1
|
Cui Y, Moreira MDA, Whalen KE, Barbe L, Shi Q, Koren K, Tenje M, Behrendt L. SlipO 2Chip - single-cell respiration under tuneable environments. LAB ON A CHIP 2024; 24:4786-4797. [PMID: 39291395 DOI: 10.1039/d4lc00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In disciplines like toxicology and pharmacology, oxygen (O2) respiration is a universal metric for evaluating the effects of chemicals across various model systems, including mammalian and microalgal cells. However, for these cells the common practice is to segregate populations into control and exposure groups, which assumes direct equivalence in their responses and does not take into account heterogeneity among individual cells. This lack of resolution impedes our ability to precisely investigate differences among experimental groups with small or limited sample sizes. To overcome this barrier, we introduce SlipO2Chip, an innovative glass microfluidic platform for precisely quantifying single-cell O2 respiration in the coordinated absence and presence of chemical solutes. SlipO2Chip comprises a wet-etched fused silica channel plate on the top and a dry-etched borosilicate microwell plate at the bottom. The microwells are coated with Pt(II) meso-tetra(pentafluorophenyl)porphine (PtTFPP), an O2 sensing optode material and an O2-independent reference dye. A custom 3D-printed holder facilitates the controlled horizontal movement ('slipping') of the channel plate over the microwell plate, thereby establishing or disrupting the fluid path over microwells. Collectively, these design elements enable the immobilization of single-cells in microwells, their exposure to controlled fluid flows, the coordinated opening and closing of microwells and repeated measurements of single-cell O2 respiration. Uniquely, by sequentially executing opening and closing it becomes possible to measure single-cell respiration prior to and after exposure to chemical solutes. In a proof-of-concept application, we utilized SlipO2Chip to measure the impact of increasing exposures of the marine bacterial signal 2-heptyl-4-quinolone (HHQ) on the dark respiration of the diatom Ditylum brightwellii at single-cell resolution. Results revealed a concentration-dependent decrease in per-cell O2 dark respiration, with a maximum reduction of 40.2% observed at HHQ concentrations exceeding 35.5 μM, and a half-maximal effective concentration (EC50) of 5.8 μM, consistent with that obtained via conventional bulk respiration methods. The ability of SlipO2Chip to sequentially assess the effects of chemical substances on single-cell O2 metabolism is advantageous for research where sample volumes are limited, such as clinical biopsies, studies involving rare microbial isolates, and toxicological studies aiming to address exposure effects while accounting for cell-to-cell variability.
Collapse
Affiliation(s)
- Yuan Cui
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | | | | | - Laurent Barbe
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Sweden
| | - Qian Shi
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Sweden
| | - Klaus Koren
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Maria Tenje
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Sweden
| | - Lars Behrendt
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Eren AM, Banfield JF. Modern microbiology: Embracing complexity through integration across scales. Cell 2024; 187:5151-5170. [PMID: 39303684 PMCID: PMC11450119 DOI: 10.1016/j.cell.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Microbes were the only form of life on Earth for most of its history, and they still account for the vast majority of life's diversity. They convert rocks to soil, produce much of the oxygen we breathe, remediate our sewage, and sustain agriculture. Microbes are vital to planetary health as they maintain biogeochemical cycles that produce and consume major greenhouse gases and support large food webs. Modern microbiologists analyze nucleic acids, proteins, and metabolites; leverage sophisticated genetic tools, software, and bioinformatic algorithms; and process and integrate complex and heterogeneous datasets so that microbial systems may be harnessed to address contemporary challenges in health, the environment, and basic science. Here, we consider an inevitably incomplete list of emergent themes in our discipline and highlight those that we recognize as the archetypes of its modern era that aim to address the most pressing problems of the 21st century.
Collapse
Affiliation(s)
- A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany; Marine Biological Laboratory, Woods Hole, MA, USA; Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Environmental Science Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Hernández-Magaña E, Kraft B. Nitrous oxide production and consumption by marine ammonia-oxidizing archaea under oxygen depletion. Front Microbiol 2024; 15:1410251. [PMID: 39296305 PMCID: PMC11408285 DOI: 10.3389/fmicb.2024.1410251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Ammonia-oxidizing archaea (AOA) are key players in the nitrogen cycle and among the most abundant microorganisms in the ocean, thriving even in oxygen-depleted ecosystems. AOA produce the greenhouse gas nitrous oxide (N2O) as a byproduct of ammonia oxidation. Additionally, the recent discovery of a nitric oxide dismutation pathway in the AOA isolate Nitrosopumilus maritimus points toward other N2O production and consumption pathways in AOA. AOA that perform NO dismutation when exposed to oxygen depletion, produce oxygen and dinitrogen as final products. Based on the transient accumulation of N2O coupled with oxygen accumulation, N2O has been proposed as an intermediate in this novel archaeal pathway. In this study, we spiked N2O to oxygen-depleted incubations with pure cultures of two marine AOA isolates that were performing NO dismutation. By using combinations of N compounds with different isotopic signatures (15NO2 - pool +44N2O spike and 14NO2 - pool +46N2O spike), we evaluated the N2O spike effects on the production of oxygen and the isotopic signature of N2 and N2O. The experiments confirmed that N2O is an intermediate in NO dismutation by AOA, distinguishing it from similar pathways in other microbial clades. Furthermore, we showed that AOA rapidly reduce high concentrations of spiked N2O to N2. These findings advance our understanding of microbial N2O production and consumption in oxygen-depleted settings and highlight AOA as potentially important key players in N2O turnover.
Collapse
Affiliation(s)
- Elisa Hernández-Magaña
- Nordcee, Department of Biology, Faculty of Sciences, University of Southern Denmark, Odense, Denmark
| | - Beate Kraft
- Nordcee, Department of Biology, Faculty of Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Xiang Q, Stryhanyuk H, Schmidt M, Kümmel S, Richnow HH, Zhu YG, Cui L, Musat N. Stable isotopes and nanoSIMS single-cell imaging reveals soil plastisphere colonizers able to assimilate sulfamethoxazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124197. [PMID: 38782163 DOI: 10.1016/j.envpol.2024.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The presence and accumulation of both, plastics and antibiotics in soils may lead to the colonization, selection, and propagation of soil bacteria with certain metabolic traits, e.g., antibiotic resistance, in the plastisphere. However, the impact of plastic-antibiotic tandem on the soil ecosystem functioning, particularly on microbial function and metabolism remains currently unexplored. Herein, we investigated the competence of soil bacteria to colonize plastics and degrade 13C-labeled sulfamethoxazole (SMX). Using single-cell imaging, isotope tracers, soil respiration and SMX mineralization bulk measurements we show that microbial colonization of polyethylene (PE) and polystyrene (PS) surfaces takes place within the first 30 days of incubation. Morphologically diverse microorganisms were colonizing both plastic types, with a slight preference for PE substrate. CARD-FISH bacterial cell counts on PE and PS surfaces formed under SMX amendment ranged from 5.36 × 103 to 2.06 × 104, and 2.06 × 103 to 3.43 × 103 hybridized cells mm-2, respectively. Nano-scale Secondary Ion Mass Spectrometry measurements show that 13C enrichment was highest at 130 days with values up to 1.29 atom%, similar to those of the 13CO2 pool (up to 1.26 atom%, or 22.55 ‰). Independent Mann-Whitney U test showed a significant difference between the control plastisphere samples incubated without SMX and those in 13C-SMX incubations (P < 0.001). Our results provide direct evidence demonstrating, at single-cell level, the capacity of bacterial colonizers of plastics to assimilate 13C-SMX from contaminated soils. These findings expand our knowledge on the role of soil-seeded plastisphere microbiota in the ecological functioning of soils impacted by anthropogenic stressors.
Collapse
Affiliation(s)
- Qian Xiang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Niculina Musat
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany; Department of Biology, Section for Microbiology, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
5
|
Allakhverdiev ES, Kossalbayev BD, Sadvakasova AK, Bauenova MO, Belkozhayev AM, Rodnenkov OV, Martynyuk TV, Maksimov GV, Allakhverdiev SI. Spectral insights: Navigating the frontiers of biomedical and microbiological exploration with Raman spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112870. [PMID: 38368635 DOI: 10.1016/j.jphotobiol.2024.112870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Raman spectroscopy (RS), a powerful analytical technique, has gained increasing recognition and utility in the fields of biomedical and biological research. Raman spectroscopic analyses find extensive application in the field of medicine and are employed for intricate research endeavors and diagnostic purposes. Consequently, it enjoys broad utilization within the realm of biological research, facilitating the identification of cellular classifications, metabolite profiling within the cellular milieu, and the assessment of pigment constituents within microalgae. This article also explores the multifaceted role of RS in these domains, highlighting its distinct advantages, acknowledging its limitations, and proposing strategies for enhancement.
Collapse
Affiliation(s)
- Elvin S Allakhverdiev
- National Medical Research Center of Cardiology named after academician E.I. Chazov, Academician Chazov 15А St., Moscow 121552, Russia; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Leninskie Gory 1/12, Moscow 119991, Russia.
| | - Bekzhan D Kossalbayev
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, Kazakhstan; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, 300308 Tianjin, China; Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan; Department of Chemical and Biochemical Engineering, Institute of Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan
| | - Asemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Ayaz M Belkozhayev
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan; Department of Chemical and Biochemical Engineering, Institute of Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Oleg V Rodnenkov
- National Medical Research Center of Cardiology named after academician E.I. Chazov, Academician Chazov 15А St., Moscow 121552, Russia
| | - Tamila V Martynyuk
- National Medical Research Center of Cardiology named after academician E.I. Chazov, Academician Chazov 15А St., Moscow 121552, Russia
| | - Georgy V Maksimov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Leninskie Gory 1/12, Moscow 119991, Russia
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, FRC PSCBR Russian Academy of Sciences, Pushchino 142290, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
6
|
Barbosa A, Miranda S, Azevedo NF, Cerqueira L, Azevedo AS. Imaging biofilms using fluorescence in situ hybridization: seeing is believing. Front Cell Infect Microbiol 2023; 13:1195803. [PMID: 37284501 PMCID: PMC10239779 DOI: 10.3389/fcimb.2023.1195803] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Biofilms are complex structures with an intricate relationship between the resident microorganisms, the extracellular matrix, and the surrounding environment. Interest in biofilms is growing exponentially given its ubiquity in so diverse fields such as healthcare, environmental and industry. Molecular techniques (e.g., next-generation sequencing, RNA-seq) have been used to study biofilm properties. However, these techniques disrupt the spatial structure of biofilms; therefore, they do not allow to observe the location/position of biofilm components (e.g., cells, genes, metabolites), which is particularly relevant to explore and study the interactions and functions of microorganisms. Fluorescence in situ hybridization (FISH) has been arguably the most widely used method for an in situ analysis of spatial distribution of biofilms. In this review, an overview on different FISH variants already applied on biofilm studies (e.g., CLASI-FISH, BONCAT-FISH, HiPR-FISH, seq-FISH) will be explored. In combination with confocal laser scanning microscopy, these variants emerged as a powerful approach to visualize, quantify and locate microorganisms, genes, and metabolites inside biofilms. Finally, we discuss new possible research directions for the development of robust and accurate FISH-based approaches that will allow to dig deeper into the biofilm structure and function.
Collapse
Affiliation(s)
- Ana Barbosa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sónia Miranda
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Laura Cerqueira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Andreia S. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Larkin AA, Hagstrom GI, Brock ML, Garcia NS, Martiny AC. Basin-scale biogeography of Prochlorococcus and SAR11 ecotype replication. THE ISME JOURNAL 2023; 17:185-194. [PMID: 36273241 PMCID: PMC9589681 DOI: 10.1038/s41396-022-01332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
Establishing links between microbial diversity and environmental processes requires resolving the high degree of functional variation among closely related lineages or ecotypes. Here, we implement and validate an improved metagenomic approach that estimates the spatial biogeography and environmental regulation of ecotype-specific replication patterns (RObs) across ocean regions. A total of 719 metagenomes were analyzed from meridional Bio-GO-SHIP sections in the Atlantic and Indian Ocean. Accounting for sequencing bias and anchoring replication estimates in genome structure were critical for identifying physiologically relevant biological signals. For example, ecotypes within the dominant marine cyanobacteria Prochlorococcus exhibited distinct diel cycles in RObs that peaked between 19:00-22:00. Additionally, both Prochlorococcus ecotypes and ecotypes within the highly abundant heterotroph Pelagibacter (SAR11) demonstrated systematic biogeographies in RObs that differed from spatial patterns in relative abundance. Finally, RObs was significantly regulated by nutrient stress and temperature, and explained by differences in the genomic potential for nutrient transport, energy production, cell wall structure, and replication. Our results suggest that our new approach to estimating replication is reflective of gross population growth. Moreover, this work reveals that the interaction between adaptation and environmental change drives systematic variability in replication patterns across ocean basins that is ecotype-specific, adding an activity-based dimension to our understanding of microbial niche space.
Collapse
Affiliation(s)
- Alyse A Larkin
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - George I Hagstrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Melissa L Brock
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Nathan S Garcia
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, CA, USA.
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA.
| |
Collapse
|
8
|
Zhang Z, Bao C, Jiang L, Wang S, Wang K, Lu C, Fang H. When cancer drug resistance meets metabolomics (bulk, single-cell and/or spatial): Progress, potential, and perspective. Front Oncol 2023; 12:1054233. [PMID: 36686803 PMCID: PMC9854130 DOI: 10.3389/fonc.2022.1054233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Resistance to drug treatment is a critical barrier in cancer therapy. There is an unmet need to explore cancer hallmarks that can be targeted to overcome this resistance for therapeutic gain. Over time, metabolic reprogramming has been recognised as one hallmark that can be used to prevent therapeutic resistance. With the advent of metabolomics, targeting metabolic alterations in cancer cells and host patients represents an emerging therapeutic strategy for overcoming cancer drug resistance. Driven by technological and methodological advances in mass spectrometry imaging, spatial metabolomics involves the profiling of all the metabolites (metabolomics) so that the spatial information is captured bona fide within the sample. Spatial metabolomics offers an opportunity to demonstrate the drug-resistant tumor profile with metabolic heterogeneity, and also poses a data-mining challenge to reveal meaningful insights from high-dimensional spatial information. In this review, we discuss the latest progress, with the focus on currently available bulk, single-cell and spatial metabolomics technologies and their successful applications in pre-clinical and translational studies on cancer drug resistance. We provide a summary of metabolic mechanisms underlying cancer drug resistance from different aspects; these include the Warburg effect, altered amino acid/lipid/drug metabolism, generation of drug-resistant cancer stem cells, and immunosuppressive metabolism. Furthermore, we propose solutions describing how to overcome cancer drug resistance; these include early detection during cancer initiation, monitoring of clinical drug response, novel anticancer drug and target metabolism, immunotherapy, and the emergence of spatial metabolomics. We conclude by describing the perspectives on how spatial omics approaches (integrating spatial metabolomics) could be further developed to improve the management of drug resistance in cancer patients.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaohui Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Lu
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Arandia-Gorostidi N, Parada AE, Dekas AE. Single-cell view of deep-sea microbial activity and intracommunity heterogeneity. THE ISME JOURNAL 2023; 17:59-69. [PMID: 36202927 PMCID: PMC9750969 DOI: 10.1038/s41396-022-01324-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Microbial activity in the deep sea is cumulatively important for global elemental cycling yet is difficult to quantify and characterize due to low cell density and slow growth. Here, we investigated microbial activity off the California coast, 50-4000 m water depth, using sensitive single-cell measurements of stable-isotope uptake and nucleic acid sequencing. We observed the highest yet reported proportion of active cells in the bathypelagic (up to 78%) and calculated that deep-sea cells (200-4000 m) are responsible for up to 34% of total microbial biomass synthesis in the water column. More cells assimilated nitrogen derived from amino acids than ammonium, and at higher rates. Nitrogen was assimilated preferentially to carbon from amino acids in surface waters, while the reverse was true at depth. We introduce and apply the Gini coefficient, an established equality metric in economics, to quantify intracommunity heterogeneity in microbial anabolic activity. We found that heterogeneity increased with water depth, suggesting a minority of cells contribute disproportionately to total activity in the deep sea. This observation was supported by higher RNA/DNA ratios for low abundance taxa at depth. Intracommunity activity heterogeneity is a fundamental and rarely measured ecosystem parameter and may have implications for community function and resilience.
Collapse
Affiliation(s)
| | - A E Parada
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - A E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Telesh IV, Skarlato SO. Harmful Blooms of Potentially Toxic Dinoflagellates in the Baltic Sea: Ecological, Cellular, and Molecular Background. RUSS J ECOL+ 2022. [DOI: 10.1134/s1067413622060157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Functional amyloid in a lipid-like environment: a merry dance of many steps. Essays Biochem 2022; 66:1035-1046. [PMID: 36205438 DOI: 10.1042/ebc20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
Functional amyloid, which unlike its pathological counterpart serves a biological purpose, is produced in a carefully orchestrated sequence of events. In bacteria, the major amyloid component is transported over the periplasm and through the outer membrane to assemble on the bacterial cell surface. During its life time, the amyloid protein may be exposed to both membrane lipids and extracellular surfactant, making it relevant to study its interactions with these components in vitro. Particularly for charged surfactants, the interaction is quite complex and highly dependent on the surfactant:protein molar ratio. Low ratios typically promote aggregation, likely by binding the proteins to micelles and thus increasing the local concentration of proteins, while higher concentrations see an inhibition of the same process as the protein is diluted out and immobilized on individual micelles. This is particularly pronounced for strongly anionic surfactants like SDS; the naturally occurring biosurfactant rhamnolipid interacts more weakly with the protein, which still not only allows aggregation but also leads to less detrimental effects at higher ratios. Similarly, anionic vesicle-forming lipids largely stimulate aggregation likely because of weaker interactions. Anionic lysolipids, thanks to their micelle-forming properties, resemble SDS in their impact on fibrillation. There are also examples of systems where membrane binding sequesters an otherwise amyloidogenic sequence and prevents fibrillation or-quite the opposite- liberates another part of the protein to engage in self-assembly. Thus, membranes and surfactants have very varied roles to play in the biogenesis and function of bacterial amyloid.
Collapse
|
12
|
Shree B, Jayakrishnan U, Bhushan S. Impact of key parameters involved with plant-microbe interaction in context to global climate change. Front Microbiol 2022; 13:1008451. [PMID: 36246210 PMCID: PMC9561941 DOI: 10.3389/fmicb.2022.1008451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have a critical influence on climate change that directly or indirectly impacts plant and microbial diversity on our planet. Due to climate change, there is an increase in the intensity and frequency of extreme environmental events such as temperature rise, drought, and precipitation. The increase in greenhouse gas emissions such as CO2, CH4, NOx, water vapor, increase in global temperature, and change in rainfall patterns have impacted soil–plant-microbe interactions, which poses a serious threat to food security. Microbes in the soil play an essential role in plants’ resilience to abiotic and biotic stressors. The soil microbial communities are sensitive and responsive to these stressors. Therefore, a systemic approach to climate adaptation will be needed which acknowledges the multidimensional nature of plant-microbe-environment interactions. In the last two scores of years, there has been an enhancement in the understanding of plant’s response to microbes at physiological, biochemical, and molecular levels due to the availability of techniques and tools. This review highlights some of the critical factors influencing plant-microbe interactions under stress. The association and response of microbe and plants as a result of several stresses such as temperature, salinity, metal toxicity, and greenhouse gases are also depicted. New tools to study the molecular complexity of these interactions, such as genomic and sequencing approaches, which provide researchers greater accuracy, reproducibility, and flexibility for exploring plant-microbe–environment interactions under a changing climate, are also discussed in the review, which will be helpful in the development of resistant crops/plants in present and future.
Collapse
Affiliation(s)
- Bharti Shree
- Department of Agricultural Biotechnology, College of Agriculture, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | | | - Shashi Bhushan
- Department of Agriculture and Biosystem Engineering, North Dakota State University, Fargo, ND, United States
- *Correspondence: Shashi Bhushan,
| |
Collapse
|
13
|
Current Techniques to Study Beneficial Plant-Microbe Interactions. Microorganisms 2022; 10:microorganisms10071380. [PMID: 35889099 PMCID: PMC9317800 DOI: 10.3390/microorganisms10071380] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Many different experimental approaches have been applied to elaborate and study the beneficial interactions between soil bacteria and plants. Some of these methods focus on changes to the plant and others are directed towards assessing the physiology and biochemistry of the beneficial plant growth-promoting bacteria (PGPB). Here, we provide an overview of some of the current techniques that have been employed to study the interaction of plants with PGPB. These techniques include the study of plant microbiomes; the use of DNA genome sequencing to understand the genes encoded by PGPB; the use of transcriptomics, proteomics, and metabolomics to study PGPB and plant gene expression; genome editing of PGPB; encapsulation of PGPB inoculants prior to their use to treat plants; imaging of plants and PGPB; PGPB nitrogenase assays; and the use of specialized growth chambers for growing and monitoring bacterially treated plants.
Collapse
|
14
|
Spruill ML, Maletic-Savatic M, Martin H, Li F, Liu X. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging. Biochem Pharmacol 2022; 201:115080. [PMID: 35561842 PMCID: PMC9744413 DOI: 10.1016/j.bcp.2022.115080] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Mass spectrometry imaging (MSI) is emerging as a powerful analytical tool for detection, quantification, and simultaneous spatial molecular imaging of endogenous and exogenous molecules via in situ mass spectrometry analysis of thin tissue sections without the requirement of chemical labeling. The MSI generates chemically specific and spatially resolved ion distribution information for administered drugs and metabolites, which allows numerous applications for studies involving various stages of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). MSI-based pharmacokinetic imaging analysis provides a histological context and cellular environment regarding dynamic drug distribution and metabolism processes, and facilitates the understanding of the spatial pharmacokinetics and pharmacodynamic properties of drugs. Herein, we discuss the MSI's current technological developments that offer qualitative, quantitative, and spatial location information of small molecule drugs, antibody, and oligonucleotides macromolecule drugs, and their metabolites in preclinical and clinical tissue specimens. We highlight the macro and micro drug-distribution in the whole-body, brain, lung, liver, kidney, stomach, intestine tissue sections, organoids, and the latest applications of MSI in pharmaceutical ADMET studies.
Collapse
Affiliation(s)
- Michelle L Spruill
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Feng Li
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
15
|
Ge X, Pereira FC, Mitteregger M, Berry D, Zhang M, Hausmann B, Zhang J, Schintlmeister A, Wagner M, Cheng JX. SRS-FISH: A high-throughput platform linking microbiome metabolism to identity at the single-cell level. Proc Natl Acad Sci U S A 2022; 119:e2203519119. [PMID: 35727976 PMCID: PMC9245642 DOI: 10.1073/pnas.2203519119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/26/2022] Open
Abstract
One of the biggest challenges in microbiome research in environmental and medical samples is to better understand functional properties of microbial community members at a single-cell level. Single-cell isotope probing has become a key tool for this purpose, but the current detection methods for determination of isotope incorporation into single cells do not allow high-throughput analyses. Here, we report on the development of an imaging-based approach termed stimulated Raman scattering-two-photon fluorescence in situ hybridization (SRS-FISH) for high-throughput metabolism and identity analyses of microbial communities with single-cell resolution. SRS-FISH offers an imaging speed of 10 to 100 ms per cell, which is two to three orders of magnitude faster than achievable by state-of-the-art methods. Using this technique, we delineated metabolic responses of 30,000 individual cells to various mucosal sugars in the human gut microbiome via incorporation of deuterium from heavy water as an activity marker. Application of SRS-FISH to investigate the utilization of host-derived nutrients by two major human gut microbiome taxa revealed that response to mucosal sugars tends to be dominated by Bacteroidales, with an unexpected finding that Clostridia can outperform Bacteroidales at foraging fucose. With high sensitivity and speed, SRS-FISH will enable researchers to probe the fine-scale temporal, spatial, and individual activity patterns of microbial cells in complex communities with unprecedented detail.
Collapse
Affiliation(s)
- Xiaowei Ge
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215
| | - Fátima C. Pereira
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, 1030 Vienna, Austria
| | - Matthias Mitteregger
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, 1030 Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, 1030 Vienna, Austria
| | - Meng Zhang
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Jing Zhang
- Department of Biomedical Engineering, Photonics Center, Boston University, Boston, MA 02215
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, 1030 Vienna, Austria
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, 1030 Vienna, Austria
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Ji-Xin Cheng
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Photonics Center, Boston University, Boston, MA 02215
| |
Collapse
|
16
|
Klotz F, Kitzinger K, Ngugi DK, Büsing P, Littmann S, Kuypers MMM, Schink B, Pester M. Quantification of archaea-driven freshwater nitrification from single cell to ecosystem levels. THE ISME JOURNAL 2022; 16:1647-1656. [PMID: 35260828 PMCID: PMC9122916 DOI: 10.1038/s41396-022-01216-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 05/09/2023]
Abstract
Deep oligotrophic lakes sustain large populations of the class Nitrososphaeria (Thaumarchaeota) in their hypolimnion. They are thought to be the key ammonia oxidizers in this habitat, but their impact on N-cycling in lakes has rarely been quantified. We followed this archaeal population in one of Europe's largest lakes, Lake Constance, for two consecutive years using metagenomics and metatranscriptomics combined with stable isotope-based activity measurements. An abundant (8-39% of picoplankton) and transcriptionally active archaeal ecotype dominated the nitrifying community. It represented a freshwater-specific species present in major inland water bodies, for which we propose the name "Candidatus Nitrosopumilus limneticus". Its biomass corresponded to 12% of carbon stored in phytoplankton over the year´s cycle. Ca. N. limneticus populations incorporated significantly more ammonium than most other microorganisms in the hypolimnion and were driving potential ammonia oxidation rates of 6.0 ± 0.9 nmol l‒1 d‒1, corresponding to potential cell-specific rates of 0.21 ± 0.11 fmol cell-1 d-1. At the ecosystem level, this translates to a maximum capacity of archaea-driven nitrification of 1.76 × 109 g N-ammonia per year or 11% of N-biomass produced annually by phytoplankton. We show that ammonia-oxidizing archaea play an equally important role in the nitrogen cycle of deep oligotrophic lakes as their counterparts in marine ecosystems.
Collapse
Affiliation(s)
- Franziska Klotz
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, D-78457, Germany
| | - Katharina Kitzinger
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - David Kamanda Ngugi
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstr. 7B, D-38124, Braunschweig, Germany
| | - Petra Büsing
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstr. 7B, D-38124, Braunschweig, Germany
| | - Sten Littmann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Marcel M M Kuypers
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, D-78457, Germany
| | - Michael Pester
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, D-78457, Germany.
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstr. 7B, D-38124, Braunschweig, Germany.
- Technical University of Braunschweig, Institute for Microbiology, Spielmannstrasse 7, D-38106, Braunschweig, Germany.
| |
Collapse
|
17
|
Bessarab I, Maszenan AM, Haryono MAS, Arumugam K, Saw NMMT, Seviour RJ, Williams RBH. Comparative Genomics of Members of the Genus Defluviicoccus With Insights Into Their Ecophysiological Importance. Front Microbiol 2022; 13:834906. [PMID: 35495637 PMCID: PMC9041414 DOI: 10.3389/fmicb.2022.834906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the genus Defluviicoccus occur often at high abundances in activated sludge wastewater treatment plants designed to remove phosphorus, where biomass is subjected to alternating anaerobic feed/aerobic famine conditions, believed to favor the proliferation of organisms like Ca. Accumulibacter and other phosphate-accumulating organisms (PAO), and Defluviicoccus. All have a capacity to assimilate readily metabolizable substrates and store them intracellularly during the anaerobic feed stage so that under the subsequent famine aerobic stage, these can be used to synthesize polyphosphate reserves by the PAO and glycogen by Defluviicoccus. Consequently, Defluviicoccus is described as a glycogen-accumulating organism or GAO. Because they share a similar anaerobic phenotype, it has been proposed that at high Defluviicoccus abundance, the PAO are out-competed for assimilable metabolites anaerobically, and hence aerobic P removal capacity is reduced. Several Defluviicoccus whole genome sequences have been published (Ca. Defluviicoccus tetraformis, Defluviicoccus GAO-HK, and Ca. Defluviicoccus seviourii). The available genomic data of these suggest marked metabolic differences between them, some of which have ecophysiological implications. Here, we describe the whole genome sequence of the type strain Defluviicoccus vanusT, the only cultured member of this genus, and a detailed comparative re-examination of all extant Defluviicoccus genomes. Each, with one exception, which appears not to be a member of this genus, contains the genes expected of GAO members, in possessing multiple copies of those for glycogen biosynthesis and catabolism, and anaerobic polyhydroxyalkanoate (PHA) synthesis. Both 16S rRNA and genome sequence data suggest that the current recognition of four clades is insufficient to embrace their phylogenetic biodiversity, but do not support the view that they should be re-classified into families other than their existing location in the Rhodospirillaceae. As expected, considerable variations were seen in the presence and numbers of genes encoding properties associated with key substrate assimilation and metabolic pathways. Two genomes also carried the pit gene for synthesis of the low-affinity phosphate transport protein, pit, considered by many to distinguish all PAO from GAO. The data re-emphasize the risks associated with extrapolating the data generated from a single Defluviicoccus population to embrace all members of that genus.
Collapse
Affiliation(s)
- Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Abdul Majid Maszenan
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Krithika Arumugam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Robert J Seviour
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Riemann L, Rahav E, Passow U, Grossart HP, de Beer D, Klawonn I, Eichner M, Benavides M, Bar-Zeev E. Planktonic Aggregates as Hotspots for Heterotrophic Diazotrophy: The Plot Thickens. Front Microbiol 2022; 13:875050. [PMID: 35464923 PMCID: PMC9019601 DOI: 10.3389/fmicb.2022.875050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Biological dinitrogen (N2) fixation is performed solely by specialized bacteria and archaea termed diazotrophs, introducing new reactive nitrogen into aquatic environments. Conventionally, phototrophic cyanobacteria are considered the major diazotrophs in aquatic environments. However, accumulating evidence indicates that diverse non-cyanobacterial diazotrophs (NCDs) inhabit a wide range of aquatic ecosystems, including temperate and polar latitudes, coastal environments and the deep ocean. NCDs are thus suspected to impact global nitrogen cycling decisively, yet their ecological and quantitative importance remain unknown. Here we review recent molecular and biogeochemical evidence demonstrating that pelagic NCDs inhabit and thrive especially on aggregates in diverse aquatic ecosystems. Aggregates are characterized by reduced-oxygen microzones, high C:N ratio (above Redfield) and high availability of labile carbon as compared to the ambient water. We argue that planktonic aggregates are important loci for energetically-expensive N2 fixation by NCDs and propose a conceptual framework for aggregate-associated N2 fixation. Future studies on aggregate-associated diazotrophy, using novel methodological approaches, are encouraged to address the ecological relevance of NCDs for nitrogen cycling in aquatic environments.
Collapse
Affiliation(s)
- Lasse Riemann
- Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Uta Passow
- Ocean Science Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hans-Peter Grossart
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany.,Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Isabell Klawonn
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Meri Eichner
- Institute of Microbiology CAS, Centre ALGATECH, Třeboň, Czechia
| | - Mar Benavides
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France.,Turing Center for Living Systems, Aix-Marseille University, Marseille, France
| | - Edo Bar-Zeev
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research (ZIWR), Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
19
|
Shigeto S, Takeshita N. Raman Micro-spectroscopy and Imaging of Filamentous Fungi. Microbes Environ 2022; 37. [PMID: 35387945 PMCID: PMC10037093 DOI: 10.1264/jsme2.me22006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Filamentous fungi grow by the elongation of tubular cells called hyphae and form mycelia through repeated hyphal tip growth and branching. Since hyphal growth is closely related to the ability to secrete large amounts of enzymes or invade host cells, a more detailed understanding and the control of its growth are important in fungal biotechnology, ecology, and pathogenesis. Previous studies using fluorescence imaging revealed many of the molecular mechanisms involved in hyphal growth. Raman microspectroscopy and imaging methods are now attracting increasing attention as powerful alternatives due to their high chemical specificity and label-free, non-destructive properties. Spatially resolved information on the relative abundance, structure, and chemical state of multiple intracellular components may be simultaneously obtained. Although Raman studies on filamentous fungi are still limited, this review introduces recent findings from Raman studies on filamentous fungi and discusses their potential use in the future.
Collapse
Affiliation(s)
- Shinsuke Shigeto
- Department of Chemistry, School of Science, Kwansei Gakuin University
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
20
|
Polerecky L, Eichner M, Masuda T, Zavřel T, Rabouille S, Campbell DA, Halsey K. Calculation and Interpretation of Substrate Assimilation Rates in Microbial Cells Based on Isotopic Composition Data Obtained by nanoSIMS. Front Microbiol 2021; 12:621634. [PMID: 34917040 PMCID: PMC8670600 DOI: 10.3389/fmicb.2021.621634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Stable isotope probing (SIP) combined with nano-scale secondary ion mass spectrometry (nanoSIMS) is a powerful approach to quantify assimilation rates of elements such as C and N into individual microbial cells. Here, we use mathematical modeling to investigate how the derived rate estimates depend on the model used to describe substrate assimilation by a cell during a SIP incubation. We show that the most commonly used model, which is based on the simplifying assumptions of linearly increasing biomass of individual cells over time and no cell division, can yield underestimated assimilation rates when compared to rates derived from a model that accounts for cell division. This difference occurs because the isotopic labeling of a dividing cell increases more rapidly over time compared to a non-dividing cell and becomes more pronounced as the labeling increases above a threshold value that depends on the cell cycle stage of the measured cell. Based on the modeling results, we present formulae for estimating assimilation rates in cells and discuss their underlying assumptions, conditions of applicability, and implications for the interpretation of intercellular variability in assimilation rates derived from nanoSIMS data, including the impacts of storage inclusion metabolism. We offer the formulae as a Matlab script to facilitate rapid data evaluation by nanoSIMS users.
Collapse
Affiliation(s)
- Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Meri Eichner
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Takako Masuda
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Tomáš Zavřel
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Sophie Rabouille
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-mer, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Banyuls-sur-mer, France
| | | | - Kimberly Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
21
|
Thomas F, Le Duff N, Wu TD, Cébron A, Uroz S, Riera P, Leroux C, Tanguy G, Legeay E, Guerquin-Kern JL. Isotopic tracing reveals single-cell assimilation of a macroalgal polysaccharide by a few marine Flavobacteria and Gammaproteobacteria. THE ISME JOURNAL 2021; 15:3062-3075. [PMID: 33953365 PMCID: PMC8443679 DOI: 10.1038/s41396-021-00987-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Algal polysaccharides constitute a diverse and abundant reservoir of organic matter for marine heterotrophic bacteria, central to the oceanic carbon cycle. We investigated the uptake of alginate, a major brown macroalgal polysaccharide, by microbial communities from kelp-dominated coastal habitats. Congruent with cell growth and rapid substrate utilization, alginate amendments induced a decrease in bacterial diversity and a marked compositional shift towards copiotrophic bacteria. We traced 13C derived from alginate into specific bacterial incorporators and quantified the uptake activity at the single-cell level, using halogen in situ hybridization coupled to nanoscale secondary ion mass spectrometry (HISH-SIMS) and DNA stable isotope probing (DNA-SIP). Cell-specific alginate uptake was observed for Gammaproteobacteria and Flavobacteriales, with carbon assimilation rates ranging from 0.14 to 27.50 fg C µm-3 h-1. DNA-SIP revealed that only a few initially rare Flavobacteriaceae and Alteromonadales taxa incorporated 13C from alginate into their biomass, accounting for most of the carbon assimilation based on bulk isotopic measurements. Functional screening of metagenomic libraries gave insights into the genes of alginolytic Alteromonadales active in situ. These results highlight the high degree of niche specialization in heterotrophic communities and help constraining the quantitative role of polysaccharide-degrading bacteria in coastal ecosystems.
Collapse
Affiliation(s)
- François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France.
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Ting-Di Wu
- Institut Curie, Université Paris-Saclay, Paris, France
- Université Paris-Saclay, INSERM US43, CNRS UMS2016, Multimodal Imaging Center, Orsay, France
| | | | - Stéphane Uroz
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, France
| | - Pascal Riera
- Sorbonne Université, CNRS, UMR7144, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Cédric Leroux
- CNRS, Sorbonne Université, FR2424, Metabomer, Station Biologique de Roscoff, Roscoff, France
| | - Gwenn Tanguy
- CNRS, Sorbonne Université, FR2424, Genomer, Station Biologique de Roscoff, Roscoff, France
| | - Erwan Legeay
- CNRS, Sorbonne Université, FR2424, Genomer, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Luc Guerquin-Kern
- Institut Curie, Université Paris-Saclay, Paris, France
- Université Paris-Saclay, INSERM US43, CNRS UMS2016, Multimodal Imaging Center, Orsay, France
| |
Collapse
|
22
|
Calabrese F, Stryhanyuk H, Moraru C, Schlömann M, Wick LY, Richnow HH, Musat F, Musat N. Metabolic history and metabolic fitness as drivers of anabolic heterogeneity in isogenic microbial populations. Environ Microbiol 2021; 23:6764-6776. [PMID: 34472201 DOI: 10.1111/1462-2920.15756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions. We applied time-resolved stable isotope probing and nanoscale secondary ion mass spectrometry to quantify substrate assimilation by individual cells of Pseudomonas putida, P. stutzeri and Thauera aromatica. Acetate and benzoate at different concentrations were used as substrates. Anabolic heterogeneity was quantified by the cumulative differentiation tendency index. We observed two major, opposing trends of anabolic heterogeneity over time. Most often, microbial populations started as highly heterogeneous, with heterogeneity decreasing by various degrees over time. The second, less frequently observed trend, saw microbial populations starting at low or very low heterogeneity, and remaining largely stable over time. We explain these trends as an interplay of metabolic history (e.g. former growth substrate or other nutrient limitations) and metabolic fitness (i.e. the fine-tuning of metabolic pathways to process a defined growth substrate). Our results offer a new viewpoint on the intra-population functional diversification often encountered in the environment, and suggests that some microbial populations may be intrinsically heterogeneous.
Collapse
Affiliation(s)
- Federica Calabrese
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Cristina Moraru
- Institute for Chemistry and Biology of Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Michael Schlömann
- Department of Environmental Microbiology, Institute of Biosciences, TU-Bergakademie Freiberg, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
23
|
Cryptic Constituents: The Paradox of High Flux–Low Concentration Components of Aquatic Ecosystems. WATER 2021. [DOI: 10.3390/w13162301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interface between terrestrial ecosystems and inland waters is an important link in the global carbon cycle. However, the extent to which allochthonous organic matter entering freshwater systems plays a major role in microbial and higher-trophic-level processes is under debate. Human perturbations can alter fluxes of terrestrial carbon to aquatic environments in complex ways. The biomass and production of aquatic microbes are traditionally thought to be resource limited via stoichiometric constraints such as nutrient ratios or the carbon standing stock at a given timepoint. Low concentrations of a particular constituent, however, can be strong evidence of its importance in food webs. High fluxes of a constituent are often associated with low concentrations due to high uptake rates, particularly in aquatic food webs. A focus on biomass rather than turnover can lead investigators to misconstrue dissolved organic carbon use by bacteria. By combining tracer methods with mass balance calculations, we reveal hidden patterns in aquatic ecosystems that emphasize fluxes, turnover rates, and molecular interactions. We suggest that this approach will improve forecasts of aquatic ecosystem responses to warming or altered nitrogen usage.
Collapse
|
24
|
From the ground up: Building predictions for how climate change will affect belowground mutualisms, floral traits, and bee behavior. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Maria Ranieri A, Vezzelli M, Leslie KG, Huang S, Stagni S, Jacquemin D, Jiang H, Hubbard A, Rigamonti L, Watkin ELJ, Ogden MI, New EJ, Massi M. Structure illumination microscopy imaging of lipid vesicles in live bacteria with naphthalimide-appended organometallic complexes. Analyst 2021; 146:3818-3822. [PMID: 34036982 DOI: 10.1039/d1an00363a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a lack of molecular probes for imaging bacteria, in comparison to the array of such tools available for the imaging of mammalian cells. Here, organometallic molecular probes have been developed and assessed for bacterial imaging, designed to have the potential to support multiple imaging modalities. The chemical structure of the probes is designed around a metal-naphthalimide structure. The 4-amino-1,8-naphthalimide moiety, covalently appended through a pyridine ancillary ligand, acts as a luminescent probe for super-resolution microscopy. On the other hand, the metal centre, rhenium(i) or platinum(ii) in the current study, enables techniques such as nanoSIMS. While the rhenium(i) complex was not sufficiently stable to be used as a probe, the platinum(ii) analogue showed good chemical and biological stability. Structured illumination microscopy (SIM) imaging on live Bacillus cereus confirmed the suitability of the probe for super-resolution microscopy. NanoSIMS analysis was used to monitor the uptake of the platinum(ii) complex within the bacteria and demonstrate the potential of this chemical architecture to enable multimodal imaging. The successful combination of these two moieties introduces a platform that could lead to a versatile range of multi-functional probes for bacteria.
Collapse
Affiliation(s)
- Anna Maria Ranieri
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, WA, Australia.
| | - Matteo Vezzelli
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Kathryn G Leslie
- School of Chemistry, The University of Sydney, 2006 NSW, Australia.
| | - Song Huang
- Centre for Microscopy, Characterisation and Analysis, Univsersity of Western Australia, 6009 Perth, WA, Australia
| | - Stefano Stagni
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Denis Jacquemin
- Laboratoire CEISAM, UMR CNRS 6230, Universit8 de Nantes, 2 Rue de la HoussiniHre, BP 92208, 44322 Nantes Cedex 3, France
| | - Haibo Jiang
- Centre for Microscopy, Characterisation and Analysis, Univsersity of Western Australia, 6009 Perth, WA, Australia
| | - Alysia Hubbard
- Centre for Microscopy, Characterisation and Analysis, Univsersity of Western Australia, 6009 Perth, WA, Australia
| | - Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Elizabeth L J Watkin
- Curtin Medical School, Curtin University, Kent Street, Bentley 6102 WA, Australia
| | - Mark I Ogden
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, WA, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, 2006 NSW, Australia.
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, WA, Australia.
| |
Collapse
|
26
|
Combining SIMS and mechanistic modelling to reveal nutrient kinetics in an algal-bacterial mutualism. PLoS One 2021; 16:e0251643. [PMID: 34014955 PMCID: PMC8136852 DOI: 10.1371/journal.pone.0251643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
Microbial communities are of considerable significance for biogeochemical processes, for the health of both animals and plants, and for biotechnological purposes. A key feature of microbial interactions is the exchange of nutrients between cells. Isotope labelling followed by analysis with secondary ion mass spectrometry (SIMS) can identify nutrient fluxes and heterogeneity of substrate utilisation on a single cell level. Here we present a novel approach that combines SIMS experiments with mechanistic modelling to reveal otherwise inaccessible nutrient kinetics. The method is applied to study the onset of a synthetic mutualistic partnership between a vitamin B12-dependent mutant of the alga Chlamydomonas reinhardtii and the B12-producing, heterotrophic bacterium Mesorhizobium japonicum, which is supported by algal photosynthesis. Results suggest that an initial pool of fixed carbon delays the onset of mutualistic cross-feeding; significantly, our approach allows the first quantification of this expected delay. Our method is widely applicable to other microbial systems, and will contribute to furthering a mechanistic understanding of microbial interactions.
Collapse
|
27
|
Schwendner P, Nguyen AN, Schuerger AC. Use of NanoSIMS to Identify the Lower Limits of Metabolic Activity and Growth by Serratia liquefaciens Exposed to Sub-Zero Temperatures. Life (Basel) 2021; 11:life11050459. [PMID: 34065549 PMCID: PMC8161314 DOI: 10.3390/life11050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Serratia liquefaciens is a cold-adapted facultative anaerobic astrobiology model organism with the ability to grow at a Martian atmospheric pressure of 7 hPa. Currently there is a lack of data on its limits of growth and metabolic activity at sub-zero temperatures found in potential habitable regions on Mars. Growth curves and nano-scale secondary ion mass spectrometry (NanoSIMS) were used to characterize the growth and metabolic threshold for S. liquefaciens ATCC 27,592 grown at and below 0 °C. Cells were incubated in Spizizen medium containing three stable isotopes substituting their unlabeled counterparts; i.e., 13C-glucose, (15NH4)2SO4, and H218O; at 0, −1.5, −3, −5, −10, or −15 °C. The isotopic ratios of 13C/12C, 15N/14N, and 18O/16O and their corresponding fractions were determined for 240 cells. NanoSIMS results revealed that with decreasing temperature the cellular amounts of labeled ions decreased indicating slower metabolic rates for isotope uptake and incorporation. Metabolism was significantly reduced at −1.5 and −3 °C, almost halted at −5 °C, and shut-down completely at or below −10 °C. While growth was observed at 0 °C after 5 days, samples incubated at −1.5 and −3 °C exhibited significantly slower growth rates until growth was detected at 70 days. In contrast, cell densities decreased by at least half an order of magnitude over 70 days in cultures incubated at ≤ −5 °C. Results suggest that S. liquefaciens, if transported to Mars, might be able to metabolize and grow in shallow sub-surface niches at temperatures above −5 °C and might survive—but not grow—at temperatures below −5 °C.
Collapse
Affiliation(s)
- Petra Schwendner
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
- Correspondence:
| | - Ann N. Nguyen
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Andrew C. Schuerger
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
| |
Collapse
|
28
|
Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P. Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol Rev 2021; 44:874-908. [PMID: 32785584 DOI: 10.1093/femsre/fuaa037] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Nitrification is the microbial conversion of reduced forms of nitrogen (N) to nitrate (NO3-), and in fertilized soils it can lead to substantial N losses via NO3- leaching or nitrous oxide (N2O) production. To limit such problems, synthetic nitrification inhibitors have been applied but their performance differs between soils. In recent years, there has been an increasing interest in the occurrence of biological nitrification inhibition (BNI), a natural phenomenon according to which certain plants can inhibit nitrification through the release of active compounds in root exudates. Here, we synthesize the current state of research but also unravel knowledge gaps in the field. The nitrification process is discussed considering recent discoveries in genomics, biochemistry and ecology of nitrifiers. Secondly, we focus on the 'where' and 'how' of BNI. The N transformations and their interconnections as they occur in, and are affected by, the rhizosphere, are also discussed. The NH4+ and NO3- retention pathways alternative to BNI are reviewed as well. We also provide hypotheses on how plant compounds with putative BNI ability can reach their targets inside the cell and inhibit ammonia oxidation. Finally, we discuss a set of techniques that can be successfully applied to solve unresearched questions in BNI studies.
Collapse
Affiliation(s)
- Pierfrancesco Nardi
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Graeme W Nicol
- Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, 69134, France
| | - Giancarlo Renella
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Centro Ecotekne - via Provinciale Lecce-Monteroni, I-73100, Lecce, Italy
| | - Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Alessandra Trinchera
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Paolo Nannipieri
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| |
Collapse
|
29
|
Deuterium-labeled Raman tracking of glucose accumulation and protein metabolic dynamics in Aspergillus nidulans hyphal tips. Sci Rep 2021; 11:1279. [PMID: 33446770 PMCID: PMC7809412 DOI: 10.1038/s41598-020-80270-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Filamentous fungi grow exclusively at their tips, where many growth-related fungal processes, such as enzyme secretion and invasion into host cells, take place. Hyphal tips are also a site of active metabolism. Understanding metabolic dynamics within the tip region is therefore important for biotechnology and medicine as well as for microbiology and ecology. However, methods that can track metabolic dynamics with sufficient spatial resolution and in a nondestructive manner are highly limited. Here we present time-lapse Raman imaging using a deuterium (D) tracer to study spatiotemporally varying metabolic activity within the hyphal tip of Aspergillus nidulans. By analyzing the carbon-deuterium (C-D) stretching Raman band with spectral deconvolution, we visualize glucose accumulation along the inner edge of the hyphal tip and synthesis of new proteins from the taken-up D-labeled glucose specifically at the central part of the apical region. Our results show that deuterium-labeled Raman imaging offers a broadly applicable platform for the study of metabolic dynamics in filamentous fungi and other relevant microorganisms in vivo.
Collapse
|
30
|
Abstract
Fluorescence in situ hybridization (FISH) is a molecular biology technique that enables the localization, quantification, and identification of microorganisms in a sample. This technique has found applications in several areas, most notably the environmental, for quantification and diversity assessment of microorganisms and, the clinical, for the rapid diagnostics of infectious agents. The FISH method is based on the hybridization of a fluorescently labeled nucleic acid probe with a complementary sequence that is present inside the microbial cell, typically in the form of ribosomal RNA (rRNA). In fact, an hybridized cell is typically only detectable because a large number of multiple fluorescent particles (as many as the number of target sequences available) are present inside the cell. Here, we will review the major steps involved in a standard FISH protocol, namely, fixation/permeabilization, hybridization, washing, and visualization/detection. For each step, the major variables/parameters are identified and, subsequently, their impact on the overall hybridization performance is assessed in detail.
Collapse
Affiliation(s)
- Carina Almeida
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal.
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal.
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
31
|
Olofsson M, Klawonn I, Karlson B. Nitrogen fixation estimates for the Baltic Sea indicate high rates for the previously overlooked Bothnian Sea. AMBIO 2021; 50:203-214. [PMID: 32314265 PMCID: PMC7708615 DOI: 10.1007/s13280-020-01331-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/22/2019] [Accepted: 03/20/2020] [Indexed: 05/05/2023]
Abstract
Dense blooms of diazotrophic filamentous cyanobacteria are formed every summer in the Baltic Sea. We estimated their contribution to nitrogen fixation by combining two decades of cyanobacterial biovolume monitoring data with recently measured genera-specific nitrogen fixation rates. In the Bothnian Sea, estimated nitrogen fixation rates were 80 kt N year-1, which has doubled during recent decades and now exceeds external loading from rivers and atmospheric deposition of 69 kt year-1. The estimated contribution to the Baltic Proper was 399 kt N year-1, which agrees well with previous estimates using other approaches and is greater than the external input of 374 kt N year-1. Our approach can potentially be applied to continuously estimate nitrogen loads via nitrogen fixation. Those estimates are crucial for ecosystem adaptive management since internal nitrogen loading may counteract the positive effects of decreased external nutrient loading.
Collapse
Affiliation(s)
- Malin Olofsson
- Research and Development, Oceanography, Swedish Meteorological and Hydrological Institute, Sven Källfelts Gata 15, 426 71 Västra Frölunda, Gothenburg, Sweden
- Present Address: Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Isabell Klawonn
- Department of Experimental Limnology, IGB-Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, OT Neuglobsow, Stechlin, 16775 Berlin, Germany
| | - Bengt Karlson
- Research and Development, Oceanography, Swedish Meteorological and Hydrological Institute, Sven Källfelts Gata 15, 426 71 Västra Frölunda, Gothenburg, Sweden
| |
Collapse
|
32
|
Stuart RK, Pederson ERA, Weyman PD, Weber PK, Rassmussen U, Dupont CL. Bidirectional C and N transfer and a potential role for sulfur in an epiphytic diazotrophic mutualism. THE ISME JOURNAL 2020; 14:3068-3078. [PMID: 32814866 PMCID: PMC7784912 DOI: 10.1038/s41396-020-00738-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 01/23/2023]
Abstract
In nitrogen-limited boreal forests, associations between feathermoss and diazotrophic cyanobacteria control nitrogen inputs and thus carbon cycling, but little is known about the molecular regulators required for initiation and maintenance of these associations. Specifically, a benefit to the cyanobacteria is not known, challenging whether the association is a nutritional mutualism. Targeted mutagenesis of the cyanobacterial alkane sulfonate monooxygenase results in an inability to colonize feathermosses by the cyanobacterium Nostoc punctiforme, suggesting a role for organic sulfur in communication or nutrition. Isotope probing paired with high-resolution imaging mass spectrometry (NanoSIMS) demonstrated bidirectional elemental transfer between partners, with carbon and sulfur both being transferred to the cyanobacteria, and nitrogen transferred to the moss. These results support the hypothesis that moss and cyanobacteria enter a mutualistic exosymbiosis with substantial bidirectional material exchange of carbon and nitrogen and potential signaling through sulfur compounds.
Collapse
Affiliation(s)
- Rhona K Stuart
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | - Eric R A Pederson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Philip D Weyman
- J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Zymergen Inc., Emeryville, CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Ulla Rassmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | | |
Collapse
|
33
|
Schmidt M, Rohde F, Braumann UD. Visualization and co-registration of correlative microscopy data with the ImageJ plug-in Correlia. Methods Cell Biol 2020; 162:353-388. [PMID: 33707019 DOI: 10.1016/bs.mcb.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Correlative microscopy experiments require the co-registration of the image data acquired by different micro-analytical techniques. Major challenges are the potentially very different fields-of-view and resolutions as well as the multi-modality of the data. To provide microscopists with an easy-to-use software for two-dimensional image co-registration we have developed Correlia, an open source software based on ImageJa/Fiji,b which is fully tailored for the registration of multi-modal microscopy data. It can handle data-sets of in principle arbitrary extent and uses classical approaches, i.e., rigid registration tools or B-spline based deformation models for the correction of both, global and local misalignments, such that a fast registration output is provided. Here we describe some of the basics of Correlia focusing on its application: firstly, registration workflows are outlined on artificial data. In the second part these recipes are applied to register correlative data acquired on an algal biofilm and a soil sample.
Collapse
Affiliation(s)
- Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Florens Rohde
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Ulf-Dietrich Braumann
- Faculty of Engineering, Leipzig University of Applied Sciences (HTWK), Leipzig, Germany; Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany; Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Medical Faculty, Leipzig University, Leipzig, Germany
| |
Collapse
|
34
|
Lukumbuzya M, Kristensen JM, Kitzinger K, Pommerening-Röser A, Nielsen PH, Wagner M, Daims H, Pjevac P. A refined set of rRNA-targeted oligonucleotide probes for in situ detection and quantification of ammonia-oxidizing bacteria. WATER RESEARCH 2020; 186:116372. [PMID: 32916620 DOI: 10.1016/j.watres.2020.116372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Ammonia-oxidizing bacteria (AOB) of the betaproteobacterial genera Nitrosomonas and Nitrosospira are key nitrifying microorganisms in many natural and engineered ecosystems. Since many AOB remain uncultured, fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes has been one of the most widely used approaches to study the community composition, abundance, and other features of AOB directly in environmental samples. However, the established and widely used AOB-specific 16S rRNA-targeted FISH probes were designed up to two decades ago, based on much smaller rRNA gene sequence datasets than available today. Several of these probes cover their target AOB lineages incompletely and suffer from a weak target specificity, which causes cross-hybridization of probes that should detect different AOB lineages. Here, a set of new highly specific 16S rRNA-targeted oligonucleotide probes was developed and experimentally evaluated that complements the existing probes and enables the specific detection and differentiation of the known, major phylogenetic clusters of betaproteobacterial AOB. The new probes were successfully applied to visualize and quantify AOB in activated sludge and biofilm samples from seven pilot- and full-scale wastewater treatment systems. Based on its improved target group coverage and specificity, the refined probe set will facilitate future in situ analyses of AOB.
Collapse
Affiliation(s)
- Michael Lukumbuzya
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Jannie Munk Kristensen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Katharina Kitzinger
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Andreas Pommerening-Röser
- University of Hamburg, Institute of Plant Science and Microbiology, Microbiology and Biotechnology, Hamburg, Germany
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; University of Vienna, The Comammox Research Platform, Vienna, Austria
| | - Holger Daims
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; University of Vienna, The Comammox Research Platform, Vienna, Austria.
| | - Petra Pjevac
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Meyer NR, Fortney JL, Dekas AE. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ Microbiol 2020; 23:81-98. [PMID: 33000528 DOI: 10.1111/1462-2920.15264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/01/2022]
Abstract
The activity of individual microorganisms can be measured within environmental samples by detecting uptake of isotope-labelled substrates using nano-scale secondary ion mass spectrometry (nanoSIMS). Recent studies have demonstrated that sample preparation can decrease 13 C and 15 N enrichment in bacterial cells, resulting in underestimates of activity. Here, we explore this effect with a variety of preparation types, microbial lineages and isotope labels to determine its consistency and therefore potential for correction. Specifically, we investigated the impact of different protocols for fixation, nucleic acid staining and catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) on >14 500 archaeal and bacterial cells (Methanosarcina acetivorans, Sulfolobus acidocaldarius and Pseudomonas putida) enriched in 13 C, 15 N, 18 O, 2 H and/or 34 S. We found these methods decrease isotope enrichments by up to 80% - much more than previously reported - and that the effect varies by taxa, growth phase, isotope label and applied protocol. We make recommendations for how to account for this effect experimentally and analytically. We also re-evaluate published nanoSIMS datasets and revise estimated microbial turnover times in the marine subsurface and nitrogen fixation rates in pelagic unicellular cyanobacteria. When sample preparation is accounted for, cell-specific rates increase and are more consistent with modelled and bulk rates.
Collapse
Affiliation(s)
- Nicolette R Meyer
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Julian L Fortney
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
36
|
Loussert-Fonta C, Toullec G, Paraecattil AA, Jeangros Q, Krueger T, Escrig S, Meibom A. Correlation of fluorescence microscopy, electron microscopy, and NanoSIMS stable isotope imaging on a single tissue section. Commun Biol 2020; 3:362. [PMID: 32647198 PMCID: PMC7347930 DOI: 10.1038/s42003-020-1095-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/19/2020] [Indexed: 12/28/2022] Open
Abstract
Correlative light and electron microscopy allows localization of specific molecules at the ultrastructural level in biological tissue but does not provide information about metabolic turnover or the distribution of labile molecules, such as micronutrients. We present a method to directly correlate (immuno)fluorescent microscopy, (immuno)TEM imaging and NanoSIMS isotopic mapping of the same tissue section, with nanometer-scale spatial precision. The process involves chemical fixation of the tissue, cryo sectioning, thawing, and air-drying under a thin film of polyvinyl alcohol. It permits to effectively retain labile compounds and strongly increases NanoSIMS sensitivity for 13C-enrichment. The method is illustrated here with correlated distribution maps of a carbonic anhydrase enzyme isotype, β-tubulin proteins, and 13C- and 15N-labeled labile micronutrients (and their anabolic derivates) within the tissue of a reef-building symbiotic coral. This broadly applicable workflow expands the wealth of information that can be obtained from multi-modal, sub-cellular observation of biological tissue.
Collapse
Affiliation(s)
- Céline Loussert-Fonta
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | - Quentin Jeangros
- Photovoltaics and Thin-Film Electronics Laboratory, Institute of Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-2002, Neuchâtel, Switzerland
| | - Thomas Krueger
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Stephane Escrig
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
37
|
Single-cell Metabolomics Analysis by Microfluidics and Mass Spectrometry: Recent New Advances. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00138-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Rohde F, Braumann UD, Schmidt M. Correlia: an ImageJ plug-in to co-register and visualise multimodal correlative micrographs. J Microsc 2020; 280:3-11. [PMID: 32492178 DOI: 10.1111/jmi.12928] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/30/2022]
Abstract
The correlation of different microscopic imaging techniques alongside with microanalytical methods is crucial to better understand biological processes on a subcellular level. For that, micrographs and chemical maps exhibiting both, very different spatial resolution and field-of-view but also a highly multimodal content has to be co-registered. We developed the ImageJ/Fiji plug-in Correlia that provides an environment for handling multimodal correlative microscopy data. Several linear and nonlinear registration methods using either feature or area-based similarity measures can flexibly be cascaded to align and warp 2D microscopy data sets. The registration of data sets containing light- and electron micrographs as well as chemical maps acquired by secondary-ion mass spectroscopy and energy-dispersive X-ray spectroscopy is demonstrated. Correlia is an open-source tool developed particularly for the registration and analysis of highly multimodal 2D correlative microscopy data. LAY DESCRIPTION: If a microscopic object is imaged correlatively by two or more different microscopes the acquired micrographs will have to be overlaid accurately using an image-registration software. In cases of relatively similar image content creating such an overlay is straight-forward but what if the fields-of-view and resolutions of the micrographs differ significantly? What if there are distortions in a micrograph which have to be corrected before creating an overlay? What if furthermore a chemical map shall be overlaid that merely shows regions in which a certain chemical element is present? The rapidly increasing number of applications in correlative microscopy is calling for an easy-to-use and flexible image registration software that can deal with these challenges. Having that in mind, we developed Correlia, an ImageJ/Fiji plug-in that provides an environment for handling multimodal 2D correlative microscopy data-sets. It allows for creating overlays using different registration algorithms that can flexibly be cascaded. In this paper we describe what is happening 'under the hood' and give two example data-sets from microbiology which were registered using Correlia. Correlia is open source software and available from www.ufz.de/correlia - including introductory examples, as the authors would like to encourage other scientists to process their individual correlative microscopy data using Correlia.
Collapse
Affiliation(s)
- Florens Rohde
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Ulf-Dietrich Braumann
- Faculty of Engineering, Leipzig University of Applied Sciences (HTWK), Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE) Medical Faculty, Leipzig University, Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| |
Collapse
|
39
|
Heterogeneous nitrogen fixation rates confer energetic advantage and expanded ecological niche of unicellular diazotroph populations. Commun Biol 2020; 3:172. [PMID: 32286494 PMCID: PMC7156374 DOI: 10.1038/s42003-020-0894-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/13/2020] [Indexed: 11/23/2022] Open
Abstract
Nitrogen fixing plankton provide nitrogen to fuel marine ecosystems and biogeochemical cycles but the factors that constrain their growth and habitat remain poorly understood. Here we investigate the importance of metabolic specialization in unicellular diazotroph populations, using laboratory experiments and model simulations. In clonal cultures of Crocosphaera watsonii and Cyanothece sp. spiked with 15N2, cellular 15N enrichment developed a bimodal distribution within colonies, indicating that N2 fixation was confined to a subpopulation. In a model of population metabolism, heterogeneous nitrogen (N2) fixation rates substantially reduce the respiration rate required to protect nitrogenase from O2. The energy savings from metabolic specialization is highest at slow growth rates, allowing populations to survive in deeper waters where light is low but nutrients are high. Our results suggest that heterogeneous N2 fixation in colonies of unicellular diazotrophs confers an energetic advantage that expands the ecological niche and may have facilitated the evolution of multicellular diazotrophs. Takako Masuda et al. show that individual cells in clonal populations of Crocosphaera watsonii and Cyanothece sp exhibit varied nitrogen fixation rates. This heterogeneity within the population decreases the energetic cost of respiration and expands the viable habitats for these unicellular diazotrophs.
Collapse
|
40
|
Similar but Not Identical Resuscitation Trajectories of the Soil Microbial Community Based on Either DNA or RNA after Flooding. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10040502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Both drought and flooding are unfavorable for soil microorganisms, but nevertheless, are highly relevant to the extreme weather events that have been predicted to increase in the future. The switch of soil water status from drought to flooding can happen rapidly and microbial activity might be either stimulated or further inhibited, but we have insufficient understanding of the underlying microbial processes. Here, we tracked the changes in soil bacterial and fungal abundance and their community structures, assaying the total (DNA-based) and potentially active (RNA-based) communities in response to abrupt flooding of dry soil. Also, rates of soil respiration and enzyme activity were measured after flooding. Results showed that the bacterial community was found to be more responsive than the fungal community to flooding. The bacterial community responses were clearly classified into three distinct patterns in which the intermediate pattern displayed highly phylogenetic clustering. A transient flourish of Bacilli which belongs to Firmicutes was detected at 8–48 h of flooding, suggesting its potential importance in the microbial assemblage and subsequent ecosystem functioning. Finally, the accumulative amount of CO2 released was more closely related than enzyme activity to the change in structure of the bacterial community after flooding. In conclusion, these findings extended our understanding of the underlying soil microbial processes following abrupt water condition changes.
Collapse
|
41
|
Subcellular Chemical Imaging: New Avenues in Cell Biology. Trends Cell Biol 2020; 30:173-188. [DOI: 10.1016/j.tcb.2019.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022]
|
42
|
Advances in monitoring soil microbial community dynamic and function. J Appl Genet 2020; 61:249-263. [PMID: 32062778 DOI: 10.1007/s13353-020-00549-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Microorganisms are vital to the overall ecosystem functioning, stability, and sustainability. Soil fertility and health depend on chemical composition and also on the qualitative and quantitative nature of microorganisms inhabiting it. Historically, denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE), single-strand conformation polymorphism, DNA amplification fingerprinting, amplified ribosomal DNA restriction analysis, terminal restriction fragment length polymorphism, length heterogeneity PCR, and ribosomal intergenic spacer analysis were used to assess soil microbial community structure (SMCS), abundance, and diversity. However, these methods had significant shortcomings and limitations for application in land reclamation monitoring. SMCS has been primarily determined by phospholipid fatty acid (PLFA) analysis. This method provides a direct measure of viable biomass in addition to a biochemical profile of the microbial community. PLFA has limitations such as overlap in the composition of microorganisms and the specificity of PLFAs signature. In recent years, high-throughput next-generation sequencing has dramatically increased the resolution and detectable spectrum of diverse microbial phylotypes from environmental samples and it plays a significant role in microbial ecology studies. Next-generation sequencings using 454, Illumina, SOLiD, and Ion Torrent platforms are rapid and flexible. The two methods, PLFA and next-generation sequencing, are useful in detecting changes in microbial community diversity and structure in different ecosystems. Single-molecule real-time (SMRT) and nanopore sequencing technologies represent third-generation sequencing (TGS) platforms that have been developed to address the shortcomings of second-generation sequencing (SGS). Enzymatic and soil respiration analyses are performed to further determine soil quality and microbial activities. Other valuable methods that are being recently applied to microbial function and structures include NanoSIM, GeoChip, and DNA stable staple isotope probing (DNA-SIP) technologies. They are powerful metagenomics tool for analyzing microbial communities, including their structure, metabolic potential, diversity, and their impact on ecosystem functions. This review is a critical analysis of current methods used in monitoring soil microbial community dynamic and functions.
Collapse
|
43
|
Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean. Nat Commun 2020; 11:767. [PMID: 32034151 PMCID: PMC7005884 DOI: 10.1038/s41467-020-14542-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/17/2020] [Indexed: 11/11/2022] Open
Abstract
Nitrification, the oxidation of ammonia via nitrite to nitrate, is a key process in marine nitrogen (N) cycling. Although oceanic ammonia and nitrite oxidation are balanced, ammonia-oxidizing archaea (AOA) vastly outnumber the main nitrite oxidizers, the bacterial Nitrospinae. The ecophysiological reasons for this discrepancy in abundance are unclear. Here, we compare substrate utilization and growth of Nitrospinae to AOA in the Gulf of Mexico. Based on our results, more than half of the Nitrospinae cellular N-demand is met by the organic-N compounds urea and cyanate, while AOA mainly assimilate ammonium. Nitrospinae have, under in situ conditions, around four-times higher biomass yield and five-times higher growth rates than AOA, despite their ten-fold lower abundance. Our combined results indicate that differences in mortality between Nitrospinae and AOA, rather than thermodynamics, biomass yield and cell size, determine the abundances of these main marine nitrifiers. Furthermore, there is no need to invoke yet undiscovered, abundant nitrite oxidizers to explain nitrification rates in the ocean. Ammonia oxidizing archaea and Nitrospinae are the main known nitrifiers in the ocean, but the much greater abundance of the former is puzzling. Here, the authors show that differences in mortality, rather than thermodynamics, cell size or biomass yield, explain the discrepancy, without the need to invoke yet undiscovered, abundant nitrite oxidizers.
Collapse
|
44
|
Microfluidic Single-Cell Analytics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:159-189. [PMID: 32737554 DOI: 10.1007/10_2020_134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
What is the impact of cellular heterogeneity on process performance? How do individual cells contribute to averaged process productivity? Single-cell analysis is a key technology for answering such key questions of biotechnology, beyond bulky measurements with populations. The analysis of cellular individuality, its origins, and the dependency of process performance on cellular heterogeneity has tremendous potential for optimizing biotechnological processes in terms of metabolic, reaction, and process engineering. Microfluidics offer unmatched environmental control of the cellular environment and allow massively parallelized cultivation of single cells. However, the analytical accessibility to a cell's physiology is of crucial importance for obtaining the desired information on the single-cell production phenotype. Highly sensitive analytics are required to detect and quantify the minute amounts of target analytes and small physiological changes in a single cell. For their application to biotechnological questions, single-cell analytics must evolve toward the measurement of kinetics and specific rates of the smallest catalytic unit, the single cell. In this chapter, we focus on an introduction to the latest single-cell analytics and their application for obtaining physiological parameters in a biotechnological context from single cells. We present and discuss recent advancements in single-cell analytics that enable the analysis of cell-specific growth, uptake, and production kinetics, as well as the gene expression and regulatory mechanisms at a single-cell level.
Collapse
|
45
|
Eigemann F, Vogts A, Voss M, Zoccarato L, Schulz-Vogt H. Distinctive tasks of different cyanobacteria and associated bacteria in carbon as well as nitrogen fixation and cycling in a late stage Baltic Sea bloom. PLoS One 2019; 14:e0223294. [PMID: 31830057 PMCID: PMC6907833 DOI: 10.1371/journal.pone.0223294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/19/2019] [Indexed: 01/18/2023] Open
Abstract
Cyanobacteria and associated heterotrophic bacteria hold key roles in carbon as well as nitrogen fixation and cycling in the Baltic Sea due to massive cyanobacterial blooms each summer. The species specific activities of different cyanobacterial species as well as the N- and C-exchange of associated heterotrophic bacteria in these processes, however, are widely unknown. Within one time series experiment we tested the cycling in a natural, late stage cyanobacterial bloom by adding 13C bi-carbonate and 15N2, and performed sampling after 10 min, 30 min, 1 h, 6 h and 24 h in order to determine the fixing species as well as the fate of the fixed carbon and nitrogen in the associations. Uptake of 15N and 13C isotopes by the most abundant cyanobacterial species as well as the most abundant associated heterotrophic bacterial groups was then analysed by NanoSIMS. Overall, the filamentous, heterocystous species Dolichospermum sp., Nodularia sp., and Aphanizomenon sp. revealed no or erratic uptake of carbon and nitrogen, indicating mostly inactive cells. In contrary, non-heterocystous Pseudanabaena sp. dominated the nitrogen and carbon fixation, with uptake rates up to 1.49 ± 0.47 nmol N h-1 l-1 and 2.55 ± 0.91 nmol C h-1 l-1. Associated heterotrophic bacteria dominated the subsequent nitrogen remineralization with uptake rates up to 1.2 ± 1.93 fmol N h-1 cell -1, but were also indicative for fixation of di-nitrogen.
Collapse
Affiliation(s)
- Falk Eigemann
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Angela Vogts
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Maren Voss
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Luca Zoccarato
- Department of Stratified Lakes, Leibniz-Institute for Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Heide Schulz-Vogt
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| |
Collapse
|
46
|
Sebastián M, Gasol JM. Visualization is crucial for understanding microbial processes in the ocean. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190083. [PMID: 31587650 PMCID: PMC6792457 DOI: 10.1098/rstb.2019.0083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Recent developments in community and single-cell genomic approaches have provided an unprecedented amount of information on the ecology of microbes in the aquatic environment. However, linkages between each specific microbe's identity and their in situ level of activity (be it growth, division or just metabolic activity) are much more scarce. The ultimate goal of marine microbial ecology is to understand how the environment determines the types of different microbes in nature, their function, morphology and cell-to-cell interactions and to do so we should gather three levels of information, the genomic (including identity), the functional (activity or growth), and the morphological, and for as many individual cells as possible. We present a brief overview of methodologies applied to address single-cell activity in marine prokaryotes, together with a discussion of the difficulties in identifying and categorizing activity and growth. We then provide and discuss some examples showing how visualization has been pivotal for challenging established paradigms and for understanding the role of microbes in the environment, unveiling processes and interactions that otherwise would have been overlooked. We conclude by stating that more effort should be directed towards integrating visualization in future approaches if we want to gain a comprehensive insight into how microbes contribute to the functioning of ecosystems. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Marta Sebastián
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Josep M. Gasol
- Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
47
|
Heterogeneity in Bacterial Specialized Metabolism. J Mol Biol 2019; 431:4589-4598. [DOI: 10.1016/j.jmb.2019.04.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022]
|
48
|
Distinct relationships between fluorescence in situ hybridization and 16S rRNA gene- and amplicon-based sequencing data of bacterioplankton lineages. Syst Appl Microbiol 2019; 42:126000. [DOI: 10.1016/j.syapm.2019.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 11/22/2022]
|
49
|
Cattò C, Cappitelli F. Testing Anti-Biofilm Polymeric Surfaces: Where to Start? Int J Mol Sci 2019; 20:E3794. [PMID: 31382580 PMCID: PMC6696330 DOI: 10.3390/ijms20153794] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Present day awareness of biofilm colonization on polymeric surfaces has prompted the scientific community to develop an ever-increasing number of new materials with anti-biofilm features. However, compared to the large amount of work put into discovering potent biofilm inhibitors, only a small number of papers deal with their validation, a critical step in the translation of research into practical applications. This is due to the lack of standardized testing methods and/or of well-controlled in vivo studies that show biofilm prevention on polymeric surfaces; furthermore, there has been little correlation with the reduced incidence of material deterioration. Here an overview of the most common methods for studying biofilms and for testing the anti-biofilm properties of new surfaces is provided.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
50
|
Tao Y, Huang X, Gao D, Wang X, Chen C, Liang H, van Loosdrecht MCM. NanoSIMS reveals unusual enrichment of acetate and propionate by an anammox consortium dominated by Jettenia asiatica. WATER RESEARCH 2019; 159:223-232. [PMID: 31100576 DOI: 10.1016/j.watres.2019.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria convert ammonium and nitrite into N2 in a chemolithoautotrophic way, meaning that they utilize CO2/HCO3 solely as their carbon sources. Such autotrophic behavior limits their competitiveness with heterotrophic microorganisms in both natural environments and engineered systems. Recently, environmental metagenomic results have indicated the capability of anammox bacteria to metabolize short-chain fatty acids, further confirmed by limited experimental evidence based on highly enriched cultures. However, clear evidence is difficult to get because of the limits of traditional methodologies which rely on the availability of a pure anammox culture. In this study, we identified and quantified the uptake of acetate and propionate, on a single-cell level, by an anammox consortium that was dominated by Candidatus Jettenia asiatica (relative abundance of 96%). The consortium, growing in granular form with an average relative abundance of anammox bacteria of 96.0%, was firstly incubated in a13C-labelled acetate or propionate medium; then microtome sections were scanned by a nanometer-scale secondary ion mass spectrometer (NanoSIMS). The NanoSIMS scannings revealed that the consortium enriched acetate and propionate at a >10 times higher efficiency than bicarbonate incorporation. Our results also suggest that acetate or propionate was likely not assimilated by J. asiatica directly, but firstly oxidized to CO2, which then served as carbon sources for the follow-up autotrophy in J. asiatica cells. Furthermore, more [15N]ammonium was enriched by the propionate-fed consortium than the acetate-fed consortium despite that exactly the same amount of 13C atoms were supplied. Our study strongly indicates an alternative lifestyle, namely organotrophy, in addition to chemolithoautotrophy of anammox bacteria, making it more versatile than often expected. It suggests that the niche of anammox bacteria in both natural and engineered ecosystems can be much broader than usual assumed. Recognising this is important for their role in wastewater treatment and the global nitrogen turn-over rates.
Collapse
Affiliation(s)
- Yu Tao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaoli Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Xiaolong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chunhong Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong Liang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | | |
Collapse
|