1
|
Stapleton TE, Lindsey LM, Sundar H, Dearing MD. Rodents consuming the same toxic diet harbor a unique functional core microbiome. Anim Microbiome 2024; 6:43. [PMID: 39080711 PMCID: PMC11289948 DOI: 10.1186/s42523-024-00330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Gut microbiota are intrinsic to an herbivorous lifestyle, but very little is known about how plant secondary compounds (PSCs), which are often toxic, influence these symbiotic partners. Here we interrogated the possibility of unique functional core microbiomes in populations of two species of woodrat (Neotoma lepida and bryanti) that have independently converged to feed on the same toxic diet (creosote bush; Larrea tridentata) and compared them to populations that do not feed on creosote bush. Leveraging this natural experiment, we collected samples across a large geographic region in the U.S. desert southwest from 20 populations (~ 150 individuals) with differential ingestion of creosote bush and analyzed three gut regions (foregut, cecum, hindgut) using16S sequencing and shotgun metagenomics. In each gut region sampled, we found a distinctive set of microbes in individuals feeding on creosote bush that were more abundant than other ASVs, enriched in creosote feeding woodrats, and occurred more frequently than would be predicted by chance. Creosote core members were from microbial families e.g., Eggerthellaceae, known to metabolize plant secondary compounds and three of the identified core KEGG orthologs (4-hydroxybenzoate decarboxylase, benzoyl-CoA reductase subunit B, and 2-pyrone-4, 6-dicarboxylate lactonase) coded for enzymes that play important roles in metabolism of plant secondary compounds. The results support the hypothesis that the ingestion of creosote bush sculpts the microbiome across all major gut regions to select for functional characteristics associated with the degradation of the PSCs in this unique diet.
Collapse
Affiliation(s)
- Tess E Stapleton
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - LeAnn M Lindsey
- School of Computing, University of Utah, 50 Central Campus Dr, Salt Lake City, UT, 84112, USA
| | - Hari Sundar
- School of Computing, University of Utah, 50 Central Campus Dr, Salt Lake City, UT, 84112, USA
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| |
Collapse
|
2
|
Raspa F, Chessa S, Bergero D, Sacchi P, Ferrocino I, Cocolin L, Corvaglia MR, Moretti R, Cavallini D, Valle E. Microbiota characterization throughout the digestive tract of horses fed a high-fiber vs. a high-starch diet. Front Vet Sci 2024; 11:1386135. [PMID: 38807937 PMCID: PMC11130486 DOI: 10.3389/fvets.2024.1386135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Diet is one of the main factors influencing the intestinal microbiota in horses, yet a systematic characterization of the microbiota along the length of the digestive tract in clinically healthy horses, homogenous for age and breed and receiving a specific diet is lacking. Methods The study used 16S rRNA amplicon sequencing to characterize the microbiota of the intestinal tracts of 19 healthy Bardigiano horses of 14.3 ± 0.7 months of age fed one of two diets. Nine horses received a high-starch diet (HS), and ten horses received a high-fiber diet (HF). After 129 days, the horses were slaughtered, and samples were collected from the different intestinal tract compartments. Results and discussion The microbiota alpha diversity indices were lower in the caecum, pelvic flexure and right dorsal colon of the horses fed the HS diet (False Discovery Rate, FDR < 0.05). The values of beta diversity indicated significant compositional differences between the studied intestinal tract compartments according to the diet received (FDR < 0.05). At the lower taxonomic level (genus or family), the HS diet was associated with a higher relative frequency of Enterobacteriaceae within the small intestine (jejunum and duodenum) (FDR < 0.05). Within the hindgut (caecum and sternal flexure), the HS diet was associated with lower relative frequencies (i.e., a smaller core community) of bacteria belonging to Fibrobacteraceae and Prevotellaceae (FDR < 0.05). Moreover, horses fed the HS diet displayed a higher relative abundance of Streptococcus in the caecum (FDR < 0.05) and Fusobacterium in the sternal flexure (FDR < 0.05), both of which are pathogenic bacteria responsible for inflammation diseases. Samples collected from the pelvic flexure and rectum of horses fed the HS diet showed significantly higher relative frequencies of Succinivibrionaceae (FDR < 0.05) - amylolytic bacteria associated with acidosis. The relative frequencies of the Lachnospiraceae and Ruminococcaceae were lower in the feces collected from the rectum of horses receiving the HS diet vs. HF diet, indicating smaller core communities of these bacteria (FDR < 0.05). Fibrous diets should be promoted to prevent dysbiosis of the microbiota associated with high-starch diet.
Collapse
Affiliation(s)
- Federica Raspa
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Stefania Chessa
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Domenico Bergero
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Paola Sacchi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forestry and Food Science, University of Turin, Grugliasco, Italy
| | - Luca Cocolin
- Department of Agricultural, Forestry and Food Science, University of Turin, Grugliasco, Italy
| | - Maria Rita Corvaglia
- Department of Agricultural, Forestry and Food Science, University of Turin, Grugliasco, Italy
| | - Riccardo Moretti
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Damiano Cavallini
- Department of Veterinary Sciences, University of Bologna, Bologna, Italy
| | - Emanuela Valle
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
3
|
Shen H, Wang T, Dong W, Sun G, Liu J, Peng N, Zhao S. Metagenome-assembled genome reveals species and functional composition of Jianghan chicken gut microbiota and isolation of Pediococcus acidilactic with probiotic properties. MICROBIOME 2024; 12:25. [PMID: 38347598 PMCID: PMC10860329 DOI: 10.1186/s40168-023-01745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/20/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Chickens are one of the most widely farmed animals worldwide and play a crucial role in meat and egg production. Gut microbiota is essential for chickens' health, disease, growth, and egg production. However, native chickens such as Jianghan chickens have better meat and egg production quality than centralized chickens, their intestinal microbial diversity is richer, and the potential gut microbial resources may bring health benefits to the host. RESULTS The bacterial species composition in the gut microbiota of Jianghan chickens is similar to that of other chicken breeds, with Phocaeicola and Bacteroides being the most abundant bacterial genera. The LEfSe analysis revealed significant differences in species composition and functional profiles between samples from Jingzhou and the other three groups. Functional annotation indicated that the gut microbiota of Jianghan chickens were dominated by metabolic genes, with the highest number of genes related to carbohydrate metabolism. Several antibiotic resistance genes (ARGs) were found, and the composition of ARGs was similar to that of factory-farmed chickens, suggesting that antibiotics were widely present in the gut microbiota of Jianghan chickens. The resistance genes of Jianghan chickens are mainly carried by microorganisms of the Bacteroidota and Bacillota phylum. In addition, more than 829 isolates were selected from the microbiota of Jianghan chickens. Following three rounds of acid and bile tolerance experiments performed on all the isolated strains, it was determined that six strains of Pediococcus acidilactici exhibited consistent tolerance. Further experiments confirmed that three of these strains (A4, B9, and C2) held substantial probiotic potential, with P. acidilactici B9 displaying the highest probiotic potential. CONCLUSIONS This study elucidates the composition of the intestinal microbiota and functional gene repertoire in Jianghan chickens. Despite the absence of antibiotic supplementation, the intestinal microbial community of Jianghan chickens still demonstrates a profile of antibiotic resistance genes similar to that of intensively reared chickens, suggesting resistance genes are prevalent in free-ranging poultry. Moreover, Jianghan and intensively reared chickens host major resistance genes differently, an aspect seldom explored between free-range and pastured chickens. Furthermore, among the 829 isolates, three strains of P. acidilatici exhibited strong probiotic potential. These findings provide insights into the unique gut microbiota of Jianghan chickens and highlight potential probiotic strains offering benefits to the host. Video Abstract.
Collapse
Affiliation(s)
- Hongye Shen
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tinghui Wang
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiwei Dong
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Sciences, Hubei Normal University, Huangshi, 435000, China
| | - Guoping Sun
- Hubei Poder Biotechnology Co., Ltd, Huangshi, 435000, China
| | - Jun Liu
- Hubei Poder Biotechnology Co., Ltd, Huangshi, 435000, China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Bull K, Davies G, Jenkins TP, Peachey L. The faecal microbiome of Exmoor ponies shows step-wise compositional changes with increasing levels of management by humans. Equine Vet J 2024; 56:159-170. [PMID: 37264698 DOI: 10.1111/evj.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Horses can suffer from gastrointestinal (GI) disease in domestic environments, often precipitated by human-led changes in management. Understanding the consequences of these changes on equine gut microbiota is key to the prevention of such disease episodes. OBJECTIVE Profile the faecal microbiota of adult female Exmoor ponies under three management conditions, representing increasing levels of management by humans, encompassing different diets; whilst controlling for age, breed and sex. STUDY DESIGN Cross-sectional descriptive. METHODS Faecal samples were collected from three populations of Exmoor ponies kept under contrasting management conditions: 29 adult female ponies in groups with low management (LM) (n = 10), medium management (MM) (n = 10) and high management (HM) (n = 9) levels, based on diet, drug use, handling and exercise. Faecal microbial composition was profiled via high-throughput sequencing of the bacterial 16S rRNA gene, and functional metagenome predictions. RESULTS We observed profound step-wise changes in microbiome structure in the transition from LM to MM to HM. A relatively high abundance of Proteobacteria and Tenericutes was associated with the HM group; higher abundance of Methanobacteria was observed in the LM group. The MM group had intermediate levels of these taxa and exhibited high 'within group' variation in alpha diversity. Functional predictions revealed increased amino acid and lipid metabolism in HM; energy metabolism in LM and carbohydrate metabolism and immune/metabolic disease pathways in MM. MAIN LIMITATIONS Low group sizes, incomplete knowledge of bacterial genomes in equine gut microbiota and it was not possible to assess the relative impact of diet, drug use, handling and exercise on the microbiome as variables were confounded. CONCLUSIONS Human-led management factors had profound step-wise effects on faecal microbial composition. Based on functional metagenome predictions, we hypothesise that dietary differences between groups were the major driver of observed differences.
Collapse
Affiliation(s)
- Katie Bull
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Gareth Davies
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Laura Peachey
- School of Veterinary Sciences, University of Bristol, Bristol, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Dixit S, Kumar S, Sharma R, Banakar PS, Singh M, Keshri A, Tyagi AK. Rumen multi-omics addressing diet-host-microbiome interplay in farm animals: a review. Anim Biotechnol 2023; 34:3187-3205. [PMID: 35713100 DOI: 10.1080/10495398.2022.2078979] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Continuous improvement in the living standards of developing countries, calls for an urgent need of high quality meat and dairy products. The farm animals have a micro-ecosystem in gastro-intestinal tract, comprising of a wide variety of flora and fauna which converts roughages and agricultural byproducts as well as nutrient rich concentrate sources into the useful products such as volatile fatty acids and microbial crude proteins. The microbial diversity changes according to composition of the feed, host species/breed and host's individual genetic makeup. From culture methods to next-generation sequencing technologies, the knowledge has emerged a lot to know-how of microbial world viz. their identification, enzymatic activities and metabolites which are the keys of ruminant's successful existence. The structural composition of ruminal community revealed through metagenomics can be elaborated by metatranscriptomics and metabolomics through deciphering their functional role in metabolism and their responses to the external and internal stimuli. These highly sophisticated analytical tools have made possible to correlate the differences in the feed efficiency, nutrients utilization and methane emissions to their rumen microbiome. The comprehensively understood rumen microbiome will enhance the knowledge in the fields of animal nutrition, biotechnology and climatology through deciphering the significance of each and every domain of residing microbial entity. The present review undertakes the recent investigations regarding rumen multi-omics viz. taxonomic and functional potential of microbial populations, host-diet-microbiome interactions and correlation with metabolic dynamics.
Collapse
Affiliation(s)
- Sonam Dixit
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - Sachin Kumar
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - Ritu Sharma
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - P S Banakar
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - Manvendra Singh
- Krishi Vigyan Kendra, Banda University of Agriculture and Technology, Banda, India
| | - Anchal Keshri
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - A K Tyagi
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
- Animal Nutrition and Physiology, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
6
|
Zaitseva S, Dagurova O, Radnagurueva A, Kozlova A, Izotova A, Krylova A, Noskov S, Begmatov S, Patutina E, Barkhutova DD. Fecal Microbiota and Diet Composition of Buryatian Horses Grazing Warm- and Cold-Season Grass Pastures. Microorganisms 2023; 11:1947. [PMID: 37630507 PMCID: PMC10459317 DOI: 10.3390/microorganisms11081947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The Buryatian horse is an ancient breed and, as an indigenous breed, they have unique adaptive abilities to use scarce pastures, graze in winter, and survive in harsh conditions with minimal human care. In this study, fecal microbiota of Buryatian horses grazing in the warm and cold seasons were investigated using NGS technology on the Illumina MiSeq platform. We hypothesized that the composition of microbial communities in the feces of horses maintained on pasture would change in the different seasons, depending on the grass availability and different plant diets. We conducted microhistological fecal studies of horse diet composition on steppe pasture. The alpha diversity analysis showed horses had a more abundant and diverse gut microbiota in summer. There were significant effects on the beta diversity of microbial families, which were clustered by the warm and cold season in a principal coordinate analysis (PCoA), with 45% of the variation explained by two principal coordinates. This clustering by season was further confirmed by the significant differences observed in the relative abundances of microbial families and genera. The obtained results can serve as an experimental substantiation for further study of the impact of pasture grasses, which have a pharmacological effect, on the diversity of the gut microbiome and horse health.
Collapse
Affiliation(s)
- Svetlana Zaitseva
- Institute of General and Experimental Biology SD RAS, Sakhyanovoy str., 6, 670047 Ulan-Ude, Russia; (O.D.); (A.R.); (D.D.B.)
| | - Olga Dagurova
- Institute of General and Experimental Biology SD RAS, Sakhyanovoy str., 6, 670047 Ulan-Ude, Russia; (O.D.); (A.R.); (D.D.B.)
| | - Aryuna Radnagurueva
- Institute of General and Experimental Biology SD RAS, Sakhyanovoy str., 6, 670047 Ulan-Ude, Russia; (O.D.); (A.R.); (D.D.B.)
| | - Aleksandra Kozlova
- Kurchatov Center for Genome Research, NRC.urchatov Institute, 123182 Moscow, Russia; (A.K.); (A.I.); (A.K.); (S.N.)
| | - Anna Izotova
- Kurchatov Center for Genome Research, NRC.urchatov Institute, 123182 Moscow, Russia; (A.K.); (A.I.); (A.K.); (S.N.)
| | - Anastasia Krylova
- Kurchatov Center for Genome Research, NRC.urchatov Institute, 123182 Moscow, Russia; (A.K.); (A.I.); (A.K.); (S.N.)
| | - Sergey Noskov
- Kurchatov Center for Genome Research, NRC.urchatov Institute, 123182 Moscow, Russia; (A.K.); (A.I.); (A.K.); (S.N.)
| | - Shahjahon Begmatov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, 119071 Moscow, Russia; (S.B.); (E.P.)
| | - Ekaterina Patutina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, 119071 Moscow, Russia; (S.B.); (E.P.)
| | - Darima D. Barkhutova
- Institute of General and Experimental Biology SD RAS, Sakhyanovoy str., 6, 670047 Ulan-Ude, Russia; (O.D.); (A.R.); (D.D.B.)
| |
Collapse
|
7
|
Meili CH, Jones AL, Arreola AX, Habel J, Pratt CJ, Hanafy RA, Wang Y, Yassin AS, TagElDein MA, Moon CD, Janssen PH, Shrestha M, Rajbhandari P, Nagler M, Vinzelj JM, Podmirseg SM, Stajich JE, Goetsch AL, Hayes J, Young D, Fliegerova K, Grilli DJ, Vodička R, Moniello G, Mattiello S, Kashef MT, Nagy YI, Edwards JA, Dagar SS, Foote AP, Youssef NH, Elshahed MS. Patterns and determinants of the global herbivorous mycobiome. Nat Commun 2023; 14:3798. [PMID: 37365172 PMCID: PMC10293281 DOI: 10.1038/s41467-023-39508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Despite their role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. Here, to examine global patterns and determinants of AGF diversity, we generate and analyze an amplicon dataset from 661 fecal samples from 34 mammalian species, 9 families, and 6 continents. We identify 56 novel genera, greatly expanding AGF diversity beyond current estimates (31 genera and candidate genera). Community structure analysis indicates that host phylogenetic affiliation, not domestication status and biogeography, shapes the community rather than. Fungal-host associations are stronger and more specific in hindgut fermenters than in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicate that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya) than those with preferences for foregut hosts (22-32 Mya). Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts.
Collapse
Affiliation(s)
- Casey H Meili
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Adrienne L Jones
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Alex X Arreola
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Jeffrey Habel
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Carrie J Pratt
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Radwa A Hanafy
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Yan Wang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Moustafa A TagElDein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Christina D Moon
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H Janssen
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Mitesh Shrestha
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Prajwal Rajbhandari
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Magdalena Nagler
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Julia M Vinzelj
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Sabine M Podmirseg
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | | | | | - Diana Young
- Bavarian State Research Center for Agriculture, Freising, Germany
| | - Katerina Fliegerova
- Institute of Animal Physiology and Genetics Czech Academy of Sciences, Prague, Czechia
| | - Diego Javier Grilli
- Área de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Giuseppe Moniello
- Department of Veterinary Medicine, University of Sassari, Sardinia, Italy
| | - Silvana Mattiello
- University of Milan, Dept. of Agricultural and Environmental Sciences, Milan, Italy
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yosra I Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Andrew P Foote
- Oklahoma State University, Department of Animal and Food Sciences, Stillwater, OK, USA
| | - Noha H Youssef
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA.
| | - Mostafa S Elshahed
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA.
| |
Collapse
|
8
|
Arnold CE, Pilla R. What Is the Microbiota and What Is Its Role in Colic? Vet Clin North Am Equine Pract 2023:S0749-0739(23)00016-0. [PMID: 37121786 DOI: 10.1016/j.cveq.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The fecal microbiome of the horse is reflective of the large colon and plays an important role in the health of the horse. The microbes of the gastrointestinal tract digest fiber and produce energy for the host. Healthy horses have Firmicutes, Bacteroidetes, and Verrucromicrobia as the most common phyla. During gastrointestinal disease such as colic or colitis, the microbiome shows less diversity and changes in bacterial community composition.
Collapse
Affiliation(s)
- Carolyn E Arnold
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Street, Amarillo, Texas 79106, USA.
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
Zhang Z, Huang B, Gao X, Shi X, Wang X, Wang T, Wang Y, Liu G, Wang C. Dynamic changes in fecal microbiota in donkey foals during weaning: From pre-weaning to post-weaning. Front Microbiol 2023; 14:1105330. [PMID: 36778861 PMCID: PMC9915154 DOI: 10.3389/fmicb.2023.1105330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction A better understanding of the microbiota community in donkey foals during the weaning transition is a prerequisite to optimize gut function and improve feed efficiency. The objective of the present study was to investigate the dynamic changes in fecal microbiota in donkey foals from pre-to post-weaning period. Methods A total of 27 fecal samples of donkey foals were collected in the rectum before morning feeding at pre-weaning (30 days of age, PreW group, n = 9), dur-weaning (100 days of age, DurW group, n = 9) and post-weaning (170 days of age, PostW group, n = 9) period. The 16S rRNA amplicon sequencing were employed to indicate the microbial changes during the weaning period. Results In the present study, the cessation of breastfeeding gradually and weaning onto plant-based feeds increased the microbial diversity and richness, with a higher Shannon, Ace, Chao and Sobs index in DurW and PostW than in PreW (p < 0.05). The predominant bacterial phyla in donkey foal feces were Firmicutes (>50.5%) and Bacteroidota (>29.5%), and the predominant anaerobic fungi and archaea were Neocallimastigomycota and Euryarchaeota. The cellulolytic related bacteria including phylum Firmicutes, Spirochaetota and Fibrobacterota and genus norank_f_F082, Treponema, NK4A214_group, Lachnospiraceae_AC2044_group and Streptococcus were increased from pre-to post-weaning donkey foals (p < 0.05). Meanwhile, the functions related to the fatty acid biosynthesis, carbohydrate metabolism and amino acid biosynthesis were significantly enriched in the fecal microbiome in the DurW and PostW donkeys. Furthermore, the present study provided the first direct evidence that the initial colonization and establishment of anaerobic fungi and archaea in donkey foals began prior to weaning. The relative abundance of Orpinomyces were the highest in DurW donkey foals among the three groups (p < 0.01). In terms of archaea, the abundance of Methanobrevibacter were higher in PreW than in DurW and PostW (p < 0.01), but the abundance of Methanocorpusculum were significantly increased in DurW and PostW compared to PreW donkey foals (p < 0.01). Discussion Altogether, the current study contributes to a comprehensive understanding of the development of the microbiota community in donkey foals from pre-to post-weaning period, which may eventually result in an improvement of the digestion and feed efficiency in donkeys.
Collapse
|
10
|
Li C, Li X, Guo R, Ni W, Liu K, Liu Z, Dai J, Xu Y, Abduriyim S, Wu Z, Zeng Y, Lei B, Zhang Y, Wang Y, Zeng W, Zhang Q, Chen C, Qiao J, Liu C, Hu S. Expanded catalogue of metagenome-assembled genomes reveals resistome characteristics and athletic performance-associated microbes in horse. MICROBIOME 2023; 11:7. [PMID: 36631912 PMCID: PMC9835274 DOI: 10.1186/s40168-022-01448-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/14/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND As a domesticated species vital to humans, horses are raised worldwide as a source of mechanical energy for sports, leisure, food production, and transportation. The gut microbiota plays an important role in the health, diseases, athletic performance, and behaviour of horses. RESULTS Here, using approximately 2.2 Tb of metagenomic sequencing data from gut samples from 242 horses, including 110 samples from the caecum and 132 samples from the rectum (faeces), we assembled 4142 microbial metagenome-assembled genomes (MAG), 4015 (96.93%) of which appear to correspond to new species. From long-read data, we successfully assembled 13 circular whole-chromosome bacterial genomes representing novel species. The MAG contained over 313,568 predicted carbohydrate-active enzymes (CAZy), over 59.77% of which had low similarity match in CAZy public databases. High abundance and diversity of antibiotic resistance genes (ARG) were identified in the MAG, likely showing the wide use of antibiotics in the management of horse. The abundances of at least 36 MAG (e.g. MAG belonging to Lachnospiraceae, Oscillospiraceae, and Ruminococcus) were higher in racehorses than in nonracehorses. These MAG enriched in racehorses contained every gene in a major pathway for producing acetate and butyrate by fibre fermentation, presenting potential for greater amount of short-chain fatty acids available to fuel athletic performance. CONCLUSION Overall, we assembled 4142 MAG from short- and long-read sequence data in the horse gut. Our dataset represents an exhaustive microbial genome catalogue for the horse gut microbiome and provides a valuable resource for discovery of performance-enhancing microbes and studies of horse gut microbiome. Video Abstract.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, Shihezi University, Shihezi, 832003 Xinjiang China
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Xiaoyue Li
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Rongjun Guo
- Novogene Bioinformatics Institute, Beijing, 100000 China
| | - Wei Ni
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Kaiping Liu
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 830003 Xinjiang China
| | - Zhuang Liu
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Jihong Dai
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Yueren Xu
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | | | - Zhuangyuan Wu
- Xinjiang Altay Animal Husbandry and Veterinary Station, Altay, 836501 Xinjiang China
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000 Xinjiang China
| | - Bingbing Lei
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Yunfeng Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 830003 Xinjiang China
| | - Yue Wang
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Qiang Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Chen Liu
- Novogene Bioinformatics Institute, Beijing, 100000 China
| | - Shengwei Hu
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, Shihezi University, Shihezi, 832003 Xinjiang China
| |
Collapse
|
11
|
Hepworth-Warren KL, Erwin SJ, Moore CB, Talbot JR, Young KAS, Neault MJ, Haugland JC, Robertson JB, Blikslager AT. Risk factors associated with an outbreak of equine coronavirus at a large farm in North Carolina. Front Vet Sci 2023; 10:1060759. [PMID: 36937023 PMCID: PMC10020641 DOI: 10.3389/fvets.2023.1060759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Background Equine coronavirus (ECoV) leads to outbreaks with variable morbidity and mortality. Few previous reports of risk factors for infection are available in the literature. Objectives To describe unique clinical findings and risk factors for infection and development of clinical disease. Animals 135 horses on a farm affected by ECoV outbreak. Methods Retrospective cohort study. Data obtained included age, breed, gender, activity level, housing, and feed at the onset of the outbreak. Factors were evaluated for assessment of risk of infection using simple logistic regression or Fisher's exact test. Significance was set at p ≤ 0.05. Results and findings Forty-three of 54 (79.6%) horses tested on the farm were positive on fecal PCR for ECoV, and 17 horses (12.6%) developed clinical signs consistent with ECoV. Out of 17 horses in which the presence or absence of signs of colic was noted, 6 of 17 (35.3%) showed signs of colic. Three of these horses had small colon impactions, 2 of which required surgical intervention. Significant risk factors for having positive PCR results included being primarily stalled (OR 167.1, 95% CI 26.4-1719), housing next to a positive horse (OR 7.5, 95% CI 3.1-19.0), being in work (OR 26.9, 95% CI 4.6-281.9), being fed rationed hay vs. ad libitum (OR 1,558, 95% CI 130.8-15,593), and being fed alfalfa hay (OR 1,558, 95% CI 130.8-15,593). Conclusions and clinical importance This report describes risk factors for ECoV infection many of which were associated with intensive management of show horses. Clinicians should be aware that clinical signs vary and can include severe colic.
Collapse
Affiliation(s)
- Kate L. Hepworth-Warren
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Kate L. Hepworth-Warren
| | - Sara J. Erwin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | | | | | - Kimberly A. S. Young
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Michael J. Neault
- North Carolina Department of Agricultures and Consumer Services, Raleigh, NC, United States
| | - Jennifer C. Haugland
- Rollins Animal Disease Diagnostic Laboratory, North Carolina Department of Agriculture and Consumer Services, Raleigh, NC, United States
- North Carolina Veterinary Diagnostic Laboratory System, North Carolina Department of Agriculture and Consumer Services, Raleigh, NC, United States
| | - James B. Robertson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Anthony T. Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
12
|
Results of a Clinical Trial Showing Changes to the Faecal Microbiome in Racing Thoroughbreds after Feeding a Nutritional Supplement. Vet Sci 2022; 10:vetsci10010027. [PMID: 36669028 PMCID: PMC9861731 DOI: 10.3390/vetsci10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Next-generation sequencing (NGS) has been used to evaluate the effect of various interventions on the equine microbiome. The aim of this randomised blinded clinical trial was to determine if a prebiotic nutritional supplement would result in a change from baseline in the faecal microbiome composition of racing Thoroughbred horses in training being fed a high concentrate/grain-based diet to be more similar to that found in forage fed/pasture grazed horses. Thirty-two horses on one training yard were randomised to either receive the supplement or not. Faecal samples were collected at baseline, 6 and 12 weeks for NGS of the 16S ribosomal subunit gene. Twenty-two horses completed the trial, met the inclusion criteria and were included in the intention to treat analysis; 20 horses were included in the per protocol analysis. The mean and median percent decreases in Bacteroidetes, increases in Firmicutes and the Firmicutes:Bacteroidetes ratio were significantly greater than zero for the treated horses only. Supplemented horses (8/10) were more likely than control horses (2/10) to show an increase in Firmicutes of a ≥9% with ≥24% increase in Clostridia, ≥5% decrease in Bacteroidetes, ≥16% increase in the F:B ratio and ≥2% increase in Actinobacteria (RR = 4, 95% CI: 1.1-14.4, p = 0.01). This provides useful information for further investigations on long-term effects on the microbiome and on health and racing-related outcomes.
Collapse
|
13
|
Manfredi JM, Jacob SI, Boger BL, Norton EM. A one-health approach to identifying and mitigating the impact of endocrine disorders on human and equine athletes. Am J Vet Res 2022; 84:ajvr.22.11.0194. [PMID: 36563063 DOI: 10.2460/ajvr.22.11.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endocrinopathies affect multiple species in ever-increasing percentages of their populations, creating an opportunity to apply one-health approaches to determining creative preventative measures and therapies in athletes. Obesity and alterations in insulin and glucose dynamics are medical concerns that play a role in whole-body health and homeostasis in both horses and humans. The role and impact of endocrine disorders on the musculoskeletal, cardiovascular, and reproductive systems are of particular interest to the athlete. Elucidation of both physiologic and pathophysiologic mechanisms involved in disease processes, starting in utero, is important for development of prevention and treatment strategies for the health and well-being of all species. This review focuses on the unrecognized effects of endocrine disorders associated with the origins of metabolic disease; inflammation at the intersection of endocrine disease and related diseases in the musculoskeletal, cardiovascular, and reproductive systems; novel interventions; and diagnostics that are informed via multiomic and one-health approaches. Readers interested in further details on specific equine performance conditions associated with endocrine disease are invited to read the companion Currents in One Health by Manfredi et al, JAVMA, February 2023.
Collapse
Affiliation(s)
- Jane M Manfredi
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Sarah I Jacob
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Brooke L Boger
- Comparative Medicine and Integrative Biology, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Elaine M Norton
- Department of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| |
Collapse
|
14
|
Chaucheyras-Durand F, Sacy A, Karges K, Apper E. Gastro-Intestinal Microbiota in Equines and Its Role in Health and Disease: The Black Box Opens. Microorganisms 2022; 10:microorganisms10122517. [PMID: 36557769 PMCID: PMC9783266 DOI: 10.3390/microorganisms10122517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Horses are large non-ruminant herbivores and rely on microbial fermentation for energy, with more than half of their maintenance energy requirement coming from microbial fermentation occurring in their enlarged caecum and colon. To achieve that, the gastro-intestinal tract (GIT) of horses harbors a broad range of various microorganisms, differing in each GIT segment, which are essential for efficient utilization of feed, especially to use nutrients that are not or little degraded by endogenous enzymes. In addition, like in other animal species, the GIT microbiota is in permanent interplay with the host's cells and is involved in a lot of functions among which inflammation, immune homeostasis, and energy metabolism. As for other animals and humans, the horse gut microbiome is sensitive to diet, especially consumption of starch, fiber, and fat. Age, breeds, stress during competitions, transportation, and exercise may also impact the microbiome. Because of its size and its complexity, the equine GIT microbiota is prone to perturbations caused by external or internal stressors that may result in digestive diseases like gastric ulcer, diarrhea, colic, or colitis, and that are thought to be linked with systemic diseases like laminitis, equine metabolic syndrome or obesity. Thus, in this review we aim at understanding the common core microbiome -in terms of structure and function- in each segment of the GIT, as well as identifying potential microbial biomarkers of health or disease which are crucial to anticipate putative perturbations, optimize global practices and develop adapted nutritional strategies and personalized nutrition.
Collapse
Affiliation(s)
- Frédérique Chaucheyras-Durand
- Lallemand SAS, 31702 Blagnac, France
- UMR MEDIS, INRAE, Université Clermont-Auvergne, 63122 Saint-Genès Champanelle, France
| | | | - Kip Karges
- Lallemand Specialities Inc., Milwaukee, WI 53218, USA
| | | |
Collapse
|
15
|
Zhang Z, Gao X, Dong W, Huang B, Wang Y, Zhu M, Wang C. Plant cell wall breakdown by hindgut microorganisms: can we get scientific insights from rumen microorganisms? J Equine Vet Sci 2022; 115:104027. [PMID: 35661771 DOI: 10.1016/j.jevs.2022.104027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/20/2023]
Abstract
Equines and ruminants have evolved as grazing herbivores with specialized gastrointestinal tracts capable of utilizing a wide range of fibrous feeds. In China, agricultural by-products, including corn straw, wheat straw, peanut vine, wheat husk, rice husk, and grass hay, have been extensively included in both equine and ruminant diets. These plant materials, which are composed predominantly of cellulose, hemicellulose, noncellulosic polysaccharides, and lignin, are largely undegradable by equines and ruminants themselves. Their breakdown is accomplished by communities of resident microorganisms that live in symbiotic or mutualistic associations with the host. Information relating to microbial composition in the hindgut and rumen has become increasingly available. Rumen fermentation is unique in that plant cell wall breakdown relies on the cooperation between microorganisms that produce fibrolytic enzymes and that ruminant animals provide an anaerobic fermentation chamber. Similar to the rumen, the equine hindgut is also an immensely enlarged fermentative chamber that includes an extremely abundant and highly complex community of microorganisms. However, few studies have characterized the microbial functions and their utilization process of lignocellulosic feeds within the equine hindgut. The process of understanding and describing plant cell wall degradation mechanisms in the equine hindgut ecosystem is important for providing information for proper feeding practices to be implemented. In the present study, we gather existing information on the rumen and equine ecosystem and provide scientific insights for understanding the process of plant cell wall breakdown within the hindgut.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Xu Gao
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Wanting Dong
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Yonghui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Mingxia Zhu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China.
| |
Collapse
|
16
|
Zhang Z, Huang B, Shi X, Wang T, Wang Y, Zhu M, Wang C. Comparative Analysis of Bacterial Diversity between the Liquid Phase and Adherent Fraction within the Donkey Caeco-Colic Ecosystem. Animals (Basel) 2022; 12:ani12091116. [PMID: 35565542 PMCID: PMC9101638 DOI: 10.3390/ani12091116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023] Open
Abstract
Donkey hindgut is an enlarged fermentative chamber that harbors a highly complex and extremely abundant community of anaerobic bacteria. It can be divided into two different ecological sites: liquid (Lq) phase and adherent fraction (Ad) colonized by bacteria. However, the Ad bacteria have not previously been specifically collected or directly compared with the Lq bacteria. In the present study, the digesta collected from the caecum, ventral colon and dorsal colon of nine Dezhou donkeys was separated into Lq and Ad fractions. The bacterial community structure was comparatively determined using 16S rRNA gene sequences by Illumina MiSeq. The Ad bacteria had a higher bacterial diversity than Lq bacteria due to the higher Chao and ACE index (p < 0.05). The predominant bacteria at the phylum level were Firmicutes (55.4~74.3%) and Bacteroidota (13.7~32.2%) for both the Lq and Ad fraction. The relative abundance of Bacteroidota, Spirochaetota, Fibrobacterota and Patescibacteria in the Ad fraction was greater than Lq (p < 0.05), suggesting that bacteria associated with feed particles were mainly responsible for plant fiber degradation. At the genus level, the abundance of Lactobacillus in Lq was greater than that in the Ad fraction (p < 0.05), indicating that the bacteria in the Lq fraction were better at hydrolyzing readily fermentable carbohydrates. PICRUSt showed that the activities of enzymes related to fiber degradation in the Ad fraction were also greater than Lq. In addition, the hindgut region also had a significant effect on the bacterial community composition. The relative abundance of Rikenellaceae_RC9_gut_group, Clostridium_sensu_stricto_1, Christensenellaceae_R-7_group and norank_Bacteroidales_BS11_gut_group was increased (p < 0.05) along the donkey hindgut. In summary, the present study provides evidence that bacteria adherent to plant biomass were different to those in the liquid phase within the donkey caeco-colic digesta, and bacteria associated with feed particles may mainly be responsible for plant fiber degradation.
Collapse
|
17
|
The Fibrolytic Enzyme Profiles and the Composition of Fungal Communities in Donkey Cecum-Colon Ecosystem. Animals (Basel) 2022; 12:ani12040412. [PMID: 35203120 PMCID: PMC8868365 DOI: 10.3390/ani12040412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The donkey hindgut is a microbial-rich ecosystem in which caecum and colon fungi play an important role in dietary fiber degradation. In addition, the fibrolytic enzymes produced by hindgut microorganisms are key to the ability of equines to hydrolysis plant fiber. In the present study, the fibrolytic enzyme activities within donkey caecum and colon were firstly measured by spectrophotometry. The dorsal colon presented a higher fibrolytic enzyme activity in comparison with caecum. The fungal community composition along donkey caecum and colon was determined by sequencing an internal transcribed spacer region (ITS) using Illumina MiSeq. The predominant fungi at phylum level were Ascomycota, Basidiomycota, and Neocallimastigomycota. The Aspergillus, Wallemia, Phanerochaete, Fusarium, and Penicillium were detected as the dominant genera, but their metabolic and functional significance in donkey cecum-colon ecosystem need further investigation. In terms of the anaerobic fungi Neocallimastigomycota, its abundance was greater in donkey colon than in caecum. The relative abundance of enzymes related to plant cell wall breakdown were also predicted by PICRUSt, and they were also greater in donkey colon than in caecum. The present study provided new information about fibrolytic enzyme profiles and fungal communities in donkey hindgut. The findings could therefore contribute to the further understanding of the fungal taxa and their dietary fiber degradation mechanisms in donkey hindgut ecosystem. Abstract The fibrolytic enzymes and the hindgut fungi in donkey cecum-colon ecosystem play an important role in dietary fiber digestion. A better understanding of the fibrolytic enzyme profiles and the fungal community along donkey caecum and colon is key for optimizing hindgut function. In the present study, the fibrolytic enzyme activities within donkey caecum and colon were firstly measured by spectrophotometry. Activities of carboxymethyl cellulase, avicelase, xylanase, and acetyl esterase were greater in donkey dorsal colon than in caecum, indicating that the colon microorganisms may be more efficient in producing fibrolytic enzymes compared to caecum microbes. The fungal community composition along donkey hindgut was determined by sequencing ITS region using Illumina MiSeq. Three fungal phyla were identified by sequence comparison: Ascomycota (66.8%–74.4%), Basidiomycota (21.6%–30.9%), and Neocallimastigomycota (0.9%–3.3%). The Aspergillus, Wallemia, Phanerochaete, Fusarium, and Penicillium were detected as the dominant genera, but their metabolic and functional significance in donkey cecum-colon ecosystem need further investigation. In terms of the anaerobic fungi Neocallimastigomycota, its abundance was greater in donkey colon than in caecum (p < 0.05), indicating that the donkey hindgut region was associated with differences in fungal community composition. Moreover, the relative abundance of enzymes related to plant cell wall degradation were predicted by PICRUSt, and they were also lower in caecum than in colon. The present study provided new information about fibrolytic enzyme profiles and fungal composition in donkey hindgut ecosystem.
Collapse
|
18
|
Zhang Z, Wang Y, Mingxia Z, Wang C. The in vitro digestion and fermentation characteristics of feedstuffs inoculated with cecal or colic fluid of Dezhou donkey. J Equine Vet Sci 2022; 110:103864. [PMID: 35017038 DOI: 10.1016/j.jevs.2022.103864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
The present study was conducted to evaluate the in vitro dry matter disappearance (IVDMD) and fermentation characteristics of 6 fibrous feedstuffs incubated with donkey cecal or colic microorganisms. The fibrous feeds were corn straw (CS), wheat straw (WS), peanut vine (PNV), peanut shell (PNH), wheat shell (WH) and wheat bran (WB), which are commonly applied in large-scale donkey farms in China. After 48 h fermentation, the highest IVDMD occurred in WB, and the lowest occurred in PNH (P<0.05) regardless what inoculum applied. The IVDMD was positively correlated with OM (R=0.42, P<0.01), CP (R=0.76, P<0.01) and EE (R=0.56, P<0.01), while it was negatively correlated with NDF (R=0.75, P<0.01) and ADF (R=0.79, P<0.01). In terms of volatile fatty acids (VFAs), the greatest net VFA production also occurred in WB (P<0.05). The acetate and branched-chain volatile fatty acid (BCVFA) proportions were greater in the colon culture fluids than in caecum (P<0.05), but the propionate proportions were lower in colon than in caecum (P<0.05). This resulted in an increase in the ratio of acetate to propionate in colon culture fluids. In summary, based on the highest IVDMD, net VFA production and CP content occurring with the lowest contents of both NDF and ADF, WB had the highest nutritive value compared to other fibrous substrates. The extent of feed degradation and fermentation depended mainly on the nature of the incubated feedstuffs. Nevertheless, further study is required to investigate these fibrous feeds on hindgut fermentation and in vivo nutrient digestibility.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, 252059, China
| | - Yonghui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, 252059, China
| | - Zhu Mingxia
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, 252059, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
19
|
Comparison of Feed Digestibility between Ponies, Standardbreds and Andalusian Horses Fed Three Different Diets. Vet Sci 2021; 9:vetsci9010015. [PMID: 35051099 PMCID: PMC8778529 DOI: 10.3390/vetsci9010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Ponies and some horse breeds such as Andalusians exhibit an 'easy keeper' phenotype and tend to become obese more readily than other breeds such as Standardbreds. Various hypotheses have been proposed, including differences in appetite or metabolic efficiency. This study aimed to investigate the effect of breed on nutrient digestibility. Ponies, Standardbreds and Andalusian horses were adapted to consuming either a control fibre-based diet (n = 9), a hypercaloric cereal-rich diet (n = 12) or a hypercaloric fat-rich diet (n = 12) over 20 weeks. Total faecal collection was performed over 24 h to determine apparent total tract digestibility of gross energy, dry matter (DM), neutral detergent fibre (NDF), starch, crude protein and crude fat. There was no effect of breed on apparent digestibility for any of the nutrients studied (all p > 0.05). However, there was a significant effect of diet, with animals consuming the cereal-rich or fat-rich diets demonstrating higher digestibility of gross energy, DM, NDF and crude protein compared with those consuming the control diet (all p < 0.05). Animals adapted to the cereal-rich diet demonstrated higher digestibility of starch (p < 0.001) and animals adapted to the fat-rich diet demonstrated higher digestibility of fat (p < 0.001). This study found that horses and ponies had similar nutrient digestibility when adapted to the same diets and management conditions. Limitations included the relatively small number of animals from each breed per diet group and the short period of total faecal collection. The tendency towards increased adiposity in ponies and Andalusian-type horse breeds is more likely to reflect differences in metabolism, rather than differences in feed digestibility.
Collapse
|
20
|
Franzan BC, Coelho IDS, de Souza MT, Santos MMDM, de Almeida FQ, Silva VP. Fecal Microbiome Responses to Sudden Diet Change in Mangalarga Marchador horses. J Equine Vet Sci 2021; 108:103803. [PMID: 34864510 DOI: 10.1016/j.jevs.2021.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Sudden changes in horses' diet have been previously associated with gastrointestinal disease. This study evaluated the effects of a sudden change of diet composed exclusively of Coastcross hay (CHD) to a complete extruded diet (CED) on the fecal microbiome of horses. A completely randomized design with repeated measurements was used. The study started with eight adult horses randomly split into group A, fed with CHD, and group B, fed with CED. After 34 days of diet adaptation, the diets were abruptly changed between the groups. Fecal samples were collected at 0, 24, and 96 hours after the diet change, and the pH and microbiome analyses of the feces were subsequently evaluated. Changing from CHD to CED reduced the alpha diversity 24 hours after the alteration, with a decrease in the relative abundance of Firmicutes and an increase of Bacteroidetes. Fecal pH decreased and the relative abundance of Verrucomicrobia increased 96 hours after changing the diets. The community structure was also different after 96 hours of diet change. In contrast, 24 hours after changing from CED to CHD reduced fecal pH and abundance of Synergistetes. After 96 hours, there was an increase in the alpha diversity, and the abundance of the phylum Lentisphaerae. Group B showed no changes in the community structure when its diet was changed. Concluding, diet composition influenced the response of the equine fecal microbiome to sudden dietary changes.
Collapse
Affiliation(s)
- Bruna Caroline Franzan
- Animal Science Institute, Universidade Federal Rural do Rio de Janeiro/ UFRRJ, BR 465, Km 07, Seropédica, Rio de Janeiro, 23890-000, Brazil
| | - Irene da Silva Coelho
- Veterinary Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23890-000, Brazil
| | - Marina Torres de Souza
- Veterinary Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23890-000, Brazil
| | - Marina Monteiro de Moraes Santos
- Animal Science Institute, Universidade Federal Rural do Rio de Janeiro/ UFRRJ, BR 465, Km 07, Seropédica, Rio de Janeiro, 23890-000, Brazil
| | - Fernando Queiroz de Almeida
- Veterinary Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23890-000, Brazil
| | - Vinicius Pimentel Silva
- Animal Science Institute, Universidade Federal Rural do Rio de Janeiro/ UFRRJ, BR 465, Km 07, Seropédica, Rio de Janeiro, 23890-000, Brazil.
| |
Collapse
|
21
|
Godwin T, Webb G, Lancaster P. Effect of Donor Diet on In Vitro Digestibility of Forages by Fecal Inoculate. J Equine Vet Sci 2021; 105:103722. [PMID: 34607692 DOI: 10.1016/j.jevs.2021.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022]
Abstract
Previous research indicates equine fecal inoculates produce comparable results to cecal fluid when used for in vitro procedures to analyze dry matter digestibility (DMD). Equine hindgut microbial communities represented in fecal samples have been shown to be affected by diet. The study's objective was to determine the effect of the donor diet on in vitro DMD when fecal donors were fed high starch, or high fiber diets. Six Quarter Horses were used in a crossover design to compare the effects of a grain versus forage diet on in vitro digestion of forages ranging from: CP 7.7 to 16.4 %DM, NDF 53 to 72 %DM. Feces from each horse were obtained on day 22 of each period and used to inoculate in vitro fermentation vessels in order to evaluate the effect of donor diet on the DMD, neutral detergent fiber digestibility (NDFD), and acid detergent fiber digestibility (ADFD) of four forages. Data were analyzed using the MIXED procedure of SAS to evaluate digestibility differences in the diet by forage composition interaction. Fecal samples from horses on the grain diet promoted higher NDFD of forages with high NDF and low CP when CP and NDF were used as covariates (P = .04 and .03). There was a horse effect on DMD and NDFD (P ≤ .05). Findings suggest diet may influence the hindgut microbiome's ability to digest neutral detergent fiber and should be considered when selecting equine fecal samples for in vitro digestion procedures.
Collapse
Affiliation(s)
- Taylor Godwin
- Department of Animal Science, Missouri State University, William H. Darr College of Agriculture, Springfield, MO; Louisiana State University School of Veterinary Medicine, Baton Rouge, LA.
| | - Gary Webb
- Department of Animal Science, Missouri State University, William H. Darr College of Agriculture, Springfield, MO
| | - Philip Lancaster
- Department of Animal Science, Missouri State University, William H. Darr College of Agriculture, Springfield, MO; Kansas State University College of Veterinary Medicine, Manhattan, KS
| |
Collapse
|
22
|
Goodman-Davis R, Figurska M, Cywinska A. Gut Microbiota Manipulation in Foals-Naturopathic Diarrhea Management, or Unsubstantiated Folly? Pathogens 2021; 10:pathogens10091137. [PMID: 34578169 PMCID: PMC8467620 DOI: 10.3390/pathogens10091137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 02/04/2023] Open
Abstract
Diarrhea in foals is a problem of significant clinical and economic consequence, and there are good reasons to believe microbiota manipulation can play an important role in its management. However, given the dynamic development of the foal microbiota and its importance in health and disease, any prophylactic or therapeutic efforts to alter its composition should be evidence based. The few clinical trials of probiotic preparations conducted in foals to date show underwhelming evidence of efficacy and a demonstrated potential to aggravate rather than mitigate diarrhea. Furthermore, recent studies have affirmed that variable but universally inadequate quality control of probiotics enables inadvertent administration of toxin-producing or otherwise pathogenic bacterial strains, as well as strains bearing transferrable antimicrobial resistance genes. Consequently, it seems advisable to approach probiotic therapy in particular with caution for the time being. While prebiotics show initial promise, an even greater scarcity of clinical trials makes it impossible to weigh the pros and cons of their use. Advancing technology will surely continue to enable more detailed and accurate mapping of the equine adult and juvenile microbiota and potentially elucidate the complexities of causation in dysbiosis and disease. In the meantime, fecal microbiota transplantation may be an attractive therapeutic shortcut, allowing practitioners to reconstruct a healthy microbiota even without fully understanding its constitution.
Collapse
Affiliation(s)
- Rachel Goodman-Davis
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (R.G.-D.); (M.F.)
- The Scientific Society of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Marianna Figurska
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (R.G.-D.); (M.F.)
| | - Anna Cywinska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
- Correspondence:
| |
Collapse
|
23
|
Johnson ACB, Biddle AS. A Standard Scale to Measure Equine Keeper Status and the Effect of Metabolic Tendency on Gut Microbiome Structure. Animals (Basel) 2021; 11:ani11071975. [PMID: 34359102 PMCID: PMC8300108 DOI: 10.3390/ani11071975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Horses with different metabolic tendencies are anecdotally referred to as “easy” or “hard” keepers. Easy keepers tend to gain weight easily while hard keepers require extra feed to maintain condition. Both easy and hard keeper horses carry a managerial and financial burden which can be a dissuading factor for horse shoppers. This research uses energy intake/need and body condition to develop a standard Equine Keeper Status Scale (EKSS) for assigning keeper status. The microbiome compositions based on EKSS assignments are then compared to explore microbiome differences based on metabolic tendencies of each group. The EKSS can be used by owners to accurately assess their horses’ metabolic tendencies and make improved feeding decisions to meet their horses’ needs. Understanding microbiome differences between easy, medium and hard keeper horses points to potential microbial roles in these metabolic tendencies. Abstract Thriftiness in horses has been associated with more efficient nutrient harvesting in digestion, absorption and/or utilization, but the relative contribution of the gut microbiome to host metabolic tendency is not well understood. Recognizing the unreliability of owner reported assignment of keeper status, this research describes a novel tool for calculating whether a horse is an easy (EK) or hard (HK) keeper and then characterizes microbiome differences in these groups. The Equine Keeper Status Scale (EKSS) was developed and validated based on data gathered from 240 horses. Estimates of dietary energy intakes and requirements to achieve the optimal BCS score of 5 were used in EKSS assignments. Sixty percent of owners’ characterizations disagreed with EKSS identified keeper assignments. Equine fecal 16S rRNA profiles (n = 73) revealed differences in α and β diversities and taxa abundances based on EKSS assignments. EK communities had more Planctomycetes and fewer Euryarcheaota, Spirochaetes and Proteobacteria than HK indicating functional differences in nutrient harvesting between groups. Differences in the gut microbiomes of horses based on keeper assignment point to host/microbial interactions that may underlie some differences in metabolic tendency. The EKSS enables robust, repeatable determination of keeper status which can be used by researchers and horse owners.
Collapse
|
24
|
Walshe N, Cabrera-Rubio R, Collins R, Puggioni A, Gath V, Crispie F, Cotter PD, Brennan L, Mulcahy G, Duggan V. A Multiomic Approach to Investigate the Effects of a Weight Loss Program on the Intestinal Health of Overweight Horses. Front Vet Sci 2021; 8:668120. [PMID: 34222398 PMCID: PMC8249564 DOI: 10.3389/fvets.2021.668120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Obesity is endemic in human populations in the western society, and with mounting evidence that the intestinal ecological environment plays a major role in its pathogenesis, identification of therapies based on intestinal microbiota modulation are gaining attention. Obesity in companion animals is also a common clinical problem. We set out using a multidimensional approach, to determine the effectiveness and safety of a weight loss program for horses incorporating diet restriction and exercise. In addition, we aimed to investigate the effect of this program on the overall intestinal health of overweight sedentary horses. The investigation comprised of a randomized, controlled, 6-week study of 14 overweight sedentary horses and ponies who were blocked for age, gender, and breed (controls n = 7, treatment n = 7). The treatment group were fed a restricted diet (1.4% of body weight dry matter intake) and the control group a maintenance diet (2% of body weight as dry matter intake) over the study period. The treatment group were subjected to a prescribed exercise regime, while the control group were exercised to mimic foraging conditions. Several clinical measurements were taken at the start and end of the study, including morphological parameters, ultrasound measurements of subcutaneous fat, and blood pressure. Fecal microbiota analysis was performed using 16S rRNA gene sequence analysis, and fecal metabolome was analyzed using NMR spectroscopy, on samples taken at weeks 1, 3, and 6 of the study. All horses completed the study period successfully. However, two of the treatment group had to have modified exercise regimes. The treatment group showed significant weight loss (p < 0.00001) and an associated decrease in waste circumference (p < 0.0001) when compared with the control group. The alpha-diversity of the fecal microbiota in the treatment group showed a significant increase from the start to the end of the study period (p < 0.05); however, there was no significant difference between groups at any sampling point. There were significant changes (p < 0.05) in the metabolome in both groups between the start and end of the study, but not between groups at any sampling point. Finally, the resting blood pressure of all horses was significantly lower by the end of the study.
Collapse
Affiliation(s)
- Nicola Walshe
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Roisin Collins
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Antonella Puggioni
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Vivian Gath
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
- VistaMilk, Cork, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Vivienne Duggan
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Park T, Cheong H, Yoon J, Kim A, Yun Y, Unno T. Comparison of the Fecal Microbiota of Horses with Intestinal Disease and Their Healthy Counterparts. Vet Sci 2021; 8:vetsci8060113. [PMID: 34204317 PMCID: PMC8234941 DOI: 10.3390/vetsci8060113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Background: The intestinal microbiota plays an essential role in maintaining the host's health. Dysbiosis of the equine hindgut microbiota can alter the fermentation patterns and cause metabolic disorders. (2) Methods: This study compared the fecal microbiota composition of horses with intestinal disease and their healthy counterparts living in Korea using 16S rRNA sequencing from fecal samples. A total of 52 fecal samples were collected and divided into three groups: horses with large intestinal disease (n = 20), horses with small intestinal disease (n = 8), and healthy horses (n = 24). (3) Results: Horses with intestinal diseases had fewer species and a less diverse bacterial population than healthy horses. Lactic acid bacteria, Lachnospiraceae, and Lactobacillaceae were overgrown in horses with large intestinal colic. The Firmicutes to Bacteroidetes ratio (F/B), which is a relevant marker of gut dysbiosis, was 1.94, 2.37, and 1.74 for horses with large intestinal colic, small intestinal colic, and healthy horses, respectively. (4) Conclusions: The overgrowth of two lactic acid bacteria families, Lachnospiraceae and Lactobacillaceae, led to a decrease in hindgut pH that interfered with normal fermentation, which might cause large intestinal colic. The overgrowth of Streptococcus also led to a decrease in pH in the hindgut, which suppressed the proliferation of the methanogen and reduced methanogenesis in horses with small intestinal colic.
Collapse
Affiliation(s)
- Taemook Park
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (T.P.); (J.Y.); (A.K.)
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Heetae Cheong
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea;
| | - Jungho Yoon
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (T.P.); (J.Y.); (A.K.)
| | - Ahram Kim
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (T.P.); (J.Y.); (A.K.)
| | - Youngmin Yun
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
- Correspondence: (Y.Y.); (T.U.); Tel.: +82-64-754-3376 (Y.Y.); +82-64-754-3354 (T.U.)
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju 63243, Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
- Correspondence: (Y.Y.); (T.U.); Tel.: +82-64-754-3376 (Y.Y.); +82-64-754-3354 (T.U.)
| |
Collapse
|
26
|
Duarte PDC, Ribeiro RM, Machado ART, Faleiros RR, Pimenta LPS, Filho JDDS. Metabolic Profile Changes in Mangalarga Marchador Horses Subjected to A Hypercaloric Diet Evaluated by Proton NMR Spectroscopy. J Equine Vet Sci 2021; 103:103684. [PMID: 34281651 DOI: 10.1016/j.jevs.2021.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
The incidence of equine metabolic syndrome, a condition that results in endocrinopathic laminitis, is increasing worldwide. Although it is well known that the development of this syndrome depends on imbalances in energy metabolism and genetic traits, its pathophysiology remains unclear. Hydrogen nuclear magnetic resonance (1H NMR) is a powerful tool used to compare metabolic profiles and to discriminate metabolites in living beings. The aim was to apply this technology to detect blood biomarkers candidates in horses that were previously demonstrated to developed metabolic changes when subjected to induced obesity. Nine Mangalarga Marchador horses received a hypercaloric diet for 5 months and serum metabolomic analysis was performed before, during, and after the diet period. The 1H NMR results were subjected to multivariate analysis and NMR analysis allowed to identify six compounds (alanine, threonine, choline, α-glucose, β-glucose, and creatinine), and observe the increasing choline level over the assessment period in four animals. A hypercaloric diet altered the metabolic profile of horses, with an individual bias in the time at which these changes occurred. This study is the first to describe metabolomic compounds in Mangalarga Marchador horses subjected to a hypercaloric diet rich in non-structural carbohydrates.
Collapse
Affiliation(s)
- Patricia de Castro Duarte
- Equinova Research Group, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | - Rafael Resende Faleiros
- Equinova Research Group, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - José Dias de Souza Filho
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
27
|
Establishment and assessment of an amplicon sequencing method targeting the 16S-ITS-23S rRNA operon for analysis of the equine gut microbiome. Sci Rep 2021; 11:11884. [PMID: 34088956 PMCID: PMC8178347 DOI: 10.1038/s41598-021-91425-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
Microbial communities are commonly studied by using amplicon sequencing of part of the 16S rRNA gene. Sequencing of the full-length 16S rRNA gene can provide higher taxonomic resolution and accuracy. To obtain even higher taxonomic resolution, with as few false-positives as possible, we assessed a method using long amplicon sequencing targeting the rRNA operon combined with a CCMetagen pipeline. Taxonomic assignment had > 90% accuracy at the species level in a mock sample and at the family level in equine fecal samples, generating similar taxonomic composition as shotgun sequencing. The rRNA operon amplicon sequencing of equine fecal samples underestimated compositional percentages of bacterial strains containing unlinked rRNA genes by a fourth to a third, but unlinked rRNA genes had a limited effect on the overall results. The rRNA operon amplicon sequencing with the A519F + U2428R primer set was able to detect some kind of archaeal genomes such as Methanobacteriales and Methanomicrobiales, whereas full-length 16S rRNA with 27F + 1492R could not. Therefore, we conclude that amplicon sequencing targeting the rRNA operon captures more detailed variations of equine microbiota.
Collapse
|
28
|
Harris P, Shepherd M. What Would Be Good for All Veterinarians to Know About Equine Nutrition. Vet Clin North Am Equine Pract 2021; 37:1-20. [PMID: 33820603 DOI: 10.1016/j.cveq.2020.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nutrition and management have enabling and supporting roles to play in the health, welfare, and performance of equines. Poor or inappropriate nutrition may therefore impose limits on an animal's ability to perform and adversely affect health and welfare. Understanding the gastrointestinal tract from a nutrition perspective can help to reduce the risk of certain clinical problems. This article outlines key factors with respect to the equine digestive tract and discusses relevant aspects of ration formation. Forage is highlighted, because inappropriate forage provision is one of the key limitations in many horse diets.
Collapse
Affiliation(s)
- Patricia Harris
- Head of Equine Studies Group, WALTHAM Petcare Science Institute, Waltham-on-the-Wolds, Melton Mowbray, Leics LE14 4RT, UK.
| | - Megan Shepherd
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Phase II Duck Pond Drive, Virginia Tech Mail Code 0442, Blacksburg, VA 24061, USA
| |
Collapse
|
29
|
Effects of Pasture Grass, Silage, and Hay Diet on Equine Fecal Microbiota. Animals (Basel) 2021; 11:ani11051330. [PMID: 34066969 PMCID: PMC8148540 DOI: 10.3390/ani11051330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The intestinal microbial community in horses is very complex and interacts closely with diets. Apart from traditional forage diets, such as hay and pasture grass, silage is used to feed horses in China and other areas of the world for economic reasons or convenience of storage. Additionally, silage is also used for its convenience of harvesting and its nutrient components, including lactic acid and volatile fatty acids. In this study, we detected the characteristic composition of a fecal microbial community in horses that were fed silage with the use of a relatively new sequencing technique; we compared this result with that from horses that were fed hay and pasture grass. This study revealed some characteristic findings on the fecal microbial composition in horses that were given each of type of diet and showed significant differences between the groups. Our results provided novel data about the fecal microbial composition in horses on the silage diet. We hope that these could help balance the intestinal microbiota in horses that are mainly fed silage in combination with other types of forages in order to maintain intestinal health. Abstract Diet is an important factor affecting intestinal microbiota in horses. Fecal microbiota is commonly used as a substitute for studying hindgut microbiota when investigating the relationship between intestinal microbial changes and host health. So far, no study has compared the difference between the fecal microbiota found in horses that are fed pasture grass, silage, and hay. The present study aims to characterize the fecal microbiota in horses that were exclusively on one of the three forage diets, and to analyze the potential impact of these forages, especially silage, on horse intestinal health. There were 36 horses randomly assigned to each of the three groups; each group was fed only one type of forage for 8 weeks. High throughput sequencing was applied to analyze the bacterial taxa in fecal samples collected from the horses at the end of the feeding trial. The Lachnospiraceae family was statistically more abundant in horses fed with hay, while it was the least abundant in horses fed with silage. The Streptococcaceae spp., considered a core microbial component in equine intestinal microbiota, were present in significantly lower quantities in feces from horses that were fed pasture grass as compared to those from horses fed hay or silage. The novel data may help promote the balancing of horse intestinal microbiota and the maintenance of intestinal health in horses.
Collapse
|
30
|
Leng J, McNally S, Walton G, Swann J, Proudman C, Argo C, Emery S, La Ragione R, Eustace R. Hay vs haylage: Forage type influences the equine urinary metabonome and faecal microbiota. Equine Vet J 2021; 54:614-625. [PMID: 33900659 DOI: 10.1111/evj.13456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/22/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Gut microbial communities are increasingly being linked to diseases in animals and humans. Obesity and its associated diseases are a concern for horse owners and veterinarians, and there is a growing interest in the link among diet, the intestinal microbiota and metabolic disease. OBJECTIVES Assess the influence of long-term hay or haylage feeding on the microbiota and metabolomes of 20 Welsh mountain ponies. STUDY DESIGN Longitudinal study. METHODS Urine, faeces and blood were collected from 20 ponies on a monthly basis over a 13-month period. Urine and faeces were analysed using proton magnetic resonance (1 H NMR) spectroscopy and faecal bacterial DNA underwent 16S rRNA gene sequencing. RESULTS Faecal bacterial community profiles were observed to be different for the two groups, with discriminant analysis identifying 102 bacterial groups (or operational taxonomic units, OTUs) that differed in relative abundance in accordance with forage type. Urinary metabolic profiles of the hay- and haylage-fed ponies were significantly different during 12 of the 13 mo of the study. Notably, the urinary excretion of hippurate was greater in the hay-fed ponies for the duration of the study, while ethyl-glucoside excretion was higher in the haylage-fed ponies. MAIN LIMITATIONS The study was undertaken over a 13-month period and both groups of ponies had access to pasture during the summer months. CONCLUSIONS The data generated from this study suggest that the choice of forage may have implications for the intestinal microbiota and metabolism of ponies and, therefore, potentially their health status. Understanding the potential implication of feeding a particular type of forage will enable horse owners to make more informed choices with regard to feed, especially if their horse or pony is prone to weight gain.
Collapse
Affiliation(s)
- Joy Leng
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Susan McNally
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Gemma Walton
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Jonathan Swann
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Chris Proudman
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - Sue Emery
- The Laminitis Clinic, Chippenham, Wiltshire, UK
| | - Roberto La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | |
Collapse
|
31
|
The Fecal Bacterial Microbiota in Horses with Equine Recurrent Uveitis. Animals (Basel) 2021; 11:ani11030745. [PMID: 33803123 PMCID: PMC7998804 DOI: 10.3390/ani11030745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/17/2023] Open
Abstract
The objective of this study was to describe and compare the fecal bacterial microbiota of horses with equine recurrent uveitis (ERU) and healthy horses using next-generation sequencing techniques. Fecal samples were collected from 15 client-owned horses previously diagnosed with ERU on complete ophthalmic examination. For each fecal sample obtained from a horse with ERU, a sample was collected from an environmentally matched healthy control with no evidence of ocular disease. The Illumina MiSeq sequencer was used for high-throughput sequencing of the V4 region of the 16S rRNA gene. The relative abundance of predominant taxa, and alpha and beta diversity indices were calculated and compared between groups. The phyla Firmicutes, Bacteroidetes, Verrucomicrobia, and Proteobacteria predominated in both ERU and control horses, accounting for greater than 60% of sequences. Based on linear discriminant analysis effect size (LEfSe), no taxa were found to be enriched in either group. No significant differences were observed in alpha and beta diversity indices between groups (p > 0.05 for all tests). Equine recurrent uveitis is not associated with alteration of the gastrointestinal bacterial microbiota when compared with healthy controls.
Collapse
|
32
|
Slater R, Frau A, Hodgkinson J, Archer D, Probert C. A Comparison of the Colonic Microbiome and Volatile Organic Compound Metabolome of Anoplocephala perfoliata Infected and Non-Infected Horses: A Pilot Study. Animals (Basel) 2021; 11:ani11030755. [PMID: 33803473 PMCID: PMC7999024 DOI: 10.3390/ani11030755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary In horses, tapeworm infection is associated with specific forms of colic (abdominal pain) that can be life-threatening without surgical treatment. There is growing evidence that intestinal parasites interact with the gut bacteria, and the consequences of these interactions may influence the ability of the host to resist infection and parasite-associated disease. We aimed to compare the intestinal bacteria and the gases produced by metabolic processes in the gut between horses that had varying levels of tapeworms and those with no tapeworm present. Overall, the diversity of gut bacteria was similar in horses with and without tapeworms. There were some decreases in beneficial bacteria in horses with tapeworms, indicating a possible negative consequence of infection. Intestinal gases correlated with some bacteria indicating their functionality and use as potential markers of active bacteria. Our study validates further research investigating tapeworm and gut bacteria interactions in the horse. Abstract Anoplocephala perfoliata is a common equine tapeworm associated with an increased risk of colic (abdominal pain) in horses. Identification of parasite and intestinal microbiota interactions have consequences for understanding the mechanisms behind parasite-associated colic and potential new methods for parasite control. A. perfoliata was diagnosed by counting of worms in the caecum post-mortem. Bacterial DNA was extracted from colonic contents and sequenced targeting of the 16S rRNA gene (V4 region). The volatile organic compound (VOC) metabolome of colonic contents was characterised using gas chromatography mass spectrometry. Bacterial diversity (alpha and beta) was similar between tapeworm infected and non-infected controls. Some compositional differences were apparent with down-regulation of operational taxonomic units (OTUs) belonging to the symbiotic families of Ruminococcaceae and Lachnospiraceae in the tapeworm-infected group. Overall tapeworm burden accounted for 7–8% of variation in the VOC profile (permutational multivariate analysis of variance). Integration of bacterial OTUs and VOCs demonstrated moderate to strong correlations indicating the potential of VOCs as markers for bacterial OTUs in equine colonic contents. This study has shown potential differences in the intestinal microbiome and metabolome of A. perfoliata infected and non-infected horses. This pilot study did not control for extrinsic factors including diet, disease history and stage of infection.
Collapse
Affiliation(s)
- Rachael Slater
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3GE, UK; (A.F.); (C.P.)
- Correspondence:
| | - Alessandra Frau
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3GE, UK; (A.F.); (C.P.)
| | - Jane Hodgkinson
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Leahurst Campus, Chester High Road, Wirral CH64 7TE, UK; (J.H.); (D.A.)
| | - Debra Archer
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Leahurst Campus, Chester High Road, Wirral CH64 7TE, UK; (J.H.); (D.A.)
| | - Chris Probert
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3GE, UK; (A.F.); (C.P.)
| |
Collapse
|
33
|
Reed KJ, Kunz IGZ, Scare JA, Nielsen MK, Turk PJ, Coleman RJ, Coleman SJ. The pelvic flexure separates distinct microbial communities in the equine hindgut. Sci Rep 2021; 11:4332. [PMID: 33619300 PMCID: PMC7900177 DOI: 10.1038/s41598-021-83783-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
As hindgut fermenters, horses are especially dependent on the microbiota residing in their cecum and large intestines. Interactions between these microbial populations and the horse are critical for maintaining gut homeostasis, which supports proper digestion. The current project was motivated to determine if any features of the fecal microbiota are informative of the microbial communities from the cecum, ventral colon, or dorsal colon. Digesta from the cecum, ventral colon, dorsal colon and feces were collected from 6 yearling miniature horses. Microbial DNA was isolated and the microbiota from each sample was characterized by profiling the V4 region of the 16S rRNA. Principal coordinate analysis of the beta diversity results revealed significant (p = 0.0001; F = 5.2393) similarities between the microbial populations from cecal and ventral colon and the dorsal colon and fecal samples, however, there was little overlap between the proximal and distal ends of the hindgut. These distinct population structures observed in our results coincide with the pelvic flexure, which itself separates intestinal compartments with distinct roles in digestive physiology. An indicator species analysis confirmed the population differences, supported by the identification of several microbial families characteristic of the compartments upstream of the pelvic flexure that were not represented following it. Our data suggest that the fecal microbiota is not informative of the proximal hindgut but can provide insight into communities of the distal compartments. Further, our results suggest that the pelvic flexure might be an important anatomical landmark relative to the microbial communities in the equine large intestine.
Collapse
Affiliation(s)
- Kailee J. Reed
- grid.47894.360000 0004 1936 8083Animal Sciences, Colorado State University, Fort Collins, CO 80521 USA ,grid.47894.360000 0004 1936 8083Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80521 USA
| | - Isabelle G. Z. Kunz
- grid.47894.360000 0004 1936 8083Animal Sciences, Colorado State University, Fort Collins, CO 80521 USA
| | - Jessica A. Scare
- grid.266539.d0000 0004 1936 8438M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546 USA
| | - Martin K. Nielsen
- grid.266539.d0000 0004 1936 8438M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546 USA
| | - Philip J. Turk
- grid.47894.360000 0004 1936 8083Animal Sciences, Colorado State University, Fort Collins, CO 80521 USA ,grid.427669.80000 0004 0387 0597Atrium Health, Charlotte, NC 28203 USA
| | - Robert J. Coleman
- grid.266539.d0000 0004 1936 8438Animal and Food Sciences, University of Kentucky, Lexington, KY 40546 USA
| | - Stephen J. Coleman
- grid.47894.360000 0004 1936 8083Animal Sciences, Colorado State University, Fort Collins, CO 80521 USA ,grid.47894.360000 0004 1936 8083Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80521 USA
| |
Collapse
|
34
|
Wimmer-Scherr C, Taminiau B, Renaud B, van Loon G, Palmers K, Votion D, Amory H, Daube G, Cesarini C. Comparison of Fecal Microbiota of Horses Suffering from Atypical Myopathy and Healthy Co-Grazers. Animals (Basel) 2021; 11:ani11020506. [PMID: 33672034 PMCID: PMC7919468 DOI: 10.3390/ani11020506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Equine atypical myopathy (AM) is caused by hypoglycin A (HGA) and methylenecyclopropylglycine (MCPG) intoxication resulting from the ingestion of seeds or seedlings of some Acer tree species. Interestingly, not all horses pasturing in the same toxic environment develop signs of the disease. In other species, it has been shown that the intestinal microbiota has an impact on digestion, metabolism, immune stimulation and protection from disease. The objective of this study was to characterize and compare fecal microbiota of horses suffering from AM and healthy co-grazers. Furthermore, potential differences in fecal microbiota regarding the outcome of diseased animals were assessed. This prospective observational study included 59 horses with AM (29 survivors and 30 non-survivors) referred to three Belgian equine hospitals and 26 clinically healthy co-grazers simultaneously sharing contaminated pastures during spring and autumn outbreak periods. Fresh fecal samples (rectal or within 30 min of defecation) were obtained from all horses and bacterial taxonomy profiling obtained by 16S amplicon sequencing was used to identify differentially distributed bacterial taxa between AM-affected horses and healthy co-grazers. Fecal microbial diversity and evenness were significantly (p < 0.001) higher in AM-affected horses as compared with their non-affected co-grazers. The relative abundance of families Ruminococcaceae, Christensenellaceae and Akkermansiaceae were higher (p ≤ 0.001) whereas those of the Lachnospiraceae (p = 0.0053), Bacteroidales (p < 0.0001) and Clostridiales (p = 0.0402) were lower in horses with AM, especially in those with a poor prognosis. While significant shifts were observed, it is still unclear whether they result from the disease or might be involved in the onset of disease pathogenesis.
Collapse
Affiliation(s)
- Christina Wimmer-Scherr
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, Sart Tilman, University of Liège, 4000 Liège, Belgium; (C.W.-S.); (H.A.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Sart Tilman, University of Liège, 4000 Liège, Belgium; (B.T.); (B.R.); (D.V.); (G.D.)
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Sart Tilman, University of Liège, 4000 Liège, Belgium; (B.T.); (B.R.); (D.V.); (G.D.)
- Department of Food Sciences–Microbiology, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, Bât. B43b, 4000 Liège, Belgium
| | - Benoît Renaud
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Sart Tilman, University of Liège, 4000 Liège, Belgium; (B.T.); (B.R.); (D.V.); (G.D.)
- Department of Functional Sciences, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Bât. B41, Sart Tilman, University of Liège, 4000 Liège, Belgium
| | - Gunther van Loon
- Large Animal Internal Medicine, Gent University, 9820 Gent, Belgium;
| | | | - Dominique Votion
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Sart Tilman, University of Liège, 4000 Liège, Belgium; (B.T.); (B.R.); (D.V.); (G.D.)
| | - Hélène Amory
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, Sart Tilman, University of Liège, 4000 Liège, Belgium; (C.W.-S.); (H.A.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Sart Tilman, University of Liège, 4000 Liège, Belgium; (B.T.); (B.R.); (D.V.); (G.D.)
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Sart Tilman, University of Liège, 4000 Liège, Belgium; (B.T.); (B.R.); (D.V.); (G.D.)
- Department of Food Sciences–Microbiology, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, Bât. B43b, 4000 Liège, Belgium
| | - Carla Cesarini
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, Sart Tilman, University of Liège, 4000 Liège, Belgium; (C.W.-S.); (H.A.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Sart Tilman, University of Liège, 4000 Liège, Belgium; (B.T.); (B.R.); (D.V.); (G.D.)
- Correspondence:
| |
Collapse
|
35
|
Sorensen RJ, Drouillard JS, Douthit TL, Ran Q, Marthaler DG, Kang Q, Vahl CI, Lattimer JM. Effect of hay type on cecal and fecal microbiome and fermentation parameters in horses. J Anim Sci 2021; 99:skaa407. [PMID: 33515482 PMCID: PMC7846146 DOI: 10.1093/jas/skaa407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/23/2020] [Indexed: 11/12/2022] Open
Abstract
The effect of hay type on the microbiome of the equine gastrointestinal tract is relatively unexplored. Our objective was to characterize the cecal and fecal microbiome of mature horses consuming alfalfa or Smooth Bromegrass (brome) hay. Six cecally cannulated horses were used in a split-plot design run as a crossover in two periods. The whole plot treatment was ad libitum access to brome or alfalfa hay fed over two 21-d acclimation periods with subplots of sampling location (cecum and rectum) and sampling hour. Each acclimation period was followed by a 24-h collection period where cecal and fecal samples were collected every 3 h for analysis of pH and volatile fatty acids (VFA). Fecal and cecal samples were pooled and sent to a commercial lab (MR DNA, Shallowater, TX) for the amplification of the V4 region of the 16S rRNA gene and sequenced using Illumina HiSeq. The main effects of hay on VFA, pH, and taxonomic abundances were analyzed using the MIXED procedure of SAS 9.4 with fixed effects of hay, hour, location, period, and all possible interactions and random effect of horse. Alpha and beta diversities were analyzed using the R Dame package. Horses fed alfalfa had greater fecal than cecal pH (P ≤ 0.05), whereas horses fed brome had greater cecal than fecal pH (P ≤ 0.05). Regardless of hay type, total VFA concentrations were greater (P ≤ 0.05) in the cecum than in feces, and alfalfa resulted in greater (P ≤ 0.05) VFA concentrations than brome in both sampling locations. Alpha diversity was greater (P ≤ 0.05) in fecal compared with cecal samples. Microbial community structure within each sampling location and hay type differed from one another (P ≤ 0.05). Bacteroidetes were greater (P ≤ 0.05) in the cecum compared with the rectum, regardless of hay type. Firmicutes and Firmicutes:Bacteroidetes were greater (P ≤ 0.05) in the feces compared with cecal samples of alfalfa-fed horses. In all, fermentation parameters and bacterial abundances were impacted by hay type and sampling location in the hindgut.
Collapse
Affiliation(s)
- Rachel J Sorensen
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - James S Drouillard
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Teresa L Douthit
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Qinghong Ran
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Douglas G Marthaler
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Qing Kang
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS
| | - Christopher I Vahl
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS
| | - James M Lattimer
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| |
Collapse
|
36
|
No Worm Is an Island; The Influence of Commensal Gut Microbiota on Cyathostomin Infections. Animals (Basel) 2020; 10:ani10122309. [PMID: 33291496 PMCID: PMC7762139 DOI: 10.3390/ani10122309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary There is increasing evidence for the importance of gut bacteria in animal health and disease. This is particularly relevant for gastrointestinal infections, such as parasitic worms, which share a niche with gut bacteria. Parasitic worms are highly prevalent in domestic horses and are a significant cause of disease in this population. This commentary explores the complex relationships between the most common parasitic worm in horses (cyathostomins) and gut bacteria, based on recent studies in horses and other species. We propose novel theories and avenues for research that harness these relationships and have the potential to improve control of parasitic worms, and overall equine health, in the future. Abstract The importance of the gut microbiome for host health has been the subject of intense research over the last decade. In particular, there is overwhelming evidence for the influence of resident microbiota on gut mucosal and systemic immunity; with significant implications for the outcome of gastrointestinal (GI) infections, such as parasitic helminths. The horse is a species that relies heavily on its gut microbiota for GI and overall health, and disturbances in this complex ecosystem are often associated with life-threatening disease. In turn, nearly all horses harbour parasitic helminths from a young age, the most prevalent of which are the small strongyles, or cyathostomins. Research describing the relationship between gut microbiota and cyathostomin infection is in its infancy, however, to date there is evidence of meaningful interactions between these two groups of organisms which not only influence the outcome of cyathostomin infection but have long term consequences for equine host health. Here, we describe these interactions alongside supportive evidence from other species and suggest novel theories and avenues for research which have the potential to revolutionize our approach to cyathostomin prevention and control in the future.
Collapse
|
37
|
Garber A, Hastie P, McGuinness D, Malarange P, Murray JA. Abrupt dietary changes between grass and hay alter faecal microbiota of ponies. PLoS One 2020; 15:e0237869. [PMID: 32810164 PMCID: PMC7446798 DOI: 10.1371/journal.pone.0237869] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Abrupt dietary changes, as can be common when managing horses, may lead to compositional changes in gut microbiota, which may result in digestive or metabolic disturbances. The aim of this study was to describe and compare the faecal microbiota of ponies abruptly changed from pasture grazing ad libitum to a restricted hay-only diet and vice versa. The experiment consisted of two, 14-day periods. Faecal samples were collected on day 0 and days 1–3,7,14 after abrupt dietary change from grass to hay and from hay to grass. Microbial populations were characterised by sequencing the V3-V4 region of the 16S rRNA gene using the Illumina MiSeq platform, 4,777,315 sequences were obtained from 6 ponies. Further analyses were performed to characterise the microbiome as well as the relative abundance of microbiota present. The results of this study suggest that the faecal microbiota of mature ponies is highly diverse, and the relative abundances of individual taxa change in response to abrupt changes in diet. The faecal microbiota of ponies maintained on a restricted amount of hay-only was similar to that of the ponies fed solely grass ad libitum in terms of richness and phylogenetic diversity; however, it differed significantly in terms of the relative abundances at distinct taxonomic levels. Class Bacilli, order Lactobacillales, family Lactobacillaceae, and genus Lactobacillus were presented in increased relative abundance on day 2 after an abrupt dietary change from hay to grass compared to all other experimental days (P <0.05). Abrupt changes from grass to hay and vice versa affect the faecal microbial community structure; moreover, the order of dietary change appears to have a profound effect in the first few days following the transition. An abrupt dietary change from hay to grass may represent a higher risk for gut disturbances compared to abrupt change from grass to hay.
Collapse
Affiliation(s)
- Anna Garber
- AB Vista, Marlborough, United Kingdom
- * E-mail:
| | - Peter Hastie
- School of Veterinary Medicine, University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - David McGuinness
- University of Glasgow, Glasgow Polyomics, Glasgow, United Kingdom
| | - Pauline Malarange
- EPLEFPA des Combrailles, Saint Gervais D’Auvergne, Puy-de-Dôme, France
| | - Jo-Anne Murray
- School of Veterinary Medicine, University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| |
Collapse
|
38
|
Luminal and Mucosal Microbiota of the Cecum and Large Colon of Healthy and Diarrheic Horses. Animals (Basel) 2020; 10:ani10081403. [PMID: 32806591 PMCID: PMC7460328 DOI: 10.3390/ani10081403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Acute diarrhea (colitis) is a major problem in adult horses and the role of the intestinal bacteria (microbiota) is still poorly understood in this species. The aim of this study was to compare the mucosal and luminal content microbiota of the cecum and colon of healthy and diarrheic horses. We concluded that microbial dysbiosis (changes in the normal microbiota composition) occurs in horses with colitis at different levels of the intestinal tract and microbiota composition is different between the mucosa and luminal content of diarrheic horses. Changes in species associated with dysbiosis could be used in the future for disease diagnosis, prognosis and treatment of equine colitis. Abstract The aim of this study was to compare the mucosal and luminal content microbiota of the cecum and colon of healthy and diarrheic horses. Marked differences in the richness and in the community composition between the mucosal and luminal microbiota of the cecum and large colon of horses with colitis were observed. Microbial dysbiosis occurs in horses with colitis at different levels of the intestinal tract, and microbiota composition is different between the mucosa and luminal content of diarrheic horses. The changes in some key taxa associated with dysbiosis in the equine intestinal microbiota, such as Escherichia, Fusobacterium and Lactobacillus, deserve further inquiry in order to determine their utility for disease diagnosis and treatment.
Collapse
|
39
|
Abstract
There is a need to develop feeding strategies to prevent the adverse effect of concentrate feeding in high-performance horses fed energy-dense diets aiming to maintain their health and welfare. The objective of this study is to determine the effect of a VistaEQ product containing 4% live yeast Saccharomyces cerevisiae (S. cerevisiae), with activity 5 × 108 colony-forming unit/g and fed 2 g/pony per day, on faecal microbial populations when supplemented with high-starch and high-fibre diets using Illumina next generation sequencing of the V3-V4 region of the 16S ribosomal RNA gene. The four treatments were allocated to eight mature Welsh section A pony geldings enrolled in a 4-period × 8 animal crossover design. Each 19-day experimental period consisted of an 18-day adaptation phase and a single collection day, followed by a 7-day wash out period. After DNA extraction from faeces and library preparation, α-diversity and linear discriminant analysis effect size were performed using 16S metagenomics pipeline in Quantitative Insights Into Microbial Ecology (QIIME™) and Galaxy/Hutlab. Differences between the groups were considered significant when linear discriminant analysis score was >2 corresponding to P < 0.05. The present study showed that S. cerevisiae used was able to induce positive changes in the equine microbiota when supplemented to a high-fibre diet: it increased relative abundance (RA) of Lachnospiraceae and Dehalobacteriaceae family members associated with a healthy core microbiome. Yeast supplementation also increased the RA of fibrolytic bacteria (Ruminococcus) when fed with a high-fibre diet and reduced the RA of lactate producing bacteria (Streptococcus) when a high-starch diet was fed. In addition, yeast increased the RA of acetic, succinic acid producing bacterial family (Succinivibrionaceae) and butyrate producing bacterial genus (Roseburia) when fed with high-starch and high-fibre diets, respectively. VistaEQ supplementation to equine diets can be potentially used to prevent acidosis and increase fibre digestibility. It may help to meet the energy requirements of performance horses while maintaining gut health.
Collapse
|
40
|
Arnold CE, Isaiah A, Pilla R, Lidbury J, Coverdale JS, Callaway TR, Lawhon SD, Steiner J, Suchodolski JS. The cecal and fecal microbiomes and metabolomes of horses before and after metronidazole administration. PLoS One 2020; 15:e0232905. [PMID: 32442163 PMCID: PMC7244109 DOI: 10.1371/journal.pone.0232905] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/23/2020] [Indexed: 12/30/2022] Open
Abstract
Antibiotic administration can be a cause of gastrointestinal disease in horses, creating a disruption in the normal population and function of bacteria found in the hindgut. The objective of this study was to describe the changes in the cecal and fecal microbiomes and metabolomes of clinically healthy horses before and after metronidazole administration. Metronidazole (15 mg/kg BID PO) was given to five horses with cecal cannulas. The study was suspended on Day 3 due to adverse gastrointestinal effects. Cecal and fecal samples were obtained before (Days minus52, m28, m14, and 0) and after (Days 7, 14, 28, and 52) metronidazole administration. DNA was extracted from the cecal and fecal samples, and 16S rRNA genes were sequenced. Richness and evenness indices were significantly decreased by metronidazole administration in both cecal and fecal samples, but the overall composition was only significantly changed in fecal samples on Day 3 (ANOSIM, p = 0.008). The most dominant phyla were Bacteroidetes and Firmicutes in all groups examined. In fecal samples, significant changes of the phyla Actinobacteria, Spirochaetes, Lentisphaerae, and Verrucomicrobia occurred on Day 3, which correlated with clinical signs of gastrointestinal disease. The metabolome was characterized by mass spectrometry-based methods and only named metabolites were included in the analysis. Fecal, but not cecal, metabolites were significantly affected by metronidazole. The fecal metabolites affected represent diverse metabolic pathways, such as the metabolism of amino acids, carbohydrates, lipids, nucleic acids and cofactors and vitamins. Metronidazole administration has potential to cause adverse effects in horses, alters the bacterial composition of the horse’s cecal and fecal content, and the metabolome of fecal samples.
Collapse
Affiliation(s)
- Carolyn E. Arnold
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Anitha Isaiah
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jonathan Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Josie S. Coverdale
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Joerg Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
41
|
Mach N, Ruet A, Clark A, Bars-Cortina D, Ramayo-Caldas Y, Crisci E, Pennarun S, Dhorne-Pollet S, Foury A, Moisan MP, Lansade L. Priming for welfare: gut microbiota is associated with equitation conditions and behavior in horse athletes. Sci Rep 2020; 10:8311. [PMID: 32433513 PMCID: PMC7239938 DOI: 10.1038/s41598-020-65444-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
We simultaneously measured the fecal microbiota and multiple environmental and host-related variables in a cohort of 185 healthy horses reared in similar conditions during a period of eight months. The pattern of rare bacteria varied from host to host and was largely different between two time points. Among a suite of variables examined, equitation factors were highly associated with the gut microbiota variability, evoking a relationship between gut microbiota and high levels of physical and mental stressors. Behavioral indicators that pointed toward a compromised welfare state (e.g. stereotypies, hypervigilance and aggressiveness) were also associated with the gut microbiota, reinforcing the notion for the existence of the microbiota-gut-brain axis. These observations were consistent with the microbiability of behaviour traits (> 15%), illustrating the importance of gut microbial composition to animal behaviour. As more elite athletes suffer from stress, targeting the microbiota offers a new opportunity to investigate the bidirectional interactions within the brain gut microbiota axis.
Collapse
Affiliation(s)
- Núria Mach
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Alice Ruet
- PRC, INRAE, CNRS, IFCE, University of Tours, 37380, Nouzilly, France
| | - Allison Clark
- Health Science Department, Open University of Catalonia, 08018, Barcelona, Spain
| | | | - Yuliaxis Ramayo-Caldas
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Elisa Crisci
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - Samuel Pennarun
- US UMR 1426, INRAE, Genomic platform, 31326, Castanet-Tolosan, France
| | - Sophie Dhorne-Pollet
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Aline Foury
- University of Bordeaux, INRAE, NutriNeuro UMR 1286, 33076, Bordeaux, France
| | | | - Léa Lansade
- PRC, INRAE, CNRS, IFCE, University of Tours, 37380, Nouzilly, France
| |
Collapse
|
42
|
Morrison PK, Newbold CJ, Jones E, Worgan HJ, Grove-White DH, Dugdale AH, Barfoot C, Harris PA, Argo CM. Effect of age and the individual on the gastrointestinal bacteriome of ponies fed a high-starch diet. PLoS One 2020; 15:e0232689. [PMID: 32384105 PMCID: PMC7209120 DOI: 10.1371/journal.pone.0232689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/19/2020] [Indexed: 11/18/2022] Open
Abstract
Bacteria residing in the gastrointestinal tract of mammals are crucial for the digestion of dietary nutrients. Bacterial community composition is modified by age and diet in other species. Although horses are adapted to consuming fibre-based diets, high-energy, often high-starch containing feeds are increasingly used. The current study assessed the impact of age on the faecal bacteriome of ponies transitioning from a hay-based diet to a high-starch diet. Over two years, 23 Welsh Section A pony mares were evaluated (Controls, 5-15 years, n = 6/year, 12 in total; Aged, ≥19 years, n = 6 Year 1; n = 5 Year 2, 11 in total). Across the same 30-week (May to November) period in each year, animals were randomly assigned to a 5-week period of study and were individually fed the same hay to maintenance (2% body mass as daily dry matter intake) for 4-weeks. During the final week, 2g starch per kg body mass (micronized steam-flaked barley) was incorporated into the diet (3-day transition and 5 days at maximum). Faecal samples were collected for 11 days (final 3 days hay and 8 days hay + barley feeding). Bacterial communities were determined using Ion Torrent Sequencing of amplified V1-V2 hypervariable regions of 16S rRNA. Age had a minimal effect on the bacteriome response to diet. The dietary transition increased Candidatus Saccharibacteria and Firmicutes phyla abundance and reduced Fibrobactres abundance. At the genera level, Streptococcus abundance was increased but not consistently across individual animals. Bacterial diversity was reduced during dietary transition in Streptococcus 'responders'. Faecal pH and VFA concentrations were modified by diet but considerable inter-individual variation was present. The current study describes compositional changes in the faecal bacteriome associated with the transition from a fibre-based to a high-starch diet in ponies and emphasises the individual nature of dietary responses, which may reflect functional differences in the bacterial populations present in the hindgut.
Collapse
Affiliation(s)
| | | | - Eleanor Jones
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, United Kingdom
| | - Hilary J. Worgan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, United Kingdom
| | - Dai H. Grove-White
- Faculty of Health and Life Sciences, University of Liverpool, Neston, Wirral, England, United Kingdom
| | - Alexandra H. Dugdale
- ChesterGates Veterinary Specialists CVS (UK) Ltd., Chester, England, United Kingdom
| | - Clare Barfoot
- MARS Horsecare UK Ltd, Buckinghamshire, England, United Kingdom
| | - Patricia A. Harris
- WALTHAM Petcare Science Institute, Waltham-on-the-Wolds, Leicestershire, England, United Kingdom
| | | |
Collapse
|
43
|
Abstract
The rumen contains a great diversity of prokaryotic and eukaryotic microorganisms that allow the ruminant to utilize ligno-cellulose material and to convert non-protein nitrogen into microbial protein to obtain energy and amino acids. However, rumen fermentation also has potential deleterious consequences associated with the emissions of greenhouse gases, excessive nitrogen excreted in manure and may also adversely influence the nutritional value of ruminant products. While several strategies for optimizing the energy and nitrogen use by ruminants have been suggested, a better understanding of the key microorganisms involved and their activities is essential to manipulate rumen processes successfully. Diet is the most obvious factor influencing the rumen microbiome and fermentation. Among dietary interventions, the ban of antimicrobial growth promoters in animal production systems has led to an increasing interest in the use of plant extracts to manipulate the rumen. Plant extracts (e.g. saponins, polyphenol compounds, essential oils) have shown potential to decrease methane emissions and improve the efficiency of nitrogen utilization; however, there are limitations such as inconsistency, transient and adverse effects for their use as feed additives for ruminants. It has been proved that the host animal may also influence the rumen microbial population both as a heritable trait and through the effect of early-life nutrition on microbial population structure and function in adult ruminants. Recent developments have allowed phylogenetic information to be upscaled to metabolic information; however, research effort on cultivation of microorganisms for an in-depth study and characterization is needed. The introduction and integration of metagenomic, transcriptomic, proteomic and metabolomic techniques is offering the greatest potential of reaching a truly systems-level understanding of the rumen; studies have been focused on the prokaryotic population and a broader approach needs to be considered.
Collapse
|
44
|
Rojas CA, Holekamp KE, Winters AD, Theis KR. Body site-specific microbiota reflect sex and age-class among wild spotted hyenas. FEMS Microbiol Ecol 2020; 96:5700710. [PMID: 31926016 DOI: 10.1093/femsec/fiaa007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Host-associated microbial communities, henceforth 'microbiota', can affect the physiology and behavior of their hosts. In mammals, host ecological, social and environmental variables are associated with variation in microbial communities. Within individuals in a given mammalian species, the microbiota also partitions by body site. Here, we build on this work and sequence the bacterial 16S rRNA gene to profile the microbiota at six distinct body sites (ear, nasal and oral cavities, prepuce, rectum and anal scent gland) in a population of wild spotted hyenas (Crocuta crocuta), which are highly social, large African carnivores. We inquired whether microbiota at these body sites vary with host sex or social rank among juvenile hyenas, and whether they differ between juvenile females and adult females. We found that the scent gland microbiota differed between juvenile males and juvenile females, whereas the prepuce and rectal microbiota differed between adult females and juvenile females. Social rank, however, was not a significant predictor of microbiota profiles. Additionally, the microbiota varied considerably among the six sampled body sites and exhibited strong specificity among individual hyenas. Thus, our findings suggest that site-specific niche selection is a primary driver of microbiota structure in mammals, but endogenous host factors may also be influential.
Collapse
Affiliation(s)
- Connie A Rojas
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, 48201, USA
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, 48201, USA
| |
Collapse
|
45
|
Fitzgerald DM, Spence RJ, Stewart ZK, Prentis PJ, Sillence MN, de Laat MA. The effect of diet change and insulin dysregulation on the faecal microbiome of ponies. J Exp Biol 2020; 223:jeb219154. [PMID: 32098884 DOI: 10.1242/jeb.219154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022]
Abstract
The equine microbiome can change in response to dietary alteration and may play a role in insulin dysregulation. The aim of this study was to determine the effect of adding pasture to a hay diet on the faecal bacterial microbiome of both healthy and insulin-dysregulated ponies. Faecal samples were collected from 16 ponies before and after dietary change to enable bacterial 16S rRNA sequencing of the V3-V4 region. The dominant phyla in all samples were the Firmicutes and Bacteroidetes. The evenness of the bacterial populations decreased after grazing pasture, and when a pony was moderately insulin dysregulated (P=0.001). Evenness scores negatively correlated with post-prandial glucagon-like peptide-1 concentration after a hay-only diet (r²=-0.7, P=0.001). A change in diet explained 3% of faecal microbiome variability. We conclude that metabolically healthy ponies have greater microbial stability when challenged with a subtle dietary change, compared with moderately insulin-dysregulated ponies.
Collapse
Affiliation(s)
- Danielle M Fitzgerald
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Robert J Spence
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Zachary K Stewart
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Peter J Prentis
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Martin N Sillence
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Melody A de Laat
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
46
|
Xu L, Surathu A, Raplee I, Chockalingam A, Stewart S, Walker L, Sacks L, Patel V, Li Z, Rouse R. The effect of antibiotics on the gut microbiome: a metagenomics analysis of microbial shift and gut antibiotic resistance in antibiotic treated mice. BMC Genomics 2020; 21:263. [PMID: 32228448 PMCID: PMC7106814 DOI: 10.1186/s12864-020-6665-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/10/2020] [Indexed: 02/08/2023] Open
Abstract
Background Emergence of antibiotic resistance is a global public health concern. The relationships between antibiotic use, the gut community composition, normal physiology and metabolism, and individual and public health are still being defined. Shifts in composition of bacteria, antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) after antibiotic treatment are not well-understood. Methods This project used next-generation sequencing, custom-built metagenomics pipeline and differential abundance analysis to study the effect of antibiotic monotherapy on resistome and taxonomic composition in the gut of Balb/c mice infected with E. coli via transurethral catheterization to investigate the evolution and emergence of antibiotic resistance. Results There is a longitudinal decrease of gut microbiota diversity after antibiotic treatment. Various ARGs are enriched within the gut microbiota despite an overall reduction of the diversity and total amount of bacteria after antibiotic treatment. Sometimes treatment with a specific class of antibiotics selected for ARGs that resist antibiotics of a completely different class (e.g. treatment of ciprofloxacin or fosfomycin selected for cepA that resists ampicillin). Relative abundance of some MGEs increased substantially after antibiotic treatment (e.g. transposases in the ciprofloxacin group). Conclusions Antibiotic treatment caused a remarkable reduction in diversity of gut bacterial microbiota but enrichment of certain types of ARGs and MGEs. These results demonstrate an emergence of cross-resistance as well as a profound change in the gut resistome following oral treatment of antibiotics.
Collapse
Affiliation(s)
- Lei Xu
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Anil Surathu
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Isaac Raplee
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Ashok Chockalingam
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Sharron Stewart
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Lacey Walker
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Leonard Sacks
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Medical Policy, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Vikram Patel
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Zhihua Li
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Rodney Rouse
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|
47
|
Edwards JE, Schennink A, Burden F, Long S, van Doorn DA, Pellikaan WF, Dijkstra J, Saccenti E, Smidt H. Domesticated equine species and their derived hybrids differ in their fecal microbiota. Anim Microbiome 2020; 2:8. [PMID: 33499942 PMCID: PMC7807894 DOI: 10.1186/s42523-020-00027-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/02/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Compared to horses and ponies, donkeys have increased degradation of dietary fiber. The longer total mean retention time of feed in the donkey gut has been proposed to be the basis of this, because of the increased time available for feed to be acted upon by enzymes and the gut microbiota. However, differences in terms of microbial concentrations and/or community composition in the hindgut may also underpin the increased degradation of fiber in donkeys. Therefore, a study was conducted to assess if differences existed between the fecal microbiota of pony, donkey and hybrids derived from them (i.e. pony × donkey) when fed the same forage diet. RESULTS Fecal community composition of prokaryotes and anaerobic fungi significantly differed between equine types. The relative abundance of two bacterial genera was significantly higher in donkey compared to both pony and pony x donkey: Lachnoclostridium 10 and 'probable genus 10' from the Lachnospiraceae family. The relative abundance of Piromyces was significantly lower in donkey compared to pony × donkey, with pony not significantly differing from either of the other equine types. In contrast, the uncultivated genus SK3 was only found in donkey (4 of the 8 animals). The number of anaerobic fungal OTUs was also significantly higher in donkey than in the other two equine types, with no significant differences found between pony and pony × donkey. Equine types did not significantly differ with respect to prokaryotic alpha diversity, fecal dry matter content or fecal concentrations of bacteria, archaea and anaerobic fungi. CONCLUSIONS Donkey fecal microbiota differed from that of both pony and pony × donkey. These differences related to a higher relative abundance and diversity of taxa with known, or speculated, roles in plant material degradation. These findings are consistent with the previously reported increased fiber degradation in donkeys compared to ponies, and suggest that the hindgut microbiota plays a role. This offers novel opportunities for pony and pony × donkey to extract more energy from dietary fiber via microbial mediated strategies. This could potentially decrease the need for energy dense feeds which are a risk factor for gut-mediated disease.
Collapse
Affiliation(s)
- J. E. Edwards
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, Netherlands
| | - A. Schennink
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, Netherlands
- Present address: Micreos Human Health B.V, Bilthoven, Netherlands
| | - F. Burden
- The Donkey Sanctuary, Sidmouth, Devon EX10 ONU UK
| | - S. Long
- The Donkey Sanctuary, Sidmouth, Devon EX10 ONU UK
| | - D. A. van Doorn
- Division of Nutrition, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, Netherlands
- Department of Equine Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, Netherlands
| | - W. F. Pellikaan
- Animal Nutrition Group, Wageningen University & Research, 6708 WD Wageningen, Netherlands
| | - J. Dijkstra
- Animal Nutrition Group, Wageningen University & Research, 6708 WD Wageningen, Netherlands
| | - E. Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - H. Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, Netherlands
| |
Collapse
|
48
|
Su S, Zhao Y, Liu Z, Liu G, Du M, Wu J, Bai D, Li B, Bou G, Zhang X, Dugarjaviin M. Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments of Mongolian horses. Microbiologyopen 2020; 9:1085-1101. [PMID: 32153142 PMCID: PMC7294312 DOI: 10.1002/mbo3.1020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota plays an important role in the health and metabolism of the host. Next‐generation sequencing technology has enabled the characterization of the gut microbiota of several animal species. We analyzed the intestinal microbiota in six different parts of the gastrointestinal tracts (GITs) of five Mongolian horses by sequencing the 16S rRNA gene V3‐V4 hypervariable region. All horses were kept in the natural habitat of the Inner Mongolia grassland. Significant differences were observed among the microbiota compositions of the distinct GIT regions. In addition, while the microbial community structures of the small and large intestine were significantly different, those of the cecum and colon were similar. In the foregut, Firmicutes (65%) and Proteobacteria (23%) were the most abundant, while Firmicutes (45%) and Bacteroidetes (42%) were the most common in the hindgut. At the level of family, Ruminococcaceae (p = .203), Lachnospiraceae (p = .157), Rikenellaceae (p = .122), and Prevotellaceae (p = .068) were predominant in the hindgut, while the relative abundance of the Akkermansia genus (5.7%, p = .039) was higher in the ventral colon. In terms of the putative functions, the ratio of microbial abundance in the different parts of the GIT was similar, the result can help characterize the gut microbial structure of different animals.
Collapse
Affiliation(s)
- Shaofeng Su
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China.,Biotechnology Research Centre, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yiping Zhao
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Zongzheng Liu
- Animal Husbandry and Veterinary Research Institute of Qingdao, Qingdao, China
| | - Guiqin Liu
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China.,Agricultural College, Liaocheng University, Liaocheng, China
| | - Ming Du
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Wu
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongyi Bai
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Bei Li
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Gerelchimeg Bou
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Xinzhuang Zhang
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Manglai Dugarjaviin
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
49
|
Edwards JE, Shetty SA, van den Berg P, Burden F, van Doorn DA, Pellikaan WF, Dijkstra J, Smidt H. Multi-kingdom characterization of the core equine fecal microbiota based on multiple equine (sub)species. Anim Microbiome 2020; 2:6. [PMID: 33499982 PMCID: PMC7807809 DOI: 10.1186/s42523-020-0023-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Equine gut microbiology studies to date have primarily focused on horses and ponies, which represent only one of the eight extant equine species. This is despite asses and mules comprising almost half of the world's domesticated equines, and donkeys being superior to horses/ponies in their ability to degrade dietary fiber. Limited attention has also been given to commensal anaerobic fungi and archaea even though anaerobic fungi are potent fiber degrading organisms, the activity of which is enhanced by methanogenic archaea. Therefore, the objective of this study was to broaden the current knowledge of bacterial, anaerobic fungal and archaeal diversity of the equine fecal microbiota to multiple species of equines. Core taxa shared by all the equine fecal samples (n = 70) were determined and an overview given of the microbiota across different equine types (horse, donkey, horse × donkey and zebra). RESULTS Equine type was associated with differences in both fecal microbial concentrations and community composition. Donkey was generally most distinct from the other equine types, with horse and zebra not differing. Despite this, a common bacterial core of eight OTUs (out of 2070) and 16 genus level groupings (out of 231) was found in all the fecal samples. This bacterial core represented a much larger proportion of the equine fecal microbiota than previously reported, primarily due to the detection of predominant core taxa belonging to the phyla Kiritimatiellaeota (formerly Verrucomicrobia subdivision 5) and Spirochaetes. The majority of the core bacterial taxa lack cultured representation. Archaea and anaerobic fungi were present in all animals, however, no core taxon was detected for either despite several taxa being prevalent and predominant. CONCLUSIONS Whilst differences were observed between equine types, a core fecal microbiota existed across all the equines. This core was composed primarily of a few predominant bacterial taxa, the majority of which are novel and lack cultured representation. The lack of microbial cultures representing the predominant taxa needs to be addressed, as their availability is essential to gain fundamental knowledge of the microbial functions that underpin the equine hindgut ecosystem.
Collapse
Affiliation(s)
- J. E. Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, 6708 WE Netherlands
| | - S. A. Shetty
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, 6708 WE Netherlands
| | - P. van den Berg
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, 6708 WE Netherlands
| | - F. Burden
- The Donkey Sanctuary, Sidmouth, Devon EX10 ONU UK
| | - D. A. van Doorn
- Division of Nutrition, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM Netherlands
- Department of Equine Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL Netherlands
| | - W. F. Pellikaan
- Animal Nutrition Group, Wageningen University & Research, Wageningen, 6708 WD Netherlands
| | - J. Dijkstra
- Animal Nutrition Group, Wageningen University & Research, Wageningen, 6708 WD Netherlands
| | - H. Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, 6708 WE Netherlands
| |
Collapse
|
50
|
Salem SE, Maddox TW, Antczak P, Ketley JM, Williams NJ, Archer DC. Acute changes in the colonic microbiota are associated with large intestinal forms of surgical colic. BMC Vet Res 2019; 15:468. [PMID: 31864369 PMCID: PMC6925886 DOI: 10.1186/s12917-019-2205-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background Horses that undergo surgery for treatment of primary large colon disease have been reported to be at increased risk of developing recurrent colic episodes postoperatively. The reasons for this are currently unknown. The aim of the current study was to characterise the faecal microbiota of horses with colic signs associated with primary large colon lesions treated surgically and to compare the composition of their faecal microbiota to that of a control group of horses undergoing emergency orthopaedic treatment. Faecal samples were collected from horses in both groups on admission to hospital, during hospitalisation and following discharge from hospital for a total duration of 12 weeks. Additionally, colonic content samples were collected from surgical colic patients if pelvic flexure enterotomy was performed during laparotomy. A total of 12 samples were collected per horse. DNA was extracted from samples using a commercial kit. Amplicon mixtures were created by PCR amplification of the V1 – V2 regions of the bacterial 16S rRNA genes and submitted for sequencing using the Ion Torrent PGM next-generation sequencing system. Multivariate data analysis was used to characterise the faecal microbiota and to investigate differences between groups. Results Reduced species richness was evident in the colonic samples of the colic group compared to concurrent sampling of the faeces. Alpha and beta diversity differed significantly between the faecal and colonic microbiota with 304 significantly differentially abundant OTUs identified. Only 46 OTUs varied significantly between the colic and control group. There were no significant differences in alpha and beta diversity of faecal microbiota between colic and control horses at admission. However, this lack of significant differences between groups should be interpreted with caution due to a small sample size. Conclusions The results of the current study suggest that faecal samples collected at hospital admission in colic cases may not accurately represent changes in upper gut microbiota in horses with colic due to large colon disease.
Collapse
Affiliation(s)
- Shebl E Salem
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Wirral, CH64 7TE, UK.,Department of Surgery, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Thomas W Maddox
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Wirral, CH64 7TE, UK
| | - Philipp Antczak
- Computational Biology Facility, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Julian M Ketley
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Nicola J Williams
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Wirral, CH64 7TE, UK
| | - Debra C Archer
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Wirral, CH64 7TE, UK.
| |
Collapse
|