1
|
Barolo L, Abbriano RM, Commault AS, Padula MP, Pernice M. Proteomic analysis reveals molecular changes following genetic engineering in Chlamydomonas reinhardtii. BMC Microbiol 2024; 24:392. [PMID: 39379820 PMCID: PMC11460192 DOI: 10.1186/s12866-024-03554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Chlamydomonas reinhardtii is gaining recognition as a promising expression system for the production of recombinant proteins. However, its performance as a cellular biofactory remains suboptimal, especially with respect to consistent expression of heterologous genes. Gene silencing mechanisms, position effect, and low nuclear transgene expression are major drawbacks for recombinant protein production in this model system. To unveil the molecular changes following transgene insertion, retention, and expression in this species, we genetically engineered C. reinhardtii wild type strain 137c (strain cc-125 mt+) to express the fluorescent protein mVenus and subsequently analysed its intracellular proteome. RESULTS The obtained transgenic cell lines showed differences in abundance in more than 400 proteins, with multiple pathways altered post-transformation. Proteins involved in chromatin remodelling, translation initiation and elongation, and protein quality control and transport were found in lower abundance. On the other hand, ribosomal proteins showed higher abundance, a signal of ribosomal stress response. CONCLUSIONS These results provide new insights into the modifications of C. reinhardtii proteome after transformation, highlighting possible pathways involved in gene silencing. Moreover, this study identifies multiple protein targets for future genetic engineering approaches to improve the prospective use of C. reinhardtii as cell biofactory for industrial applications.
Collapse
Affiliation(s)
- Lorenzo Barolo
- University of Technology Sydney, Climate Change Cluster, Broadway Campus, Ultimo, Sydney, NSW, 2007, Australia.
| | - Raffaela M Abbriano
- University of Technology Sydney, Climate Change Cluster, Broadway Campus, Ultimo, Sydney, NSW, 2007, Australia
| | - Audrey S Commault
- University of Technology Sydney, Climate Change Cluster, Broadway Campus, Ultimo, Sydney, NSW, 2007, Australia
| | - Matthew P Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Mathieu Pernice
- University of Technology Sydney, Climate Change Cluster, Broadway Campus, Ultimo, Sydney, NSW, 2007, Australia.
| |
Collapse
|
2
|
Sun K, Meesapyodsuk D, Qiu X. Biosynthetic mechanisms of omega-3 polyunsaturated fatty acids in microalgae. J Biol Chem 2024; 300:107699. [PMID: 39173949 PMCID: PMC11418110 DOI: 10.1016/j.jbc.2024.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Marine microalgae are the primary producers of ω3 polyunsaturated fatty acids (PUFAs), such as octadecapentaenoic acid (OPA, 18:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) for food chains. However, the biosynthetic mechanisms of these PUFAs in the algae remain elusive. To study how these fatty acids are synthesized in microalgae, a series of radiolabeled precursors were used to trace the biosynthetic process of PUFAs in Emiliania huxleyi. Feeding the alga with 14C-labeled acetic acid in a time course showed that OPA was solely found in glycoglycerolipids such as monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) synthesized plastidically by sequential desaturations while DHA was exclusively found in phospholipids synthesized extraplastidically. Feeding the alga with 14C-labeled α-linolenic acid (ALA), linoleic acid (LA), and oleic acid (OA) showed that DHA was synthesized extraplastidically from fed ALA and LA, but not from OA, implying that the aerobic pathway of DHA biosynthesis is incomplete with missing a Δ12 desaturation step. The in vitro enzymatic assays with 14C-labeled malonyl-CoA showed that DHA was synthesized from acetic acid by a PUFA synthase. These results provide the first and conclusive biochemistry evidence that OPA is synthesized by a plastidic aerobic pathway through sequential desaturations with the last step of Δ3 desaturation, while DHA is synthesized by an extraplastidic anaerobic pathway catalyzed by a PUFA synthase in the microalga.
Collapse
Affiliation(s)
- Kaiwen Sun
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Xiao Qiu
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
3
|
Jouhet J, Alves E, Boutté Y, Darnet S, Domergue F, Durand T, Fischer P, Fouillen L, Grube M, Joubès J, Kalnenieks U, Kargul JM, Khozin-Goldberg I, Leblanc C, Letsiou S, Lupette J, Markov GV, Medina I, Melo T, Mojzeš P, Momchilova S, Mongrand S, Moreira ASP, Neves BB, Oger C, Rey F, Santaeufemia S, Schaller H, Schleyer G, Tietel Z, Zammit G, Ziv C, Domingues R. Plant and algal lipidomes: Analysis, composition, and their societal significance. Prog Lipid Res 2024; 96:101290. [PMID: 39094698 DOI: 10.1016/j.plipres.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/INRAE/CEA/Grenoble Alpes Univ., 38000 Grenoble, France.
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | | | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Pauline Fischer
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Joanna M Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Dryland Agriculture and Biotechnology, The J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 8499000, Israel
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Ag. Spiridonos str. Egaleo, 12243 Athens, Greece
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Svetlana Momchilova
- Department of Lipid Chemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 9, BG-1113 Sofia, Bulgaria
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Bruna B Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Felisa Rey
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Sergio Santaeufemia
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67083 Strasbourg, France
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev 8531100, Israel
| | - Gabrielle Zammit
- Laboratory of Applied Phycology, Department of Biology, University of Malta, Msida MSD 2080, Malta
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal.
| |
Collapse
|
4
|
Vasquez-Moscoso CA, Merlano JAR, Olivera Gálvez A, Volcan Almeida D. Antimicrobial peptides (AMPs) from microalgae as an alternative to conventional antibiotics in aquaculture. Prep Biochem Biotechnol 2024:1-10. [PMID: 38970798 DOI: 10.1080/10826068.2024.2365357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The excessive use of conventional antibiotics has resulted in significant aquatic pollution and a concerning surge in drug-resistant bacteria. Efforts have been consolidated to explore and develop environmentally friendly antimicrobial alternatives to mitigate the imminent threat posed by multi-resistant pathogens. Antimicrobial peptides (AMPs) have gained prominence due to their low propensity to induce bacterial resistance, attributed to their multiple mechanisms of action and synergistic effects. Microalgae, particularly cyanobacteria, have emerged as promising alternatives with antibiotic potential to address these challenges. The aim of this review is to present some AMPs extracted from microalgae, emphasizing their activity against common pathogens and elucidating their mechanisms of action, as well as their potential application in the aquaculture industry. Likewise, the biosynthesis, advantages and disadvantages of the use of AMPs are described. Currently, biotechnology tolls are used to enhance the action of these peptides, such as genetically modified microalgae and recombinant proteins. Cyanobacteria are also mentioned as major producers of peptides, among them, the genus Lyngbya is described as the most important producer of bioactive peptides with potential therapeutic use. The majority of cyanobacterial AMPs are of the cyclic type, meaning that they have cysteine and disulfide bridges, thanks to this, their greater antimicrobial activity and selectivity. Likewise, we found that large hydrophobic aromatic amino acid residues increase specificity, and improve antibacterial efficacy. However, based on the results of this review, it is possible to highlight that while microalgae show potential as a source of AMPs, further research in this field is necessary to achieve safe and competitive production. Therefore, the data presented here can aid in the selection of microalgal species, peptide structures, and target bacteria, with the goal of establishing biotechnological platforms for aquaculture applications.
Collapse
Affiliation(s)
- Camila A Vasquez-Moscoso
- Grupo de Investigación sobre Reproducción y Toxicología de Organismos Acuáticos - GRITOX, Instituto de Acuicultura y Pesca de los Llanos- IALL, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
| | - Juan Antonio Ramírez Merlano
- Grupo de Investigación sobre Reproducción y Toxicología de Organismos Acuáticos - GRITOX, Instituto de Acuicultura y Pesca de los Llanos- IALL, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
| | - Alfredo Olivera Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | |
Collapse
|
5
|
Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotechnol 2024; 44:618-640. [PMID: 37158096 DOI: 10.1080/07388551.2023.2196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
6
|
Mullenix GJ, Greene ES, Ramser A, Maynard C, Dridi S. Effect of a microencapsulated phyto/phycogenic blend supplementation on growth performance, processing parameters, meat quality, and sensory profile in male broilers. Front Vet Sci 2024; 11:1382535. [PMID: 38605922 PMCID: PMC11007207 DOI: 10.3389/fvets.2024.1382535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Powered by consumer taste, value, and preferences, natural products including phytogenics and algae are increasingly and separately used in the food systems where they have been reported to improve growth performance in poultry and livestock. The present study aimed to determine the effects of a new feed additive, microencapsulated NUQO© NEX, which contains a combination of phytogenic and phycogenic, on broiler growth performance, blood chemistry, bone health, meat quality and sensory profile. Male Cobb500 chicks (n = 1,197) were fed a 3-phase feeding intervals; 1-14d starter, 15-28d grower, and 29-40d finisher. The dietary treatments included a corn-soy basal Control (CON), basal diet supplemented with NUQO© NEX at 100 g/ton from 1 to 28d then 75 g/ton from d 28 to 40 (NEX75), and basal diet supplemented with NUQO© NEX at 100 g/ton from 1 to 40d (NEX100). The NEX100 supplemented birds had 62 g more BWG increase and 2.1-point improvement in FCR compared with CON in the finisher and overall growth phase (p < 0.05), respectively. Day 40 processing body weights and carcass weights were heavier for the NEX100 supplemented birds (p < 0.05). The incidences of muscle myopathies were also higher in NEX treatments, which could be associated with the heavier weights, but the differences were not detected to be significant. The NEX75 breast filets had more yellowness than other dietary treatments (p = 0.003) and the NEX 100 treatment reduced the levels of breast filet TBARS at 7 days-post harvest (p = 0.053). Finally, both NEX treatments reduced the incidence of severe bone (tibia and femur) lesions. In conclusion, the supplementation of the phytogenic NUQO© NEX improved finisher performance parameters, whole phase FCR, processing carcass weights, and breast filet yellowness, at varying inclusion levels.
Collapse
Affiliation(s)
| | | | | | | | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
7
|
Ruiz-Domínguez MC, Robles M, Martín L, Beltrán Á, Gava R, Cuaresma M, Navarro F, Vílchez C. Ultrasound-Based Recovery of Anti-Inflammatory and Antimicrobial Extracts of the Acidophilic Microalga Coccomyxa onubensis. Mar Drugs 2023; 21:471. [PMID: 37755084 PMCID: PMC10532798 DOI: 10.3390/md21090471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
In the present study, the recovery of valuable molecules of proven anti-inflammatory and antimicrobial activity of the acidophilic microalga Coccomyxa onubensis (C. onubensis) were evaluated using green technologies based on ultrasound-assisted extraction (UAE). Using a factorial design (3 × 2) based on response surface methodology and Pareto charts, two types of ultrasonic equipment (bath and probe) were evaluated to recover valuable compounds, including the major terpenoid of C. onubensis, lutein, and the antimicrobial activity of the microalgal extracts obtained under optimal ultrasound conditions (desirability function) was evaluated versus conventional extraction. Significant differences in lutein recovery were observed between ultrasonic bath and ultrasonic probe and conventional extraction. Furthermore, the antimicrobial activity displayed by C. onubensis UAE-based extracts was greater than that obtained in solvent-based extracts, highlighting the effects of the extracts against pathogens such as Enterococcus hirae and Bacillus subtilis, followed by Staphylococcus aureus and Escherichia coli. In addition, gas chromatography-mass spectrometry was performed to detect valuable anti-inflammatory and antimicrobial biomolecules present in the optimal C. onubensis extracts, which revealed that phytol, sterol-like, terpenoid, and even fatty acid structures could also be responsible for the antibacterial activities of the extracts. Moreover, UAE displayed a positive effect on the recovery of valuable molecules, improving biocidal effects. Our study results facilitate the use of green technology as a good tool in algal bioprocess engineering, improving energy consumption and minimizing environmental impacts and process costs, as well as provide a valuable product for applications in the field of biotechnology.
Collapse
Affiliation(s)
- Mari Carmen Ruiz-Domínguez
- Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - María Robles
- Algal Biotechnology, CIDERTA-RENSMA, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (M.R.); (L.M.); (M.C.); (C.V.)
| | - Lidia Martín
- Algal Biotechnology, CIDERTA-RENSMA, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (M.R.); (L.M.); (M.C.); (C.V.)
| | - Álvaro Beltrán
- Bioplagen S.L., Av. Castilleja de la Cuesta, 20-22, Bollullos de la Mitación, 41110 Seville, Spain; (Á.B.); (R.G.)
| | - Riccardo Gava
- Bioplagen S.L., Av. Castilleja de la Cuesta, 20-22, Bollullos de la Mitación, 41110 Seville, Spain; (Á.B.); (R.G.)
| | - María Cuaresma
- Algal Biotechnology, CIDERTA-RENSMA, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (M.R.); (L.M.); (M.C.); (C.V.)
| | - Francisco Navarro
- Cell Alterations by Exogenous Agents, RENSMA, Department of Integrated Sciences, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain;
| | - Carlos Vílchez
- Algal Biotechnology, CIDERTA-RENSMA, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (M.R.); (L.M.); (M.C.); (C.V.)
| |
Collapse
|
8
|
Davison JR, Rajwani R, Zhao G, Bewley CA. The genome of antibiotic-producing colonies of the Pelagophyte alga Chrysophaeum taylorii reveals a diverse and non-canonical capacity for secondary metabolism. Sci Rep 2023; 13:11944. [PMID: 37488207 PMCID: PMC10366177 DOI: 10.1038/s41598-023-38042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/01/2023] [Indexed: 07/26/2023] Open
Abstract
Chrysophaeum taylorii is a member of an understudied clade of marine algae that can be responsible for harmful coastal blooms and is known to accumulate bioactive natural products including antibiotics of the chrysophaentin class. Whole genome sequencing of laboratory-cultivated samples revealed an extensive and diverse complement of secondary metabolite biosynthetic genes in C. taylorii, alongside a small microbiome with a more limited biosynthetic potential. 16S microbiome analysis of laboratory cultured alongside wild-collected samples revealed several common taxa; however, analysis of biosynthetic genes suggested an algal origin for the chrysophaentins, possibly via one of several non-canonical polyketide synthase genes encoded within the genome.
Collapse
Affiliation(s)
- Jack R Davison
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA.
- LifeMine Therapeutics, 30 Acorn Park Dr., Cambridge, MA, 02140, USA.
| | - Rahim Rajwani
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA
| | - Gengxiang Zhao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Casanova LM, Macrae A, de Souza JE, Neves Junior A, Vermelho AB. The Potential of Allelochemicals from Microalgae for Biopesticides. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091896. [PMID: 37176954 PMCID: PMC10181251 DOI: 10.3390/plants12091896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Improvements in agricultural productivity are required to meet the demand of a growing world population. Phytopathogens, weeds, and insects are challenges to agricultural production. The toxicity and widespread application of persistent synthetic pesticides poses a major threat to human and ecosystem health. Therefore, sustainable strategies to control pests are essential for agricultural systems to enhance productivity within a green paradigm. Allelochemicals are a less persistent, safer, and friendly alternative to efficient pest management, as they tend to be less toxic to non-target organisms and more easily degradable. Microalgae produce a great variety of allelopathic substances whose biocontrol potential against weeds, insects, and phytopathogenic fungi and bacteria has received much attention. This review provides up-to-date information and a critical perspective on allelochemicals from microalgae and their potential as biopesticides.
Collapse
Affiliation(s)
- Livia Marques Casanova
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Andrew Macrae
- Sustainable Biotechnology and Microbial Bioinformatics Laboratory, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Jacqueline Elis de Souza
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Athayde Neves Junior
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alane Beatriz Vermelho
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
10
|
Oleaginous Heterotrophic Dinoflagellates—Crypthecodiniaceae. Mar Drugs 2023; 21:md21030162. [PMID: 36976211 PMCID: PMC10055936 DOI: 10.3390/md21030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The heterotrophic Crypthecodinium cohnii is a major model for dinoflagellate cell biology, and a major industrial producer of docosahexaenoic acid, a key nutraceutical and added pharmaceutical compound. Despite these factors, the family Crypthecodiniaceae is not fully described, which is partly attributable to their degenerative thecal plates, as well as the lack of ribotype-referred morphological description in many taxons. We report here significant genetic distances and phylogenetic cladding that support inter-specific variations within the Crypthecodiniaceae. We describe Crypthecodinium croucheri sp. nov. Kwok, Law and Wong, that have different genome sizes, ribotypes, and amplification fragment length polymorphism profiles when compared to the C. cohnii. The interspecific ribotypes were supported by distinctive truncation-insertion at the ITS regions that were conserved at intraspecific level. The long genetic distances between Crypthecodiniaceae and other dinoflagellate orders support the separation of the group, which includes related taxons with high oil content and degenerative thecal plates, to be ratified to the order level. The current study provides the basis for future specific demarcation-differentiation, which is an important facet in food safety, biosecurity, sustainable agriculture feeds, and biotechnology licensing of new oleaginous models.
Collapse
|
11
|
Montuori E, Martinez KA, De Luca D, Ianora A, Lauritano C. Transcriptome Sequencing of the Diatom Asterionellopsis thurstonii and In Silico Identification of Enzymes Potentially Involved in the Synthesis of Bioactive Molecules. Mar Drugs 2023; 21:md21020126. [PMID: 36827167 PMCID: PMC9959416 DOI: 10.3390/md21020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Microalgae produce a plethora of primary and secondary metabolites with possible applications in several market sectors, including cosmetics, human nutrition, aquaculture, biodiesel production and treatment/prevention of human diseases. Diatoms, in particular, are the most diversified microalgal group, many species of which are known to have anti-cancer, anti-oxidant, anti-diabetes, anti-inflammatory and immunomodulatory properties. Compounds responsible for these activities are often still unknown. The aim of this study was to de novo sequence the full transcriptome of two strains of the diatom Asterionellopsis thurstonii, sampled from two different locations and cultured in both control and phosphate starvation conditions. We used an RNA-sequencing approach to in silico identify transcripts potentially involved in the synthesis/degradation of compounds with anti-cancer and immunomodulatory properties. We identified transcript coding for L-asparaginase I, polyketide cyclase/dehydrase, bifunctional polyketide phosphatase/kinase, 1-deoxy-D-xylulose-5-phosphate synthase (fragment), inositol polyphosphate 5-phosphatase INPP5B/F, catechol O-Methyltransferase, digalactosyldiacylglycerol synthase (DGD1), 1,2-diacylglycerol-3-beta-galactosyltransferase and glycerolphosphodiester phosphodiesterase. Differential expression analysis also allowed to identify in which culturing condition these enzymes are more expressed. Overall, these data give new insights on the annotation of diatom genes, enzymatic pathways involved in the generation of bioactive molecules and possible exploitation of Asterionellopsis thurstonii.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Kevin A. Martinez
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Daniele De Luca
- Department of Biology, University of Naples Federico II, Via Foria 223, 80139 Naples, Italy
| | - Adrianna Ianora
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
- Correspondence: author:
| |
Collapse
|
12
|
Quintas-Nunes F, Brandão PR, Barreto Crespo MT, Glick BR, Nascimento FX. Plant Growth Promotion, Phytohormone Production and Genomics of the Rhizosphere-Associated Microalga, Micractinium rhizosphaerae sp. nov. PLANTS (BASEL, SWITZERLAND) 2023; 12:651. [PMID: 36771735 PMCID: PMC9922002 DOI: 10.3390/plants12030651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Microalgae are important members of the soil and plant microbiomes, playing key roles in the maintenance of soil and plant health as well as in the promotion of plant growth. However, not much is understood regarding the potential of different microalgae strains in augmenting plant growth, or the mechanisms involved in such activities. In this work, the functional and genomic characterization of strain NFX-FRZ, a eukaryotic microalga belonging to the Micractinium genus that was isolated from the rhizosphere of a plant growing in a natural environment in Portugal, is presented and analyzed. The results obtained demonstrate that strain NFX-FRZ (i) belongs to a novel species, termed Micractinium rhizosphaerae sp. nov.; (ii) can effectively bind to tomato plant tissues and promote its growth; (iii) can synthesize a wide range of plant growth-promoting compounds, including phytohormones such as indole-3-acetic acid, salicylic acid, jasmonic acid and abscisic acid; and (iv) contains multiple genes involved in phytohormone biosynthesis and signaling. This study provides new insights regarding the relevance of eukaryotic microalgae as plant growth-promoting agents and helps to build a foundation for future studies regarding the origin and evolution of phytohormone biosynthesis and signaling, as well as other plant colonization and plant growth-promoting mechanisms in soil/plant-associated Micractinium.
Collapse
Affiliation(s)
- Francisco Quintas-Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Pedro R. Brandão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Maria T. Barreto Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Francisco X. Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
13
|
Nieri P, Carpi S, Esposito R, Costantini M, Zupo V. Bioactive Molecules from Marine Diatoms and Their Value for the Nutraceutical Industry. Nutrients 2023; 15:464. [PMID: 36678334 PMCID: PMC9861441 DOI: 10.3390/nu15020464] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
The search for novel sources of nutrients is among the basic goals for achievement of sustainable progress. In this context, microalgae are relevant organisms, being rich in high-value compounds and able to grow in open ponds or photobioreactors, thus enabling profitable exploitation of aquatic resources. Microalgae, a huge taxon containing photosynthetic microorganisms living in freshwater, as well as in brackish and marine waters, typically unicellular and eukaryotic, include green algae (Chlorophyceae), red algae (Rhodophyceae), brown algae (Phaeophyceae) and diatoms (Bacillariophyceae). In recent decades, diatoms have been considered the most sustainable sources of nutrients for humans with respect to other microalgae. This review focuses on studies exploring their bio-pharmacological activities when relevant for human disease prevention and/or treatment. In addition, we considered diatoms and their extracts (or purified compounds) when relevant for specific nutraceutical applications.
Collapse
Affiliation(s)
- Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Center of Marine Pharmacology, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sara Carpi
- National Enterprise for NanoScience and Nanotechnology (NEST), Piazza San Silvestro, 56127 Pisa, Italy
| | - Roberta Esposito
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Maria Costantini
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
| | - Valerio Zupo
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, 80077 Ischia, Italy
| |
Collapse
|
14
|
Enhanced Algal Biomass Production in a Novel Electromagnetic Photobioreactor (E-PBR). Curr Microbiol 2022; 79:395. [DOI: 10.1007/s00284-022-03100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
|
15
|
Chen B, Wang F, Xie X, Liu H, Liu D, Ma L, Xiao G, Wang Q. Functional analysis of the dehydratase domains of the PUFA synthase from Emiliania huxleyi in Escherichia coli and Arabidopsis thaliana. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:123. [PMID: 36380342 PMCID: PMC9667614 DOI: 10.1186/s13068-022-02223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Polyunsaturated fatty acid (PUFA) synthase is a multi-domain mega-enzyme that effectively synthesizes a series of PUFAs in marine microorganisms. The dehydratase (DH) domain of a PUFA synthase plays a crucial role in double bond positioning in fatty acids. Sequencing results of the coccolithophore Emiliania huxleyi (E. huxleyi, Eh) indicated that this species contains a PUFA synthase with multiple DH domains. Therefore, the current study, sought to define the functions of these DH domains (EhDHs), by cloning and overexpressing the genes encoding FabA-like EhDHs in Escherichia coli (E. coli) and Arabidopsis thaliana (A. thaliana). RESULTS A complementation test showed that the two FabA-like DH domains could restore DH function in a temperature-sensitive (Ts) mutant. Meanwhile, overexpression of FabA-like EhDH1 and EhDH2 domains increased the production of unsaturated fatty acids (UFAs) in recombinant E. coli by 43.5-32.9%, respectively. Site-directed mutagenesis analysis confirmed the authenticity of active-site residues in these domains. Moreover, the expression of tandem EhDH1-DH2 in A. thaliana altered the fatty acids content, seed weight, and germination rate. CONCLUSIONS The two FabA-like DH domains in the E. huxleyi PUFA synthase function as 3-hydroxyacyl-acyl carrier protein dehydratase in E. coli. The expression of these domains in E. coli and A. thaliana can alter the fatty acid profile in E. coli and increase the seed lipid content and germination rate in A. thaliana. Hence, introduction of DH domains controlling the dehydration process of fatty acid biosynthesis in plants might offer a new strategy to increase oil production in oilseed plants.
Collapse
Affiliation(s)
- Bihan Chen
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xi Xie
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Huifan Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongjie Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
16
|
Waseem M. Recent Progress on Carotenoids Production from Microalgae: A review. PAKISTAN BIOMEDICAL JOURNAL 2022. [DOI: 10.54393/pbmj.v5i10.811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The color of fruits and green vegetables is attributed to a pigment known as carotenoids. On the basis of presence and absence of oxygen, carotenoids are divided into two categories; carotenes which do not contain oxygen and xanthophylls which are oxygen carrier. Carotenoids are not only good anti-oxidant agents; they also exhibit anti-tumor properties. The structure of carotenoids consists of eight isoprene units, which forms a chain consisting of conjugated double bonds. The presence of conjugated double bond in carotenoids neutralize free radicals by accepting electrons from them. Till now, most of the carotenoids commercially available are produced chemically however, microalgae are a good source of carotenoids. Microalgae can produce the carotenoids in abundance using two-stage cultivation strategies. In first phase, microalgae are given with optimal growth conditions for maximum production of biomass, on the other hand, keeping the second phase for the storage of lipids or carotenoids in unfavorable conditions. The production of carotenoids in two-stage approach is increased by many times than the conventional single phase cultivation method. Carotenoids have many industrial applications.
Collapse
|
17
|
D’Ambrosio HK, Ganley JG, Keeler AM, Derbyshire ER. A single amino acid residue controls acyltransferase activity in a polyketide synthase from Toxoplasma gondii. iScience 2022; 25:104443. [PMID: 35874921 PMCID: PMC9301873 DOI: 10.1016/j.isci.2022.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Type I polyketide synthases (PKSs) are multidomain, multimodule enzymes capable of producing complex polyketide metabolites. These modules contain an acyltransferase (AT) domain, which selects acyl-CoA substrates to be incorporated into the metabolite scaffold. Herein, we reveal the sequences of three AT domains from a polyketide synthase (TgPKS2) from the apicomplexan parasite Toxoplasma gondii. Phylogenic analysis indicates these ATs (AT1, AT2, and AT3) are distinct from domains in well-characterized microbial biosynthetic gene clusters. Biochemical investigations revealed that AT1 and AT2 hydrolyze malonyl-CoA but the terminal AT3 domain is non-functional. We further identify an "on-off switch" residue that controls activity such that a single amino acid change in AT3 confers hydrolysis activity while the analogous mutation in AT2 eliminates activity. This biochemical analysis of AT domains from an apicomplexan PKS lays the foundation for further molecular and structural studies on PKSs from T. gondii and other protists.
Collapse
Affiliation(s)
- Hannah K. D’Ambrosio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Jack G. Ganley
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Aaron M. Keeler
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Emily R. Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
18
|
Biocide vs. Eco-Friendly Antifoulants: Role of the Antioxidative Defence and Settlement in Mytilus galloprovincialis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antifoulant paints were developed to prevent and reduce biofouling on surfaces immersed in seawater. The widespread use of these substances over the years has led to a significant increase of their presence in the marine environment. These compounds were identified as environmental and human threats. As a result of an international ban, research in the last decade has focused on developing a new generation of benign antifoulant paints. This review outlines the detrimental effects associated with biocide versus eco-friendly antifoulants, highlighting what are effective antifoulants and why there is a need to monitor them. We examine the effects of biocide and eco-friendly antifoulants on the antioxidative defence mechanism and settlement in a higher sessile organism, specifically the Mediterranean mussel, Mytilus galloprovincialis. These antifoulants can indirectly assess the potential of these two parameters in order to outline implementation of sustainable antifoulants.
Collapse
|
19
|
Aldholmi M, Ahmad R, Carretero‐Molina D, Pérez‐Victoria I, Martín J, Reyes F, Genilloud O, Gourbeyre L, Gefflaut T, Carlsson H, Maklakov A, O'Neill E, Field RA, Wilkinson B, O'Connell M, Ganesan A. Euglenatides, Potent Antiproliferative Cyclic Peptides Isolated from the Freshwater Photosynthetic Microalga Euglena gracilis. Angew Chem Int Ed Engl 2022; 61:e202203175. [PMID: 35325497 PMCID: PMC9321709 DOI: 10.1002/anie.202203175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 11/27/2022]
Abstract
By limiting the nitrogen source to glutamic acid, we isolated cyclic peptides from Euglena gracilis containing asparagine and non-proteinogenic amino acids. Structure elucidation was accomplished through spectroscopic methods, mass spectrometry and chemical degradation. The euglenatides potently inhibit pathogenic fungi and cancer cell lines e.g., euglenatide B exhibiting IC50 values of 4.3 μM in Aspergillus fumigatus and 0.29 μM in MCF-7 breast cancer cells. In an unprecedented convergence of non-ribosomal peptide synthetase and polyketide synthase assembly-line biosynthesis between unicellular species and the metazoan kingdom, euglenatides bear resemblance to nemamides from Caenorhabditis elegans and inhibited both producing organisms E. gracilis and C. elegans. By molecular network analysis, we detected over forty euglenatide-like metabolites in E. gracilis, E. sanguinea and E. mutabilis, suggesting an important biological role for these natural products.
Collapse
Affiliation(s)
- Mohammed Aldholmi
- Natural Products and Alternative MedicineCollege of Clinical PharmacyImam Abdulrahman Bin Faisal UniversityDammam31441Saudi Arabia
| | - Rizwan Ahmad
- Natural Products and Alternative MedicineCollege of Clinical PharmacyImam Abdulrahman Bin Faisal UniversityDammam31441Saudi Arabia
| | - Daniel Carretero‐Molina
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Ignacio Pérez‐Victoria
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Jesús Martín
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Fernando Reyes
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Olga Genilloud
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Léa Gourbeyre
- Université Clermont AuvergneClermont Auvergne INP, CNRS, Institut Pascal63000Clermont-FerrandFrance
| | - Thierry Gefflaut
- Université Clermont AuvergneClermont Auvergne INP, CNRS, Institut Pascal63000Clermont-FerrandFrance
| | - Hanne Carlsson
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Alexei Maklakov
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Ellis O'Neill
- School of ChemistryUniversity of NottinghamNottinghamNG7 2RDUK
| | - Robert A. Field
- Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | | | - Maria O'Connell
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - A. Ganesan
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
20
|
Aldholmi M, Ahmad R, Carretero‐Molina D, Pérez‐Victoria I, Martín J, Reyes F, Genilloud O, Gourbeyre L, Gefflaut T, Carlsson H, Maklakov A, O'Neill E, Field RA, Wilkinson B, O'Connell M, Ganesan A. Euglenatides, Potent Antiproliferative Cyclic Peptides Isolated from the Freshwater Photosynthetic Microalga
Euglena gracilis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammed Aldholmi
- Natural Products and Alternative Medicine College of Clinical Pharmacy Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Rizwan Ahmad
- Natural Products and Alternative Medicine College of Clinical Pharmacy Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Daniel Carretero‐Molina
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Ignacio Pérez‐Victoria
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Jesús Martín
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Fernando Reyes
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Olga Genilloud
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Léa Gourbeyre
- Université Clermont Auvergne Clermont Auvergne INP, CNRS, Institut Pascal 63000 Clermont-Ferrand France
| | - Thierry Gefflaut
- Université Clermont Auvergne Clermont Auvergne INP, CNRS, Institut Pascal 63000 Clermont-Ferrand France
| | - Hanne Carlsson
- School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Alexei Maklakov
- School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Ellis O'Neill
- School of Chemistry University of Nottingham Nottingham NG7 2RD UK
| | - Robert A. Field
- Manchester Institute of Biotechnology University of Manchester Manchester M1 7DN UK
| | | | - Maria O'Connell
- School of Pharmacy University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - A. Ganesan
- School of Pharmacy University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
21
|
Sreenikethanam A, Raj S, J RB, Gugulothu P, Bajhaiya AK. Genetic Engineering of Microalgae for Secondary Metabolite Production: Recent Developments, Challenges, and Future Prospects. Front Bioeng Biotechnol 2022; 10:836056. [PMID: 35402414 PMCID: PMC8984019 DOI: 10.3389/fbioe.2022.836056] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Microalgae are highly diverse photosynthetic organisms with higher growth rate and simple nutritional requirements. They are evolved with an efficiency to adapt to a wide range of environmental conditions, resulting in a variety of genetic diversity. Algae accounts for nearly half of global photosynthesis, which makes them a crucial player for CO2 sequestration. In addition, they have metabolic capacities to produce novel secondary metabolites of pharmaceutical, nutraceutical and industrial applications. Studies have explored the inherent metabolic capacities of microalgae with altered growth conditions for the production of primary and secondary metabolites. However, the production of the targeted metabolites at higher rates is not guaranteed just with the inherent genetic potentials. The strain improvement using genetic engineering is possible hope to overcome the conventional methods of culture condition improvements for metabolite synthesis. Although the advanced gene editing tools are available, the gene manipulation of microalgae remains relatively unexplored. Among the performed gene manipulations studies, most of them focus on primary metabolites with limited focus on secondary metabolite production. The targeted genes can be overexpressed to enhance the production of the desired metabolite or redesigning them using the synthetic biology. A mutant (KOR1) rich in carotenoid and lipid content was developed in a recent study employing mutational breeding in microalgae (Kato, Commun. Biol, 2021, 4, 450). There are lot of challenges in genetic engineering associated with large algal diversity but the numerous applications of secondary metabolites make this field of research very vital for the biotech industries. This review, summarise all the genetic engineering studies and their significance with respect to secondary metabolite production from microalgae. Further, current genetic engineering strategies, their limitations and future strategies are also discussed.
Collapse
Affiliation(s)
- Arathi Sreenikethanam
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| | - Subhisha Raj
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Thirvarur, India
| | | | - Amit K Bajhaiya
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| |
Collapse
|
22
|
Aeroterrestrial and Extremophilic Microalgae as Promising Sources for Lipids and Lipid Nanoparticles in Dermal Cosmetics. COSMETICS 2022. [DOI: 10.3390/cosmetics9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microscopic prokaryotic and eukaryotic algae (microalgae), which can be effectively grown in mass cultures, are gaining increasing interest in cosmetics. Up to now, the main attention was on aquatic algae, while species from aeroterrestrial and extreme environments remained underestimated. In these habitats, algae accumulate high amounts of some chemical substances or develop specific compounds, which cause them to thrive in inimical conditions. Among such biologically active molecules is a large family of lipids, which are significant constituents in living organisms and valuable ingredients in cosmetic formulations. Therefore, natural sources of lipids are increasingly in demand in the modern cosmetic industry and its innovative technologies. Among novelties in skin care products is the use of lipid nanoparticles as carriers of dermatologically active ingredients, which enhance their penetration and release in the skin strata. This review is an attempt to comprehensively cover the available literature on the high-value lipids from microalgae, which inhabit aeroterrestrial and extreme habitats (AEM). Data on different compounds of 87 species, subspecies and varieties from 53 genera (represented by more than 141 strains) from five phyla are provided and, despite some gaps in the current knowledge, demonstrate the promising potential of AEM as sources of valuable lipids for novel skin care products.
Collapse
|
23
|
Del Mondo A, Sansone C, Brunet C. Insights into the biosynthesis pathway of phenolic compounds in microalgae. Comput Struct Biotechnol J 2022; 20:1901-1913. [PMID: 35521550 PMCID: PMC9052079 DOI: 10.1016/j.csbj.2022.04.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Microalgal PCs are important bioactive molecules beneficial for human health. Bioinformatic comparative exploration predicts PCs synthesis in microalgae. Ten groups of prokaryotic and eukaryotic microalgae reveal a conserved pathway core. Featured PCs can be restricted to diverse microalgae due to ecological implications.
Among the most relevant bioactive molecules family, phenolic compounds (PCs) are well known in higher plants, while their knowledge in microalgae is still scarce. Microalgae represent a novel and promising source of human health benefit compounds to be involved, for instance, in nutraceutical composition. This study aims to investigate the PCs biosynthetic pathway in the microalgal realm, exploring its potential variability over the microalgal biodiversity axis. A multistep in silico analysis was carried out using a selection of core enzymes from the pathway described in land plants. This study explores their presence in ten groups of prokaryotic and eukaryotic microalgae.. Analyses were carried out taking into account a wide selection of algal protein homologs, functional annotation of conserved domains and motifs, and maximum-likelihood tree construction. Results showed that a conserved core of the pathway for PCs biosynthesis is shared horizontally in all microalgae. Conversely, the ability to synthesize some subclasses of phenolics may be restricted to only some microalgal groups (i.e., Chlorophyta) depending on featured enzymes, such as the flavanone naringenin and other related chalcone isomerase dependent compounds.
Collapse
Affiliation(s)
- Angelo Del Mondo
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133 Napoli, Italy
- Corresponding author.
| | - Clementina Sansone
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133 Napoli, Italy
- Institute of Biomolecular Chemistry, CNR, via Campi Flegrei 34, Pozzuoli 80078, Na, Italy
| | - Christophe Brunet
- Stazione zoologica Anton Dohrn, sede Molosiglio Marina Acton, via ammiraglio F. Acton, 55., 80133 Napoli, Italy
| |
Collapse
|
24
|
Anestis K, Kohli GS, Wohlrab S, Varga E, Larsen TO, Hansen PJ, John U. Polyketide synthase genes and molecular trade-offs in the ichthyotoxic species Prymnesium parvum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148878. [PMID: 34252778 DOI: 10.1016/j.scitotenv.2021.148878] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Prymnesium parvum is a bloom forming haptophyte that has been responsible for numerous fish kill events across the world. The toxicity of P. parvum has been attributed to the production of large polyketide compounds, collectively called prymnesins, which based on their structure can be divided into A-, B- and C-type. The polyketide chemical nature of prymnesins indicates the potential involvement of polyketide synthases (PKSs) in their biosynthesis. However, little is known about the presence of PKSs in P. parvum as well as the potential molecular trade-offs of toxin biosynthesis. In the current study, we generated and analyzed the transcriptomes of nine P. parvum strains that produce different toxin types and have various cellular toxin contents. Numerous type I PKSs, ranging from 37 to 109, were found among the strains. Larger modular type I PKSs were mainly retrieved from strains with high cellular toxin levels and eight consensus transcripts were present in all nine strains. Gene expression variance analysis revealed potential molecular trade-offs associated with cellular toxin quantity, showing that basic metabolic processes seem to correlate negatively with cellular toxin content. These findings point towards the presence of metabolic costs for maintaining high cellular toxin quantity. The detailed analysis of PKSs in P. parvum is the first step towards better understanding the molecular basis of the biosynthesis of prymnesins and contributes to the development of molecular tools for efficient monitoring of future blooms.
Collapse
Affiliation(s)
- Konstantinos Anestis
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - Gurjeet Singh Kohli
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - Sylke Wohlrab
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany.
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 40, 1090 Vienna, Austria.
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kongens Lyngby, Denmark.
| | - Per Juel Hansen
- Marine Biology Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| | - Uwe John
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany.
| |
Collapse
|
25
|
Fernandes T, Cordeiro N. Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications. Mar Drugs 2021; 19:md19100573. [PMID: 34677472 PMCID: PMC8540142 DOI: 10.3390/md19100573] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/04/2022] Open
Abstract
Microalgae are often called “sustainable biofactories” due to their dual potential to mitigate atmospheric carbon dioxide and produce a great diversity of high-value compounds. Nevertheless, the successful exploitation of microalgae as biofactories for industrial scale is dependent on choosing the right microalga and optimum growth conditions. Due to the rich biodiversity of microalgae, a screening pipeline should be developed to perform microalgal strain selection exploring their growth, robustness, and metabolite production. Current prospects in microalgal biotechnology are turning their focus to high-value lipids for pharmaceutic, nutraceutic, and cosmetic products. Within microalgal lipid fraction, polyunsaturated fatty acids and carotenoids are broadly recognized for their vital functions in human organisms. Microalgal-derived phytosterols are still an underexploited lipid resource despite presenting promising biological activities, including neuroprotective, anti-inflammatory, anti-cancer, neuromodulatory, immunomodulatory, and apoptosis inductive effects. To modulate microalgal biochemical composition, according to the intended field of application, it is important to know the contribution of each cultivation factor, or their combined effects, for the wanted product accumulation. Microalgae have a vital role to play in future low-carbon economy. Since microalgal biodiesel is still costly, it is desirable to explore the potential of oleaginous species for its high-value lipids which present great global market prospects.
Collapse
Affiliation(s)
- Tomásia Fernandes
- Laboratory of Bioanalysis, Biomaterials, and Biotechnology (LB3), Faculty of Exact Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| | - Nereida Cordeiro
- Laboratory of Bioanalysis, Biomaterials, and Biotechnology (LB3), Faculty of Exact Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
- Correspondence:
| |
Collapse
|
26
|
Seasonal Nutritional Profile of Gelidium corneum (Rhodophyta, Gelidiaceae) from the Center of Portugal. Foods 2021; 10:foods10102394. [PMID: 34681442 PMCID: PMC8536063 DOI: 10.3390/foods10102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Gelidium corneum is a well-known agarophyte, harvested worldwide for its high agar quality. However, the species also exhibits an interesting nutritional profile, but with seasonal variations. Therefore, to evaluate the nutritional value of G. corneum, ash, crude protein, total lipids, and carbohydrates were analyzed at different times of the year. The heavy metals mercury, arsenic, lead, cadmium, and tin, as well as iodine were also measured. Finally, the seasonal antioxidant capacity of G. corneum extracts was evaluated. Our results indicate that the biomass is rich in protein (up to 16.25 ± 0.33%) and carbohydrates (up to 39.5 ± 3.29%), and low in lipids (up to 2.75 ± 0.28%), and especially in the summer, the AI, TI indexes, n-6/n-3 and h/H ratios (0.93, 0.6, 0.88 and 1.08, respectively) are very interesting. None of the contaminants exceeded the legally established limits, and the iodine values were adequate for a healthy diet. Finally, the antioxidant capacity is fair, with the DPPH ≤ 10.89 ± 1.46%, and ABTS ≤ 13.90 ± 1.54% inhibition, FRAP ≤ 0.91 ± 0.22 AAE.g−1, and TPC ≤ 6.82 ± 0.26 GAE.g−1. The results show that G. corneum is an attractive resource, with potential use as food or as a food supplement.
Collapse
|
27
|
Isaac A, Francis B, Amann RI, Amin SA. Tight Adherence (Tad) Pilus Genes Indicate Putative Niche Differentiation in Phytoplankton Bloom Associated Rhodobacterales. Front Microbiol 2021; 12:718297. [PMID: 34447362 PMCID: PMC8383342 DOI: 10.3389/fmicb.2021.718297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 11/14/2022] Open
Abstract
The multiple interactions of phytoplankton and bacterioplankton are central for our understanding of aquatic environments. A prominent example of those is the consistent association of diatoms with Alphaproteobacteria of the order Rhodobacterales. These photoheterotrophic bacteria have traditionally been described as generalists that scavenge dissolved organic matter. Many observations suggest that members of this clade are specialized in colonizing the microenvironment of diatom cells, known as the phycosphere. However, the molecular mechanisms that differentiate Rhodobacterales generalists and phycosphere colonizers are poorly understood. We investigated Rhodobacterales in the North Sea during the 2010–2012 spring blooms using a time series of 38 deeply sequenced metagenomes and 10 metaproteomes collected throughout these events. Rhodobacterales metagenome assembled genomes (MAGs) were recurrently abundant. They exhibited the highest gene enrichment and protein expression of small-molecule transporters, such as monosaccharides, thiamine and polyamine transporters, and anaplerotic pathways, such as ethylmalonyl and propanoyl-CoA metabolic pathways, all suggestive of a generalist lifestyle. Metaproteomes indicated that the species represented by these MAGs were the dominant suppliers of vitamin B12 during the blooms, concomitant with a significant enrichment of genes related to vitamin B12 biosynthesis suggestive of association with diatom phycospheres. A closer examination of putative generalists and colonizers showed that putative generalists had persistently higher relative abundance throughout the blooms and thus produced more than 80% of Rhodobacterales transport proteins, suggesting rapid growth. In contrast, putative phycosphere colonizers exhibited large fluctuation in relative abundance across the different blooms and correlated strongly with particular diatom species that were dominant during the blooms each year. The defining feature of putative phycosphere colonizers is the presence of the tight adherence (tad) gene cluster, which is responsible for the assembly of adhesive pili that presumably enable attachment to diatom hosts. In addition, putative phycosphere colonizers possessed higher prevalence of secondary metabolite biosynthetic gene clusters, particularly homoserine lactones, which can regulate bacterial attachment through quorum sensing. Altogether, these findings suggest that while many members of Rhodobacterales are competitive during diatom blooms, only a subset form close associations with diatoms by colonizing their phycospheres.
Collapse
Affiliation(s)
- Ashley Isaac
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Ben Francis
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rudolf I Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Shady A Amin
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
28
|
Comparison of two strains of the edible cyanobacteria Arthrospira: Biochemical characterization and antioxidant properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Mishra B, Manmode S, Walke G, Chakraborty S, Neralkar M, Hotha S. Synthesis of the hyper-branched core tetrasaccharide motif of chloroviruses. Org Biomol Chem 2021; 19:1315-1328. [PMID: 33459320 DOI: 10.1039/d0ob02176h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical synthesis of complex oligosaccharides, especially those possessing hyper-branched structures with one or multiple 1,2-cis glycosidic bonds, is a challenging task. Complementary reactivity of glycosyl donors and acceptors and proper tuning of the solvent/temperature/activator coupled with compromised glycosylation yields for sterically congested glycosyl acceptors are among several factors that make such syntheses daunting. Herein, we report the synthesis of a semi-conserved hyper-branched core tetrasaccharide motif from chloroviruses which are associated with reduced cognitive function in humans as well as in mouse models. The target tetrasaccharide contains four different sugar residues in which l-fucose is connected to d-xylose and l-rhamnose via a 1,2-trans glycosidic bond, whereas with the d-galactose residue is connected through a 1,2-cis glycosidic bond. A thorough and comprehensive study of various accountable factors enabled us to install a 1,2-cis galactopyranosidic linkage in a stereoselective fashion under [Au]/[Ag]-catalyzed glycosidation conditions en route to the target tetrasaccharide motif in 14 steps.
Collapse
Affiliation(s)
- Bijoyananda Mishra
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Sujit Manmode
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Gulab Walke
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Saptashwa Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Mahesh Neralkar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| |
Collapse
|
30
|
Silva M, Seijas P, Otero P. Exploitation of Marine Molecules to Manage Alzheimer's Disease. Mar Drugs 2021; 19:md19070373. [PMID: 34203244 PMCID: PMC8307759 DOI: 10.3390/md19070373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are sociosanitary challenges of today, as a result of increased average life expectancy, with Alzheimer’s disease being one of the most prevalent. This pathology is characterized by brain impairment linked to a neurodegenerative process culminating in cognitive decline and behavioral disorders. Though the etiology of this pathology is still unknown, it is usually associated with the appearance of senile plaques and neurofibrillary tangles. The most used prophylaxis relies on anticholinesterase drugs and NMDA receptor antagonists, whose main action is to relieve symptoms and not to treat or prevent the disease. Currently, the scientific community is gathering efforts to disclose new natural compounds effective against Alzheimer’s disease and other neurodegenerative pathologies. Marine natural products have been shown to be promising candidates, and some have been proven to exert a high neuroprotection effect, constituting a large reservoir of potential drugs and nutraceutical agents. The present article attempts to describe the processes of extraction and isolation of bioactive compounds derived from sponges, algae, marine bacteria, invertebrates, crustaceans, and tunicates as drug candidates against AD, with a focus on the success of pharmacological activity in the process of finding new and effective drug compounds.
Collapse
Affiliation(s)
- Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal;
- Department of Plant Biology, Faculty of Science, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Paula Seijas
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Paz Otero
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence UAM+CSIC, 28049 Madrid, Spain
- Nutrition and Bromatology Group, CITACA, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
- Correspondence: or
| |
Collapse
|
31
|
Saadaoui I, Rasheed R, Aguilar A, Cherif M, Al Jabri H, Sayadi S, Manning SR. Microalgal-based feed: promising alternative feedstocks for livestock and poultry production. J Anim Sci Biotechnol 2021; 12:76. [PMID: 34134776 PMCID: PMC8359609 DOI: 10.1186/s40104-021-00593-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
There is an immediate need to identify alternative sources of high-nutrient feedstocks for domestic livestock production and poultry, not only to support growing food demands but also to produce microalgae-source functional foods with multiple health benefits. Various species of microalgae and cyanobacteria are used to supplement existing feedstocks. In this review, microalgae have been defined as a potential feedstock for domestic animals due to their abundance of proteins, carbohydrates, lipids, minerals, vitamins, and other high-value products. Additionally, the positive physiological effects on products of animals fed with microalgal biomass have been compiled and recommendations are listed to enhance the assimilation of biomolecules in ruminant and nonruminant animals, which possess differing digestive systems. Furthermore, the role of microalgae as prebiotics is also discussed. With regards to large scale cultivation of microalgae for use as feed, many economic trade-offs must be considered such as the selection of strains with desired nutritional properties, cultivation systems, and steps for downstream processing. These factors are highlighted with further investigations needed to reduce the overall costs of cultivation. Finally, this review outlines the pros and cons of utilizing microalgae as a supplementary feedstock for poultry and cattle, existing cultivation strategies, and the economics of large-scale microalgal production.
Collapse
Affiliation(s)
- Imen Saadaoui
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar.
| | - Rihab Rasheed
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Ana Aguilar
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maroua Cherif
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Hareb Al Jabri
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Schonna R Manning
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
32
|
Rawat J, Gupta PK, Pandit S, Prasad R, Pande V. Current perspectives on integrated approaches to enhance lipid accumulation in microalgae. 3 Biotech 2021; 11:303. [PMID: 34194896 DOI: 10.1007/s13205-021-02851-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, research initiatives on renewable bioenergy or biofuels have been gaining momentum, not only due to fast depletion of finite reserves of fossil fuels but also because of the associated concerns for the environment and future energy security. In the last few decades, interest is growing concerning microalgae as the third-generation biofuel feedstock. The CO2 fixation ability and conversion of it into value-added compounds, devoid of challenging food and feed crops, make these photosynthetic microorganisms an optimistic producer of biofuel from an environmental point of view. Microalgal-derived fuels are currently being considered as clean, renewable, and promising sustainable biofuel. Therefore, most research targets to obtain strains with the highest lipid productivity and a high growth rate at the lowest cultivation costs. Different methods and strategies to attain higher biomass and lipid accumulation in microalgae have been extensively reported in the previous research, but there are fewer inclusive reports that summarize the conventional methods with the modern techniques for lipid enhancement and biodiesel production from microalgae. Therefore, the current review focuses on the latest techniques and advances in different cultivation conditions, the effect of different abiotic and heavy metal stress, and the role of nanoparticles (NPs) in the stimulation of lipid accumulation in microalgae. Techniques such as genetic engineering, where particular genes associated with lipid metabolism, are modified to boost lipid synthesis within the microalgae, the contribution of "Omics" in metabolic pathway studies. Further, the contribution of CRISPR/Cas9 system technique to the production of microalgae biofuel is also briefly described.
Collapse
Affiliation(s)
- Jyoti Rawat
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845801 India
| | - Veena Pande
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| |
Collapse
|
33
|
Galas L, Burel C, Schapman D, Ropitaux M, Bernard S, Bénard M, Bardor M. Comparative Structural and Functional Analyses of the Fusiform, Oval, and Triradiate Morphotypes of Phaeodactylum tricornutum Pt3 Strain. FRONTIERS IN PLANT SCIENCE 2021; 12:638181. [PMID: 33912207 PMCID: PMC8072121 DOI: 10.3389/fpls.2021.638181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/16/2021] [Indexed: 05/24/2023]
Abstract
The diatom Phaeodactylum tricornutum is a marine unicellular microalga that exists under three main morphotypes: oval, fusiform, and triradiate. Previous works have demonstrated that the oval morphotype of P. tricornutum Pt3 strain presents specific metabolic features. Here, we compared the cellular organization of the main morphotypes of the diatom P. tricornutum Pt3 strain through transmission electron and advanced light microscopies. The three morphotypes share similarities including spectral characteristics of the plastid, the location of the nucleus, the organization of mitochondria around the plastid as well as the existence of both a F-actin cortex, and an intracellular network of F-actin. In contrast, compared to fusiform and triradiate cells, oval cells spontaneously release proteins more rapidly. In addition, comparison of whole transcriptomes of oval versus fusiform or triradiate cells revealed numerous differential expression of positive and negative regulators belonging to the complex dynamic secretory machinery. This study highlights the specificities occurring within the oval morphotype underlying that the oval cells secrete proteins more rapidly.
Collapse
Affiliation(s)
- Ludovic Galas
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Carole Burel
- Normandie University, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Rouen, France
| | - Damien Schapman
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Marc Ropitaux
- Normandie University, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Rouen, France
| | - Sophie Bernard
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
- Normandie University, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Rouen, France
| | - Magalie Bénard
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Muriel Bardor
- Normandie University, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Rouen, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
34
|
El-Gendy NS, Nassar HN. Phycoremediation of phenol-polluted petro-industrial effluents and its techno-economic values as a win-win process for a green environment, sustainable energy and bioproducts. J Appl Microbiol 2021; 131:1621-1638. [PMID: 33386652 DOI: 10.1111/jam.14989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
The discharge of the toxic phenol-polluted petro-industrial effluents (PPPIE) has severe environmental negative impacts, thus it is mandatory to be treated before its discharge. The objective of this review was to discuss the sustainable application of microalgae in phenols degradation, with a special emphasis on the enzymes involved in this bioprocess and the factors affecting the success of PPPIE phycoremediation. Moreover, it confers the microalgae bioenergetic strategies to degrade different forms of phenols in PPPIE. It also points out the advantages of the latest application of bacteria, fungi and microalgae as microbial consortia in phenols biodegradation. Briefly, phycoremediation of PPPIE consumes carbon dioxide emitted from petro-industries for; valorization of the polluted water to be reused and production of algal biomass which can act as a source of energy for such integrated bioprocess. Besides, the harvested algal biomass can feasibly produce; third-generation biofuels, biorefineries, bioplastics, fish and animal feed, food supplements, natural dyes, antioxidants and many other valuable products. Consequently, this review precisely confirms that the phycoremediation of PPPIE is a win-win process for a green environment and a sustainable future. Thus, to achieve the three pillars of sustainability; social, environmental and economic; it is recommendable to integrate PPPIE treatment with algal cultivation. This integrated process would overcome the problem of greenhouse gas emissions, global warming and climate change, solve the problem of water-scarce, and protect the environment from the harmful negative impacts of PPPIE.
Collapse
Affiliation(s)
- N Sh El-Gendy
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt.,Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt
| | - H N Nassar
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt.,Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt
| |
Collapse
|
35
|
Praveen P, Vaidya A, Tutt K, Andrews J. Assessing the potential of purple phototrophic microbial community for nitrogen recycling from ammonia-rich medium and anaerobic digestate. BIORESOURCE TECHNOLOGY 2021; 320:124436. [PMID: 33248813 DOI: 10.1016/j.biortech.2020.124436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Purple phototrophic bacteria (PPB) community, enriched from municipal wastewater, was characterized to assess their growth, tolerance, composition and potential for resource recovery from NH4+-rich medium. Batch experiments were conducted in tissue culture flasks and glass bottles under anaerobic conditions with infra-red lights. PPBs showed remarkable tolerance to high concentrations of NH4+-N and acetate. Below 1.5 g/L, growth was unaffected by NH4+-N with optical density at 590 nm (OD590) reaching 2.6-2.9, while they could tolerate 4.5 g/L NH4+-N. Similarly, PPB growth was unaffected at acetate concentrations below 4 g/L and they could tolerate >20 g/L acetate. Taxonomic characterization showed that the community comprised of 37-52% PPBs (with 15-20% proteins) under different conditions, with Rhodobacter sp. over Rhodopseudomonas sp. dominating at higher NH4+-N concentrations. PPBs showed growth and removal rates in anaerobic digestate and accumulated 26% proteins. These results indicated the potential of PPBs in resource recovery from NH4+-rich wastewater.
Collapse
Affiliation(s)
| | - Alankar Vaidya
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, New Zealand
| | - Keryn Tutt
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, New Zealand
| | - John Andrews
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, New Zealand
| |
Collapse
|
36
|
Overexpression of Key Sterol Pathway Enzymes in Two Model Marine Diatoms Alters Sterol Profiles in Phaeodactylum tricornutum. Pharmaceuticals (Basel) 2020; 13:ph13120481. [PMID: 33371196 PMCID: PMC7766473 DOI: 10.3390/ph13120481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
Sterols are a class of triterpenoid molecules with diverse functional roles in eukaryotic cells, including intracellular signaling and regulation of cell membrane fluidity. Diatoms are a dominant eukaryotic phytoplankton group that produce a wide diversity of sterol compounds. The enzymes 3-hydroxy-3-methyl glutaryl CoA reductase (HMGR) and squalene epoxidase (SQE) have been reported to be rate-limiting steps in sterol biosynthesis in other model eukaryotes; however, the extent to which these enzymes regulate triterpenoid production in diatoms is not known. To probe the role of these two metabolic nodes in the regulation of sterol metabolic flux in diatoms, we independently over-expressed two versions of the native HMGR and a conventional, heterologous SQE gene in the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Overexpression of these key enzymes resulted in significant differential accumulation of downstream sterol pathway intermediates in P. tricornutum. HMGR-mVenus overexpression resulted in the accumulation of squalene, cycloartenol, and obtusifoliol, while cycloartenol and obtusifoliol accumulated in response to heterologous NoSQE-mVenus overexpression. In addition, accumulation of the end-point sterol 24-methylenecholesta-5,24(24’)-dien-3β-ol was observed in all P. tricornutum overexpression lines, and campesterol increased three-fold in P. tricornutum lines expressing NoSQE-mVenus. Minor differences in end-point sterol composition were also found in T. pseudonana, but no accumulation of sterol pathway intermediates was observed. Despite the successful manipulation of pathway intermediates and individual sterols in P. tricornutum, total sterol levels did not change significantly in transformed lines, suggesting the existence of tight pathway regulation to maintain total sterol content.
Collapse
|
37
|
Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules 2020; 25:molecules25245804. [PMID: 33316949 PMCID: PMC7763478 DOI: 10.3390/molecules25245804] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Cyanobacteria and microalgae are oxygen-producing photosynthetic unicellular organisms encompassing a great diversity of species, which are able to grow under all types of extreme environments and exposed to a wide variety of predators and microbial pathogens. The antibacterial compounds described for these organisms include alkaloids, fatty acids, indoles, macrolides, peptides, phenols, pigments and terpenes, among others. This review presents an overview of antibacterial peptides isolated from cyanobacteria and microalgae, as well as their synergism and mechanisms of action described so far. Antibacterial cyanopeptides belong to different orders, but mainly from Oscillatoriales and Nostocales. Cyanopeptides have different structures but are mainly cyclic peptides. This vast peptide repertoire includes ribosomal and abundant non-ribosomal peptides, evaluated by standard conventional methodologies against pathogenic Gram-negative and Gram-positive bacteria. The antibacterial activity described for microalgal peptides is considerably scarcer, and limited to protein hydrolysates from two Chlorella species, and few peptides from Tetraselmis suecica. Despite the promising applications of antibacterial peptides and the importance of searching for new natural sources of antibiotics, limitations still persist for their pharmaceutical applications.
Collapse
|
38
|
Bhowmick S, Mazumdar A, Moulick A, Adam V. Algal metabolites: An inevitable substitute for antibiotics. Biotechnol Adv 2020; 43:107571. [PMID: 32505655 DOI: 10.1016/j.biotechadv.2020.107571] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance is rising at a pace that is difficult to cope with; circumvention of this issue requires fast and efficient alternatives to conventional antibiotics. Algae inhabit a wide span of ecosystems, which contributes to their ability to synthesize diverse classes of highly active biogenic metabolites. Here, for the first time, we reviewed all possible algal metabolites with broad spectra antibacterial activity against pathogenic bacteria, including antibiotic-resistant strains, and categorized different metabolites of both freshwater and marine algae, linking them on the basis of their target sites and mechanistic actions along with their probable nanoconjugates. Algae can be considered a boon for novel drug discovery in the era of antibiotic resistance, as various algal primary and secondary metabolites possess potential antibacterial properties. The diversity of these metabolites from indigenous sources provides a promising gateway enabling researchers and pharmaceutical companies to develop novel nontoxic, cost-effective and highly efficient antibacterial medicines.
Collapse
Affiliation(s)
- Sukanya Bhowmick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Aninda Mazumdar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Amitava Moulick
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic.
| |
Collapse
|
39
|
Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res 2020; 79:101047. [DOI: 10.1016/j.plipres.2020.101047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
|
40
|
Jaramillo-Madrid AC, Ashworth J, Fabris M, Ralph PJ. The unique sterol biosynthesis pathway of three model diatoms consists of a conserved core and diversified endpoints. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Algae-Derived Bioactive Compounds with Anti-Lung Cancer Potential. Mar Drugs 2020; 18:md18040197. [PMID: 32276401 PMCID: PMC7230368 DOI: 10.3390/md18040197] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is one of the major causes of death worldwide. Natural molecules with anti-lung cancer potential are of a great interest and considered as very promising alternative to substitute or enhance the efficiency of the conventional drugs. Recently, algae as source of high value-added compounds are considered as very promising source of these bioactive molecules. These are secondary metabolites that consist mainly of derivatives of peptides, carbohydrates, and lipids with various structures. Accordingly, various mechanisms by which different algae molecules demonstrate attenuation of tumor angiogenesis were stated and discussed. The mode of action of the algae bioactives is closely related to their nature and chemical structure. Furthermore, this literature review considers the synergistic effect between microalgae bioactives and conventional drugs and discuss the economic feasibility of producing microalgae bioactives at large scale to conclude with some future perspectives related to algae-based drug discovery.
Collapse
|
42
|
Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, Labeeuw L, McCauley JI, Kuzhiuparambil U, Ray P, Kahlke T, Ralph PJ. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. FRONTIERS IN PLANT SCIENCE 2020; 11:279. [PMID: 32256509 PMCID: PMC7090149 DOI: 10.3389/fpls.2020.00279] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 05/18/2023]
Abstract
Mankind has recognized the value of land plants as renewable sources of food, medicine, and materials for millennia. Throughout human history, agricultural methods were continuously modified and improved to meet the changing needs of civilization. Today, our rapidly growing population requires further innovation to address the practical limitations and serious environmental concerns associated with current industrial and agricultural practices. Microalgae are a diverse group of unicellular photosynthetic organisms that are emerging as next-generation resources with the potential to address urgent industrial and agricultural demands. The extensive biological diversity of algae can be leveraged to produce a wealth of valuable bioproducts, either naturally or via genetic manipulation. Microalgae additionally possess a set of intrinsic advantages, such as low production costs, no requirement for arable land, and the capacity to grow rapidly in both large-scale outdoor systems and scalable, fully contained photobioreactors. Here, we review technical advancements, novel fields of application, and products in the field of algal biotechnology to illustrate how algae could present high-tech, low-cost, and environmentally friendly solutions to many current and future needs of our society. We discuss how emerging technologies such as synthetic biology, high-throughput phenomics, and the application of internet of things (IoT) automation to algal manufacturing technology can advance the understanding of algal biology and, ultimately, drive the establishment of an algal-based bioeconomy.
Collapse
Affiliation(s)
- Michele Fabris
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| | - Raffaela M. Abbriano
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Donna L. Sutherland
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Audrey S. Commault
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Christopher C. Hall
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Leen Labeeuw
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Janice I. McCauley
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Parijat Ray
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
43
|
Lauritano C, Helland K, Riccio G, Andersen JH, Ianora A, Hansen EH. Lysophosphatidylcholines and Chlorophyll-Derived Molecules from the Diatom Cylindrotheca closterium with Anti-Inflammatory Activity. Mar Drugs 2020; 18:md18030166. [PMID: 32192075 PMCID: PMC7143213 DOI: 10.3390/md18030166] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Microalgae have been shown to be excellent producers of lipids, pigments, carbohydrates, and a plethora of secondary metabolites with possible applications in the pharmacological, nutraceutical, and cosmeceutical sectors. Recently, various microalgal raw extracts have been found to have anti-inflammatory properties. In this study, we performed the fractionation of raw extracts of the diatom Cylindrotheca closterium, previously shown to have anti-inflammatory properties, obtaining five fractions. Fractions C and D were found to significantly inhibit tumor necrosis factor alpha (TNF-⍺) release in LPS-stimulated human monocyte THP-1 cells. A dereplication analysis of these two fractions allowed the identification of their main components. Our data suggest that lysophosphatidylcholines and a breakdown product of chlorophyll, pheophorbide a, were probably responsible for the observed anti-inflammatory activity. Pheophorbide a is known to have anti-inflammatory properties. We tested and confirmed the anti-inflammatory activity of 1-palmitoyl-sn-glycero-3-phosphocholine, the most abundant lysophosphatidylcholine found in fraction C. This study demonstrated the importance of proper dereplication of bioactive extracts and fractions before isolation of compounds is commenced.
Collapse
Affiliation(s)
- Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy; (G.R.); (A.I.)
- Correspondence: ; Tel.: +39-081-5833-221
| | - Kirsti Helland
- Marbio, UiT—The Arctic University of Norway, Breivika N-9037 Tromsø, Norway; (K.H.); (J.H.A.); (E.H.H.)
| | - Gennaro Riccio
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy; (G.R.); (A.I.)
| | - Jeanette H. Andersen
- Marbio, UiT—The Arctic University of Norway, Breivika N-9037 Tromsø, Norway; (K.H.); (J.H.A.); (E.H.H.)
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy; (G.R.); (A.I.)
| | - Espen H. Hansen
- Marbio, UiT—The Arctic University of Norway, Breivika N-9037 Tromsø, Norway; (K.H.); (J.H.A.); (E.H.H.)
| |
Collapse
|
44
|
Barolo L, Abbriano RM, Commault AS, George J, Kahlke T, Fabris M, Padula MP, Lopez A, Ralph PJ, Pernice M. Perspectives for Glyco-Engineering of Recombinant Biopharmaceuticals from Microalgae. Cells 2020; 9:E633. [PMID: 32151094 PMCID: PMC7140410 DOI: 10.3390/cells9030633] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Microalgae exhibit great potential for recombinant therapeutic protein production, due to lower production costs, immunity to human pathogens, and advanced genetic toolkits. However, a fundamental aspect to consider for recombinant biopharmaceutical production is the presence of correct post-translational modifications. Multiple recent studies focusing on glycosylation in microalgae have revealed unique species-specific patterns absent in humans. Glycosylation is particularly important for protein function and is directly responsible for recombinant biopharmaceutical immunogenicity. Therefore, it is necessary to fully characterise this key feature in microalgae before these organisms can be established as industrially relevant microbial biofactories. Here, we review the work done to date on production of recombinant biopharmaceuticals in microalgae, experimental and computational evidence for N- and O-glycosylation in diverse microalgal groups, established approaches for glyco-engineering, and perspectives for their application in microalgal systems. The insights from this review may be applied to future glyco-engineering attempts to humanize recombinant therapeutic proteins and to potentially obtain cheaper, fully functional biopharmaceuticals from microalgae.
Collapse
Affiliation(s)
- Lorenzo Barolo
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Audrey S. Commault
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Jestin George
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Michele Fabris
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD 4001, Australia
| | - Matthew P. Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Sydney, Australia;
| | - Angelo Lopez
- Department of Chemistry, University of York, York, YO10 5DD, UK;
| | - Peter J. Ralph
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| |
Collapse
|
45
|
|
46
|
Hamidi M, Kozani PS, Kozani PS, Pierre G, Michaud P, Delattre C. Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications? Mar Drugs 2019; 18:E28. [PMID: 31905716 PMCID: PMC7024282 DOI: 10.3390/md18010028] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Natural bioactive compounds with antioxidant activity play remarkable roles in the prevention of reactive oxygen species (ROS) formation. ROS, which are formed by different pathways, have various pathological influences such as DNA damage, carcinogenesis, and cellular degeneration. Incremental demands have prompted the search for newer and alternative resources of natural bioactive compounds with antioxidant properties. The marine environment encompasses almost three-quarters of our planet and is home to many eukaryotic and prokaryotic microorganisms. Because of extreme physical and chemical conditions, the marine environment is a rich source of chemical and biological diversity, and marine microorganisms have high potential as a source of commercially interesting compounds with various pharmaceutical, nutraceutical, and cosmeceutical applications. Bacteria and microalgae are the most important producers of valuable molecules including antioxidant enzymes (such as superoxide dismutase and catalase) and antioxidant substances (such as carotenoids, exopolysaccharides, and bioactive peptides) with various valuable biological properties and applications. Here, we review the current knowledge of these bioactive compounds while highlighting their antioxidant properties, production yield, health-related benefits, and potential applications in various biological and industrial fields.
Collapse
Affiliation(s)
- Masoud Hamidi
- Food and Drug Research Center, Vice-Chancellery of Food and Drug, Guilan University of Medical Sciences, Rasht P.O. Box 41446/66949, Iran;
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115/111, Iran;
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
47
|
Papaefthimiou D, Diretto G, Demurtas OC, Mini P, Ferrante P, Giuliano G, Kanellis AK. Heterologous production of labdane-type diterpenes in the green alga Chlamydomonas reinhardtii. PHYTOCHEMISTRY 2019; 167:112082. [PMID: 31421542 DOI: 10.1016/j.phytochem.2019.112082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Labdane diterpenes (LDs), and especially sclareol, are important feedstocks for the pharmaceutical and cosmetic industries, and therefore several lines of research have led to their heterologous production in non-photosynthetic microbes and higher plants. The potential of microalgae as bioreactors of natural products has been established for a variety of bioactive metabolites, including terpenes. In this work, a codon optimized sequence encoding a key plant labdane-type diterpene (LD) cyclase, copal-8-ol diphosphate synthase from Cistus creticus (CcCLS), was introduced into the chloroplast genome of Chlamydomonas reinhardtii. Of 49 transplastomic algal lines, 12 produced variable amounts of four LD compounds, namely ent-manoyl oxide, sclareol, labda-13-ene-8α,15-diol and ent-13-epi-manoyl oxide. The total LD concentrations measured in the transplastomic lines reached 1.172 ± 0.05 μg/mg cell DW for the highest overall producer, while the highest yield for sclareol was 0.038 ± 0.001 μg/mg cell DW. Thus, transplastomic expression of a key plant labdane diterpene cyclase in the C. reinhardtii chloroplast genome enabled the production of important plant-specific LD compounds.
Collapse
Affiliation(s)
- Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Gianfranco Diretto
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| | - Olivia Costantina Demurtas
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| | - Paola Mini
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| | - Paola Ferrante
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| | - Giovanni Giuliano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
48
|
Rezayian M, Niknam V, Ebrahimzadeh H. Oxidative damage and antioxidative system in algae. Toxicol Rep 2019; 6:1309-1313. [PMID: 31993331 PMCID: PMC6978204 DOI: 10.1016/j.toxrep.2019.10.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) typically produce in algae and act as secondary messengers in numerous cellular processes. Under abiotic stresses, the balance between production and suppression of ROS disappears and causes increase of ROS. Increasing excessive ROS can cause damage to various cellular components comprising cell membranes, proteins and lipids. Algae have an antioxidant defense system to overcome on oxidative damage. Antioxidant defense mechanisms are of two types, namely enzymatic and non-enzymatic antioxidants. The enzymatic antioxidants include superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase. The non-enzymatic antioxidants include carotenoids, tocopherol, ascorbic acid, glutathione, flavonoids and phenolic compounds. In this review, we describe the various types of ROS and their production, and antioxidant defense mechanisms for ROS suppression.
Collapse
Affiliation(s)
- Maryam Rezayian
- Department of Plant Biology, and Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran 14155, Iran
| | - Vahid Niknam
- Department of Plant Biology, and Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran 14155, Iran
| | - Hassan Ebrahimzadeh
- Department of Plant Biology, and Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran 14155, Iran
| |
Collapse
|
49
|
Morabito C, Bournaud C, Maës C, Schuler M, Aiese Cigliano R, Dellero Y, Maréchal E, Amato A, Rébeillé F. The lipid metabolism in thraustochytrids. Prog Lipid Res 2019; 76:101007. [PMID: 31499096 DOI: 10.1016/j.plipres.2019.101007] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Thraustochytrids are unicellular heterotrophic marine protists of the Stramenopile group, often considered as non-photosynthetic microalgae. They have been isolated from a wide range of habitats including deep sea, but are mostly present in waters rich in sediments and organic materials. They are abundant in mangrove forests where they are major colonizers, feeding on decaying leaves and initiating the mangrove food web. Discovered 80 years ago, they have recently attracted considerable attention due to their biotechnological potential. This interest arises from their fast growth, their specific lipid metabolism and the improvement of the genetic tools and transformation techniques. These organisms are particularly rich in ω3-docosahexaenoic acid (DHA), an 'essential' fatty acid poorly encountered in land plants and animals but required for human health. To produce their DHA, thraustochytrids use a sophisticated system different from the classical fatty acid synthase system. They are also a potential source of squalene and carotenoids. Here we review our current knowledge about the life cycle, ecophysiology, and metabolism of these organisms, with a particular focus on lipid dynamics. We describe the different pathways involved in lipid and fatty acid syntheses, emphasizing their specificity, and we report on the recent efforts aimed to engineer their lipid metabolism.
Collapse
Affiliation(s)
- Christian Morabito
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Caroline Bournaud
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Cécile Maës
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Riccardo Aiese Cigliano
- Sequentia Biotech Campus UAB, Edifici Eureka Av. de Can Domènech s/n, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| | - Younès Dellero
- Institute of Genetic, Environment and Plant Protection, UMR 1349 IGEPP INRA/Agrocampus Ouest Rennes/Université Rennes 1, Domaine de la Motte, BP35327, 35653 Le Rheu cedex, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
50
|
Vingiani GM, De Luca P, Ianora A, Dobson ADW, Lauritano C. Microalgal Enzymes with Biotechnological Applications. Mar Drugs 2019; 17:md17080459. [PMID: 31387272 PMCID: PMC6723882 DOI: 10.3390/md17080459] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022] Open
Abstract
Enzymes are essential components of biological reactions and play important roles in the scaling and optimization of many industrial processes. Due to the growing commercial demand for new and more efficient enzymes to help further optimize these processes, many studies are now focusing their attention on more renewable and environmentally sustainable sources for the production of these enzymes. Microalgae are very promising from this perspective since they can be cultivated in photobioreactors, allowing the production of high biomass levels in a cost-efficient manner. This is reflected in the increased number of publications in this area, especially in the use of microalgae as a source of novel enzymes. In particular, various microalgal enzymes with different industrial applications (e.g., lipids and biofuel production, healthcare, and bioremediation) have been studied to date, and the modification of enzymatic sequences involved in lipid and carotenoid production has resulted in promising results. However, the entire biosynthetic pathways/systems leading to synthesis of potentially important bioactive compounds have in many cases yet to be fully characterized (e.g., for the synthesis of polyketides). Nonetheless, with recent advances in microalgal genomics and transcriptomic approaches, it is becoming easier to identify sequences encoding targeted enzymes, increasing the likelihood of the identification, heterologous expression, and characterization of these enzymes of interest. This review provides an overview of the state of the art in marine and freshwater microalgal enzymes with potential biotechnological applications and provides future perspectives for this field.
Collapse
Affiliation(s)
- Giorgio Maria Vingiani
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy
| | - Pasquale De Luca
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy
| | - Adrianna Ianora
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy
| | - Alan D W Dobson
- School of Microbiology, University College Cork, College Road, T12 YN60 Cork, Ireland
- Environmental Research Institute, University College Cork, Lee Road, T23XE10 Cork, Ireland
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy.
| |
Collapse
|