1
|
Bispo ECI, Argañaraz ER, Neves FDAR, de Carvalho JL, Saldanha-Araujo F. Immunomodulatory effect of IFN-γ licensed adipose-mesenchymal stromal cells in an in vitro model of inflammation generated by SARS-CoV-2 antigens. Sci Rep 2024; 14:24235. [PMID: 39415027 PMCID: PMC11484699 DOI: 10.1038/s41598-024-75776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
In recent years, clinical studies have shown positive results of the application of Mesenchymal Stromal Cells (MSCs) in severe cases of COVID-19. However, the mechanisms of immunomodulation of IFN-γ licensed MSCs in SARS-CoV-2 infection are only partially understood. In this study, we first tested the effect of IFN-γ licensing in the MSC immunomodulatory profile. Then, we established an in vitro model of inflammation by exposing Calu-3 lung cells to SARS-CoV-2 nucleocapsid and spike (NS) antigens, and determined the toxicity of SARS-CoV-2 NS antigen and/or IFN-γ stimulation to Calu-3. The conditioned medium (iCM) generated by Calu-3 cells exposed to IFN-γ and SARS-CoV-2 NS antigens was used to stimulate T-cells, which were then co-cultured with IFN-γ-licensed MSCs. The exposure to IFN-γ and SARS-CoV-2 NS antigens compromised the viability of Calu-3 cells and induced the expression of the inflammatory mediators ICAM-1, CXCL-10, and IFN-β by these cells. Importantly, despite initially stimulating T-cell activation, IFN-γ-licensed MSCs dramatically reduced IL-6 and IL-10 levels secreted by T-cells exposed to NS antigens and iCM. Moreover, IFN-γ-licensed MSCs were able to significantly inhibit T-cell apoptosis induced by SARS-CoV-2 NS antigens. Taken together, our data show that, in addition to reducing the level of critical cytokines in COVID-19, IFN-γ-licensed MSCs protect T-cells from SARS-CoV-2 antigen-induced apoptosis. Such observations suggest that MSCs may contribute to COVID-19 management by preventing the lymphopenia and immunodeficiency observed in critical cases of the disease.
Collapse
Affiliation(s)
- Elizabete Cristina Iseke Bispo
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | - Enrique Roberto Argañaraz
- Laboratory of Molecular NeuroVirology, Faculty of Health Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | | | - Juliana Lott de Carvalho
- Interdisciplinary Laboratory of Bioscience, Faculty of Medicine, University of Brasília, Brasília, 70910-900, Brazil
| | - Felipe Saldanha-Araujo
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasília, 70910-900, Brazil.
| |
Collapse
|
2
|
Hildenbrand A, Cramer P, Bertolotti M, Kaiser NS, Kläsener K, Nickel CM, Reth M, Heim A, Hengel H, Burgert HG, Ruzsics Z. Inhibition of B cell receptor signaling induced by the human adenovirus species D E3/49K protein. Front Immunol 2024; 15:1432226. [PMID: 39139562 PMCID: PMC11321000 DOI: 10.3389/fimmu.2024.1432226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The early transcription unit 3 (E3) of human adenoviruses (HAdVs) encodes several immunoevasins, including the E3/49K protein, which is unique for species D of HAdVs. It is expressed as surface transmembrane protein and shed. E3/49K of HAdV-D64 binds to the protein tyrosine phosphatase surface receptor CD45, thereby modulating activation of T and NK cells. Methods Considering that E3/49K represents the most polymorphic viral protein among species D HAdVs, we demonstrate here that all tested E3/49K orthologs bind to the immunologically important regulator CD45. Thus, this feature is conserved regardless of the pathological associations of the respective HAdV types. Results It appeared that modulation of CD45 is a unique property restricted to HAdVs of species D. Moreover, E3/49K treatment inhibited B cell receptor (BCR) signaling and impaired BCR signal phenotypes. The latter were highly comparable to B cells having defects in the expression of CD45, suggesting E3/49K as a potential tool to investigate CD45 specific functions. Conclusion We identified B cells as new direct target of E3/49K-mediated immune modulation, representing a novel viral immunosubversive mechanism.
Collapse
Affiliation(s)
- Andreas Hildenbrand
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Precious Cramer
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Milena Bertolotti
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Nathalie Sophia Kaiser
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Kläsener
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clara Muriel Nickel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Reth
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albert Heim
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Gerhard Burgert
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Rademakers DJ, Saffari S, Saffari TM, Pulos N, Shin AY. The Effect of Local Purified Exosome Product, Stem Cells, and Tacrolimus on Neurite Extension. J Hand Surg Am 2024; 49:237-246. [PMID: 38165293 DOI: 10.1016/j.jhsa.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE The combination of cellular and noncellular treatments has been postulated to improve nerve regeneration through a processed nerve allograft. This study aimed to evaluate the isolated effect of treatment with purified exosome product (PEP), mesenchymal stem cells (MSCs), and tacrolimus (FK506) alone and in combination when applied in decellularized allografts. METHODS A three-dimensional in vitro-compartmented cell culture system was used to evaluate the length of regenerating neurites from the neonatal dorsal root ganglion into the adjacent peripheral nerve graft. Decellularized nerve allografts were treated with undifferentiated MSCs, 5% PEP, 100 ng/mL FK506, PEP and FK506 combined, or MSCs and FK506 combined (N = 9/group) and compared with untreated nerve autografts (positive control) and nerve allografts (negative control). Neurite extension was measured to quantify nerve regeneration after 48 hours, and stem cell viability was evaluated. RESULTS Stem cell viability was confirmed in all MSC-treated nerve grafts. Treatments with PEP, PEP + FK506, and MSCs + FK506 combined were found to be superior to untreated allografts and not significantly different from autografts. Combined PEP and FK506 treatment resulted in the greatest neurite extension. Treatment with FK506 and MSCs was significantly superior to MSC alone. The combined treatment groups were not found to be statistically different. CONCLUSIONS Although all treatments improved neurite outgrowth, treatments with PEP, PEP + FK506, and MSCs + FK506 combined had superior neurite growth compared with untreated allografts and were not found to be significantly different from autografts, the current gold standard. CLINICAL RELEVANCE Purified exosome product, a cell-free exosome product, is a promising adjunct to enhance nerve allograft regeneration, with possible future avenues for clinical translation.
Collapse
Affiliation(s)
- Daan J Rademakers
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, The Netherlands
| | - Sara Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, The Netherlands
| | - Tiam M Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Nicholas Pulos
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Alexander Y Shin
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.
| |
Collapse
|
4
|
Shan J, Shi R, Hazra R, Hu X. Regulatory T lymphocytes in traumatic brain injury. Neurochem Int 2024; 173:105660. [PMID: 38151109 PMCID: PMC10872294 DOI: 10.1016/j.neuint.2023.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Traumatic brain injury (TBI) presents a significant global health challenge with no effective therapies developed to date. Regulatory T lymphocytes (Tregs) have recently emerged as a potential therapy due to their critical roles in maintaining immune homeostasis, reducing inflammation, and promoting brain repair. Following TBI, fluctuations in Treg populations and shifts in their functionality have been noted. However, the precise impact of Tregs on the pathophysiology of TBI remains unclear. In this review, we discuss recent advances in understanding the intricate roles of Tregs in TBI and other brain diseases. Increased knowledge about Tregs may facilitate their future application as an immunotherapy target for TBI treatment.
Collapse
Affiliation(s)
- Jiajing Shan
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA; Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ruyu Shi
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Rimi Hazra
- Department of Medicine, Pittsburgh Heart Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA; Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Meng Q, Wei L, Ma K, Shi M, Lin X, Ho JWK, Li Y, Zhang X. scDecouple: decoupling cellular response from infected proportion bias in scCRISPR-seq. Brief Bioinform 2024; 25:bbae011. [PMID: 38324621 PMCID: PMC10849189 DOI: 10.1093/bib/bbae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024] Open
Abstract
Single-cell clustered regularly interspaced short palindromic repeats-sequencing (scCRISPR-seq) is an emerging high-throughput CRISPR screening technology where the true cellular response to perturbation is coupled with infected proportion bias of guide RNAs (gRNAs) across different cell clusters. The mixing of these effects introduces noise into scCRISPR-seq data analysis and thus obstacles to relevant studies. We developed scDecouple to decouple true cellular response of perturbation from the influence of infected proportion bias. scDecouple first models the distribution of gene expression profiles in perturbed cells and then iteratively finds the maximum likelihood of cell cluster proportions as well as the cellular response for each gRNA. We demonstrated its performance in a series of simulation experiments. By applying scDecouple to real scCRISPR-seq data, we found that scDecouple enhances the identification of biologically perturbation-related genes. scDecouple can benefit scCRISPR-seq data analysis, especially in the case of heterogeneous samples or complex gRNA libraries.
Collapse
Affiliation(s)
- Qiuchen Meng
- MOE Key Lab of Bioinformatics & Bioinformatics Division BRNIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- MOE Key Lab of Bioinformatics & Bioinformatics Division BRNIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Kun Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Ming Shi
- MOE Key Lab of Bioinformatics & Bioinformatics Division BRNIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xinyi Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Yinqing Li
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- IDG-McGovern Institute for Brain Research, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics & Bioinformatics Division BRNIST, Department of Automation, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Gornostaeva AN, Bobyleva PI, Andreeva ER, Gogiya BS, Buravkova LB. Alteration of PBMC transcriptome profile after interaction with multipotent mesenchymal stromal cells under "physiological" hypoxia. Immunobiology 2024; 229:152766. [PMID: 38091798 DOI: 10.1016/j.imbio.2023.152766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
Multipotent mesenchymal stromal cells (MSCs) have demonstrated a pronounced immunosuppressive activity, the manifestation of which depends on the microenvironmental factors, including O2 level. Here we examined the effects of MSCs on transcriptomic profile of allogeneic phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs) after interaction at ambient (20%) or "physiological" hypoxia (5%) O2. As revealed with microarray analysis, PBMC transcriptome at 20% O2 was more affected, which was manifested as differential expression of more than 300 genes, whereas under 5% O2 220 genes were changed. Most of genes at 20% O2 were downregulated, while at hypoxia most of genes were upregulated. Altered gene patterns were only partly overlapped at different O2 levels. A set of altered genes at hypoxia only was of particular interest. According to Gene Ontology a part of above genes was responsible for adhesion, cell communication, and immune response. At both oxygen concentrations, MSCs demonstrated effective immunosuppression manifested as attenuation of T cell activation and proliferation as well as anti-inflammatory shift of cytokine profile. Thus, MSC-mediated immunosuppression is executed with greater efficacy at a "physiological" hypoxia, since the same result has been achieved through a change in the expression of a fewer genes in target PBMCs.
Collapse
Affiliation(s)
- A N Gornostaeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia.
| | - P I Bobyleva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia
| | - E R Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia
| | - B Sh Gogiya
- Department of Herniology and Plastic Surgery, A. V. Vishnevsky Institute of Surgery, Bolshaya Serpukhovskaya Str, 27, 117997 Moscow, Russia
| | - L B Buravkova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia
| |
Collapse
|
7
|
Silva-Carvalho AÉ, da Silva IGM, Corrêa JR, Saldanha-Araujo F. Regulatory T-Cell Enhancement, Expression of Adhesion Molecules, and Production of Anti-Inflammatory Factors Are Differentially Modulated by Spheroid-Cultured Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232214349. [PMID: 36430835 PMCID: PMC9695986 DOI: 10.3390/ijms232214349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The culture of mesenchymal stem cells (MSCs) as spheroids promotes a more physiological cellular behavior, as it more accurately reflects the biological microenvironment. Nevertheless, mixed results have been found regarding the immunosuppressive properties of spheroid-cultured MSCs (3D-MSCs), the mechanisms of immunoregulation of 3D-MSCs being scarcely described at this point. In the present study, we constructed spheroids from MSCs and compared their immunosuppressive potential with that of MSCs cultured in monolayer (2D-MSCs). First, we evaluated the ability of 2D-MSCs and 3D-MSCs to control the activation and proliferation of T-cells. Next, we evaluated the percentage of regulatory T-cells (Tregs) after the co-culturing of peripheral blood mononuclear cells (PBMCs) with 2D-MSCs and 3D-MSCs. Finally, we investigated the expression of adhesion molecules, as well as the expressions of several anti-inflammatory transcripts in 2D-MSCs and 3D-MSCs maintained in both inflammatory and non-inflammatory conditions. Interestingly, our data show that several anti-inflammatory genes are up-regulated in 3D-MSCs, and that these cells can control T-cell proliferation. Nevertheless, 2D-MSCs are more efficient in suppressing the immune cell proliferation. Importantly, contrary to what was observed in 3D-MSCs, the expressions of ICAM-1 and VCAM-1 are significantly upregulated in 2D-MSCs exposed to an inflammatory environment. Furthermore, only 2D-MSCs are able to promote the enhancement of Tregs. Taken together, our data clearly show that the immunosuppressive potential of MSCs is significantly impacted by their shape, and highlights the important role of cell-cell adhesion molecules for optimal MSC immunomodulatory function.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Hematology and Stem Cells Laboratory, University of Brasília, Brasilia 70910-900, Brazil
- Molecular Pharmacology Laboratory, University of Brasília, Brasilia 70910-900, Brazil
| | | | - José Raimundo Corrêa
- Microscopy and Microanalysis Laboratory, University of Brasília, Brasilia 70910-900, Brazil
| | - Felipe Saldanha-Araujo
- Hematology and Stem Cells Laboratory, University of Brasília, Brasilia 70910-900, Brazil
- Correspondence: ; Tel./Fax: +55-61-3107-2008
| |
Collapse
|
8
|
Papait A, Silini AR, Gazouli M, Malvicini R, Muraca M, O’Driscoll L, Pacienza N, Toh WS, Yannarelli G, Ponsaerts P, Parolini O, Eissner G, Pozzobon M, Lim SK, Giebel B. Perinatal derivatives: How to best validate their immunomodulatory functions. Front Bioeng Biotechnol 2022; 10:981061. [PMID: 36185431 PMCID: PMC9518643 DOI: 10.3389/fbioe.2022.981061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022] Open
Abstract
Perinatal tissues, mainly the placenta and umbilical cord, contain a variety of different somatic stem and progenitor cell types, including those of the hematopoietic system, multipotent mesenchymal stromal cells (MSCs), epithelial cells and amnion epithelial cells. Several of these perinatal derivatives (PnDs), as well as their secreted products, have been reported to exert immunomodulatory therapeutic and regenerative functions in a variety of pre-clinical disease models. Following experience with MSCs and their extracellular vesicle (EV) products, successful clinical translation of PnDs will require robust functional assays that are predictive for the relevant therapeutic potency. Using the examples of T cell and monocyte/macrophage assays, we here discuss several assay relevant parameters for assessing the immunomodulatory activities of PnDs. Furthermore, we highlight the need to correlate the in vitro assay results with preclinical or clinical outcomes in order to ensure valid predictions about the in vivo potency of therapeutic PnD cells/products in individual disease settings.
Collapse
Affiliation(s)
- Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ricardo Malvicini
- Department of Women and Children Health, University of Padova, Padova, Italy
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Maurizio Muraca
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Lorraine O’Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Natalia Pacienza
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Wei Seong Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Michela Pozzobon
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Sai Kiang Lim
- Institute of Medical Biology and Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Huang Y, Wu Q, Tam PKH. Immunomodulatory Mechanisms of Mesenchymal Stem Cells and Their Potential Clinical Applications. Int J Mol Sci 2022; 23:ijms231710023. [PMID: 36077421 PMCID: PMC9456387 DOI: 10.3390/ijms231710023] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with the capacity of self-renewal, homing, and low immunogenicity. These distinct biological characteristics have already shown immense potential in regenerative medicine. MSCs also possess immunomodulatory properties that can maintain immune homeostasis when the immune response is over-activated or under-activated. The secretome of MSCs consists of cytokines, chemokines, signaling molecules, and growth factors, which effectively contribute to the regulation of immune and inflammatory responses. The immunomodulatory effects of MSCs can also be achieved through direct cell contact with microenvironmental factors and immune cells. Furthermore, preconditioned and engineered MSCs can specifically improve the immunomodulation effects in diverse clinical applications. These multifunctional properties of MSCs enable them to be used as a prospective therapeutic strategy to treat immune disorders, including autoimmune diseases and incurable inflammatory diseases. Here we review the recent exploration of immunomodulatory mechanisms of MSCs and briefly discuss the promotion of the genetically engineered MSCs. Additionally, we review the potential clinical applications of MSC-mediated immunomodulation in four types of immune diseases, including systemic lupus erythematosus, Crohn’s disease, graft-versus-host disease, and COVID-19.
Collapse
Affiliation(s)
- Yutong Huang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Correspondence: (Q.W.); (P.K.H.T.)
| | - Paul Kwong Hang Tam
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
- Correspondence: (Q.W.); (P.K.H.T.)
| |
Collapse
|
10
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
11
|
Saffari S, Saffari TM, Chan K, Borschel GH, Shin AY. Mesenchymal stem cells and local tacrolimus delivery synergistically enhance neurite extension. Biotechnol Bioeng 2021; 118:4477-4487. [PMID: 34396506 PMCID: PMC8744499 DOI: 10.1002/bit.27916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The aim of this study was to investigate the combined effect of mesenchymal stem cells (MSC) and local delivery of tacrolimus (FK506) on nerve regeneration when applied to nerve autografts and decellularized allografts. METHODS A three-dimensional in vitro compartmented cell culture system consisting of a neonatal dorsal root ganglion adjacent to a nerve graft was used to evaluate the regenerating neurites into the peripheral nerve scaffold. Nerve autografts and allografts were treated with (i) undifferentiated MSCs, (ii) FK506 (100 ng/mL) or (iii) both (N = 9/group). After 48 hours, neurite extension was measured to quantify nerve regeneration and stem cell viability was evaluated. RESULTS Stem cell viability was confirmed in all MSC-treated grafts. Neurite extension was superior in autografts treated with FK506, and MSCs and FK506 combined (p < 0.001 and p = 0.0001, respectively), and autografts treated with MSCs (p = 0.12) were comparable to untreated autografts. In allografts, FK506 treatment and combined treatment were superior to controls (p < 0.001 and p = 0.0001, respectively), and treatment with MSCs (p = 0.09) was comparable to controls. All autograft groups were superior compared to their respective allograft treatment group (p < 0.05) in neurite extension. CONCLUSIONS Alone, either MSC or FK506 treatment improved neurite outgrowth, and combined they further enhanced neurite extension in both autografts and allografts.
Collapse
Affiliation(s)
- Sara Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Plastic-, Reconstructive- and Hand Surgery, Radboud University, Nijmegen, the Netherlands
| | - Tiam M. Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Plastic-, Reconstructive- and Hand Surgery, Radboud University, Nijmegen, the Netherlands
| | - Katelyn Chan
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Gregory H. Borschel
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Neurosciences and Mental Health, SickKids Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Plastic Surgery, Indiana University and Riley Hospital for Children, Indianapolis, IN, USA
| | - Alexander Y. Shin
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Silva-Carvalho AÉ, Cardoso MH, Alencar-Silva T, Bogéa GMR, Carvalho JL, Franco OL, Saldanha-Araujo F. Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. Pharmacol Ther 2021; 233:108021. [PMID: 34637839 DOI: 10.1016/j.pharmthera.2021.108021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
Among the various biological properties presented by Mesenchymal Stem Cells (MSCs), their ability to control the immune response and fight pathogen infection through the production of antimicrobial peptides (AMPs) have been the subject of intense research in recent years. AMPs secreted by MSCs exhibit activity against a wide range of microorganisms, including bacteria, fungi, yeasts, and viruses. The main AMPs produced by these cells are hepcidin, cathelicidin LL-37, and β-defensin-2. In addition to acting against pathogens, those AMPs have also been shown to interact with MSCs to modulate MSC proliferation, migration, and regeneration, indicating that such peptides exert a more diverse biological effect than initially thought. In the present review, we discuss the production of AMPs by MSCs, revise the multiple functions of these peptides, including their influence over MSCs, and present an overview of clinical situations in which the antimicrobial properties of MSCs may be explored for therapy. Finally, we discuss possibilities of combining MSCs and AMPs to generate improved therapeutic strategies.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil
| | - Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gabriela Muller Reche Bogéa
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
13
|
Kuca-Warnawin E, Janicka I, Szczęsny P, Olesińska M, Bonek K, Głuszko P, Kontny E. Modulation of T-Cell Activation Markers Expression by the Adipose Tissue-Derived Mesenchymal Stem Cells of Patients with Rheumatic Diseases. Cell Transplant 2021; 29:963689720945682. [PMID: 32878464 PMCID: PMC7784571 DOI: 10.1177/0963689720945682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Activated T lymphocytes play an important role in the pathogenesis of rheumatic diseases (RD). Mesenchymal stem cells (MSCs) possess immunoregulatory activities but such functions of MSCs from bone marrow of systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and ankylosing spondylitis (AS) patients are impaired. Adipose tissue–derived MSCs (ASCs) are an optional pool of therapeutically useful MSCs, but biology of these cells in RD is poorly known. This study aimed at investigating the effect of ASCs from RD patients and healthy donors (HD) on the expression of the key T-cell activation markers. Methods: ASCs were isolated from subcutaneous abdominal fat from SLE (n = 16), SSc (n = 18), and AS (n = 16) patients, while five human ASCs lines from HD were used as a control. Untreated and cytokine (tumor necrosis factor α + interferon γ)-treated ASCs were co-cultured with allogenic, mitogen (phytohemagglutinin)-stimulated peripheral blood mononuclear cells (PBMCs) or purified anti-CD3/CD28-activated CD4+ T lymphocytes. Contacting and noncontacting ASCs-PBMCs co-cultures were performed. RD/ASCs were analyzed in co-cultures with both allogeneic and autologous PBMCs. Flow cytometry analysis was used to evaluate expression of CD25, HLA-DR, and CD69 molecules on CD4+ and CD8+ cells. Results: In co-cultures with allogeneic, activated CD4+ T cells and PBMCs, HD/ASCs and RD/ASCs downregulated CD25 and HLA-DR, while upregulated CD69 molecules expression on both CD4+ and CD8+ cells with comparable potency. This modulatory effect was similar in contacting and noncontacting co-cultures. RD/ASCs exerted weaker inhibitory effect on CD25 expression on autologous than allogeneic CD4+ and CD8+ T cells. Conclusion: RD/ASCs retain normal capability to regulate expression of activation markers on allogeneic T cells. Both HD/ASCs and RD/ASCs exert this effect independently of their activation status, mostly through the indirect pathway and soluble factors. However, autologous CD4+ and CD8+ T cells are partially resistant to RD/ASCs inhibition of CD25 expression, suggesting weaker control of T-cell activation in vivo.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Iwona Janicka
- Department of Pathophysiology and Immunology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Piotr Szczęsny
- Clinic of Connective Tissue Diseases, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Marzena Olesińska
- Clinic of Connective Tissue Diseases, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Krzysztof Bonek
- Department of Rheumatology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Piotr Głuszko
- Department of Rheumatology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
14
|
Saffari TM, Chan K, Saffari S, Zuo KJ, McGovern RM, Reid JM, Borschel GH, Shin AY. Combined local delivery of tacrolimus and stem cells in hydrogel for enhancing peripheral nerve regeneration. Biotechnol Bioeng 2021; 118:2804-2814. [PMID: 33913523 DOI: 10.1002/bit.27799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
The application of scaffold-based stem cell transplantation to enhance peripheral nerve regeneration has great potential. Recently, the neuroregenerative potential of tacrolimus (a U.S. Food and Drug Administration-approved immunosuppressant) has been explored. In this study, a fibrin gel-based drug delivery system for sustained and localized tacrolimus release was combined with rat adipose-derived mesenchymal stem cells (MSC) to investigate cell viability in vitro. Tacrolimus was encapsulated in poly(lactic-co-glycolic) acid (PLGA) microspheres and suspended in fibrin hydrogel, using concentrations of 0.01 and 100 ng/ml. Drug release over time was measured. MSCs were cultured in drug-released media collected at various days to mimic systemic exposure. MSCs were combined with (i) hydrogel only, (ii) empty PLGA microspheres in the hydrogel, (iii) 0.01, and (iv) 100 ng/ml of tacrolimus PLGA microspheres in the hydrogel. Stem cell presence and viability were evaluated. A sustained release of 100 ng/ml tacrolimus microspheres was observed for up to 35 days. Stem cell presence was confirmed and cell viability was observed up to 7 days, with no significant differences between groups. This study suggests that combined delivery of 100 ng/ml tacrolimus and MSCs in fibrin hydrogel does not result in cytotoxic effects and could be used to enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Tiam M Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Katelyn Chan
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sara Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Kevin J Zuo
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Neurosciences and Mental Health, SickKids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Renee M McGovern
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joel M Reid
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Gregory H Borschel
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Division of Plastic Surgery, Riley Hospital for Children, Indiana University, Indianapolis, Indiana, USA
| | - Alexander Y Shin
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Zhu JJ, Stenfeldt C, Bishop EA, Canter JA, Eschbaumer M, Rodriguez LL, Arzt J. Mechanisms of Maintenance of Foot-and-Mouth Disease Virus Persistence Inferred From Genes Differentially Expressed in Nasopharyngeal Epithelia of Virus Carriers and Non-carriers. Front Vet Sci 2020; 7:340. [PMID: 32637426 PMCID: PMC7318773 DOI: 10.3389/fvets.2020.00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes persistent infection of nasopharyngeal epithelial cells in ~50% of infected ruminants. The mechanisms involved are not clear. This study provides a continued investigation of differentially expressed genes (DEG) identified in a previously published transcriptomic study analyzing micro-dissected epithelial samples from FMDV carriers and non-carriers. Pathway analysis of DEG indicated that immune cell trafficking, cell death and hematological system could be affected by the differential gene expression. Further examination of the DEG identified five downregulated (chemerin, CCL23, CXCL15, CXCL16, and CXCL17) and one upregulated (CCL2) chemokines in carriers compared to non-carriers. The differential expression could reduce the recruitment of neutrophils, antigen-experienced T cells and dendritic cells and increase the migration of macrophages and NK cells to the epithelia in carriers, which was supported by DEG expressed in these immune cells. Downregulated chemokine expression could be mainly due to the inhibition of canonical NFκB signaling based on DEG in the signaling pathways and transcription factor binding sites predicted from the proximal promoters. Additionally, upregulated CD69, IL33, and NID1 and downregulated CASP3, IL17RA, NCR3LG1, TP53BP1, TRAF3, and TRAF6 in carriers could inhibit the Th17 response, NK cell cytotoxicity and apoptosis. Based on our findings, we hypothesize that (1) under-expression of chemokines that recruit neutrophils, antigen-experienced T cells and dendritic cells, (2) blocking NK cell binding to target cells and (3) suppression of apoptosis induced by death receptor signaling, viral RNA, and cell-mediated cytotoxicity in the epithelia compromised virus clearance and allowed FMDV to persist. These hypothesized mechanisms provide novel information for further investigation of persistent FMDV infection.
Collapse
Affiliation(s)
- James J Zhu
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Carolina Stenfeldt
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Elizabeth A Bishop
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Jessica A Canter
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States.,Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education (ORISE), Orient, NY, United States
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Luis L Rodriguez
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Jonathan Arzt
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| |
Collapse
|
16
|
Saldanha-Araujo F, Melgaço Garcez E, Silva-Carvalho AE, Carvalho JL. Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Front Immunol 2020; 11:1563. [PMID: 32719683 PMCID: PMC7347794 DOI: 10.3389/fimmu.2020.01563] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a disease characterized by a strong inflammatory response in severe cases, which fails to respond to corticosteroid therapy. In the context of the current COVID-19 outbreak and the critical information gaps regarding the disease, several different therapeutic strategies are under investigation, including the use of stem cells. In the present manuscript, we provide an analysis of the rationale underlying the application of stem cells to manage COVID-19, and also a comprehensive compendium of the 69 clinical trials underway worldwide aiming to investigate the application of stem cells to treat COVID-19. Even though data are still scarce, it is already possible to observe the protagonism of China in testing mesenchymal stem cells (MSCs) for COVID-19. Furthermore, it is possible to determine that current efforts focus on the use of multiple infusions of high numbers of stem cells and derived products, as well as to acknowledge the positive results obtained by independent groups who publicized the therapeutic benefits provided by such therapies in 51 COVID-19 patients. In such a rapid-paced field, up-to-date systematic studies and meta-analysis will aid the scientific community to separate hype from hope and offer an unbiased position to the society and governments.
Collapse
Affiliation(s)
- Felipe Saldanha-Araujo
- Hematology and Stem Cells Laboratory, Health Sciences Department, University of Brasília, Brasilia, Brazil
- Molecular Pharmacology Laboratory, Health Sciences Department, University of Brasília, Brasilia, Brazil
| | - Emãnuella Melgaço Garcez
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | | | - Juliana Lott Carvalho
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasilia, Brazil
| |
Collapse
|
17
|
Lamas JR, Mucientes A, Lajas C, Fernández-Gutiérrez B, Lópiz Y, Marco F, Jover JA, Abásolo L, Rodriguez-Rodriguez L. Check-control of inflammation displayed by bone marrow mesenchymal stem cells in rheumatoid arthritis patients. Immunotherapy 2019; 11:1107-1116. [PMID: 31378114 DOI: 10.2217/imt-2019-0091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) are a promising treatment of different musculoskeletal diseases including osteoarthritis and rheumatoid arthritis (RA). Results from different approaches in this treatment have been not conclusive. Aim: To analyze factors related to interactions between peripheral blood mononuclear cells (PBMCs) and MSCs and the influence of cellular activation. Materials & methods: PBMCs from RA patients and healthy controls (HC) were obtained. MSCs from bone marrow (BM-MSCs) were obtained from six donors. CD4, CD25, CD69 and CD127 expression was measured by flow cytometry. Repeated measures analysis of variance (ANOVA) models were performed using activation, co-culture with BM-MSCs and time of culture (24 h, 72 h, 6 days) as within-subject variables. Results: PBMCs activated and co-cultured with BM-MSCs showed a lower proportion of CD25-positive and CD25high/CD127low-negative cells in both RA and HC. Additionally, a maintained expression of CD69 was also observed in RA and HC when PBMCs were activated and co-cultured with BM-MSCs. Conclusion: Both PBMC activation grade and RA disease activity influence the immunomodulatory effect of BM-MSCs on T-cell activation.
Collapse
Affiliation(s)
- Jose R Lamas
- Rheumatology Department, & Health Research Institute, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Arkaitz Mucientes
- Rheumatology Department, & Health Research Institute, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Cristina Lajas
- Rheumatology Department, & Health Research Institute, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | | | - Yaiza Lópiz
- Orthopaedic Surgery & Traumatology Department, & Health Research Institute, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Fernando Marco
- Orthopaedic Surgery & Traumatology Department, & Health Research Institute, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Juan A Jover
- Rheumatology Department, & Health Research Institute, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Lydia Abásolo
- Rheumatology Department, & Health Research Institute, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Luis Rodriguez-Rodriguez
- Rheumatology Department, & Health Research Institute, Hospital Clínico San Carlos, 28040 Madrid, Spain
| |
Collapse
|
18
|
Mesenchymal stem cells for inflammatory airway disorders: promises and challenges. Biosci Rep 2019; 39:BSR20182160. [PMID: 30610158 PMCID: PMC6356012 DOI: 10.1042/bsr20182160] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023] Open
Abstract
The regenerative and immunomodulatory characteristics of mesenchymal stem cells (MSCs) make them attractive in the treatment of many diseases. Although they have shown promising preclinical studies of immunomodulation and paracrine effects in inflammatory airway disorders and other lung diseases, there are still challenges that have to be overcome before MSCs can be safely, effectively, and routinely applied in the clinical setting. A good understanding of the roles and mechanisms of the MSC immunomodulatory effects will benefit the application of MSC-based clinical therapy. In this review, we summarize the promises and challenges of the preclinical and clinical trials of MSC therapies, aiming to better understand the role that MSCs play in attempt to treat inflammatory airway disorders.
Collapse
|
19
|
Assessment of the Immunosuppressive Potential of INF-γ Licensed Adipose Mesenchymal Stem Cells, Their Secretome and Extracellular Vesicles. Cells 2019; 8:cells8010022. [PMID: 30621275 PMCID: PMC6356584 DOI: 10.3390/cells8010022] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/25/2018] [Accepted: 12/29/2018] [Indexed: 12/11/2022] Open
Abstract
There is an active search for the ideal strategy to potentialize the effects of Mesenchymal Stem-Cells (MSCs) over the immune system. Also, part of the scientific community is seeking to elucidate the therapeutic potential of MSCs secretome and its extracellular vesicles (EVs), in order to avoid the complexity of a cellular therapy. Here, we investigate the effects of human adipose MSCs (AMSCs) licensing with INF-γ and TLR3 agonist over AMSCs proliferation, migration, as well as the immunomodulatory function. Furthermore, we evaluated how the licensing of AMSCs affected the immunomodulatory function of AMSC derived-secretome, including their EVs. INF-γ licensed-AMSCs presented an elevated expression of indoleamine 2,3-dioxygenase (IDO), accompanied by increased ICAM-1, as well as a higher immunosuppressive potential, compared to unlicensed AMSCs. Interestingly, the conditioned medium obtained from INF-γ licensed-AMSCs also revealed a slightly superior immunosuppressive potential, compared to other licensing strategies. Therefore, unlicensed and INF-γ licensed-AMSCs groups were used to isolate EVs. Interestingly, EVs isolated from both groups displayed similar capacity to inhibit T-cell proliferation. EVs isolated from both groups shared similar TGF-β and Galectin-1 mRNA content but only EVs derived from INF-γ licensed-AMSCs expressed IDO mRNA. In summary, we demonstrated that INF-γ licensing of AMSCs provides an immunosuppressive advantage both from a cell-cell contact-dependent perspective, as well as in a cell-free context. Interestingly, EVs derived from unlicensed and INF-γ licensed-AMSCs have similar ability to control activated T-cell proliferation. These results contribute towards the development of new strategies to control the immune response based on AMSCs or their derived products.
Collapse
|
20
|
Idelson M, Alper R, Obolensky A, Yachimovich-Cohen N, Rachmilewitz J, Ejzenberg A, Beider E, Banin E, Reubinoff B. Immunological Properties of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Stem Cell Reports 2018; 11:681-695. [PMID: 30122442 PMCID: PMC6135721 DOI: 10.1016/j.stemcr.2018.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 11/30/2022] Open
Abstract
Age-related macular degeneration is caused by dysfunction and loss of retinal pigment epithelium (RPE) cells, and their transplantation may rescue visual functions and delay disease progression. Human embryonic stem cells (hESCs) may be an unlimited source of RPE cells for allotransplantation. We analyzed the immunomodulatory properties of hESC-derived RPE (hESC-RPE) cells, and showed that they inhibited T cell responses. Co-culture experiments showed that RPE cells inhibited interfon-γ secretion and proliferation of activated T cells. Furthermore, hESC-RPE cells enhanced T cell apoptosis and secretion of the anti-inflammatory cytokine interleukin-10 (IL-10). In addition, RPE cells altered the expression of T cell activation markers, CD69 and CD25. RPE cells transplanted into RCS rats without immunosuppression survived, provided retinal rescue, and enhanced IL-10 blood levels. Our data suggest that hESC-RPE cells have immunosuppressive properties. Further studies will determine if these properties are sufficient to alleviate the need for immunosuppression therapy after their clinical allotransplantation. T cells proliferation and IFN-γ secretion are inhibited by hESC-RPE cells T cells apoptosis and secretion of IL-10 are enhanced by hESC-RPE cells RPE cells survive, provide retinal rescue, and enhance IL-10 blood levels in vivo These findings are relevant to immunosuppressive regimens for RPE cell therapies
Collapse
Affiliation(s)
- Masha Idelson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Ruslana Alper
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Alexey Obolensky
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Nurit Yachimovich-Cohen
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Jacob Rachmilewitz
- The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Ayala Ejzenberg
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Ekaterina Beider
- Hematology Division and CBB, Guy Weinshtock Multiple Myeloma Foundation, Chaim Sheba Medical Center Hospital-Tel Hashomer, Ramat Gan 52621, Israel
| | - Eyal Banin
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Jerusalem 91120, Israel; Department of Obstetrics & Gynecology, Hadassah Medical Center, Jerusalem 91120, Israel.
| |
Collapse
|
21
|
Andreeva E, Bobyleva P, Gornostaeva A, Buravkova L. Interaction of multipotent mesenchymal stromal and immune cells: Bidirectional effects. Cytotherapy 2017; 19:1152-1166. [PMID: 28823421 DOI: 10.1016/j.jcyt.2017.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/24/2017] [Accepted: 07/02/2017] [Indexed: 12/11/2022]
Abstract
Adult multipotent mesenchymal stromal cells (MSCs) are considered one of the key players in physiological remodeling and tissue reparation. Elucidation of MSC functions is one of the most intriguing issues in modern cell physiology. In the present review, the interaction of MSCs and immune cells is discussed in terms of reciprocal effects, which modifies the properties of "partner" cells with special focus on the contribution of direct cell-to-cell contacts, soluble mediators and local microenvironmental factors, the most important of which is oxygen tension. The immunosuppressive phenomenon of MSCs is considered as the integral part of the response-to-injury mechanism.
Collapse
Affiliation(s)
- Elena Andreeva
- Institute of Biomedical Problems, the Russian Academy of Sciences, Moscow, Russia
| | - Polina Bobyleva
- Institute of Biomedical Problems, the Russian Academy of Sciences, Moscow, Russia
| | | | - Ludmila Buravkova
- Institute of Biomedical Problems, the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
Coppola A, Tomasello L, Pitrone M, Cillino S, Richiusa P, Pizzolanti G, Giordano C. Human limbal fibroblast-like stem cells induce immune-tolerance in autoreactive T lymphocytes from female patients with Hashimoto's thyroiditis. Stem Cell Res Ther 2017; 8:154. [PMID: 28673339 PMCID: PMC5496215 DOI: 10.1186/s13287-017-0611-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/02/2017] [Accepted: 06/15/2017] [Indexed: 12/29/2022] Open
Abstract
Background Due to their “natural immune privilege” and immunoregulatory properties human fibroblast-like limbal stem cells (f-LSCs) have acquired great interest as a potential tool for achieving immunotolerance. Hashimoto’s thyroiditis (HT) is the most common thyroid autoimmune disease and cause of hypothyroidism. To date, conventional hormone replacement therapy and unspecific immunosuppressive regimens cannot provide a definitive cure for HT subjects. We explored the immunosuppressant potential of human f-LSCs on circulating lymphomonocytes (PBMCs) collected from healthy donors and female HT patients. Methods We assessed the immunophenotyping of f-LSCs, both untreated and after 48 h of proinflammatory cytokine exposure, by means of quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and flow cytometry. The immunosuppressant effects of f-LSCs on healthy activated PBMCs were investigated in cell-cell contact and transwell settings through cell cycle assay, acridine orange staining, and caspase-3 detection. We also studied T-cell responses and possible Treg conversion by means of flow cytometry. Functional assays were conducted in activated HT lymphocytes cocultured with f-LSCs after carboxyfluorescein succinimidyl ester labeling and intracellular detection of pro- and anti-inflammatory cytokines. Results The hypo-immunogenicity of the f-LSC population depended on both cell contact and soluble factors produced, as well as the undetectable expression of all those molecules required to fully activate T lymphocytes. Following exposure to Th1 cytokines, f-LSCs augmented expression of programmed death-ligand 1 and 2 (PDL-1 and -2), indoleamine-pyrrole-2,3-dioxygenase (IDO), interleukin (IL)-6, and monocyte chemotactic protein 1 (MCP-1) while maintaining their negative phenotype for major histocompatibility (MHC) class II and costimulatory molecules. During coculture, f-LSCs suppressed up to 40% of proliferation in healthy activated PBMCs, arrested them in the G0/G1 cell cycle phase without inducing apoptosis cascade, inverted the CD4/CD8 ratio, and promoted sustained expression of the immunomodulator marker CD69. Under coculture conditions the Th imbalance of autoreactive T cells from female HT patients was fully restored. Conclusions Our study describes an in vitro coculture system able to prevent inappropriate activation of autoreactive T lymphocytes of female HT patients and to generate a tolerogenic environment even in an inflammatory background. Further investigations are necessary to establish whether this stem cell-based therapy approach in HT could avoid lifetime hormone replacement therapy by inducing T-cell education. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0611-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonina Coppola
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy.,ATeN (Advanced Technologies Network Center), University of Palermo, Palermo, Italy
| | - Laura Tomasello
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy.,ATeN (Advanced Technologies Network Center), University of Palermo, Palermo, Italy
| | - Maria Pitrone
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy.,ATeN (Advanced Technologies Network Center), University of Palermo, Palermo, Italy
| | | | - Pierina Richiusa
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppe Pizzolanti
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy. .,ATeN (Advanced Technologies Network Center), University of Palermo, Palermo, Italy.
| | - Carla Giordano
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy. .,ATeN (Advanced Technologies Network Center), University of Palermo, Palermo, Italy.
| |
Collapse
|
23
|
LL-37 boosts immunosuppressive function of placenta-derived mesenchymal stromal cells. Stem Cell Res Ther 2016; 7:189. [PMID: 28038684 PMCID: PMC5203704 DOI: 10.1186/s13287-016-0448-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although promising for graft-versus-host disease (GvHD) treatment, MSC therapy still faces important challenges. For instance, increasing MSC migratory capacity as well as potentializing immune response suppression are of interest. For GvHD management, preventing opportunistic infections is also a valuable strategy, since immunocompromised patients are easy targets for infections. LL-37 is a host defense peptide (HDP) that has been deeply investigated due to its immunomodulatory function. In this scenario, the combination of MSC and LL-37 may result in a robust combination to be clinically used. METHODS In the present study, the effects of LL-37 upon the proliferation and migratory capacity of human placenta-derived MSCs (pMSCs) were assessed by MTT and wound scratch assays. The influence of LL-37 over the immunosuppressive function of pMSCs was then investigated using CFSE cell division kit. Flow cytometry and real-time PCR were used to investigate the molecular mechanisms involved in the effects observed. RESULTS LL-37 had no detrimental effects over MSC proliferation and viability, as assessed by MTT assay. Moreover, the peptide promoted increased migratory behavior of pMSCs and enhanced their immunomodulatory function over activated human PBMCs. Strikingly, our data shows that LL-37 treatment leads to increased TLR3 levels, as shown by flow cytometry, and to an increased expression of factors classically related to immunosuppression, namely IDO, IL-10, TGF-β, IL-6, and IL-1β. CONCLUSIONS Taken together, our observations may serve as groundwork for the development of new therapeutic strategies based on the combined use of LL-37 and MSCs, which may provide patients not only with an enhanced immunosuppression regime, but also with an agent to prevent opportunistic infections.
Collapse
|
24
|
de Oliveira Bravo M, Carvalho JL, Saldanha-Araujo F. Adenosine production: a common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signal 2016; 12:595-609. [PMID: 27557887 DOI: 10.1007/s11302-016-9529-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Adenosine is an important molecule that exerts control on the immune system, by signaling through receptors lying on the surface of immune cells. This nucleotide is produced, in part, by the action of the ectoenzymes CD39 and CD73. Interestingly, these proteins are expressed on the cell surface of regulatory T-cells (Tregs) and mesenchymal stromal cells (MSCs)-two cell populations that have emerged as potential therapeutic tools in the field of cell therapy. In fact, the production of adenosine constitutes a mechanism used by both cell types to control the immune response. Recently, great scientific progress was obtained regarding the role of adenosine in the inflammatory environment. In this context, the present review focuses on the advances related to the impact of adenosine production over the immune modulatory activity of Tregs and MSCs, and how this nucleotide controls the biological functions of these cells. Finally, we mention the main challenges and hurdles to bring such molecule to clinical settings.
Collapse
Affiliation(s)
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Center, Catholic University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
25
|
Plessers J, Dekimpe E, Van Woensel M, Roobrouck VD, Bullens DM, Pinxteren J, Verfaillie CM, Van Gool SW. Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes. Stem Cells Transl Med 2016; 5:1607-1619. [PMID: 27465071 DOI: 10.5966/sctm.2016-0030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023] Open
Abstract
: MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8+ cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was-even after major histocompatibility complex class I upregulation-insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8-CD69+ T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. SIGNIFICANCE Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for immune therapy and have the advantage over mesenchymal stem cells (MSCs) of large-scale manufacturing and banking potential and thus prompt availability, it is important to understand how MAPCs interact with immune cells to validate their widespread therapeutic applicability. Cytotoxic immune effector cells play a crucial role in immune homeostasis and in the pathogenesis of some autoimmune diseases. This study assessed for the first time the in vitro influence of a clinical-grade human MAPC product (MultiStem) on the cytotoxic function of CD8+ T cells (CTLs) by evaluating the immunogenicity of MAPCs and the susceptibility of MAPCs toward CTL-mediated lysis and by analyzing the mechanism of MAPC-mediated modulation of CTL functionality. These results may represent a highly relevant contribution to the current knowledge and, in combination with the results of future phase II/III trials using MultiStem, could lead to an intriguing continuation of stem cell-based research for immunotherapy.
Collapse
Affiliation(s)
- Jeroen Plessers
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Emily Dekimpe
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Matthias Van Woensel
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Valerie D Roobrouck
- Stem Cell Institute Leuven, Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
- ReGenesys, Heverlee, Belgium
| | - Dominique M Bullens
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven, Belgium
- Clinical Department of Pediatrics, University Hospital UZ Leuven, Leuven, Belgium
| | | | - Catherine M Verfaillie
- Stem Cell Institute Leuven, Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - Stefaan W Van Gool
- Department of Paediatrics, Uniklinik Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
- Immuno-Oncology Centre Cologne, Köln, Germany
| |
Collapse
|
26
|
Lysák D, Koutová L, Holubová M, Vlas T, Miklíková M, Jindra P. The Quality Control of Mesenchymal Stromal Cells by in Vitro Testing of Their Immunomodulatory Effect on Allogeneic Lymphocytes. Folia Biol (Praha) 2016; 62:120-30. [PMID: 27516191 DOI: 10.14712/fb2016062030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Mesenchymal stromal cells (MSC) represent a promising treatment of graft-versus-host disease (GVHD) in patients after allogeneic haematopoietic stem cell transplantation. We performed co-cultivation experiments with non-specifically stimulated lymphocytes to characterize the immunosuppressive activity of MSC. MSC influenced expression of some activation antigens. CD25 expression was lower with MSC and reached 55.2 % vs. 84.9 % (CD4+, P = 0.0006) and 38.8 % vs. 86.6 % (CD8+, P = 0.0003) on day +4. Conversely, CD69 antigen expression remained higher with MSC (73.3 % vs. 56.8 %, P = 0.0009; 59.5 % vs. 49.7 %, ns) and its down-regulation along with the culture time was less pronounced. MSC reduced proliferation of the stimulated lymphocytes. The cell percentages detected in daughter generations were decreased (32.82 % vs. 10.68 % in generation 4, P = 0.0004 and 29.85 % vs. 10.09 % in generation 5, P = 0.0008), resulting in a lower proliferation index with MSC (1.84 vs. 3.65, P < 0.0001). The addition of MSC affected expression of some cytokines. Production of pro-inflammatory cytokines was decreased: IL-6 (19.5 vs. 16.3 MFI; P < 0.0001 in CD3+/CD4+ and 14.5 vs. 13.2 MFI; P = 0.0128 in CD3+/CD8+), IFN-γ (13.5 vs. 12.0 MFI; P = 0.0096 in CD3+/CD4+). Expression of anti-inflammatory IL-10 was only slightly increased after the addition of MSC (ns). The analysis confirmed the immunomodulatory activity of MSC. The functional tests have proved to be an important part of the quality control of the advanced therapy cellular product intended for GVHD treatment. Future research should focus on the interaction between MSC and the patient immune environment more closely.
Collapse
Affiliation(s)
- D Lysák
- Department of Haematology and Oncology, Charles University in Prague, Faculty of Medicine in Pilsen and University Hospital in Pilsen, Pilsen, Czech Republic
| | - L Koutová
- Department of Haematology and Oncology, Charles University in Prague, Faculty of Medicine in Pilsen and University Hospital in Pilsen, Pilsen, Czech Republic
| | - M Holubová
- Department of Haematology and Oncology, Charles University in Prague, Faculty of Medicine in Pilsen and University Hospital in Pilsen, Pilsen, Czech Republic
| | - T Vlas
- Institute of Immunology and Allergology, Charles University in Prague, Faculty of Medicine in Pilsen and University Hospital in Pilsen, Pilsen, Czech Republic
| | - M Miklíková
- Biomedical Centre, Charles University in Prague, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| | - P Jindra
- Czech National Marrow Donor Registry (CS-2), Pilsen, Czech Republic
| |
Collapse
|
27
|
Factors governing the immunosuppressive effects of multipotent mesenchymal stromal cells in vitro. Cytotechnology 2015; 68:565-77. [PMID: 26266638 DOI: 10.1007/s10616-015-9906-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/27/2015] [Indexed: 12/25/2022] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSCs) are of great interest to researchers because of the unique properties, such as enhanced proliferation, paracrine activity and multilineage differentiation. Their non-immunogenicity, in combination with immunomodulatory properties, opens up the opportunity for the allogeneic application of MSCs. The MSC immunomodulatory capacity is currently being actively studied in vitro using various experimental designs. However, the results are not always univocal. It was found that the outcome of the stromal/immune cell interaction depends on experimental conditions. In this review we considered the impact of different factors, such as the ratio of stromal/immune cells, interaction time, the path of immune cell activation, etc. on the MSC immunomodulation. We also accentuated the importance of local milieu, in particular, oxygen tension, for the realization of MSC immunosuppressive activity.
Collapse
|
28
|
Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34(pos) Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction. Stem Cells Int 2015; 2015:843058. [PMID: 26185499 PMCID: PMC4491576 DOI: 10.1155/2015/843058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/14/2015] [Accepted: 05/25/2015] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a promising cell source for research and therapeutic applications, but their restricted ex vivo propagation capabilities limit putative applications. Substantial self-renewing of stem cells can be achieved by reprogramming cells into induced pluripotent stem cells (iPSCs) that can be easily expanded as undifferentiated cells even in mass culture. Here, we investigated a differentiation protocol enabling the generation and selection of human iPSC-derived MSCs exhibiting relevant surface marker expression profiles (CD105 and CD73) and functional characteristics. We generated such iPSC-MSCs from fibroblasts and bone marrow MSCs utilizing two different reprogramming constructs. All such iPSC-MSCs exhibited the characteristics of normal bone marrow-derived (BM) MSCs. In direct comparison to BM-MSCs our iPSC-MSCs exhibited a similar surface marker expression profile but shorter doubling times without reaching senescence within 20 passages. Considering functional capabilities, iPSC-MSCs provided supportive feeder layer for CD34+ hematopoietic stem cells' self-renewal and colony forming capacities. Furthermore, iPSC-MSCs gained immunomodulatory function to suppress CD4+ cell proliferation, reduce proinflammatory cytokines in mixed lymphocyte reaction, and increase regulatory CD4+/CD69+/CD25+ T-lymphocyte population. In conclusion, we generated fully functional MSCs from various iPSC lines irrespective of their starting cell source or reprogramming factor composition and we suggest that such iPSC-MSCs allow repetitive cell applications for advanced therapeutic approaches.
Collapse
|
29
|
Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res 2015; 2015:394917. [PMID: 25961059 PMCID: PMC4417567 DOI: 10.1155/2015/394917] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/20/2014] [Accepted: 12/01/2014] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiation into mesenchymal lineages and that can be isolated from various tissues and easily cultivated in vitro. Currently, MSCs are of considerable interest because of the biological characteristics that confer high potential applicability in the clinical treatment of many diseases. Specifically, because of their high immunoregulatory capacity, MSCs are used as tools in cellular therapies for clinical protocols involving immune system alterations. In this review, we discuss the current knowledge about the capacity of MSCs for the immunoregulation of immunocompetent cells and emphasize the effects of MSCs on T cells, principal effectors of the immune response, and the immunosuppressive effects mediated by the secretion of soluble factors and membrane molecules. We also describe the mechanisms of MSC immunoregulatory modulation and the participation of MSCs as immune response regulators in several autoimmune diseases, and we emphasize the clinical application in graft versus host disease (GVHD).
Collapse
|
30
|
CD69 is the crucial regulator of intestinal inflammation: a new target molecule for IBD treatment? J Immunol Res 2015; 2015:497056. [PMID: 25759842 PMCID: PMC4352431 DOI: 10.1155/2015/497056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022] Open
Abstract
CD69 has been identified as an early activation marker of lymphocytes. However, recent work has indicated that CD69 plays an essential role for the regulation of inflammatory processes. Particularly, CD69 is highly expressed by lymphocytes at mucosal sites being constantly exposed to the intestinal microflora (one of the nature's most complex and most densely populated microbial habitats) and food antigens, while only a small number of circulating leukocytes express this molecule. In this review we will discuss the role of CD69 in mucosal tissue and consider CD69 as a potential target for the development of novel treatments of intestinal inflammation.
Collapse
|
31
|
Ono C, Yu Z, Kasahara Y, Kikuchi Y, Ishii N, Tomita H. Fluorescently activated cell sorting followed by microarray profiling of helper T cell subtypes from human peripheral blood. PLoS One 2014; 9:e111405. [PMID: 25379667 PMCID: PMC4224392 DOI: 10.1371/journal.pone.0111405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 10/02/2014] [Indexed: 12/31/2022] Open
Abstract
Background Peripheral blood samples have been subjected to comprehensive gene expression profiling to identify biomarkers for a wide range of diseases. However, blood samples include red blood cells, white blood cells, and platelets. White blood cells comprise polymorphonuclear leukocytes, monocytes, and various types of lymphocytes. Blood is not distinguishable, irrespective of whether the expression profiles reflect alterations in (a) gene expression patterns in each cell type or (b) the proportion of cell types in blood. CD4+ Th cells are classified into two functionally distinct subclasses, namely Th1 and Th2 cells, on the basis of the unique characteristics of their secreted cytokines and their roles in the immune system. Th1 and Th2 cells play an important role not only in the pathogenesis of human inflammatory, allergic, and autoimmune diseases, but also in diseases that are not considered to be immune or inflammatory disorders. However, analyses of minor cellular components such as CD4+ cell subpopulations have not been performed, partly because of the limited number of these cells in collected samples. Methodology/Principal Findings We describe fluorescently activated cell sorting followed by microarray (FACS–array) technology as a useful experimental strategy for characterizing the expression profiles of specific immune cells in the circulation. We performed reproducible gene expression profiling of Th1 and Th2, respectively. Our data suggest that this procedure provides reliable information on the gene expression profiles of certain small immune cell populations. Moreover, our data suggest that GZMK, GZMH, EOMES, IGFBP3, and STOM may be novel markers for distinguishing Th1 cells from Th2 cells, whereas IL17RB and CNTNAP1 can be Th2-specific markers. Conclusions/Significance Our approach may help in identifying aberrations and novel therapeutic or diagnostic targets for diseases that affect Th1 or Th2 responses and elucidating the involvement of a subpopulation of immune cells in some diseases.
Collapse
Affiliation(s)
- Chiaki Ono
- Department of Disaster Psychiatry, Internal Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Zhiqian Yu
- Department of Disaster Psychiatry, Internal Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiyuki Kasahara
- Department of Disaster Psychiatry, Internal Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Disaster Psychiatry, Internal Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, Internal Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
32
|
Kim JH, Hong JM, Jeong EM, Lee WJ, Kim HR, Kang JS, Kim IG, Hwang YI. Lack of transglutaminase 2 diminished T-cell responses in mice. Immunology 2014; 142:506-16. [PMID: 24628083 DOI: 10.1111/imm.12282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 12/16/2022] Open
Abstract
Transglutaminase 2 (TG2) has been reported to play a role in dendritic cell activation and B-cell differentiation after immunization. Its presence and role in T cells, however, has not been explored. In the present study, we determined the expression of TG2 on mouse T cells, and evaluated its role by comparing the behaviours of wild-type and TG2(-/-) T cells after activation. In our results, naive T cells minimally expressed TG2, expression of which was increased after activation. T-cell proliferation, expression of activation markers such as CD69 and CD25, and secretions of interleukin-2 and interferon-γ were suppressed in the absence of TG2, presumably due, in part, to diminished nuclear factor-κB activation. These effects on T cells seemed to be reflected in the in vivo immune response, the contact hypersensitivity reaction elicited by 2,4-dinitro-1-fluorobenzene, with lowered peak responses in the TG2(-/-) mice. When splenic T cells from mice immunized with tumour lysate-loaded wild-type dendritic cells were re-challenged ex vivo with the same antigen, the profile of surface markers including CD44, CD62L, and CD127 strongly indicated lesser generation of memory CD8(+) T cells in TG2(-/-) mice. In the TG2(-/-) CD8(+) T cells, moreover, Eomes expression was markedly decreased. These results indicate possible roles of TG2 in CD8(+) T-cell activation and CD8(+) memory T-cell generation.
Collapse
Affiliation(s)
- Jin-Hee Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The vast majority of literature pertaining to mesenchymal stem cells (MSC) immunomodulation has focussed on bone marrow-derived MSC that are systemically infused to alleviate inflammatory conditions. Rheumatoid arthritis (RA) is the commonest autoimmune joint disease that has witnessed significant therapeutic advances in the past decade, but remains stubbornly difficult to treat in a subset of cases. Pre-clinical research has demonstrated that bone marrow, adipose, synovial and umbilical cord-derived MSC all suppress the functions of different immune cells thus raising the possibility of new therapies for autoimmune diseases including RA. Indeed, preliminary evidence for MSC efficacy has been reported in some cases of RA and systemic lupus erythromatosis. The potential use of bone marrow-MSC (BM-MSC) for RA therapy is emerging but the use of synovial MSC (S-MSC) to suppress the exaggerated immune response within the inflamed joints remains rudimentary. Synovial fibroblasts that are likely derived from S-MSCs, also give rise to a cell-cultured progeny termed fibroblast-like synoviocytes (FLS), which are key players in the perpetuation of joint inflammation and destruction. A better understanding of the link between these cells and their biology could be a key to developing novel MSC-based strategies for therapy. The review briefly focuses on BM-MSC and gives particular attention to joint niche synovial MSC and FLS with respect to immunoregulatory potential therapy roles.
Collapse
Affiliation(s)
- J J El-Jawhari
- From the Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital , WTBB, LS9 7TF University of Leeds, UK and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, EgyptFrom the Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital , WTBB, LS9 7TF University of Leeds, UK and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Y M El-Sherbiny
- From the Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital , WTBB, LS9 7TF University of Leeds, UK and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, EgyptFrom the Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital , WTBB, LS9 7TF University of Leeds, UK and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - E A Jones
- From the Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital , WTBB, LS9 7TF University of Leeds, UK and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - D McGonagle
- From the Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital , WTBB, LS9 7TF University of Leeds, UK and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
34
|
Haddad R, Saldanha-Araujo F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: what do we know so far? BIOMED RESEARCH INTERNATIONAL 2014; 2014:216806. [PMID: 25025040 PMCID: PMC4082893 DOI: 10.1155/2014/216806] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/15/2014] [Accepted: 05/31/2014] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells, which can give rise to several cell types including osteoblasts, adipocytes, and chondroblasts. These cells can be found in a variety of adult and fetal tissues, such as bone marrow, adipose tissue, cord blood, and placenta. In recent years, the biological properties of MSCs have attracted the attention of researchers worldwide due to their potential application for treating a series of clinical situations. Among these properties, special attention should be given to the immunoregulatory potential of those cells. MSCs are able to act on all cells of the immune system, which includes the capacity to inhibit the proliferation and function of T-cells. This feature renders them natural candidates to treat several diseases in which cellular immune response is exacerbated. In this review, we outline the main mechanisms by which MSCs immunosuppress T-cell response, focusing on cell-cell contact, secretion of soluble factors, and regulatory T-cell generation. The influence of surface markers in the immunosuppression process and features of MSCs isolated from different sources are also discussed. Finally, the influences of toll-like receptors and cytokines on the inflammatory microenvironment are highlighted regarding the activation of MSCs to exert their immunoregulatory function.
Collapse
Affiliation(s)
- Rodrigo Haddad
- 1Faculty of Ceilandia, University of Brasilia, 72220-900 Brasilia, DF, Brazil
| | - Felipe Saldanha-Araujo
- 2Faculty of Health Sciences, University of Brasilia, 70910-900 Brasilia, DF, Brazil
- *Felipe Saldanha-Araujo:
| |
Collapse
|
35
|
González-Amaro R, Cortés JR, Sánchez-Madrid F, Martín P. Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med 2013; 19:625-32. [PMID: 23954168 PMCID: PMC4171681 DOI: 10.1016/j.molmed.2013.07.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/02/2013] [Accepted: 07/18/2013] [Indexed: 12/28/2022]
Abstract
Early studies described CD69 as a leukocyte activation marker, and suggested its involvement in the activation of different leukocyte subsets as well as in the pathogenesis of chronic inflammation. However, recent investigations have showed that CD69 knockout mice exhibit an enhanced or reduced susceptibility to different experimental models of inflammatory diseases, including those mediated by T helper 17 (Th17) lymphocytes. In this regard, the expression of CD69, both in Th17 lymphocytes and by a subset of regulatory T cells, has an important role in the control of the immune response and the inflammatory phenomenon. Therefore, different evidence indicates that CD69 exerts a complex immunoregulatory role in humans, and that it could be considered as a target molecule for the therapy of immune-mediated diseases.
Collapse
Affiliation(s)
| | - Jose R. Cortés
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain, 28029
| | - Francisco Sánchez-Madrid
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain, 28029
- Servicio de Inmunología, Hospital de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain, 28006
| | - Pilar Martín
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain, 28029
| |
Collapse
|
36
|
Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection. Biochem J 2013; 455:133-47. [DOI: 10.1042/bj20130950] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The specificity of RNAi and its ability to silence ‘undruggable’ targets has made inhibition of gene expression in T-cells with siRNAs an attractive potential therapeutic strategy for the treatment of inflammatory disease, cancer and infection. However, delivery of siRNAs into primary T-cells represents a major hurdle to their use as potential therapeutic agents. Recent advances in siRNA delivery through the use of electroporation/nucleofection, viral vectors, peptides/proteins, nanoparticles, aptamers and other agents have now enabled efficient gene silencing in primary T-cells both in vitro and in vivo. Overcoming such barriers in siRNA delivery offers exciting new prospects for directly targeting T-cells systemically with siRNAs, or adoptively transferring T-cells back into patients following ex vivo manipulation with siRNAs. In the present review, we outline the challenges in delivering siRNAs into primary T-cells and discuss the mechanism and therapeutic opportunities of each delivery method. We emphasize studies that have exploited RNAi-mediated gene silencing in T-cells for the treatment of inflammatory disease, cancer and infection using mouse models. We also discuss the potential therapeutic benefits of manipulating T-cells using siRNAs for the treatment of human diseases.
Collapse
|
37
|
Li J, Andreyev O, Chen M, Marco M, Iwase H, Long C, Ayares D, Shen Z, Cooper DKC, Ezzelarab MB. Human T cells upregulate CD69 after coculture with xenogeneic genetically-modified pig mesenchymal stromal cells. Cell Immunol 2013; 285:23-30. [PMID: 24044963 DOI: 10.1016/j.cellimm.2013.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/24/2013] [Accepted: 08/20/2013] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSC) obtained from α1,3-galactosyltransferase gene knock-out pigs transgenic for the human complement-regulatory protein CD46 (GTKO/CD46 pMSC) suppress in vitro human anti-pig cellular responses as efficiently as allogeneic human MSC. We investigated the immunoregulatory effects of GTKO/CD46 pMSC on human CD4(+) and CD8(+) T cell proliferation in response to pig aortic endothelial cells (pAEC). pMSC efficiently suppressed T cell proliferation, which was associated with downregulation of granzyme B expression. No induction of CD4(+)CD25(+)Foxp3(hi) regulatory T cells or T cell apoptosis was documented. In correlation with T cell proliferation, CD25 expression was upregulated on T cells in response to pAEC but not to pMSC. In contrast, CD69 expression was upregulated on T cells in response to both pMSC and pAEC, which was associated with a significant increase in the phosphorylation of STAT5. GTKO/CD46 pMSC possibly regulate human T cell responses through modulation of CD69 expression and STAT5 signaling.
Collapse
Affiliation(s)
- Jiang Li
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Transplantation Surgery, Tianjin First Center Hospital, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim G, Jang MS, Son YM, Seo MJ, Ji SY, Han SH, Jung ID, Park YM, Jung HJ, Yun CH. Curcumin inhibits CD4(+) T cell activation, but augments CD69 expression and TGF-β1-mediated generation of regulatory T cells at late phase. PLoS One 2013; 8:e62300. [PMID: 23658623 PMCID: PMC3637266 DOI: 10.1371/journal.pone.0062300] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 03/21/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Curcumin is a promising candidate for a natural medicinal agent to treat chronic inflammatory diseases. Although CD4(+) T cells have been implicated in the pathogenesis of chronic inflammation, whether curcumin directly regulates CD4(+) T cells has not been definitively established. Here, we showed curcumin-mediated regulation of CD2/CD3/CD28-initiated CD4(+) T cell activation in vitro. METHODOLOGY/PRINCIPAL FINDINGS Primary human CD4(+) T cells were stimulated with anti-CD2/CD3/CD28 antibody-coated beads as an in vitro surrogate system for antigen presenting cell-T cell interaction and treated with curcumin. We found that curcumin suppresses CD2/CD3/CD28-initiated CD4(+) T cell activation by inhibiting cell proliferation, differentiation and cytokine production. On the other hand, curcumin attenuated the spontaneous decline of CD69 expression and indirectly increased expression of CCR7, L-selectin and Transforming growth factor-β1 (TGF-β1) at the late phase of CD2/CD3/CD28-initiated T cell activation. Curcumin-mediated up-regulation of CD69 at late phase was associated with ERK1/2 signaling. Furthermore, TGF-β1 was involved in curcumin-mediated regulation of T cell activation and late-phase generation of regulatory T cells. CONCLUSIONS/SIGNIFICANCE Curcumin not merely blocks, but regulates CD2/CD3/CD28-initiated CD4(+) T cell activation by augmenting CD69, CCR7, L-selectin and TGF-β1 expression followed by regulatory T cell generation. These results suggest that curcumin could directly reduce T cell-dependent inflammatory stress by modulating CD4(+) T cell activation at multiple levels.
Collapse
MESH Headings
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antibodies/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Curcumin/pharmacology
- Gene Expression Regulation/drug effects
- Humans
- L-Selectin/genetics
- L-Selectin/immunology
- Lectins, C-Type/agonists
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lymphocyte Activation/drug effects
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/immunology
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/immunology
- Primary Cell Culture
- Receptors, CCR7/genetics
- Receptors, CCR7/immunology
- Signal Transduction
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Transforming Growth Factor beta1/pharmacology
Collapse
Affiliation(s)
- Girak Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Mi Seon Jang
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Min Son
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min Ji Seo
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Yun Ji
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- National Institute of Animal Science, Suwon, Gyeonggi-do, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology & Immunology, BK21 Program, and Dental Research Institute School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - In Duk Jung
- Konkuk University College of Medicine, Seoul, Republic of Korea
| | - Yeong-Min Park
- Konkuk University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Jung
- National Institute of Animal Science, Suwon, Gyeonggi-do, Republic of Korea
| | - Cheol-Heui Yun
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- World Class University Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
39
|
Gornostaeva AN, Andreeva ER, Buravkova LB. Human MMSC immunosuppressive activity at low oxygen tension: Direct cell-to-cell contacts and paracrine regulation. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s0362119713020059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Koelsch KA, Wang Y, Maier-Moore JS, Sawalha AH, Wren JD. GFP affects human T cell activation and cytokine production following in vitro stimulation. PLoS One 2013; 8:e50068. [PMID: 23577054 PMCID: PMC3618152 DOI: 10.1371/journal.pone.0050068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
There are many Green Fluorescent Proteins (GFPs) originating from diverse species that are invaluable to cell biologists today because of their ability to provide experimental visualization of protein expression. Since their initial discovery, they have been modified and improved to provide more stable variants with emission ranges spanning a wide array of colors. Due to their ease of expression both in-vitro and in-vivo, they are an attractive choice for use as markers in molecular biology. GFPs are generally assumed to have negligible effects on the cells to which they have been introduced. However, a growing number of reports indicate that this is not always the case. Consequently, because of GFP's ubiquitous use, it is important to document the nature and extent of unintended effects. In this report, we find that GFP affects T cell activation, leading to defects in clustering, upregulation of the activation marker CD25 and IL-2 cytokine production following stimulation in human primary T cells that also express TurboGFP. We utilized a reporter assay which has been routinely used to assay the NF-κB pathway and found reduced NF-κB activitation in stimulated HEK293 and HeLa cells that were co-transfected with TurboGFP, suggesting that GFP interferes with signaling through the NF-κB pathway. These findings indicate that the utilization of GFP-tagged vectors may negatively impact in vitro experiments in T cells, emphasizing the critical importance of controls to identify any GFP-induced effects.
Collapse
Affiliation(s)
- Kristi A. Koelsch
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
- * E-mail: (KAK); (JDW)
| | - YuJing Wang
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
| | - Jacen S. Maier-Moore
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
- University of Oklahoma Health Sciences Center, Department of Medicine, Oklahoma City, Oklahoma, United States of America
| | - Amr H. Sawalha
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jonathan D. Wren
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
- University of Oklahoma Health Sciences Center, Department of Biochemistry and Molecular Biology, Oklahoma City, Oklahoma, United States of America
- * E-mail: (KAK); (JDW)
| |
Collapse
|
41
|
Najar M, Raicevic G, Fayyad-Kazan H, De Bruyn C, Bron D, Toungouz M, Lagneaux L. Impact of different mesenchymal stromal cell types on T-cell activation, proliferation and migration. Int Immunopharmacol 2013; 15:693-702. [PMID: 23499510 DOI: 10.1016/j.intimp.2013.02.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 01/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) isolated from different tissue sources may present distinct immunomodulatory profiles. As lymphocyte responses are a combination of several distinct steps, we evaluated and compared the impact of MSCs from different sources on the activation, proliferation and migration of T-cells. We demonstrated that tissue-derived MSCs have important immunomodulatory effects. AT-MSCs induced potent anti-proliferative and anti-inflammatory (IFN-γ downregulation) effects and differentially modulated several T-cell activation markers (CD23, CD26, CD45, and CD69). Among all the MSC types tested, only AT-MSCs induced significant downregulation of CD26 and CD45 expression. Of importance, AT-MSCs maintained a sustained expression of CD69. AT-MSCs, particularly following exposure to an inflammatory environment, promoted the migration of lymphocytes into their surrounding environment. The AT-MSCs may increase recruitment of T lymphocytes by upregulation of IL-8 and CCL5 secretion. Following their migration, T-cells interact with MSCs, which can impair lymphocyte proliferation and activation depending on their origin. Inflammatory T-cells appeared to be progressively suppressed, which may lead to a population of lymphocytes with a regulatory phenotype. These findings are relevant, as they increase our understanding of the different immunomodulatory effect of MSCs as well as their behavior in an inflammatory environment.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Both embryonic and adult neurogenesis involves the self-renewal/proliferation, survival, migration and lineage differentiation of neural stem/progenitor cells. Such dynamic process is tightly regulated by intrinsic and extrinsic factors and complex signaling pathways. Misregulated neurogenesis contributes much to a large range of neurodevelopmental defects and neurodegenerative diseases. The signaling of NFκB regulates many genes important in inflammation, immunity, cell survival and neural plasticity. During neurogenesis, NFκB signaling mediates the effect of numerous niche factors such as cytokines, chemokines, growth factors, extracellular matrix molecules, but also crosstalks with other signaling pathways such as Notch, Shh, Wnt/β-catenin. This review summarizes current progress on the NFκB signaling in all aspects of neurogenesis, focusing on the novel role of NFκB signaling in initiating early neural differentiation of neural stem cells and embryonic stem cells.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|