1
|
Oscorbin IP, Novikova LM, Khrapov EA, Filipenko ML. PI primers increase the efficacy of LAMP and RT-LAMP for SARS-CoV-2 and MS2 phage detection. Diagn Microbiol Infect Dis 2024; 110:116449. [PMID: 39133998 DOI: 10.1016/j.diagmicrobio.2024.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/15/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
LAMP (Loop-mediated isothermal amplification) is a popular method for the molecular diagnostics of numerous pathogens, specifically useful for point-of-care testing. However, the efficacy and sensitivity of LAMP still need to be maximised for the best performance in clinical settings. Adding a novel fourth primer pair is a promising way to accelerate the LAMP speed. Here, we report PI primers that are part of inner primers and can be used in LAMP without a specific design. PI primers were tested in quantitative LAMP detecting SARS-CoV-2 and MS2. The new primers have increased the speed and sensitivity of quantitative LAMP, RT-LAMP, and duplex LAMP with artificial templates and RNA samples from nasal swabs. Adding PI primers could become a valuable option for LAMP optimisation, especially when a desirable LAMP target is a highly variable DNA sequence with a few conservative sites for primers.
Collapse
Affiliation(s)
- Igor P Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia.
| | - Lidiya M Novikova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Evgeniy A Khrapov
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Carole NVD, Sheng L, Ji J, Zhang Y, Sun X. Multispectral pathogens detection in food using multiplex hyperbranched saltatory rolling circle amplification. Talanta 2024; 279:126618. [PMID: 39116729 DOI: 10.1016/j.talanta.2024.126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Foodborne illnesses caused by Salmonella and Staphylococcus aureus are a significant public health concern, leading to societal and economic repercussions. It is important to develop a simple and straightforward bacteria detection and identification method. A triple-probe multiplex rolling circle amplification technique has been developed to simultaneously detect Salmonella Typhimurium and S. aureus. This method utilizes fluorophore-labeled long padlock probes targeting S. Typhimurium invA and S. aureus glnA specific genes, along with a pH-based detection approach for direct visual identification. The multiplex hyperbranched saltatory rolling circle amplification assay at 30 °C has showed promising results with synthetic targets within 30 min and real bacteria within 2 h after establishing the detection settings. The assay is specific for S. aureus and S. Typhimurium, with a limit of detection of 39 μM for fluorescence and 78 μM for colorimetric. In the simulative test of this method for the detection of S. Typhimurium and S. aureus in milk, the limit of detection for the fluorescence signal after 2 h of amplification was 10 CFU/mL and 5 CFU/mL, respectively. The detection method was evaluated to be stable enough to detect pathogen for 3.29 months. Consequently, this triple-probe-multiplex rolling circle amplification method displays notable specificity, sensitivity, as well as ease of interpretation when testing food samples for harmful pathogens.
Collapse
Affiliation(s)
- Nanfack V D Carole
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
3
|
Pérez AA, Vazquez-Meves G, Hunter ME. Early Detection of Wildlife Disease Pathogens Using CRISPR-Cas System Methods. CRISPR J 2024. [PMID: 39479796 DOI: 10.1089/crispr.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024] Open
Abstract
Wildlife diseases are a considerable threat to human health, conservation, and the economy. Surveillance is a critical component to mitigate the impact of animal diseases in these sectors. To monitor human diseases, CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated protein) biosensors have proven instrumental as diagnostic tools capable of detecting unique DNA and RNA sequences related to their associated pathogens. However, despite the significant advances in the general development of CRISPR-Cas biosensors, their use to support wildlife disease management is lagging. In some cases, wildlife diseases of concern could be rapidly surveyed using these tools with minimal technical, operational, or cost requirements to end users. This review explores the potential to further leverage this technology to advance wildlife disease monitoring and highlights how concerted standardization of protocols can help to ensure data reliability.
Collapse
Affiliation(s)
- Adam A Pérez
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, USA
| | | | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, USA
| |
Collapse
|
4
|
Botha JC, Zafilaza K, Soulie C, Yin N, Spyer M, Balaska S, Chatziioannidou S, Tsiakalou V, Papadakis G, Skoura L, Zafiropoulos A, Sourvinos G, Vandenberg O, Marcelin AG, Gizeli E, Nastouli E. Evaluation of a near-patient SARS-CoV-2 novel rapid diagnostic platform. Microbiol Spectr 2024:e0067224. [PMID: 39422469 DOI: 10.1128/spectrum.00672-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The goal of this study is to test a novel device and methodology based on the "Pebble" platform and real-time quantitative colorimetric loop-mediated isothermal amplification (qcLAMP) during SARS-CoV-2 detection using crude samples and extracted RNA. The new method employs an inexpensive lightweight device aimed toward rapid point-of-care testing. An extensive evaluation was performed consisting of 1,693 clinical samples across five independent clinical testing centers. Positive colorimetric results were observed within 20 minutes of testing. At a 20-minute time-to-positive cut-off, the specificity is 98.5% with a diagnostic accuracy of 91.9%, compared to qPCR assays. Our findings indicate that the SARS-CoV-2 qcLAMP diagnostic assay in conjunction with the Pebble device is ideal for point-of-care/near-patient testing.IMPORTANCEHere, we describe our analyses and validation of a novel real-time quantitative colorimetric loop-mediated isothermal amplification (qcLAMP) device, available under the name "Pebble" and associated SARS-CoV-2 diagnostic qcLAMP assay for clinical diagnostic use. The analyses were performed in five independent testing sites across Europe using clinical samples from the associated clinical sites and support the use of "pebble" and associated kit in the diagnostic environment.
Collapse
Affiliation(s)
- Johannes C Botha
- Department of Infection, Immunity and Inflammation, Institute of Child Health, University College London, London, United Kingdom
- University College London Hospitals NHS Trust, Advanced Pathogen Diagnostics Unit, London, United Kingdom
| | - Karen Zafilaza
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Laboratoire de Virologie, Paris, France
| | - Cathia Soulie
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Laboratoire de Virologie, Paris, France
| | - Nicolas Yin
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles, Brussels, Belgium
| | - Moira Spyer
- Department of Infection, Immunity and Inflammation, Institute of Child Health, University College London, London, United Kingdom
| | - Sofia Balaska
- Department of Microbiology, AHEPA University Hospital, Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Vaia Tsiakalou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - George Papadakis
- BIOPIX DNA TECHNOLOGY PC, Science and Technology Park of Crete, Heraklion, Greece
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - George Sourvinos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion, Greece
| | - Olivier Vandenberg
- Research and Technology Innovation Unit, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles, Brussels, Belgium
| | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Laboratoire de Virologie, Paris, France
| | - Electra Gizeli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Eleni Nastouli
- Department of Infection, Immunity and Inflammation, Institute of Child Health, University College London, London, United Kingdom
- University College London Hospitals NHS Trust, Advanced Pathogen Diagnostics Unit, London, United Kingdom
| |
Collapse
|
5
|
Habib S, Azmai MNA, Yasin ISM, Masdor NA, Said NAM, Yasid NA. Streamlined boiling lysis DNA extraction for Gram-positive aquaculture pathogen Streptococcus agalactiae. Arch Microbiol 2024; 206:435. [PMID: 39417886 DOI: 10.1007/s00203-024-04163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Accurate genetic analysis is essential for the detection of pathogens as it necessitates suitable DNA extraction methods tailored to specific microorganisms such as Gram-positive bacteria. This study examined several commercial and simplified DNA extraction methods for their suitability in isothermal downstream applications. Extracted DNA was assessed using spectrophotometry, electrophoresis, polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) while its stability was inspected after five months of storage. The findings revealed variations in DNA yield, purity and integrity among the extraction methods. While extraction kits demonstrated high yield and purity, the in-house extraction techniques showed incoherent correlation between yield and purity, yet showed promise for a streamlined extraction process. The DNA acquired from all methods yielded positive amplification in PCR and LAMP. DNA extracted by kits exhibits prolonged stability than those obtained via boiling lysis. Both methods offer distinct advantages, with commercial kits providing longer stability and high-quality DNA while boiling lysis stands out for its simplicity, with shorter handling and processing periods. This study emphasizes selecting ideal extraction methods for Streptococcus agalactiae, in the prospect of aquaculture settings. In particular, successful LAMP reaction suggests that boiled extracts are feasible enough for detection, and suited for point-of-care (POC) testing where prompt detection of aquatic pathogens is often critical. Ultimately, the choice of method should be contemplated on a case-by-case basis such as the study goals, intended settings, and type of samples.
Collapse
Affiliation(s)
- Syahir Habib
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Ina-Salwany Md Yasin
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Noor Azlina Masdor
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, 43400, Serdang, Selangor, Malaysia
| | - Nur Azura Mohd Said
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, 43400, Serdang, Selangor, Malaysia
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Matić S, Myrta A. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for In-Field Detection of American Plum Line Pattern Virus. Viruses 2024; 16:1572. [PMID: 39459906 PMCID: PMC11512406 DOI: 10.3390/v16101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
American plum line pattern virus (APLPV) is the most infrequently reported Ilarvirus infecting stone fruit trees and is of sufficient severity to be classified as an EPPO quarantine A1 pathogen. In late spring, yellow line pattern symptoms were observed on leaves in a few flowering cherries (Prunus serrulata Lindl.) grown in a public garden in Northwest Italy. RNA extracts from twenty flowering cherries were submitted to Ilarvirus multiplex and APLPV-specific RT-PCR assays already reported or developed in this study. One flowering cherry (T22) with mixed prunus necrotic ringspot virus (PNRSV) and prune dwarf virus (PDV) infection also showed infection with APLPV. Blastn analysis of PCR products of the full coat protein (CP) and movement protein (MP) genes obtained from flowering cherry T22 showed 98.23% and 98.34% nucleotide identity with reference APLPV isolate NC_003453.1 from the USA. Then, a LAMP-specific assay was designed to facilitate the fast and low-cost identification of this virus either in the laboratory or directly in the field. The developed assay allowed not only the confirmation of APLPV (PSer22IT isolate) infection in the T22 flowering cherry but also the identification of APLPV in an asymptomatic flowering cherry tree (TL1). The LAMP assay successfully worked with crude flowering cherry extracts, obtained after manually shaking a single plant extract in the ELISA extraction buffer for 3-5 min. The developed rapid, specific and economic LAMP assay was able to detect APLPV using crude plant extracts rather that RNA preparation in less than 20 min, making it suitable for in-field detection. Moreover, the LAMP assay proved to be more sensitive in APLPV detection in flowering cherry compared to the specific one-step RT-PCR assay. The new LAMP assay will permit the estimation of APLPV geographic spread in the territory, paying particular attention to surrounding gardens and propagated flowering cherries in ornamental nurseries.
Collapse
Affiliation(s)
- Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
| | - Arben Myrta
- Certis Belchim BV, Stadsplateau 16, 3521 AZ Utrecht, The Netherlands;
| |
Collapse
|
7
|
Bispo Carvalho IC, Silva Carvalho AM, Wendland A, Rossato M. Colorimetric LAMP Assay for Detection of Xanthomonas phaseoli pv. manihotis in Cassava Through Genomics: A New Approach to an Old Problem. PLANT DISEASE 2024; 108:2993-3000. [PMID: 38422453 DOI: 10.1094/pdis-08-23-1507-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Bacterial blight caused by Xanthomonas phaseoli pv. manihotis (Xpm) is considered the main bacterial disease that affects cassava, causing significant losses when not properly managed. In the present study, a fast, sensitive, and easy-to-apply method to detect Xpm via colorimetric loop-mediated isothermal amplification (LAMP) was developed. To ensure the use of a unique-to-the-target pathovar core region for primer design, 74 complete genomic sequences of Xpm together with different bacterial species and pathovars were used for comparative genomics. A total of 42 unique genes were used to design 27 LAMP primer sets, from which nine primers were synthesized, and only one (Xpm_Lp1 primer set) showed sufficient efficiency in preliminary tests. The sensitivity, assessed by a serial dilution of the type strain (IBSBF 278) DNA, yielded high sensitivity, detecting up to 100 fg. The LAMP primers showed high specificity, did not cross-react with other bacterial species or other pathovars tested, and amplified only the Xpm isolates. Tests confirmed the high efficiency of the protocol using infected or inoculated macerated cassava leaves without the need for additional sample treatment. The LAMP test developed in this study was able to detect Xpm in a fast, simple, and sensitive way, and it can be used to monitor the disease under laboratory and field conditions.
Collapse
|
8
|
Boza JM, Manning JC, Erickson DC. Comparison and Optimization of Simple DNA Extraction Methods for LAMP-Based Point-of-Care Applications Employing Submillimeter Skin Biopsies. ACS OMEGA 2024; 9:38855-38863. [PMID: 39310140 PMCID: PMC11411550 DOI: 10.1021/acsomega.4c05025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Loop-mediated isothermal amplification (LAMP) has gained particular attention for point-of-care (POC) applications due to its advantages over traditional nucleic acid testing approaches. However, a prevailing limitation of LAMP in POC applications is nucleic acid extraction from the sample prior to analysis. This is particularly true for complex samples such as submillimeter skin biopsies where lysis and digestion involve intricate and lengthy procedures. The objective of this study was to compare alternative methodologies against the spin-column laboratory standard and evaluate them based on the World Health Organization ASSURED criteria for POC testing. Four methods-magnetic bead extraction, alkaline extraction, proteinase K-heat inactivation extraction, and boiling method extraction-were optimized utilizing porcine skin submillimeter punch biopsies and subsequently validated on human skin. Results show that both alkaline extraction and proteinase K-heat inactivation produce DNA yields equivalent to or higher than the spin-column method in porcine and human skin. When evaluated against the ASSURED criteria, both methods demonstrated low complexity while being highly scalable and readily accessible. Overall, this comparative study established a robust framework for selecting DNA extraction methods for submillimeter skin biopsies in POC applications. It also underscored the performance of the alkaline extraction method based on the ASSURED criteria, providing equivalent DNA yields to laboratory standards with reduced complexity and potential for cost-effective scalability.
Collapse
Affiliation(s)
- Juan M. Boza
- Meinig
School of Biomedical Engineering, Cornell
University, Ithaca, New York 14850, United States
| | - Jason Cade Manning
- Meinig
School of Biomedical Engineering, Cornell
University, Ithaca, New York 14850, United States
| | - David C. Erickson
- Sibley
School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
- Division
of Nutritional Science, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
9
|
Singh M, Pal D, Aminedi R, Singh AK. Multiplex Real-Time Loop-Mediated Isothermal Amplification (LAMP) Based on the Annealing Curve Analysis: Toward an On-Site Multiplex Detection of Transgenic Sequences in Seeds and Food Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17658-17665. [PMID: 39044391 DOI: 10.1021/acs.jafc.4c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Monitoring of the introduction of unapproved genetically modified (GM) events is required because the approval status of a GM event may differ from country to country. The on-site methods such as loop-mediated isothermal amplification (LAMP) offer a technological answer for the rapid GM detection beyond the laboratories. Real-time LAMP assays detecting one GM target were reported earlier. To increase the efficiency of the assay, a multiplex real-time LAMP simultaneously targeting Figwort Mosaic Virus promoter (P-FMV) that constructs region between the Cauliflower Mosaic Virus 35S promoter and cry1Ac gene (p35S-cry1Ac) and neomycin phosphotransferase II (nptII) marker gene was developed. The assay could detect as low as 0.1% for each GM target within 45 min. To the best of our knowledge, multiplexing in real-time LAMP using the Genie II system with applicability in GM detection has been reported herein for the first time. The developed method provides rapid, on-site, and real-time GM detection in seeds and food products.
Collapse
Affiliation(s)
- Monika Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Deepa Pal
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Raghavendra Aminedi
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Amit Kumar Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
10
|
Zhuang L, Gong J, Zhang P, Zhang D, Zhao Y, Yang J, Liu G, Zhang Y, Shen Q. Research progress of loop-mediated isothermal amplification in the detection of Salmonella for food safety applications. DISCOVER NANO 2024; 19:124. [PMID: 39105889 PMCID: PMC11303641 DOI: 10.1186/s11671-024-04075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Salmonella, the prevailing zoonotic pathogen within the Enterobacteriaceae family, holds the foremost position in global bacterial poisoning incidents, thereby signifying its paramount importance in public health. Consequently, the imperative for expeditious and uncomplicated detection techniques for Salmonella in food is underscored. After more than two decades of development, loop-mediated isothermal amplification (LAMP) has emerged as a potent adjunct to the polymerase chain reaction, demonstrating significant advantages in the realm of isothermal amplification. Its growing prominence is evident in the increasing number of reports on its application in the rapid detection of Salmonella. This paper provides a systematic exposition of the technical principles and characteristics of LAMP, along with an overview of the research progress made in the rapid detection of Salmonella using LAMP and its derivatives. Additionally, the target genes reported in various levels, including Salmonella genus, species, serogroup, and serotype, are summarized, aiming to offer a valuable reference for the advancement of LAMP application in Salmonella detection. Finally, we look forward to the development direction of LAMP and expect more competitive methods to provide strong support for food safety applications.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
11
|
Shkodenko LA, Mohamed AA, Ateiah M, Rubel MS, Koshel EI. A DAMP-Based Assay for Rapid and Affordable Diagnosis of Bacterial Meningitis Agents: Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pneumoniae. Int J Mol Sci 2024; 25:8282. [PMID: 39125852 PMCID: PMC11311791 DOI: 10.3390/ijms25158282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The rapid and accurate diagnosis of meningitis is critical for preventing severe complications and fatalities. This study addresses the need for accessible diagnostics in the absence of specialized equipment by developing a novel diagnostic assay. The assay utilizes dual-priming isothermal amplification (DAMP) with unique internal primers to significantly reduce non-specificity. For fluorescence detection, the dye was selected among Brilliant Green, Thioflavin T, and dsGreen. Brilliant Green is preferred for this assay due to its availability, high fluorescence level, and optimal sample-to-background (S/B) ratio. The assay was developed for the detection of the primary causative agents of meningitis (Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pneumoniae), and tested on clinical samples. The developed method demonstrated high specificity, no false positives, sensitivity comparable to that of loop-mediated isothermal amplification (LAMP), and a high S/B ratio. This versatile assay can be utilized as a standalone test or an integrated assay into point-of-care systems for rapid and reliable pathogen detection.
Collapse
Affiliation(s)
| | | | | | | | - Elena I. Koshel
- Laboratory of DNA-Nanosensor Diagnostics, ITMO University, Lomonosova Street, 9, 191002 St Petersburg, Russia; (L.A.S.); (A.-A.M.); (M.A.); (M.S.R.)
| |
Collapse
|
12
|
Martínez de Alba ÁE, Morán-Diez ME, García-Prieto JC, García-Bernalt Diego J, Fernández-Soto P, Serrano León E, Monsalvo V, Casao M, Rubio MB, Hermosa R, Muro A, García-Roig M, Monte E. SARS-CoV-2 RNA Detection in Wastewater and Its Effective Correlation with Clinical Data during the Outbreak of COVID-19 in Salamanca. Int J Mol Sci 2024; 25:8071. [PMID: 39125640 PMCID: PMC11311535 DOI: 10.3390/ijms25158071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Wastewater treatment plants (WWTPs) are the final stage of the anthropogenic water cycle where a wide range of chemical and biological markers of human activity can be found. In COVID-19 disease contexts, wastewater surveillance has been used to infer community trends based on viral abundance and SARS-CoV-2 RNA variant composition, which has served to anticipate and establish appropriate protocols to prevent potential viral outbreaks. Numerous studies worldwide have provided reliable and robust tools to detect and quantify SARS-CoV-2 RNA in wastewater, although due to the high dilution and degradation rate of the viral RNA in such samples, the detection limit of the pathogen has been a bottleneck for the proposed protocols so far. The current work provides a comprehensive and systematic study of the different parameters that may affect the detection of SARS-CoV-2 RNA in wastewater and hinder its quantification. The results obtained using synthetic viral RNA as a template allow us to consider that 10 genome copies per µL is the minimum RNA concentration that provides reliable and consistent values for the quantification of SARS-CoV-2 RNA. RT-qPCR analysis of wastewater samples collected at the WWTP in Salamanca (western Spain) and at six pumping stations in the city showed that below this threshold, positive results must be confirmed by sequencing to identify the specific viral sequence. This allowed us to find correlations between the SARS-CoV-2 RNA levels found in wastewater and the COVID-19 clinical data reported by health authorities. The close match between environmental and clinical data from the Salamanca case study has been confirmed by similar experimental approaches in four other cities in the same region. The present methodological approach reinforces the usefulness of wastewater-based epidemiology (WBE) studies in the face of future pandemic outbreaks.
Collapse
Affiliation(s)
- Ángel Emilio Martínez de Alba
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Salamanca, Spain; (M.E.M.-D.); (M.B.R.); (R.H.); (E.M.)
| | - María Eugenia Morán-Diez
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Salamanca, Spain; (M.E.M.-D.); (M.B.R.); (R.H.); (E.M.)
| | - Juan Carlos García-Prieto
- Centre for Research and Technological Development of Water (CIDTA), University of Salamanca, 37080 Salamanca, Spain; (J.C.G.-P.); (M.G.-R.)
| | - Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (P.F.-S.); (A.M.)
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (P.F.-S.); (A.M.)
| | | | | | - Marta Casao
- FCC Aqualia, 28050 Madrid, Spain; (E.S.L.); (V.M.); (M.C.)
| | - María Belén Rubio
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Salamanca, Spain; (M.E.M.-D.); (M.B.R.); (R.H.); (E.M.)
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Salamanca, Spain; (M.E.M.-D.); (M.B.R.); (R.H.); (E.M.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (P.F.-S.); (A.M.)
| | - Manuel García-Roig
- Centre for Research and Technological Development of Water (CIDTA), University of Salamanca, 37080 Salamanca, Spain; (J.C.G.-P.); (M.G.-R.)
| | - Enrique Monte
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Salamanca, Spain; (M.E.M.-D.); (M.B.R.); (R.H.); (E.M.)
| |
Collapse
|
13
|
Doganay MT, Roman E, Hujer AM, Bonomo RA, Deeks SG, Kuritzkes DR, Draz MS. AMPLON: Amplifying DNA with Multiarm Priming and Looping Optimization of Nucleic Acid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311634. [PMID: 38657970 PMCID: PMC11239297 DOI: 10.1002/adma.202311634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Nucleic acid amplification, the bedrock of biotechnology and molecular diagnostics, surges in applications-especially isothermal approaches-heightening the demand for advanced and precisely engineered methods. Here, a novel approach for amplifying DNA with multiarm priming and looping optimization of nucleic acid (AMPLON) is presented. AMPLON relies on a novel polymeric material with unique set of multiarm polyethylene glycol-DNA primers for efficient DNA amplification under isothermal conditions. Each arm carries single-stranded DNA complementing the sense or antisense sequence of the target DNA. The amplification reaction begins with antisense arms binding to the target DNA, forming a template for sense-carrying arms to direct multiarm large DNA amplicon synthesis through successive DNA looping and unlooping steps. Using human immunodeficiency virus type 1 (HIV-1) as a model clinical target, AMPLON exhibits high sensitivity, detecting target concentrations as low as 100 copies mL-1. Compared to a quantitative real-time polymerase chain reaction assay using sensitive primers, AMPLON reliably identifies HIV-1 RNA in plasma samples (n = 20) with a significant agreement rate of 95%. With its ability to achieve highly specific and sensitive target amplification within 30 min, AMPLON holds immense potential to transform the field of nucleic acid research and unleashing new possibilities in medicine and biotechnology.
Collapse
Affiliation(s)
- Mert Tunca Doganay
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ethan Roman
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Andrea M. Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Daniel R. Kuritzkes
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, USA
| | - Mohamed S. Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44106, USA
| |
Collapse
|
14
|
Rolando JC, Melkonian AV, Walt DR. The Present and Future Landscapes of Molecular Diagnostics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:459-474. [PMID: 38360553 DOI: 10.1146/annurev-anchem-061622-015112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nucleic acid testing is the cornerstone of modern molecular diagnostics. This review describes the current status and future directions of molecular diagnostics, focusing on four major techniques: polymerase chain reaction (PCR), next-generation sequencing (NGS), isothermal amplification methods such as recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)-based detection methods. We explore the advantages and limitations of each technique, describe how each overlaps with or complements other techniques, and examine current clinical offerings. This review provides a broad perspective into the landscape of molecular diagnostics and highlights potential future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Justin C Rolando
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Arek V Melkonian
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - David R Walt
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Manning JC, Boza JM, Cesarman E, Erickson D. Rapid, equipment-free extraction of DNA from skin biopsies for point-of-care diagnostics. Sci Rep 2024; 14:13782. [PMID: 38877073 PMCID: PMC11178891 DOI: 10.1038/s41598-024-64533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Kaposi's sarcoma (KS) is a cancer affecting skin and internal organs for which the Kaposi's sarcoma associated herpesvirus (KSHV) is a necessary cause. Previous work has pursued KS diagnosis by quantifying KSHV DNA in skin biopsies using a point-of-care (POC) device which performs quantitative loop-mediated isothermal amplification (LAMP). These previous studies revealed that extracting DNA from patient biopsies was the rate limiting step in an otherwise rapid process. In this study, a simplified, POC-compatible alkaline DNA extraction, ColdSHOT, was optimized for 0.75 mm human skin punch biopsies. The optimized ColdSHOT extraction consistently produced 40,000+ copies of DNA per 5 µl reaction from 3 mg samples-a yield comparable to standard spin column extractions-within 1 h without significant equipment. The DNA yield was estimated sufficient for KSHV detection from KS-positive patient biopsies, and the LAMP assay was not affected by non-target tissue in the unpurified samples. Furthermore, the yields achieved via ColdSHOT were robust to sample storage in phosphate-buffered saline (PBS) or Tris-EDTA (TE) buffer prior to DNA extraction, and the DNA sample was stable after extraction. The results presented in this study indicate that the ColdSHOT DNA extraction could be implemented to simplify and accelerate the LAMP-based diagnosis of Kaposi's sarcoma using submillimeter biopsy samples.
Collapse
Affiliation(s)
- Jason Cade Manning
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Juan Manuel Boza
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Ethel Cesarman
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10021, USA
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850, USA.
- Cornell University, 369 Upson Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Zuraik AA, Daboul Y, Awama MA, Yazigi H, Kayasseh MA, Georges M. Rapid detection of FadA in Fusobacterium nucleatum using the quantitative LAMP colorimetric phenol red method in stool samples from colorectal cancer patients. Sci Rep 2024; 14:13739. [PMID: 38877111 PMCID: PMC11178829 DOI: 10.1038/s41598-024-62846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/22/2024] [Indexed: 06/16/2024] Open
Abstract
The study aimed to develop a quantitative colorimetric loop-mediated isothermal amplification technique using the phenol red indicator (QLAMP-PhR) for detecting Fusobacterium nucleatum (Fn) levels in colorectal cancer (CRC) patients and healthy individuals. QLAMP-PhR assays were conducted on 251 stool samples specific for the Fn FadA gene. Six primers were synthesized and utilized with master mix reagents, and a phenol red indicator was employed to enhance the QLAMP-PhR technique. A standard quantitative analysis curve was generated using a logarithmic function (absorbance vs. concentration) by serially diluting the copy number of genomic DNA templates (Fn ATCC25586). The CRC group exhibited a significantly higher abundance of Fn compared to the healthy control group (P < 0.001). These findings suggest that the QLAMP-PhR technique effectively identifies Fn specifically by its gene for the key virulence factor FadA. Additionally, ideas for developing a real-time QLAMP-PhR test were presented. Compared to the traditional polymerase chain reaction (PCR) technique, QLAMP-PhR offers several advantages including rapidity, simplicity, specificity, sensitivity, and cost-effectiveness method that can quantitatively screen for Fn presence in normal populations. The QLAMP-PhR method represents a sensitive and specific amplification assay for the rapid detection of the Fn pathogen. To the best of our knowledge, this study is the first to report the application of QLAMP-PhR for detecting FadA in Fn.
Collapse
Affiliation(s)
- Abdulrahman A Zuraik
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Tishreen University, Lattakia, Syria.
| | - Yaman Daboul
- School of Biological Sciences, Queens University Belfast, Belfast, UK
| | - M Ayman Awama
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Tishreen University, Lattakia, Syria
| | - Haitham Yazigi
- Department of Laboratory Medicine/Faculty of Medicine, Tishreen University, Tishreen University Hospital, Lattakia, Syria
| | - Moh'd Azzam Kayasseh
- Dr. Kayasseh Medical Clinic, Dr. Sulaiman Al-Habib Medical Group, DHCC, Dubai, UAE
| | - Michael Georges
- Department of Oncology, Faculty of Medicine, Tishreen University, Tishreen University Hospital, Lattakia, Syria
| |
Collapse
|
17
|
Crego-Vicente B, del Olmo MD, Muro A, Fernández-Soto P. Multiplexing LAMP Assays: A Methodological Review and Diagnostic Application. Int J Mol Sci 2024; 25:6374. [PMID: 38928080 PMCID: PMC11203869 DOI: 10.3390/ijms25126374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The loop-mediated isothermal amplification (LAMP) technique is a great alternative to PCR-based methods, as it is fast, easy to use and works with high sensitivity and specificity without the need for expensive instruments. However, one of the limitations of LAMP is difficulty in achieving the simultaneous detection of several targets in a single tube, as the methodologies that allow this rely on fluorogenic probes containing specific target sequences, complicating their adaptation and the optimization of assays. Here, we summarize different methods for the development of multiplex LAMP assays based on sequence-specific detection, illustrated with a schematic representation of the technique, and evaluate their practical application based on the real-time detection and quantification of results, the possibility to visualize the results at a glance, the prior stabilization of reaction components, promoting the point-of-care use, the maximum number of specific targets amplified, and the validation of the technique in clinical samples. The various LAMP multiplexing methodologies differ in their operating conditions and mechanism. Each methodology has its advantages and disadvantages, and the choice among them will depend on specific application interests.
Collapse
Affiliation(s)
| | | | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (M.D.d.O.)
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (M.D.d.O.)
| |
Collapse
|
18
|
Varela de Andrade A, Sartori Pereira F, Nascimento da Silva F, Felippe da Silva G, de Lourdes Borba Magalhães M. Validation and optimization of the loop-mediated isothermal amplification (LAMP) technique for rapid detection of wheat stripe mosaic virus, a wheat-infecting pathogen. J Genet Eng Biotechnol 2024; 22:100373. [PMID: 38797547 PMCID: PMC10997836 DOI: 10.1016/j.jgeb.2024.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Wheat stripe mosaic virus (WhSMV) is a significant wheat pathogen that causes substantial yield losses in Brazil and other countries. Although several detection methods are available, reliable and efficient tools for on-site WhSMV detection are currently lacking. In this study, a Loop-Mediated Isothermal Amplification (LAMP) method was developed for rapid and reliable field detection of WhSMV. We designed WhSMV-specific primers for the LAMP assay and optimized reaction conditions for increased sensitivity and specificity using infected plant samples. RESULTS We have developed a diagnostic method utilizing the Loop-Mediated Isothermal Amplification (LAMP) technique capable of rapidly and reliably detecting WhSMV. The LAMP assay has been optimized to enhance sensitivity, specificity, and cost-effectiveness. CONCLUSION The LAMP assay described here represents a valuable tool for early WhSMV detection, serving to mitigate the adverse economic and social impacts of this viral pathogen. By enabling swift and accurate identification, this assay can significantly improve the sustainability of cereal production systems, safeguarding crop yields against the detrimental effects of WhSMV.
Collapse
|
19
|
Caruso G, Coniglio MA, Laganà P, Fasciana T, Arcoleo G, Arrigo I, Di Carlo P, Palermo M, Giammanco A. Validation of a Loop-Mediated Isothermal Amplification-Based Kit for the Detection of Legionella pneumophila in Environmental Samples According to ISO/TS 12869:2012. Microorganisms 2024; 12:961. [PMID: 38792790 PMCID: PMC11124444 DOI: 10.3390/microorganisms12050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Legionella pneumophila is a freshwater opportunistic pathogen and the leading cause of severe pneumonia known as Legionnaires' disease. It can be found in all water systems and survives in biofilms, free-living amoebae, and a wide variety of facilities, such as air conditioning and showers in hospitals, hotels and spas. The reference cultural method allows for the isolation and identification in many days, and in addition, it does not detect viable but rather non-culturable bacteria, increasing the risk of infection. In this context, a new LAMP-based (loop-mediated isothermal amplification) kit was developed, allowing for the rapid, sensitive, and labor-saving detection of L. pneumophila. The kit, "Legionella pneumophila Glow", was validated according to ISO/TS 12869:2012, testing sensitivity, inclusivity and exclusivity, and kit robustness. Sensitivity showed that the "Legionella pneumophila Glow" kit can detect up to 28 plasmid copies/µL. Robustness tests showed consistent results, with both contamination levels and the matrices used giving reproducible results. Furthermore, real samples were evaluated to compare the performance of the two methods. The LAMP kit "Legionella pneumophila Glow" proved a useful option for the rapid, efficient, and labor-saving screening of different typologies of water samples, offering significant advantages over the traditional method, as it is characterized by a high sensitivity, ease of use for laboratory testing, and a large reduction in analysis time, making it an asset to official controls.
Collapse
Affiliation(s)
- Giorgia Caruso
- U.O.C. of Microbiology and Virology, ARNAS “Civico Di Cristina and Benfratelli”, 90127 Palermo, Italy
| | - Maria Anna Coniglio
- Legionella Reference Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy;
- Hygiene Complex Operative Unit, A.O.U. Policlinico—Vittorio Emanuele, Via S. Sofia 87, 95123 Catania, Italy
| | - Pasqualina Laganà
- Legionella Reference Laboratory, University of Messina, 98125 Messina, Italy;
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Teresa Fasciana
- Legionella Reference Laboratory, University of Palermo, 90127 Palermo, Italy; (I.A.); (A.G.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
| | | | - Ignazio Arrigo
- Legionella Reference Laboratory, University of Palermo, 90127 Palermo, Italy; (I.A.); (A.G.)
| | - Paola Di Carlo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
| | - Mario Palermo
- Sicilian Health Department, Public Health and Environmental Risks Service, 90127 Palermo, Italy;
| | - Anna Giammanco
- Legionella Reference Laboratory, University of Palermo, 90127 Palermo, Italy; (I.A.); (A.G.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
20
|
Mesquita SG, Gadd G, Coelho FS, Cieplinski A, Emery A, Lugli EB, Simões TC, Fonseca CT, Caldeira RL, Webster B. Laboratory and field validation of the recombinase polymerase amplification assay targeting the Schistosoma mansoni mitochondrial minisatellite region (SmMIT-RPA) for snail xenomonitoring for schistosomiasis. Int J Parasitol 2024; 54:247-256. [PMID: 38311021 DOI: 10.1016/j.ijpara.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Improvements in diagnostics for schistosomiasis in both humans and snail hosts are priorities to be able to reach the World Health Organization (WHO) goal of eliminating the disease as a public health problem by 2030. In this context, molecular isothermal amplification tests, such as Recombinase Polymerase Amplification (RPA), are promising for use in endemic areas at the point-of-need for their accuracy, robustness, simplicity, and time-effectiveness. The developed recombinase polymerase amplification assay targeting the Schistosoma mansoni mitochondrial minisatellite region (SmMIT-RPA) was used to detect S. mansoni DNA from both laboratory and field Biomphalaria snails. Laboratory snails were experimentally infected and used at one, seven, and 28 days post-exposure (dpe) to 10 S. mansoni miracidia to provide samples in the early pre-patent infection stage. Field samples of Biomphalaria spp. were collected from the Mucuri Valley and Jequitinhonha Valley regions in the state of Minas Gerais, Brazil, which are endemic for S. mansoni. The sensitivity and specificity of the SmMIT-RPA assay were analysed and compared with existing loop-mediated isothermal amplification (LAMP), PCR-based methods, parasitological examination of the snails, and nucleotide sequencing. The SmMIT-RPA assay was able to detect S. mansoni DNA in the experimentally infected Biomphalaria glabrata as early as one dpe to 10 miracidia. It also detected S. mansoni infections (55.5% prevalence) in the field samples with the highest accuracy (100% sensitivity and specificity) compared with the other molecular tests used as the reference. Results from this study indicate that the SmMIT-RPA assay is a good alternative test to be used for snail xenomonitoring of S. mansoni due to its high sensitivity, accuracy, and the possibility of detecting early pre-patent infection. Its simplicity and portability also make it a suitable methodology in low-resource settings.
Collapse
Affiliation(s)
- Silvia Gonçalves Mesquita
- Department of Science, Natural History Museum, London, United Kingdom; Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil.
| | - Grace Gadd
- Department of Science, Natural History Museum, London, United Kingdom; Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fernanda Sales Coelho
- Department of Science, Natural History Museum, London, United Kingdom; Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Adam Cieplinski
- Department of Science, Natural History Museum, London, United Kingdom
| | - Aidan Emery
- Department of Science, Natural History Museum, London, United Kingdom
| | | | - Taynãna César Simões
- Núcleo de Estudos em Saúde Pública e Envelhecimento, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Cristina Toscano Fonseca
- Grupo de Pesquisa em Biologia e Imunologia Parasitária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Roberta Lima Caldeira
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Bonnie Webster
- Department of Science, Natural History Museum, London, United Kingdom.
| |
Collapse
|
21
|
Wang S, Song H, Wang T, Xue H, Fei Y, Xiong X. Recent advancements with loop-mediated isothermal amplification (LAMP) in assessment of the species authenticity with meat and seafood products. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38494899 DOI: 10.1080/10408398.2024.2329979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Species adulteration or mislabeling with meat and seafood products could negatively affect the fair trade, wildlife conservation, food safety, religion aspect, and even the public health. While PCR-based methods remain the gold standard for assessment of the species authenticity, there is an urgent need for alternative testing platforms that are rapid, accurate, simple, and portable. Owing to its ease of use, low cost, and rapidity, LAMP is becoming increasingly used method in food analysis for detecting species adulteration or mislabeling. In this review, we outline how the features of LAMP have been leveraged for species authentication test with meat and seafood products. Meanwhile, as the trend of LAMP detection is simple, rapid and instrument-free, it is of great necessity to carry out end-point visual detection, and the principles of various end-point colorimetry methods are also reviewed. Moreover, with the aim to enhance the LAMP reaction, different strategies are summarized to either suppress the nonspecific amplification, or to avoid the results of nonspecific amplification. Finally, microfluidic chip is a promising point-of-care method, which has been the subject of a great deal of research directed toward the development of microfluidic platforms-based LAMP systems for the species authenticity with meat and seafood products.
Collapse
Affiliation(s)
- Shihui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hongwei Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Tianlong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hanyue Xue
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yanjin Fei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
22
|
Nwe MK, Jangpromma N, Taemaitree L. Evaluation of molecular inhibitors of loop-mediated isothermal amplification (LAMP). Sci Rep 2024; 14:5916. [PMID: 38467647 PMCID: PMC10928092 DOI: 10.1038/s41598-024-55241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is a cost-effective and easy-to-perform assay that enables the direct detection of DNA. Its use in point-of-care diagnostic tests is growing, while it has the potential to be used in presumptive on-the-field forensic tests. Samples are often collected from complex matrices that contain high levels of contaminants. Herein, we evaluate the effect of seven common DNA amplification inhibitors on LAMP - bile salts, calcium chloride, hematin, humic acid, immunoglobulin G, tannic acid and urea. We study the effect of each inhibitor individually in real-time detection systems coupled with end-point measurements to delineate their inhibitory effects from the matrix in which they may be found. Our studies show LAMP inhibitors generally delay the onset of amplicon formation and quench fluorescence at similar or higher concentrations compared to PCR, but that end-point measurements of LAMP amplicons are unaffected. This is important as LAMP amplicons can be detected in non-fluorometric ways thus contributing to the assertions that LAMP is more robust to inhibitors than PCR.
Collapse
Affiliation(s)
- May Khat Nwe
- Department of Integrated Science, Forensic Science Program, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Lapatrada Taemaitree
- Department of Integrated Science, Forensic Science Program, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
23
|
Hamer M, Watanabe O, Saraullo V, Ortega F, Sánchez C, Martínez M, Brihuega B, Grune Loffler S. Optimization and comparative analysis of LAMP and PCR techniques for the detection of leptospiral DNA in Golden Syrian hamsters. Vet Res Commun 2024; 48:103-111. [PMID: 37540477 DOI: 10.1007/s11259-023-10183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Leptospirosis is a zoonotic disease with significant public health and economic impact worldwide. Rapid and accurate diagnosis is essential for effective prevention and treatment. This study optimized a loop-mediated isothermal amplification (LAMP) assay using BFo isothermal DNA polymerase with different colorimetric indicators. LAMP was able to detect DNA from pathogenic and intermediate leptospires, while non-pathogenic leptospires and other non-leptospiral microorganisms were negative. LAMP assay combined with calcein showed a tenfold higher limit of detection (1 ng of leptospiral DNA per reaction) than LAMP combined with hydroxynaphthol blue or end-point PCR lipL32 (10 ng of DNA per reaction). Animal samples were collected from infected and non-infected Golden Syrian hamsters (Mesocricetus auratus) to evaluate and compare the performance of LAMP and PCR. These techniques showed a substantial agreement according to Cohen's kappa statistic, being both useful techniques for detecting leptospiral DNA in clinical samples. Overall, this study demonstrates that the LAMP assay is a sensitive, specific, rapid, and simple tool for the detection of leptospiral DNA. It has the potential to facilitate the diagnosis of leptospirosis, particularly in low-income regions with limited diagnosis resources.
Collapse
Affiliation(s)
- Micaela Hamer
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina.
| | - Olivia Watanabe
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Vanina Saraullo
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Facundo Ortega
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Cristina Sánchez
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Mara Martínez
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Bibiana Brihuega
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
- Veterinary School, University of El Salvador, Buenos Aires, Argentina
| | - Sylvia Grune Loffler
- Centre of Human and Animal Virology (CEVHAN), Interamerican Open University (UAI) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| |
Collapse
|
24
|
Khedhiri M, Chaouch M, Ayouni K, Chouikha A, Gdoura M, Touzi H, Hogga N, Benkahla A, Fares W, Triki H. Development and evaluation of an easy to use real-time reverse-transcription loop-mediated isothermal amplification assay for clinical diagnosis of West Nile virus. J Clin Virol 2024; 170:105633. [PMID: 38103483 DOI: 10.1016/j.jcv.2023.105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
West Nile Virus (WNV) causes a serious public health concern in many countries around the world. Virus detection in pathological samples is a key component of WNV infection diagnostic, classically performed by real-time PCR. In outbreak situation, rapid detection of the virus, in peripheral laboratories or at point of care, is crucial to guide decision makers and for the establishment of adequate action plans to prevent virus dissemination. Here, we evaluate a Loop-mediated isothermal amplification (LAMP) tool for WNV detection. Amplifications were performed comparatively on extracted viral RNA and on crude samples using a classical thermal cycler and a portable device (pebble device). qRT-PCR was used as gold standard and two sets of urine samples (n = 62 and n = 74) were used to evaluate the retained amplification protocols and assess their sensitivity and specificity. RT-LAMP on RNA extracts and crude samples showed a sensitivity of 90 % and 87 %, respectively. The specificity was 100 % for extracts and 97 % for crude samples. Using the device, the RT-LAMP on extracted RNA was comparable to the gold standard results (100 % sensitivity and specificity) and it was a bit lower on crude samples (65 % sensitivity and 94 % specificity). These results show that RT-LAMP is an efficient technique to detect WNV. RT-LAMP provides a rapid, sensitive, high-throughput and portable tool for accurate WNV detection and has potentials to facilitate diagnostic and surveillance efforts both in the laboratory and in the field, especially in developing countries.
Collapse
Affiliation(s)
- Marwa Khedhiri
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia.
| | - Melek Chaouch
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR16IPT06), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Laboratory of BioInformatics, BioMathematics and BioStatistics Laboratory (LR16IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Kaouther Ayouni
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Anissa Chouikha
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Mariem Gdoura
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Nahed Hogga
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Alia Benkahla
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR16IPT06), Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Wasfi Fares
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| |
Collapse
|
25
|
Kim HR, Kim JM, Baek JS, Park J, Kim WI, Ku BK, Jeoung HY, Lee KK, Park CK. An Advanced Multiplex Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Rapid and Reliable Detection of Porcine Epidemic Diarrhea Virus and Porcine Internal Positive Control. Viruses 2023; 15:2204. [PMID: 38005882 PMCID: PMC10674262 DOI: 10.3390/v15112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
For rapid and reliable detection of porcine epidemic diarrhea virus (PEDV) from pig clinical samples, a multiplex, real-time, reverse transcription loop-mediated isothermal amplification (mqRT-LAMP) was developed using two sets of primers and assimilating probes specific to the PEDV N gene and the Sus scrofa β-actin gene, which was used as an endogenous internal positive control (EIPC) to avoid false-negative results. The assay specifically amplified both target genes of PEDV and EIPC in a single reaction without any interference but did not amplify other porcine viral nucleic acids. The limit of detection was 10 copies/μL, 100-fold lower than that of a reverse transcription-polymerase chain reaction (RT-PCR) and equivalent to that of quantitative/real-time RT-PCR (qRT-PCR). This assay has high repeatability and reproducibility with coefficients of variation < 4.0%. The positive signal of the mqRT-LAMP assay was generated within 25 min, demonstrating advantages in rapid detection of PEDV over RT-PCR or qRT-PCR assay, which require at least 2 h turnaround times. In clinical evaluation, the detection rate of PEDV by mqRT-LAMP assay (77.3%) was higher than that of RT-PCR assay (69.7%), and comparable to qRT-PCR (76.8%) with almost 100% concordance (kappa value 0.98). The developed mqRT-LAMP assay can serve as an advanced alternative method for PEDV diagnosis because it has high sensitivity and specificity, rapidity, and reliability even in resource-limited laboratories.
Collapse
Affiliation(s)
- Hye-Ryung Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| | - Jong-Min Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| | - Ji-Su Baek
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| | - Jonghyun Park
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Bok Kyung Ku
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Gimcheon 39660, Republic of Korea; (B.K.K.); (H.-Y.J.); (K.-K.L.)
| | - Hye-Young Jeoung
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Gimcheon 39660, Republic of Korea; (B.K.K.); (H.-Y.J.); (K.-K.L.)
| | - Kyoung-Ki Lee
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Gimcheon 39660, Republic of Korea; (B.K.K.); (H.-Y.J.); (K.-K.L.)
| | - Choi-Kyu Park
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| |
Collapse
|
26
|
Crego-Vicente B, Febrer-Sendra B, Nindia A, Pessela A, Aixut S, Martínez-Campreciós J, Mediavilla A, Silgado A, Sulleiro E, Treviño B, Molina I, Muro A, Salvador F, Fernández-Soto P. First field study using Strong-LAMP for diagnosis of strongyloidiasis in Cubal, Angola. Parasit Vectors 2023; 16:393. [PMID: 37907997 PMCID: PMC10619288 DOI: 10.1186/s13071-023-06009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Strongyloides stercoralis infection is a common neglected tropical disease distributed worldwide, mainly in tropical and subtropical climates. The impact of S. stercoralis infections on human health ranges from mild asymptomatic infections to chronic strongyloidiasis unnoticeable until the host is immunosuppressed. In severe strongyloidiasis, a syndrome of hyperinfection and larval dissemination to various organs can occur with high mortality rates. The diagnosis of strongyloidiasis is challenging because of the absence of a single standard reference test with high sensitivity and specificity, which also makes it difficult to estimate the accuracy of other diagnostic tests. This study aimed to evaluate, for the first time, the use of an easy-to-perform loop-mediated isothermal amplification (LAMP) colorimetric assay (named Strong-LAMP) for the molecular screening of strongyloidiasis in stool samples from patients in a low-resource endemic area in Cubal, Angola. To compare different LAMP application scenarios, the performance of the Strong-LAMP under field conditions in Angola was reassessed in a well-equipped reference laboratory in Spain and compared with a quantitative polymerase chain reaction (qPCR) method. METHODS A total of 192 stool samples were collected from adult population in Cubal, Angola, and examined by parasitological methods (direct saline microscopy and Baermann's technique). DNA was extracted from each stool sample using a commercial kit and tested by the colorimetric Strong-LAMP assay for the detection of Strongyloides spp. under field conditions. Furthermore, all samples were shipped to a well-equipped laboratory in Spain, reanalysed by the same procedure and compared with a qPCR method. The overall results after testing were compared. RESULTS Strongyloides stercoralis larvae were identified by direct saline microscopy and Baermann in a total of 10/192 (5.2%) and 18/192 (9.4%) stool samples, respectively. Other helminth and protozoan species were also identified. The Strong-LAMP-positive results were visually detected in 69/192 (35.9%) stool samples. The comparison of Strong-LAMP results in field conditions and at a reference laboratory matched in a total of 146/192 (76.0%) samples. A total of 24/192 (12.5%) stool samples tested positive by qPCR. CONCLUSIONS This is the first study in which colorimetric Strong-LAMP has been clinically evaluated in a resource-poor strongyloidiasis endemic area. Strong-LAMP has been shown to be more effective in screening for strongyloidiasis than parasitological methods under field conditions and qPCR in the laboratory. Our Strong-LAMP has proven to be a field-friendly and highly accurate molecular test for the diagnosis of strongyloidiasis.
Collapse
Affiliation(s)
- Beatriz Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Begoña Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | | | | | | | - Joan Martínez-Campreciós
- Hospital Nossa Senhora da Paz, Cubal, Angola
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Mediavilla
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS, Barcelona, Spain
| | - Aroa Silgado
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS, Barcelona, Spain
| | - Elena Sulleiro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS, Barcelona, Spain
| | - Begoña Treviño
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS, Barcelona, Spain
| | - Israel Molina
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS, Barcelona, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Fernando Salvador
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS, Barcelona, Spain.
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
27
|
Li Y, Kang T, Park HG. One-pot, ultrasensitive, and multiplex detection of SARS-CoV-2 genes utilizing self-priming hairpin-mediated isothermal amplification. Biosens Bioelectron 2023; 237:115522. [PMID: 37437457 DOI: 10.1016/j.bios.2023.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The global pandemic resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its emerging variants highlights the need for convenient and accurate detection protocols to facilitate timely prevention and management of the disease. Herein, we propose a new self-priming hairpin-mediated isothermal amplification (SIAM) protocol enabling one-pot and ultrasensitive identification of SARS-CoV-2 in a multiplexed way. This approach works by targeting a specific RNA sequence with a self-priming hairpin (SP) probe and promoting continuously repeated extension and nicking reactions to produce numerous trigger molecules, which could specifically bind to molecular beacons (MBs) and produce fluorescent signals. Under an isothermal condition of 37 °C, this technique allowed for the simultaneous identification of the spike (S) and nucleocapsid (N) genes of SARS-CoV-2 down to single copy/μL levels. We further validated the practical diagnostic capabilities of the SIAM method by accurately testing 20 clinical samples with 100% sensitivity and specificity. The SIAM method has a lot of potential to be a reliable nucleic acid testing protocol to identify infections caused by a wide range of pathogens.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
28
|
Hess J, Kreitlow A, Rohn K, Hennig-Pauka I, Abdulmawjood A. Rapid Diagnostic of Streptococcus suis in Necropsy Samples of Pigs by thrA-Based Loop-Mediated Isothermal Amplification Assay. Microorganisms 2023; 11:2447. [PMID: 37894105 PMCID: PMC10608932 DOI: 10.3390/microorganisms11102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Streptococcus (S.) suis presents a serious threat to the pig industry as well as food safety and public health. Although several LAMP assays have been developed for the identification of S. suis, no universal assay is so far available for the field-suitable examination of clinical pig specimens. Based on the thrA housekeeping gene, a new loop-mediated isothermal amplification (LAMP) assay was developed and validated for the detection of S. suis in the brain and joints of pigs. For this LAMP assay, two different methods for the extraction of DNA from brain and joint swabs were compared. Using the LPTV boiling method, the detection limit of LAMP was 1.08 CFU/reaction, while the detection limit was 53.8 CFU/reaction using a commercial DNA extraction kit. The detection limits of thrA-LAMP in combination with the LPTV boiling method were 104-105 CFU/swab in the presence of brain tissue and 103-104 CFU/swab in the presence of joint tissue. The diagnostic quality criteria of LAMP were determined by the examination of 49 brain swabs and 34 joint swabs obtained during routine diagnostic necropsies. Applying the LPTV boiling method to brain swabs, the sensitivity, specificity, and positive and negative predictive values of thrA-LAMP were 88.0, 95.8, 95.7, and 88.5% using cultural investigation as a reference method, and 76.7, 100, 100, and 73.1% using real-time PCR as a reference method. Based on these results, the thrA-LAMP assay combined with the LPTV boiling method is suitable for rapid detection of S. suis from brain swabs.
Collapse
Affiliation(s)
- Julian Hess
- Field Station for Epidemiology (Bakum), University of Veterinary Medicine Hannover, Foundation, 49456 Bakum, Germany;
| | - Antonia Kreitlow
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology (Bakum), University of Veterinary Medicine Hannover, Foundation, 49456 Bakum, Germany;
| | - Amir Abdulmawjood
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
| |
Collapse
|
29
|
Alipanah M, Manzanas C, Hai X, Lednicky JA, Paniz-Mondolfi A, Morris JG, Fan ZH. Mayaro virus detection by integrating sample preparation with isothermal amplification in portable devices. Anal Bioanal Chem 2023; 415:5605-5617. [PMID: 37470813 PMCID: PMC10528734 DOI: 10.1007/s00216-023-04856-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Mayaro virus (MAYV) is an emerging mosquito-borne alphavirus that causes clinical symptoms similar to those caused by Chikungunya virus (CHIKV), Dengue virus (DENV), and Zika virus (ZIKV). To differentiate MAYV from these viruses diagnostically, we have developed a portable device that integrates sample preparation with real-time, reverse-transcription, loop-mediated isothermal amplification (rRT-LAMP). First, we designed a rRT-LAMP assay targeting MAYV's non-structural protein (NS1) gene and determined the limit of detection of at least 10 viral genome equivalents per reaction. The assay was specific for MAYV, without cross-reactions with CHIKV, DENV, or ZIKV. The rRT-LAMP assay was integrated with a sample preparation device (SPD) wherein virus lysis and RNA enrichment/purification were carried out on the spot, without requiring pipetting, while subsequent real-time amplification device (RAD) enables virus detection at the point of care (POC). The functions of our platform were demonstrated using purified MAYV RNA or blood samples containing viable viruses. We have used the devices for detection of MAYV in as short as 13 min, with limit of detection to as low as 10 GEs/reaction.
Collapse
Affiliation(s)
- Morteza Alipanah
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL, 32611, USA
| | - Carlos Manzanas
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL, 32611, USA
| | - Xin Hai
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL, 32611, USA
| | - John A Lednicky
- Emerging Pathogens Institute, University of Florida, P.O. Box 100009, Gainesville, FL, 32610, USA.
- Department of Environmental and Global Health, University of Florida, PO Box 100188, Gainesville, FL, 32610, USA.
| | - Alberto Paniz-Mondolfi
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, P.O. Box 100009, Gainesville, FL, 32610, USA
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL, 32611, USA.
- Emerging Pathogens Institute, University of Florida, P.O. Box 100009, Gainesville, FL, 32610, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL, 32611, USA.
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, USA.
| |
Collapse
|
30
|
Hanze M, Khaliliazar S, Réu P, Toldrà A, Hamedi MM. Toward Continuous Molecular Testing Using Gold-Coated Threads as Multi-Target Electrochemical Biosensors. BIOSENSORS 2023; 13:844. [PMID: 37754078 PMCID: PMC10526339 DOI: 10.3390/bios13090844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Analytical systems based on isothermal nucleic acid amplification tests (NAATs) paired with electroanalytical detection enable cost-effective, sensitive, and specific digital pathogen detection for various in situ applications such as point-of-care medical diagnostics, food safety monitoring, and environmental surveillance. Self-assembled monolayers (SAMs) on gold surfaces are reliable platforms for electroanalytical DNA biosensors. However, the lack of automation and scalability often limits traditional chip-based systems. To address these challenges, we propose a continuous thread-based device that enables multiple electrochemical readings on a functionalized working electrode Au thread with a single connection point. We demonstrate the possibility of rolling the thread on a spool, which enables easy manipulation in a roll-to-roll architecture for high-throughput applications. As a proof of concept, we have demonstrated the detection of recombinase polymerase amplification (RPA) isothermally amplified DNA from the two toxic microalgae species Ostreopsis cf. ovata and Ostreopsis cf. siamensis by performing a sandwich hybridization assay (SHA) with electrochemical readout.
Collapse
Affiliation(s)
| | | | | | - Anna Toldrà
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden
| | - Mahiar M. Hamedi
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden
| |
Collapse
|
31
|
Ayaz Kök S, Üstün S, Taşkent Sezgin H. Diagnosis of Ruminant Viral Diseases with Loop-Mediated Isothermal Amplification. Mol Biotechnol 2023; 65:1228-1241. [PMID: 36719638 PMCID: PMC9888337 DOI: 10.1007/s12033-023-00674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Infectious diseases in livestock industry are major problems for animal health, food safety, and the economy. Zoonotic diseases from farm animals are significant threat to human population as well. These are notifiable diseases listed by the World Organization for Animal Health (OIE). Rapid diagnostic methods can help keep infectious diseases under control in herds. Loop-mediated isothermal amplification (LAMP) is a simple and rapid nucleic acid amplification method that is studied widely for detection of many infectious diseases in the field. LAMP allows biosensing of target DNA or RNA under isothermal conditions with high specificity in a short period of time. An untrained user can analyze results based on color change or turbidity. Here we review LAMP assays to diagnose OIE notifiable ruminant viral diseases in literature highlighting properties of LAMP method considering what is expected from an efficient, field usable diagnostic test.
Collapse
Affiliation(s)
- Sanem Ayaz Kök
- Biotechnology Interdisciplinary Program, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430
- New Era Biotechnology, Teknopark İzmir, Gülbahçe, Urla, İzmir, Turkey, 35430
| | - Selcen Üstün
- Bioengineering Department, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430
| | - Hümeyra Taşkent Sezgin
- Biotechnology Interdisciplinary Program, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430.
- New Era Biotechnology, Teknopark İzmir, Gülbahçe, Urla, İzmir, Turkey, 35430.
- Bioengineering Department, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430.
| |
Collapse
|
32
|
Fu Q, Pang X, Su Z, Yang Y, Liu Y, Zhang Z, Fu Y, Wang J, Zhou J. Rapid On-Site Detection of SARS-CoV-2 Using RT-LAMP Assay with a Portable Low-Cost Device. BIOSENSORS 2023; 13:724. [PMID: 37504122 PMCID: PMC10377351 DOI: 10.3390/bios13070724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
Emerging infectious diseases pose a serious threat to human health and affect social stability. In recent years, the epidemic situation of emerging infectious diseases is very serious; among these infectious diseases, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected many countries and regions in a short time. The prevention and treatment of these diseases require rapid on-site detection methods. However, the common detection method, RT-PCR, requires expensive instruments, complex operations, and professional operators. Here, we developed a portable low-cost assay for rapid on-site detection of viral nucleic acid using reverse transcription-loop-mediated isothermal amplification (RT-LAMP). The SARS-CoV-2 RNA can be successfully amplified within 15 min in a thermos, and the detection result is read rapidly in a portable low-cost device with a sensitivity of 100 copies/µL. The portable low-cost device consists of a black box, a laser or LED and a filter, costing only a few cents. The rapid on-site detection method can provide strong support for the control of biological threats such as infectious diseases. It is also an emergency detection method for low-resource settings, relieving the huge pressure on health care.
Collapse
Affiliation(s)
- Quanying Fu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xueyuan Pang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenning Su
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuxiao Yang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiren Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ziyue Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuqiu Fu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jiasi Wang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
33
|
Kim JM, Kim HR, Baek JS, Kwon OK, Kang HE, Shin YK, Park CK. Simple and Rapid Colorimetric Detection of Canine Parainfluenza Virus 5 ( Orthorubulavirus mammalis) Using a Reverse-Transcription Loop-Mediated Isothermal Amplification Assay. Pathogens 2023; 12:921. [PMID: 37513767 PMCID: PMC10384626 DOI: 10.3390/pathogens12070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Despite its many advantages, a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay has yet to be developed for canine parainfluenza virus 5 (CPIV5). In this study, a visual RT-LAMP (vRT-LAMP) assay was developed for the rapid detection of CPIV5 in clinical samples. At a constant reaction temperature of 62 °C, the assay was completed within 40 min, and the results could be directly detected with the naked eye using a hydroxynaphthol blue (HNB) metal indicator without any additional detection apparatuses. The assay specifically amplified CPIV5 RNA with a limit of detection of 10 RNA copies/reaction, which was 10-fold more sensitive than the previously reported conventional reverse-transcription polymerase chain reaction (cRT-PCR) assay and was comparable to the previously reported real-time RT-PCR (qRT-PCR) assay. In a clinical evaluation using 267 nasopharyngeal swab samples collected from hospitalized dogs with respiratory symptoms, the CPIV5 detection rate using the vRT-LAMP assay was 5.24% (14/267), which was higher than that of the cRT-PCR assay (4.49%, 12/267) and consistent with that of the qRT-PCR assay, demonstrating 100% concordance with a kappa coefficient value (95% confidence interval) of 1 (1.00-1.00). The discrepancies in the results of the assays were confirmed to be attributed to the low sensitivity of the cRT-PCR assay. Owing to the advantages of a high specificity, rapidity, and simplicity, the developed vRT-LAMP assay using an HNB metal indicator will be a valuable diagnostic tool for the detection of CPIV5 in canine clinical samples, even in resource-limited laboratories.
Collapse
Affiliation(s)
- Jong-Min Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Ji-Su Baek
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Oh-Kyu Kwon
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Hae-Eun Kang
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Yeun-Kyung Shin
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
34
|
Wu R, Meng B, Corredig M, Griffiths MW. Rapid Detection of Hepatitis A Virus in Foods Using a Bioluminescent Assay in Real-Time (BART) and Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Technology. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:144-157. [PMID: 36640204 PMCID: PMC9839959 DOI: 10.1007/s12560-022-09548-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/30/2022] [Indexed: 06/13/2023]
Abstract
Foodborne hepatitis A infections have been considered as a major threat for public health worldwide. Increased incidences of hepatitis A virus (HAV) infection has been associated with growing global trade of food products. Rapid and sensitive detection of HAV in foods is very essential for investigating the outbreaks. Real-time RT-PCR has been most widely used for the detection of HAV by far. However, the technology relies on fluorescence determination of the amplicon and requires sophisticated, high-cost instruments and trained personnel, limiting its use in low resource settings. In this study, a robust, affordable, and simple assay, reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay in combination with a bioluminescence-based determination of amplification in real-time (BART), was developed for the detection of HAV in different food matrices, including green onion, strawberry, mussel, and milk. The efficiencies of a one-step RT-LAMP-BART and a two-step RT-LAMP-BART were investigated for the detection of HAV in different food matrices and was compared with that of real-time RT-PCR. The sensitivity of the RT-LAMP-BART assay was significantly affected by Mg2+ concentration (P < 0.05), in addition to primer quality. The optimal Mg2+ concentration was 2 mM for one-step RT-LAMP-BART and 4 mM for two-step RT-LAMP-BART. Compared with cartridge-purified primers, HPLC-purified primers could greatly improve the sensitivity of the RT-LAMP-BART assay (P < 0.05). For detecting HAV in different food matrices, the performance of two-step RT-LAMP-BART was comparable with that of real-time RT-PCR and was better than that of one-step RT-LAMP-BART. The detection limit of the two-step RT-LAMP-BART for HAV in green onion, strawberry, mussel, and milk was 8.3 × 100 PFU/15 g, 8.3 × 101 PFU/50 g, 8.3 × 100 PFU/5 g, and 8.3 × 100 PFU/40 mL, respectively. The developed RT-LAMP-BART was an effective, simple, sensitive, and robust method for foodborne HAV detection.
Collapse
Affiliation(s)
- Ruiqin Wu
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- Canadian Research Institute for Food Safety, 43 McGilvray Street, Guelph, ON, N1G 2W1, Canada.
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Milena Corredig
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Mansel W Griffiths
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Canadian Research Institute for Food Safety, 43 McGilvray Street, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
35
|
Coelho BJ, Pinto JV, Martins J, Rovisco A, Barquinha P, Fortunato E, Baptista PV, Martins R, Igreja R. Parylene C as a Multipurpose Material for Electronics and Microfluidics. Polymers (Basel) 2023; 15:polym15102277. [PMID: 37242852 DOI: 10.3390/polym15102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Poly(p-xylylene) derivatives, widely known as Parylenes, have been considerably adopted by the scientific community for several applications, ranging from simple passive coatings to active device components. Here, we explore the thermal, structural, and electrical properties of Parylene C, and further present a variety of electronic devices featuring this polymer: transistors, capacitors, and digital microfluidic (DMF) devices. We evaluate transistors produced with Parylene C as a dielectric, substrate, and encapsulation layer, either semitransparent or fully transparent. Such transistors exhibit steep transfer curves and subthreshold slopes of 0.26 V/dec, negligible gate leak currents, and fair mobilities. Furthermore, we characterize MIM (metal-insulator-metal) structures with Parylene C as a dielectric and demonstrate the functionality of the polymer deposited in single and double layers under temperature and AC signal stimuli, mimicking the DMF stimuli. Applying temperature generally leads to a decrease in the capacitance of the dielectric layer, whereas applying an AC signal leads to an increase in said capacitance for double-layered Parylene C only. By applying the two stimuli, the capacitance seems to suffer from a balanced influence of both the separated stimuli. Lastly, we demonstrate that DMF devices with double-layered Parylene C allow for faster droplet motion and enable long nucleic acid amplification reactions.
Collapse
Affiliation(s)
- Beatriz J Coelho
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
- UCIBIO, I4HB, Department of Life Sciences, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Joana V Pinto
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Jorge Martins
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Ana Rovisco
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Pedro Barquinha
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, I4HB, Department of Life Sciences, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Rui Igreja
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| |
Collapse
|
36
|
Intestinal colonization with multidrug-resistant Enterobacterales: screening, epidemiology, clinical impact, and strategies to decolonize carriers. Eur J Clin Microbiol Infect Dis 2023; 42:229-254. [PMID: 36680641 PMCID: PMC9899200 DOI: 10.1007/s10096-023-04548-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
The clinical impact of infections due to extended-spectrum β-lactamase (ESBL)- and/or carbapenemase-producing Enterobacterales (Ent) has reached dramatic levels worldwide. Infections due to these multidrug-resistant (MDR) pathogens-especially Escherichia coli and Klebsiella pneumoniae-may originate from a prior asymptomatic intestinal colonization that could also favor transmission to other subjects. It is therefore desirable that gut carriers are rapidly identified to try preventing both the occurrence of serious endogenous infections and potential transmission. Together with the infection prevention and control countermeasures, any strategy capable of effectively eradicating the MDR-Ent from the intestinal tract would be desirable. In this narrative review, we present a summary of the different aspects linked to the intestinal colonization due to MDR-Ent. In particular, culture- and molecular-based screening techniques to identify carriers, data on prevalence and risk factors in different populations, clinical impact, length of colonization, and contribution to transmission in various settings will be overviewed. We will also discuss the standard strategies (selective digestive decontamination, fecal microbiota transplant) and those still in development (bacteriophages, probiotics, microcins, and CRISPR-Cas-based) that might be used to decolonize MDR-Ent carriers.
Collapse
|
37
|
Giantini A, Suhaeri M, Kusumaningrum A, Prasetyo DS, Sahar W, Hidayat R, Putra MA, Hermawan. Evaluation of loop-mediated isothermal amplification for detecting COVID-19. JOURNAL OF CLINICAL VIROLOGY PLUS 2023; 3:100132. [PMID: 36594046 PMCID: PMC9798669 DOI: 10.1016/j.jcvp.2022.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The emergence of SARS-CoV-2 has caused worldwide pandemic of COVID-19. Infection is difficult to diagnose early as some patients remain asymptomatic and may carry this virus to other people. Currently, qRT-PCR is the widely accepted mode for detection. However, the need for sophisticated instrument and trained personnel may hinder its application, especially in remote and facility-lacking areas. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) may serve as a potential approach for detection of SARS-CoV-2 as the resources needed in its application is far less complex than those of qRT-PCR. Herein, we evaluated RT-LAMP based analytical method (COVIDNow), relative to qRT-PCR, in detecting SARS-CoV-2 by using 63 clinical respiratory samples. Based on our finding, COVIDNow exhibited sensitivity and specificity values of 87.5% and 80.6%, respectively. Taken together, RT-LAMP based detection of SARS-CoV-2 by utilizing COVIDNow might serves as a valuable diagnostic tool in the management of global COVID-19 pandemic condition.
Collapse
Affiliation(s)
- Astuti Giantini
- Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia,Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Muhammad Suhaeri
- Unit of Education, Research, and Training, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| | - Ardiana Kusumaningrum
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia,Biomolecular Laboratory, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| | - Dimas Seto Prasetyo
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia,Biomolecular Laboratory, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| | - Windy Sahar
- Unit of Education, Research, and Training, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| | - Rakhmad Hidayat
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia,Medical Service Unit, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| | - Muhammad Arza Putra
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia,Medical Service Unit, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| | - Hermawan
- Medical Service Unit, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| |
Collapse
|
38
|
Maryam S, Ul Haq I, Yahya G, Ul Haq M, Algammal AM, Saber S, Cavalu S. COVID-19 surveillance in wastewater: An epidemiological tool for the monitoring of SARS-CoV-2. Front Cell Infect Microbiol 2023; 12:978643. [PMID: 36683701 PMCID: PMC9854263 DOI: 10.3389/fcimb.2022.978643] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has prompted a lot of questions globally regarding the range of information about the virus's possible routes of transmission, diagnostics, and therapeutic tools. Worldwide studies have pointed out the importance of monitoring and early surveillance techniques based on the identification of viral RNA in wastewater. These studies indicated the presence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in human feces, which is shed via excreta including mucus, feces, saliva, and sputum. Subsequently, they get dumped into wastewater, and their presence in wastewater provides a possibility of using it as a tool to help prevent and eradicate the virus. Its monitoring is still done in many regions worldwide and serves as an early "warning signal"; however, a lot of limitations of wastewater surveillance have also been identified.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
| | - Ihtisham Ul Haq
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
- Department of Physical Chemistry and Polymers Technology, Silesian University of Technology, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mehboob Ul Haq
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
39
|
Deconinck D, Robbens J, Volckaert FA, Derycke S. Rapid and low-cost identification of common sole (Solea solea) in the field using a fast DNA isolation protocol and loop-mediated isothermal amplification (LAMP). J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Tittel-Elmer M, de Tejada BM, Renzi G, Schrenzel J. Performance of the HiberGene Group B Streptococcus kit, a loop-mediated isothermal amplification-based assay for GBS screening during pregnancy. Eur J Clin Microbiol Infect Dis 2023; 42:217-219. [PMID: 36449147 PMCID: PMC9836968 DOI: 10.1007/s10096-022-04534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Timely and accurate detection of Group B Streptococcus (GBS) carriage in pregnant women allows for targeted peripartum prophylaxis. Replacing culture-based screening by molecular biology assays enables faster results obtention, better targeted antibiotic prophylaxis, and reduces the laboratory workload. Here, we present a comparative analysis between a Loop Mediated Isothermal Amplification assay (HiberGene GBS kit) and culture (gold-standard). The HiberGene GBS kit showed a sensitivity of 97.9% and a specificity of 96.8% compared with culture. The limit of detection was estimated at 103 cfu/ml and results were obtained within 30 min. HiberGene GBS assay can be used for peripartum GBS screening and targeted antibiotic prophylaxis provided sample processing can be swiftly performed around the clock.
Collapse
Affiliation(s)
- Mireille Tittel-Elmer
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - Begoña Martinez de Tejada
- Obstetrics Division, Departement of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland ,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gesuele Renzi
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - Jacques Schrenzel
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland ,Faculty of Medicine, University of Geneva, Geneva, Switzerland ,Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
41
|
Dos-Reis-Delgado AA, Carmona-Dominguez A, Sosa-Avalos G, Jimenez-Saaib IH, Villegas-Cantu KE, Gallo-Villanueva RC, Perez-Gonzalez VH. Recent advances and challenges in temperature monitoring and control in microfluidic devices. Electrophoresis 2023; 44:268-297. [PMID: 36205631 PMCID: PMC10092670 DOI: 10.1002/elps.202200162] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Temperature is a critical-yet sometimes overlooked-parameter in microfluidics. Microfluidic devices can experience heating inside their channels during operation due to underlying physicochemical phenomena occurring therein. Such heating, whether required or not, must be monitored to ensure adequate device operation. Therefore, different techniques have been developed to measure and control temperature in microfluidic devices. In this contribution, the operating principles and applications of these techniques are reviewed. Temperature-monitoring instruments revised herein include thermocouples, thermistors, and custom-built temperature sensors. Of these, thermocouples exhibit the widest operating range; thermistors feature the highest accuracy; and custom-built temperature sensors demonstrate the best transduction. On the other hand, temperature control methods can be classified as external- or integrated-methods. Within the external methods, microheaters are shown to be the most adequate when working with biological samples, whereas Peltier elements are most useful in applications that require the development of temperature gradients. In contrast, integrated methods are based on chemical and physical properties, structural arrangements, which are characterized by their low fabrication cost and a wide range of applications. The potential integration of these platforms with the Internet of Things technology is discussed as a potential new trend in the field.
Collapse
Affiliation(s)
| | | | - Gerardo Sosa-Avalos
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | - Ivan H Jimenez-Saaib
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | - Karen E Villegas-Cantu
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | | | - Víctor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| |
Collapse
|
42
|
Marra M, D’Errico C, Montemurro C, Ratti C, Baldoni E, Matic S, Accotto GP. Fast and Sensitive Detection of Soil-Borne Cereal Mosaic Virus in Leaf Crude Extract of Durum Wheat. Viruses 2022; 15:140. [PMID: 36680180 PMCID: PMC9866084 DOI: 10.3390/v15010140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Soil-borne cereal mosaic virus (SBCMV) is a furovirus with rigid rod-shaped particles containing an ssRNA genome, transmitted by Polymyxa graminis Led., a plasmodiophorid that can persist in soil for up to 20 years. SBCMV was reported on common and durum wheat and it can cause yield losses of up to 70%. Detection protocols currently available are costly and time-consuming (real-time PCR) or have limited sensitivity (ELISA). To facilitate an efficient investigation of the real dispersal of SBCMV, it is necessary to develop a new detection tool with the following characteristics: no extraction steps, very fast results, and high sensitivity to allow pooling of a large number of samples. In the present work, we have developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) protocol with such characteristics, and we have compared it with real-time PCR. Our results show that the sensitivity of LAMP and real-time PCR on cDNA and RT-LAMP on crude extracts are comparable, with the obvious advantage that RT-LAMP produces results in minutes rather than hours. This paves the way for extensive field surveys, leading to a better knowledge of the impact of this virus on wheat health and yield.
Collapse
Affiliation(s)
- Monica Marra
- Institute for Sustainable Plant Protection, National Research Council, 10135 Turin, Italy
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Chiara D’Errico
- Institute for Sustainable Plant Protection, National Research Council, 10135 Turin, Italy
- European Laboratory for Non-Linear Spectroscopy, LENS, 50019 Sesto Fiorentino, Italy
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
- Institute for Sustainable Plant Protection, National Research Council, 70126 Bari, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Elena Baldoni
- Institute of Agricultural Biology and Biotechnology, National Research Council, 20133 Milan, Italy
| | - Slavica Matic
- Institute for Sustainable Plant Protection, National Research Council, 10135 Turin, Italy
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, National Research Council, 10135 Turin, Italy
| |
Collapse
|
43
|
Oscorbin IP, Novikova LM, Filipenko ML. Comparison of Reverse Transcriptase (RT) Activities of Various M-MuLV RTs for RT-LAMP Assays. BIOLOGY 2022; 11:biology11121809. [PMID: 36552320 PMCID: PMC9775983 DOI: 10.3390/biology11121809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Reverse transcriptases (RTs) are a family of enzymes synthesizing DNA using RNA as a template and serving as indispensable tools in studies related to RNA. M-MuLV RT and its analogs are the most commonly used RTs. RTs are widely applied in various diagnostics methods, including reverse-transcription loop-mediated isothermal amplification (RT-LAMP). However, the performance of different RTs in LAMP remains relatively unknown. Here, we report on the first direct comparison of various M-MuLV RTs in RT-LAMP, including enzymes with a different number of mutations and fusions with Sto7d. Several parameters were assessed, namely: optimal reaction temperature, enzyme concentration, reverse transcription time, a minimal amount of RNA template, and tolerance to inhibitors. Mutations increased the optimal reaction temperature from 55 °C to 60-65 °C. All of the RTs were suitable for RT-LAMP with RNA templates in the range of 101-106 copies per reaction. Highly mutated enzymes were 1.5-3-fold more tolerant to whole blood, blood plasma, and guanidinium, but they were two-fold more sensitive to high concentrations of NaCl. The comparison of different RTs presented here could be helpful for selecting the optimal enzyme when developing novel LAMP-based diagnostic tests.
Collapse
|
44
|
Martischang R, François P, Cherkaoui A, Renzi G, Fankhauser C, Schrenzel J, Pugin J, Harbarth S. An interventional quasi-experimental study to evaluate the impact of a rapid screening strategy in improving control of nosocomial extended-spectrum beta-lactamase-producing Enterobacterales and carbapenemase-producing organisms in critically ill patients. Crit Care 2022; 26:166. [PMID: 35672757 PMCID: PMC9172611 DOI: 10.1186/s13054-022-04027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Rapid molecular tests could accelerate the control of extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-PE) and carbapenemase-producing organisms (CPO) in intensive care units (ICUs). Objective and methods This interventional 12-month cohort study compared a loop-mediated isothermal amplification (LAMP) assay performed directly on rectal swabs with culturing methods (control period, 6 months), during routine ICU screening. Contact precautions (CP) were implemented for CPO or non-E. coli ESBL-producing Enterobacterales (nEcESBL-PE) carriers. Using survival analysis, we compared the time intervals from admission to discontinuation of unnecessary preemptive CP among patients at-risk and the time intervals from screening to implementation of CP among newly identified carriers. We also compared diagnostic performances, and nEcESBL-PE/CPO acquisition rates. This study is registered, ISRCTN 23588440. Results We included 1043 patients. During the intervention and control phases, 92/147 (62.6%) and 47/86 (54.7%) of patients at-risk screened at admission were candidates for early discontinuation of preemptive CP. The LAMP assay had a positive predictive value (PPV) of 44.0% and a negative predictive value (NPV) of 99.9% for CPO, and 55.6% PPV and 98.2% NPV for nEcESBL-PE. Due to result notification and interpretation challenges, the median time from admission to discontinuation of preemptive CP increased during the interventional period from 80.5 (95% CI 71.5–132.1) to 88.3 (95% CI 57.7–103.7) hours (p = 0.47). Due to the poor PPV, we had to stop using the LAMP assay to implement CP. No difference was observed regarding the incidence of nEcESBL-PE and CPO acquisition. Conclusion A rapid screening strategy with LAMP assays performed directly on rectal swabs had no benefit for infection control in a low-endemicity setting. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04027-8.
Collapse
|
45
|
Wang J, Davidson JL, Kaur S, Dextre AA, Ranjbaran M, Kamel MS, Athalye SM, Verma MS. Paper-Based Biosensors for the Detection of Nucleic Acids from Pathogens. BIOSENSORS 2022; 12:bios12121094. [PMID: 36551061 PMCID: PMC9776365 DOI: 10.3390/bios12121094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 05/17/2023]
Abstract
Paper-based biosensors are microfluidic analytical devices used for the detection of biochemical substances. The unique properties of paper-based biosensors, including low cost, portability, disposability, and ease of use, make them an excellent tool for point-of-care testing. Among all analyte detection methods, nucleic acid-based pathogen detection offers versatility due to the ease of nucleic acid synthesis. In a point-of-care testing context, the combination of nucleic acid detection and a paper-based platform allows for accurate detection. This review offers an overview of contemporary paper-based biosensors for detecting nucleic acids from pathogens. The methods and limitations of implementing an integrated portable paper-based platform are discussed. The review concludes with potential directions for future research in the development of paper-based biosensors.
Collapse
Affiliation(s)
- Jiangshan Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Simerdeep Kaur
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Andres A. Dextre
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohsen Ranjbaran
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohamed S. Kamel
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Shreya Milind Athalye
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohit S. Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
46
|
Zhou M, Luo Y, Wang L, Fan C, Xu T, Zhang X. Integrated microdroplet array platform with temperature controller and micro-stirring for ultra-fast SARS-CoV-2 detection. Biosens Bioelectron 2022; 220:114903. [DOI: 10.1016/j.bios.2022.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
47
|
Validación clínica de la prueba RT-LAMP para el diagnóstico rápido del SARS-CoV-2. BIOMÉDICA 2022; 42:59-72. [PMID: 36322546 PMCID: PMC9683688 DOI: 10.7705/biomedica.6523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/06/2022]
Abstract
Introducción. Desde el primer reporte en la provincia de Wuhan (China) en el año 2019, el SARS-CoV-2 se ha diseminado por todo el mundo, provocando un enorme impacto en la salud pública. Para su diagnóstico, la Organización Mundial de la Salud ha incentivado el desarrollo de pruebas rápidas, de simple ejecución, sensibles y específicas, que complementan la RT-qPCR como prueba de referencia. La prueba RT-LAMP ha mostrado ser una excelente alternativa para la detección del SARS-CoV-2 en diferentes biofluidos.Objetivo. Validar la técnica RT-LAMP colorimétrica en muestras de hisopado nasofaríngeo previamente confirmadas por RT-qPCR, usando el protocolo Charité, Berlín, Alemania.Materiales y métodos. Un total de 153 muestras de hisopado nasofaríngeo de individuos con sospecha de COVID-19 se sometieron a RT-qPCR y RT-LAMP, usando un estuche comercial colorimétrico (NEB, Germany). La RT-LAMP se practicó con las muestras de ARN extraídas del hisopado nasofaríngeo y con muestras crudas sin previa extracción de ARN. El resultado fue evaluado por un simple cambio de color en la reacción.Resultados. La sensibilidad y especificidad de la técnica RT-LAMP para detectar el gen N del SARS-CoV-2 mediante un set de cebadores previamente reportados (set de Broughton), arrojó valores de 0,97 (0,85-1,00) y 0,81 (0,65-0,92), respectivamente, con un intervalo de confianza del 95%. Otro set de cebadores dirigidos contra otra región del mismo gen (set de Lalli) arrojó valores de sensibilidad y especificidad de 0,96 (0,78-1,00) y 0,77 (0,55-0,92), respectivamente. Sin previa extracción de ARN, se encontró que la sensibilidad fue del 0,95 (0,74-1,00) y la especificidad del 0,88 (0,64-0,99).Conclusiones. Estos resultados evidencian que la técnica RT-LAMP podría considerarse una prueba diagnóstica rápida, de fácil ejecución, libre de equipos sofisticados, sensible y específica, para el diagnóstico del SARS-CoV-2 en muestras de hisopados nasofaríngeos.
Collapse
|
48
|
Ali A, Kreitlow A, Plötz M, Normanno G, Abdulmawjood A. Development of loop-mediated isothermal amplification (LAMP) assay for rapid and direct screening of yellowfin tuna (Thunnus albacares) in commercial fish products. PLoS One 2022; 17:e0275452. [PMID: 36223376 PMCID: PMC9555631 DOI: 10.1371/journal.pone.0275452] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Tuna is one of the most widely consumed fish on the European market, being available in various consumable options. Among them, Thunnus albacares, also called yellowfin tuna, is a delicacy and is consumed by millions of people around the world. Due to its comparatively high cost and demand, it is more vulnerable to fraud, where low-cost tuna or other fish varieties might be replaced for economic gain. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed and validated for targeting the mitochondrial cytochrome b gene for fast and direct detection of Thunnus albacares, which is a valuable tuna species. The analytical specificity was confirmed using 18 target samples (Thunnus albacares) and 18 samples of non-target fish species. The analytical sensitivity of the LAMP assay was 540 fg DNA per reaction. In addition, a simple and direct swab method without time-consuming nucleic acid extraction procedures and the necessity for cost-intensive laboratory equipment was performed that allowed LAMP detection of Thunnus albacares samples within 13 minutes. Due to its high specificity and sensitivity, the LAMP assay can be used as a rapid and on-site screening method for identifying Thunnus albacares, potentially providing a valuable monitoring tool for food authenticity control by the authorities.
Collapse
Affiliation(s)
- Ashraf Ali
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE) University of Foggia, Foggia, Italy
| | - Antonia Kreitlow
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Madeleine Plötz
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Giovanni Normanno
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE) University of Foggia, Foggia, Italy
| | - Amir Abdulmawjood
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
49
|
Park JW. Principles and Applications of Loop-Mediated Isothermal Amplification to Point-of-Care Tests. BIOSENSORS 2022; 12:bios12100857. [PMID: 36290994 PMCID: PMC9599884 DOI: 10.3390/bios12100857] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 05/03/2023]
Abstract
For the identification of nucleic acids, which are important biomarkers of pathogen-mediated diseases and viruses, the gold standard for NA-based diagnostic applications is polymerase chain reaction (PCR). However, the requirements of PCR limit its application as a rapid point-of-care diagnostic technique. To address the challenges associated with regular PCR, many isothermal amplification methods have been developed to accurately detect NAs. Isothermal amplification methods enable NA amplification without changes in temperature with simple devices, as well as faster amplification times compared with regular PCR. Of the isothermal amplifications, loop-mediated isothermal amplification (LAMP) is the most studied because it amplifies NAs rapidly and specifically. This review describes the principles of LAMP, the methods used to monitor the process of LAMP, and examples of biosensors that detect the amplicons of LAMP. In addition, current trends in the application of LAMP to smartphones and self-diagnosis systems for point-of-care tests are also discussed.
Collapse
Affiliation(s)
- Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Korea
| |
Collapse
|
50
|
Wang J, Ranjbaran M, Ault A, Verma MS. A loop-mediated isothermal amplification assay to detect Bacteroidales and assess risk of fecal contamination. Food Microbiol 2022; 110:104173. [DOI: 10.1016/j.fm.2022.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/04/2022]
|