteria Firmicutes (7.1%) and Actinobacteria (2.3%). These gram-negative taxa mainly inhabited in leaf-surface and cold environments. Meanwhile bacteria involved in the cloud condensation nuclei and ice nuclei formation were observed such as Sphingomonas (6.7%), Pseudomonas (4.1%), and Bacillus (1.1%). In addition, Sphingmonas was more active than that in daytime and participated in the cloud chemistry process. Meanwhile O3 and SO2 critically contributed to the variation of bacterial community. It is the first report on the bacterial community structure of cloud water over Asian area. Our results can serve as an important reference for environmental scientists, and biologists.
Collapse
Affiliation(s)
- Caihong Xu
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Min Wei
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Jianmin Chen
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China.
| | - Xiao Sui
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Chao Zhu
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Jiarong Li
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Lulu Zheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Weijun Li
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Wenxing Wang
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Qingzhu Zhang
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Abdelwahid Mellouki
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS, 45071 Orléans cedex 02, France
| |
Collapse
|
45
|
Evidence for a missing source of efficient ice nuclei. Sci Rep 2017; 7:39673. [PMID: 28045124 PMCID: PMC5206747 DOI: 10.1038/srep39673] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/22/2016] [Indexed: 11/17/2022] Open
Abstract
It has been known for several decades that some bioaerosols, such as ice-nucleation-active (INA) bacteria, especially Pseudomonas syringae strains, may play a critical potential role in the formation of clouds and precipitation. We investigated bacterial and fungal ice nuclei (IN) in rainwater samples collected from the Hulunber temperate grasslands in North China. The median freezing temperatures (T50) for three years’ worth of unprocessed rain samples were greater than −10 °C based on immersion freezing testing. The heat and filtration treatments inactivated 7–54% and 2–89%, respectively, of the IN activity at temperatures warmer than −10 °C. We also determined the composition of the microbial community. The majority of observed Pseudomonas strains were distantly related to the verified ice-nucleating Pseudomonas strains, as
revealed by phylogenetic analysis. Here, we show that there are submicron INA particles <220 nm in rainwater that are not identifiable as the known species of high-INA bacteria and fungi and there may be a new potential type of efficient submicroscale or nanoscale ice nucleator in the regional rainwater samplers. Our results suggest the need for a reinterpretation of the source of high-INA material in the formation of precipitation and contribute to the search for new methods of weather modification.
Collapse
|
46
|
Hu W, Murata K, Zhang D. Applicability of LIVE/DEAD BacLight stain with glutaraldehyde fixation for the measurement of bacterial abundance and viability in rainwater. J Environ Sci (China) 2017; 51:202-213. [PMID: 28115131 DOI: 10.1016/j.jes.2016.05.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/25/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Rainwater contains substantial bacteria and rain is an efficient pathway for the dissemination of bacteria from the atmosphere to land and water surfaces. However, quantitative information on rainwater bacteria is very limited due to the lack of a reliable method. In this study, the epifluorescence microscopy enumeration with the LIVE/DEAD BacLight Bacterial Viability Kit stain was verified to quantify the abundance of viable and non-viable bacterial cells in rainwater, with the 4',6-diamidino-2-phenylindole (DAPI) stain for the reference of total cell counts. Results showed that the total counts of bacterial cells by LIVE/DEAD BacLight staining were consistent with those by DAPI staining, and the average detection efficiency was (109±29)%. The ratio of cell count with glutaraldehyde fixation to that without fixation was (106±5)% on average. The bacterial concentration in negative control was usually an order of magnitude lower than that in rainwater samples. However, in case of small precipitation, the abundance in negative control could be more than that in rainwater samples. These results indicate that the enumeration with LIVE/DEAD BacLight bacterial viability assay coupled with glutaraldehyde fixation and careful negative control investigation is an approach applicable to the measurement of the concentration and viability of bacterial cells in rainwater.
Collapse
Affiliation(s)
- Wei Hu
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan.
| | - Kotaro Murata
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan.
| |
Collapse
|
47
|
Vinatier V, Wirgot N, Joly M, Sancelme M, Abrantes M, Deguillaume L, Delort AM. Siderophores in Cloud Waters and Potential Impact on Atmospheric Chemistry: Production by Microorganisms Isolated at the Puy de Dôme Station. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9315-9323. [PMID: 27479540 DOI: 10.1021/acs.est.6b02335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A total of 450 bacteria and yeast strains isolated from cloud waters sampled at the puy de Dôme station in France (1465 m) were screened for their ability to produce siderophores. To achieve this, a high-throughput method in 96-well plates was adapted from the CAS (chrome azurol S) method. Notably, 42% of the isolates were siderophore producers. This production was examined according to the phyla of the tested strains and the type of chelating functional groups (i.e., hydroxamate, catechol, and mixed type). The most active bacteria in the clouds belong to the γ-Proteobacteria class, among which the Pseudomonas genus is the most frequently encountered. γ-Proteobacteria are produced in the majority of mixed function siderophores, such as pyoverdines, which bear a photoactive group. Finally, siderophore production was shown to vary with the origin of the air masses. The organic speciation of iron remains largely unknown in warm clouds. Our results suggest that siderophores could partly chelate Fe(III) in cloud waters and thus potentially impact the chemistry of the atmospheric aqueous phase.
Collapse
Affiliation(s)
- Virginie Vinatier
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Université Blaise Pascal , BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand (ICCF) , F-63171 Aubiere, France
| | - Nolwenn Wirgot
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Université Blaise Pascal , BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand (ICCF) , F-63171 Aubiere, France
| | - Muriel Joly
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Université Blaise Pascal , BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand (ICCF) , F-63171 Aubiere, France
- L'Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Laboratoire de Météorologie Physique, Université Clermont Auvergne, Université Blaise Pascal , BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6016, L'Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Laboratoire de Météorologie Physique (LaMP/OPGC) , BP80026, F-63177 Aubière, France
| | - Martine Sancelme
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Université Blaise Pascal , BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand (ICCF) , F-63171 Aubiere, France
| | - Magali Abrantes
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Université Blaise Pascal , BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand (ICCF) , F-63171 Aubiere, France
| | - Laurent Deguillaume
- L'Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Laboratoire de Météorologie Physique, Université Clermont Auvergne, Université Blaise Pascal , BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6016, L'Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Laboratoire de Météorologie Physique (LaMP/OPGC) , BP80026, F-63177 Aubière, France
| | - Anne-Marie Delort
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Université Blaise Pascal , BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand (ICCF) , F-63171 Aubiere, France
| |
Collapse
|
48
|
King P, Pham LK, Waltz S, Sphar D, Yamamoto RT, Conrad D, Taplitz R, Torriani F, Forsyth RA. Longitudinal Metagenomic Analysis of Hospital Air Identifies Clinically Relevant Microbes. PLoS One 2016; 11:e0160124. [PMID: 27482891 PMCID: PMC4970769 DOI: 10.1371/journal.pone.0160124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/05/2016] [Indexed: 12/15/2022] Open
Abstract
We describe the sampling of sixty-three uncultured hospital air samples collected over a six-month period and analysis using shotgun metagenomic sequencing. Our primary goals were to determine the longitudinal metagenomic variability of this environment, identify and characterize genomes of potential pathogens and determine whether they are atypical to the hospital airborne metagenome. Air samples were collected from eight locations which included patient wards, the main lobby and outside. The resulting DNA libraries produced 972 million sequences representing 51 gigabases. Hierarchical clustering of samples by the most abundant 50 microbial orders generated three major nodes which primarily clustered by type of location. Because the indoor locations were longitudinally consistent, episodic relative increases in microbial genomic signatures related to the opportunistic pathogens Aspergillus, Penicillium and Stenotrophomonas were identified as outliers at specific locations. Further analysis of microbial reads specific for Stenotrophomonas maltophilia indicated homology to a sequenced multi-drug resistant clinical strain and we observed broad sequence coverage of resistance genes. We demonstrate that a shotgun metagenomic sequencing approach can be used to characterize the resistance determinants of pathogen genomes that are uncharacteristic for an otherwise consistent hospital air microbial metagenomic profile.
Collapse
Affiliation(s)
- Paula King
- FLIR Systems, Inc., La Jolla, California, United States of America
- Singlera Genomics, Inc., La Jolla, California, United States of America
| | - Long K. Pham
- FLIR Systems, Inc., La Jolla, California, United States of America
| | - Shannon Waltz
- FLIR Systems, Inc., La Jolla, California, United States of America
| | - Dan Sphar
- FLIR Systems, Inc., La Jolla, California, United States of America
| | | | - Douglas Conrad
- Department of Medicine, Division of Pulmonary Medicine, UC San Diego Health System, San Diego, California, United States of America
| | - Randy Taplitz
- Department of Medicine, Division of Infectious Diseases and Infection Prevention and Clinical Epidemiology Unit, UC San Diego Health System, San Diego, California, United States of America
| | - Francesca Torriani
- Department of Medicine, Division of Infectious Diseases and Infection Prevention and Clinical Epidemiology Unit, UC San Diego Health System, San Diego, California, United States of America
| | - R. Allyn Forsyth
- FLIR Systems, Inc., La Jolla, California, United States of America
- Singlera Genomics, Inc., La Jolla, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Klein AM, Bohannan BJM, Jaffe DA, Levin DA, Green JL. Molecular Evidence for Metabolically Active Bacteria in the Atmosphere. Front Microbiol 2016; 7:772. [PMID: 27252689 PMCID: PMC4878314 DOI: 10.3389/fmicb.2016.00772] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/09/2016] [Indexed: 01/02/2023] Open
Abstract
Bacterial metabolisms are responsible for critical chemical transformations in nearly all environments, including oceans, freshwater, and soil. Despite the ubiquity of bacteria in the atmosphere, little is known about the metabolic functioning of atmospheric bacterial communities. To gain a better understanding of the metabolism of bacterial communities in the atmosphere, we used a combined empirical and model-based approach to investigate the structure and composition of potentially active bacterial communities in air sampled at a high elevation research station. We found that the composition of the putatively active bacterial community (assayed via rRNA) differed significantly from the total bacterial community (assayed via rDNA). Rare taxa in the total (rDNA) community were disproportionately active relative to abundant taxa, and members of the order Rhodospirillales had the highest potential for activity. We developed theory to explore the effects of random sampling from the rRNA and rDNA communities on observed differences between the communities. We found that random sampling, particularly in cases where active taxa are rare in the rDNA community, will give rise to observed differences in community composition including the occurrence of “phantom taxa”, taxa which are detected in the rRNA community but not the rDNA community. We show that the use of comparative rRNA/rDNA techniques can reveal the structure and composition of the metabolically active portion of bacterial communities. Our observations suggest that metabolically active bacteria exist in the atmosphere and that these communities may be involved in the cycling of organic compounds in the atmosphere.
Collapse
Affiliation(s)
- Ann M Klein
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR USA
| | - Brendan J M Bohannan
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR USA
| | - Daniel A Jaffe
- Department of Atmospheric Sciences, University of Washington Bothell, Bothell, WA USA
| | - David A Levin
- Department of Mathematics, University of Oregon, Eugene, OR USA
| | - Jessica L Green
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, ORUSA; Santa Fe Institute, Santa Fe, NMUSA
| |
Collapse
|
50
|
Kawaguchi Y, Yokobori SI, Hashimoto H, Yano H, Tabata M, Kawai H, Yamagishi A. Investigation of the Interplanetary Transfer of Microbes in the Tanpopo Mission at the Exposed Facility of the International Space Station. ASTROBIOLOGY 2016; 16:363-76. [PMID: 27176813 DOI: 10.1089/ast.2015.1415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
UNLABELLED The Tanpopo mission will address fundamental questions on the origin of terrestrial life. The main goal is to test the panspermia hypothesis. Panspermia is a long-standing hypothesis suggesting the interplanetary transport of microbes. Another goal is to test the possible origin of organic compounds carried from space by micrometeorites before the terrestrial origin of life. To investigate the panspermia hypothesis and the possible space origin of organic compounds, we performed space experiments at the Exposed Facility (EF) of the Japanese Experiment Module (JEM) of the International Space Station (ISS). The mission was named Tanpopo, which in Japanese means dandelion. We capture any orbiting microparticles, such as micrometeorites, space debris, and terrestrial particles carrying microbes as bioaerosols, by using blocks of silica aerogel. We also test the survival of microbial species and organic compounds in the space environment for up to 3 years. The goal of this review is to introduce an overview of the Tanpopo mission with particular emphasis on the investigation of the interplanetary transfer of microbes. The Exposed Experiment Handrail Attachment Mechanism with aluminum Capture Panels (CPs) and Exposure Panels (EPs) was exposed on the EF-JEM on May 26, 2015. The first CPs and EPs will be returned to the ground in mid-2016. Possible escape of terrestrial microbes from Earth to space will be evaluated by investigating the upper limit of terrestrial microbes by the capture experiment. Possible mechanisms for transfer of microbes over the stratosphere and an investigation of the effect of the microbial cell-aggregate size on survivability in space will also be discussed. KEY WORDS Panspermia-Astrobiology-Low-Earth orbit. Astrobiology 16, 363-376.
Collapse
Affiliation(s)
- Yuko Kawaguchi
- 1 Institute of Space and Astronautical Science , Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
- 2 School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo, Japan
| | - Shin-Ichi Yokobori
- 2 School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo, Japan
| | - Hirofumi Hashimoto
- 1 Institute of Space and Astronautical Science , Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
| | - Hajime Yano
- 1 Institute of Space and Astronautical Science , Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
| | - Makoto Tabata
- 3 Graduate School of Science, Chiba University , Chiba-shi, Japan
| | - Hideyuki Kawai
- 3 Graduate School of Science, Chiba University , Chiba-shi, Japan
| | - Akihiko Yamagishi
- 2 School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo, Japan
| |
Collapse
|