1
|
Cai S, Ye L, Zhong Q, Zhang X. Silencing EPHB2 diminished the malignant biological properties of esophagus cancer cells by blocking autophagy and Wnt/β-catenin pathway. J Biochem Mol Toxicol 2024; 38:e23853. [PMID: 39291656 DOI: 10.1002/jbt.23853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/25/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Eph receptor B2 (EPHB2) is overexpressed in some tumors and relevant to unfavorable outcomes of tumor patients. By searching Gene Expression Profiling Interactive Analysis and KM Plot websites, we discovered that EPHB2 was highly expressed in patients with esophageal cancer, leading to poor prognosis. However, the role and molecular mechanism of EPHB2 in esophagus cancer is unknown. Our study aims to unveil the underlying mechanism by which EPHB2 modulates the biological properties of esophagus cancer cells. After si-EPHB2 transfection, the malignant biological properties of esophagus cancer cells were determined by several biological experiments. IWP-4 was applied to block Wnt/β-catenin signaling pathway. The expressions of autophagy and Wnt/β-catenin signaling pathway relevant molecules were tested by western blot assay. An increased expression of EPHB2 was happened in esophagus cancer samples and loss of EPHB2 diminished esophagus cancer cells proliferation, migration, and invasion. Moreover, our data showed that depletion of EPHB2 blocked the autophagy and in-activated Wnt/β-catenin signaling pathway in esophagus cancer cells. While, IWP-4 treatment inhibited the autophagy and limited esophagus cancer cells proliferation, migration, and invasion. Moreover, EPHB2 knocked down strengthened the effect of IWP-4 treatment in regulating esophagus cancer cells proliferation, migration, and invasion. Finally, we illustrated that EPHB2 regulated the biological properties of esophagus cancer cells by modulating autophagy and Wnt/β-catenin signaling pathway. Our study illustrated that EPHB2 might be a worthwhile target considering for the treatment of esophagus cancer.
Collapse
Affiliation(s)
- Shusheng Cai
- Department of Digestive System, The First Affiliated Hospital of Jinzhou Medical University, 2 Section 5, Renmin Street, Guta District, Jinzhou City, Liaoning Province, China
| | - Lianhua Ye
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, 2 Section 5, Renmin Street, Guta District, Jinzhou City, Liaoning Province, China
| | - Qiming Zhong
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, 2 Section 5, Renmin Street, Guta District, Jinzhou City, Liaoning Province, China
| | - Xin Zhang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, 2 Section 5, Renmin Street, Guta District, Jinzhou City, Liaoning Province, China
| |
Collapse
|
2
|
Bellini I, Scribano D, Ambrosi C, Chiovoloni C, Rondón S, Pronio A, Palamara AT, Pietrantoni A, Kashkanova A, Sandoghdar V, D'Amelio S, Cavallero S. Anisakis extracellular vesicles elicit immunomodulatory and potentially tumorigenic outcomes on human intestinal organoids. Parasit Vectors 2024; 17:393. [PMID: 39285481 PMCID: PMC11406850 DOI: 10.1186/s13071-024-06471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Anisakis spp. are zoonotic nematodes causing mild to severe acute and chronic gastrointestinal infections. Chronic anisakiasis can lead to erosive mucosal ulcers, granulomas and inflammation, potential tumorigenic triggers. How Anisakis exerts its pathogenic potential through extracellular vesicles (EVs) and whether third-stage infective larvae may favor a tumorigenic microenvironment remain unclear. METHODS Here, we investigated the parasite's tumorigenic and immunomodulatory capabilities using comparative transcriptomics, qRT-PCR and protein analysis with multiplex ELISA on human intestinal organoids exposed to Anisakis EVs. Moreover, EVs were characterized in terms of shape, size and concentration using classic TEM, SEM and NTA analyses and advanced interferometric NTA. RESULTS Anisakis EVs showed classic shape features and a median average diameter of around 100 nm, according to NTA and iNTA. Moreover, a refractive index of 5-20% of non-water content suggested their effective biological cargo. After treatment of human intestinal organoids with Anisakis EVs, an overall parasitic strategy based on mitigation of the immune and inflammatory response was observed. Anisakis EVs impacted gene expression of main cytokines, cell cycle regulation and protein products. Seven key genes related to cell cycle regulation and apoptosis were differentially expressed in organoids exposed to EVs. In particular, the downregulation of EPHB2 and LEFTY1 and upregulation of NUPR1 genes known to be associated with colorectal cancer were observed, suggesting their involvement in tumorigenic microenvironment. A statistically significant reduction in specific mediators of inflammation and cell-cycle regulation from the polarized epithelium as IL-33R, CD40 and CEACAM1 from the apical chambers and IL-1B, GM-CSF, IL-15 and IL-23 from both chambers were observed. CONCLUSIONS The results here obtained unravel intestinal epithelium response to Anisakis EVs, impacting host's anthelminthic strategies and revealing for the first time to our knowledge the host-parasite interactions in the niche environment of an emerging accidental zoonosis. Use of an innovative EV characterization approach may also be useful for study of other helminth EVs, since the knowledge in this field is very limited.
Collapse
Affiliation(s)
- Ilaria Bellini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, Rome, Italy
- Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, San Raffaele Open University, IRCCS, Rome, Italy
| | - Claudia Chiovoloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Silvia Rondón
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Annamaria Pronio
- Digestive Endoscopy Unit, Department of General Surgery and Surgical Specialties "Paride Stefanini", Sapienza University of Rome, Azienda Policlinico Umberto I, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Anna Kashkanova
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Stefano D'Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Pasteur Institute, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
3
|
Suda M, Paul KH, Tripathi U, Minamino T, Tchkonia T, Kirkland JL. Targeting Cell Senescence and Senolytics: Novel Interventions for Age-Related Endocrine Dysfunction. Endocr Rev 2024; 45:655-675. [PMID: 38500373 PMCID: PMC11405506 DOI: 10.1210/endrev/bnae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Multiple changes occur in hormonal regulation with aging and across various endocrine organs. These changes are associated with multiple age-related disorders and diseases. A better understanding of responsible underling biological mechanisms could help in the management of multiple endocrine disorders over and above hormone replacement therapy (HRT). Cellular senescence is involved in multiple biological aging processes and pathologies common in elderly individuals. Cellular senescence, which occurs in many older individuals but also across the lifespan in association with tissue damage, acute and chronic diseases, certain drugs, and genetic syndromes, may contribute to such endocrine disorders as osteoporosis, metabolic syndrome, and type 2 diabetes mellitus. Drugs that selectively induce senescent cell removal, "senolytics,", and drugs that attenuate the tissue-destructive secretory state of certain senescent cells, "senomorphics," appear to delay the onset of or alleviate multiple diseases, including but not limited to endocrine disorders such as diabetes, complications of obesity, age-related osteoporosis, and cancers as well as atherosclerosis, chronic kidney disease, neurodegenerative disorders, and many others. More than 30 clinical trials of senolytic and senomorphic agents have already been completed, are underway, or are planned for a variety of indications. Targeting senescent cells is a novel strategy that is distinct from conventional therapies such as HRT, and thus might address unmet medical needs and can potentially amplify effects of established endocrine drug regimens, perhaps allowing for dose decreases and reducing side effects.
Collapse
Affiliation(s)
- Masayoshi Suda
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Karl H Paul
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Utkarsh Tripathi
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Tamara Tchkonia
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Luo QT, Ye YC, Guo WM, Zhu Q, Wang SS, Li N, Wang L, Cheng CS, Fan G. Senolytic Treatment Improve Small Intestine Regeneration in Aging. Aging Dis 2024; 15:1499-1507. [PMID: 37815904 PMCID: PMC11272202 DOI: 10.14336/ad.2023.0920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Aging induces a series of alterations, specifically a decline in the stature and number of villi and crypts in the small intestine, thus compromising the absorbent capability of the villi. This investigation employed a senolytic combination of dasatinib and quercetin (D+Q) to examine its impact on the intestinal tract of elderly mice. Our findings demonstrate that D+Q treatment leads to a decrease in the expression of p21, p16, and Ki67, while concurrently triggering removal of apoptotic cells within the villi. Additionally, D+Q treatment exhibits the ability to promote growth in both the height and quantity of villi and crypts, along with stimulating nitric oxide (NO) production in aged mice. The study presented a model to assess strategies to alleviate age-related senescence in the intestinal tract of elderly mice. Importantly, D+Q showcases promising potential in enhancing intestinal functionality within the aging.
Collapse
Affiliation(s)
- Qing-Tian Luo
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6 affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China.
| | - Yuan-Chun Ye
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China.
| | - Wei-Ming Guo
- Sports Medicine Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6 affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China.
| | - Qing Zhu
- Pain Management Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, China.
| | - Sa-Shuang Wang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6 affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China.
| | - Nan Li
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6 affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China.
| | - Lei Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Chun-Sheng Cheng
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6 affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China.
| | - Gang Fan
- Urology Department, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6 affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Liu J, Yuan Q, Chen X, Yang Y, Xie T, Zhang Y, Qi B, Li S, Shang D. Prognostic and therapeutic value of the Eph/Ephrin signaling pathway in pancreatic cancer explored based on bioinformatics. Sci Rep 2024; 14:17650. [PMID: 39085301 PMCID: PMC11291735 DOI: 10.1038/s41598-024-68385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant tumors of the digestive tract and has a very high mortality rate worldwide. Different PC patients may respond differently to therapy and develop therapeutic resistance due to the complexity and variety of the tumor microenvironment. The Eph/ephrin signaling pathway is extensively involved in tumor-related biological functions. However, the key function of the Eph/ephrin signaling pathway in PC has not been fully elucidated. We first explored a pan-cancer overview of Eph/ephrin signaling pathway genes (EPGs). Then we grouped the PC patients into 3 subgroups based on EPG expression levels. Significantly different prognoses and tumor immune microenvironments between different subtypes further validate Eph/ephrin's important role in the pathophysiology of PC. Additionally, we estimated the IC50 values for several commonly used molecularly targeted drugs used to treat PC in the three clusters, which could help patients receive a more personalized treatment plan. Following a progressive screening of optimal genes, we established a prognostic signature and validated it in internal and external test sets. The receiver operating characteristic (ROC) curves of our model exhibited great predictive performance. Meanwhile, we further validated the results through qRT-PCR and immunohistochemistry. Overall, this research provides fresh clues on the prognosis and therapy of PC as well as the theoretical groundwork for future Eph/ephrin signaling pathway research.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Chen
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yao Yang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Tong Xie
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Yunshu Zhang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Bing Qi
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Shuang Li
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Dong Shang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
6
|
Jackovich A, Gitlitz BJ, Tiu-lim JWW, Duddalwar V, King KG, El-Khoueiry AB, Thomas JS, Tsao-Wei D, Quinn DI, Gill PS, Nieva JJ. Improved efficacy of pembrolizumab combined with soluble EphB4-albumin in HPV-negative EphrinB2 positive head neck squamous cell carcinoma. Oncotarget 2024; 15:444-458. [PMID: 38985143 PMCID: PMC11235133 DOI: 10.18632/oncotarget.28605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
OBJECTIVE Patients with relapsed or metastatic head and neck squamous cell carcinoma (HNSCC) after primary local therapy have low response rates with cetuximab, systemic chemotherapy or check point inhibitor therapy. Novel combination therapies with the potential to improve outcomes for patients with HNSCC is an area of high unmet need. METHODS This is a phase II single-arm clinical trial of locally advanced or metastatic HNSCC patients treated with a combination of soluble EphB4-human serum albumin (sEphB4-HSA) fusion protein and pembrolizumab after platinum-based chemotherapy with up to 2 prior lines of treatment. The primary endpoints were safety and tolerability and the primary efficacy endpoint was overall response rate (ORR). Secondary endpoints included progression free survival (PFS) and overall survival (OS). HPV status and EphrinB2 expression were evaluated for outcome. RESULTS Twenty-five patients were enrolled. Median follow up was 40.4 months (range 9.8 - 40.4). There were 6 responders (ORR 24%). There were 5 responders in the 11 HPV-negative and EphrinB2 positive patients, (ORR 45%) with 2 of these patients achieving a complete response (CR). The median PFS in HPV-negative/EphrinB2 positive patients was 3.2 months (95% CI 1.1, 7.3). Median OS in HPV-negative/EphrinB2 positive patients was 10.9 months (95% CI 2.0, 13.7). Hypertension, transaminitis and fatigue were the most common toxicities. DISCUSSION The combination of sEphB4-HSA and pembrolizumab has a favorable toxicity profile and favorable activity particularly among HPV-negative EphrinB2 positive patients with HNSCC.
Collapse
Affiliation(s)
- Alexandra Jackovich
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Barbara J. Gitlitz
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Justin Wayne Wong Tiu-lim
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Vinay Duddalwar
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Kevin George King
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Anthony B. El-Khoueiry
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Jacob Stephen Thomas
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - Denice Tsao-Wei
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | - David I. Quinn
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| | | | - Jorge J. Nieva
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Division of Medical Oncology, University of Southern California, Los Angeles, CA 90007, USA
| |
Collapse
|
7
|
Zhu X, Li X, Zhang M, Ni J. LncRNA BBOX1-AS1 Contributes to Laryngeal Carcinoma Progression by Recruiting SRSF1 to Maintain EFNB2 mRNA Stability. Biochem Genet 2024:10.1007/s10528-024-10879-2. [PMID: 38965134 DOI: 10.1007/s10528-024-10879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Laryngeal cancer is a common malignancy of the larynx with a generally poor prognosis. This study systematically assessed the functional role of lncRNA BBOX1-AS1 in laryngeal carcinoma progression and associated molecular regulatory mechanisms. The proliferation, migration, and invasion of laryngeal carcinoma cells were detected by Cell Counting Kit-8, wound healing, clonal formation, and transwell assays. In addition, the interaction between BBOX1-AS1, Serine/Arginine Splicing Factor 1 (SRSF1), and Ephrin-B2 (EFNB2) mRNA was examined employing RNA immunoprecipitation and RNA pull-down experiments. Furthermore, western blotting, and RT-qPCR assays were adopted to detect the expression levels of BBOX1-AS1, SRSF1, and EFNB2. The impact of BBOX1-AS1 and SRSF1 on EFNB2 mRNA stability was examined using the RNA stability assay. BBOX1-AS1 was highly expressed in human laryngeal carcinoma tissues and cell lines. BBOX1-AS1 knockdown suppressed the growth, proliferation, migration, and invasion of laryngeal carcinoma cells. BBOX1-AS1 maintained the stability of EFNB2 mRNA in laryngeal carcinoma cells by recruiting SRSF1. EFNB2 knockdown inhibited the growth and metastatic function of laryngeal carcinoma cells in vitro. EFNB2 overexpression reversed the influence of BBOX1-AS1 knockdown on laryngeal cancer tumorigenesis. BBOX1-AS1 maintained EFNB2 mRNA stability by recruiting SRSF1, thereby aggravating laryngeal carcinoma malignant phenotypes. BBOX1-AS1 might be a new theoretical target for the treatment of laryngeal carcinoma.
Collapse
Affiliation(s)
- Xiaowen Zhu
- General Surgery Fourth Ward, First Affiliated Hospital of Jiamusi University, No.348 Dexiang Street, Xiangyang District, Jiamusi, 154007, Heilongjiang, China
| | - Xuan Li
- Physical Examination Center, First Affiliated Hospital of Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - MeiJia Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jiamusi University, No.348 Dexiang Street, Xiangyang District, Jiamusi, 154007, Heilongjiang, China.
| | - Jian Ni
- General Surgery Fourth Ward, First Affiliated Hospital of Jiamusi University, No.348 Dexiang Street, Xiangyang District, Jiamusi, 154007, Heilongjiang, China.
| |
Collapse
|
8
|
Venu A, Zhang Y, Seong J, Hong Y, Lee WS, Min JJ. Engineering of an EPHA2-Targeted Monobody for the Detection of Colorectal Cancer. Cancer Genomics Proteomics 2024; 21:285-294. [PMID: 38670584 PMCID: PMC11059598 DOI: 10.21873/cgp.20447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND/AIM Colorectal cancer (CRC) is the third most common cancer worldwide, and is second only to lung cancer with respect to cancer-related deaths. Noninvasive molecular imaging using established markers is a new emerging method to diagnose CRC. The human ephrin receptor family type-A 2 (hEPHA2) oncoprotein is overexpressed at the early, but not late, stages of CRC. Previously, we reported development of an E1 monobody that is specific for hEPHA2-expressing cancer cells both in vitro and in vivo. Herein, we investigated the ability of the E1 monobody to detect hEPHA2 expressing colorectal tumors in a mouse model, as well as in CRC tissue. MATERIALS AND METHODS The expression of hEPHA2 on the surface of CRC cells was analyzed by western blotting and flow cytometry. The targeting efficacy of the E1 monobody for CRC cells was examined by flow cytometry, and immunofluorescence staining. E1 conjugated to the Renilla luciferase variant 8 (Rluc8) reporter protein was used for in vivo imaging in mice. Additionally, an enhanced green fluorescence protein (EGFP) conjugated E1 monobody was used to check the ability of the E1 monobody to target CRC tissue. RESULTS The E1 monobody bound efficiently to hEPHA2-expressing CRC cell lines, and E1 conjugated to the Rluc8 reporter protein targeted tumor tissues in mice transplanted with HCT116 CRC tumor cells. Finally, E1-EGFP stained tumor tissues from human CRC patients, showing a pattern similar to that of an anti-hEPHA2 antibody. CONCLUSION The E1 monobody has utility as an EPHA2 targeting agent for the detection of CRC.
Collapse
Affiliation(s)
- Akhil Venu
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea
| | - Ying Zhang
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Jihyoun Seong
- Division of Gastroenterology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Wan-Sik Lee
- Division of Gastroenterology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea;
| | - Jung-Joon Min
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea;
| |
Collapse
|
9
|
Scarini JF, Gonçalves MWA, de Lima-Souza RA, Lavareze L, de Carvalho Kimura T, Yang CC, Altemani A, Mariano FV, Soares HP, Fillmore GC, Egal ESA. Potential role of the Eph/ephrin system in colorectal cancer: emerging druggable molecular targets. Front Oncol 2024; 14:1275330. [PMID: 38651144 PMCID: PMC11033724 DOI: 10.3389/fonc.2024.1275330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
The Eph/ephrin system regulates many developmental processes and adult tissue homeostasis. In colorectal cancer (CRC), it is involved in different processes including tumorigenesis, tumor angiogenesis, metastasis development, and cancer stem cell regeneration. However, conflicting data regarding Eph receptors in CRC, especially in its putative role as an oncogene or a suppressor gene, make the precise role of Eph-ephrin interaction confusing in CRC development. In this review, we provide an overview of the literature and highlight evidence that collaborates with these ambiguous roles of the Eph/ephrin system in CRC, as well as the molecular findings that represent promising therapeutic targets.
Collapse
Affiliation(s)
- João Figueira Scarini
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Ching-Chu Yang
- Department of Pathology, School of Medicine, University of Utah (UU), Salt Lake City, UT, United States
| | - Albina Altemani
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Heloisa Prado Soares
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Gary Chris Fillmore
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Erika Said Abu Egal
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| |
Collapse
|
10
|
Chatzikalil E, Stergiou IE, Papadakos SP, Konstantinidis I, Theocharis S. The Clinical Relevance of the EPH/Ephrin Signaling Pathway in Pediatric Solid and Hematologic Malignancies. Int J Mol Sci 2024; 25:3834. [PMID: 38612645 PMCID: PMC11011407 DOI: 10.3390/ijms25073834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric neoplasms represent a complex group of malignancies that pose unique challenges in terms of diagnosis, treatment, and understanding of the underlying molecular pathogenetic mechanisms. Erythropoietin-producing hepatocellular receptors (EPHs), the largest family of receptor tyrosine kinases and their membrane-tethered ligands, ephrins, orchestrate short-distance cell-cell signaling and are intricately involved in cell-pattern morphogenesis and various developmental processes. Unraveling the role of the EPH/ephrin signaling pathway in the pathophysiology of pediatric neoplasms and its clinical implications can contribute to deciphering the intricate landscape of these malignancies. The bidirectional nature of the EPH/ephrin axis is underscored by emerging evidence revealing its capacity to drive tumorigenesis, fostering cell-cell communication within the tumor microenvironment. In the context of carcinogenesis, the EPH/ephrin signaling pathway prompts a reevaluation of treatment strategies, particularly in pediatric oncology, where the modest progress in survival rates and enduring treatment toxicity necessitate novel approaches. Molecularly targeted agents have emerged as promising alternatives, prompting a shift in focus. Through a nuanced understanding of the pathway's intricacies, we aim to lay the groundwork for personalized diagnostic and therapeutic strategies, ultimately contributing to improved outcomes for young patients grappling with neoplastic challenges.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
11
|
Desai S, Ahmad S, Bawaskar B, Rashmi S, Mishra R, Lakhwani D, Dutt A. Singleton mutations in large-scale cancer genome studies: uncovering the tail of cancer genome. NAR Cancer 2024; 6:zcae010. [PMID: 38487301 PMCID: PMC10939354 DOI: 10.1093/narcan/zcae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Singleton or low-frequency driver mutations are challenging to identify. We present a domain driver mutation estimator (DOME) to identify rare candidate driver mutations. DOME analyzes positions analogous to known statistical hotspots and resistant mutations in combination with their functional and biochemical residue context as determined by protein structures and somatic mutation propensity within conserved PFAM domains, integrating the CADD scoring scheme. Benchmarked against seven other tools, DOME exhibited superior or comparable accuracy compared to all evaluated tools in the prediction of functional cancer drivers, with the exception of one tool. DOME identified a unique set of 32 917 high-confidence predicted driver mutations from the analysis of whole proteome missense variants within domain boundaries across 1331 genes, including 1192 noncancer gene census genes, emphasizing its unique place in cancer genome analysis. Additionally, analysis of 8799 TCGA (The Cancer Genome Atlas) and in-house tumor samples revealed 847 potential driver mutations, with mutations in tyrosine kinase members forming the dominant burden, underscoring its higher significance in cancer. Overall, DOME complements current approaches for identifying novel, low-frequency drivers and resistant mutations in personalized therapy.
Collapse
Affiliation(s)
- Sanket Desai
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Suhail Ahmad
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Bhargavi Bawaskar
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Sonal Rashmi
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Rohit Mishra
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Deepika Lakhwani
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Amit Dutt
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
- Department of Genetics, University of Delhi, South Campus, New Delhi 110021, India
| |
Collapse
|
12
|
Talia M, Cirillo F, Spinelli A, Zicarelli A, Scordamaglia D, Muglia L, De Rosis S, Rigiracciolo DC, Filippelli G, Perrotta ID, Davoli M, De Rosa R, Macirella R, Brunelli E, Miglietta AM, Nardo B, Tosoni D, Pece S, De Francesco EM, Belfiore A, Maggiolini M, Lappano R. The Ephrin tyrosine kinase a3 (EphA3) is a novel mediator of RAGE-prompted motility of breast cancer cells. J Exp Clin Cancer Res 2023; 42:164. [PMID: 37434266 DOI: 10.1186/s13046-023-02747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The receptor for advanced glycation-end products (RAGE) and its ligands have been implicated in obesity and associated inflammatory processes as well as in metabolic alterations like diabetes. In addition, RAGE-mediated signaling has been reported to contribute to the metastatic progression of breast cancer (BC), although mechanistic insights are still required. Here, we provide novel findings regarding the transcriptomic landscape and the molecular events through which RAGE may prompt aggressive features in estrogen receptor (ER)-positive BC. METHODS MCF7 and T47D BC cells stably overexpressing human RAGE were used as a model system to evaluate important changes like cell protrusions, migration, invasion and colony formation both in vitro through scanning electron microscopy, clonogenic, migration and invasion assays and in vivo through zebrafish xenografts experiments. The whole transcriptome of RAGE-overexpressing BC cells was screened by high-throughput RNA sequencing. Thereafter, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses allowed the prediction of potential functions of differentially expressed genes (DEGs). Flow cytometry, real time-PCR, chromatin immunoprecipitation, immunofluorescence and western blot assays were performed to investigate the molecular network involved in the regulation of a novel RAGE target gene namely EphA3. The clinical significance of EphA3 was explored in the TCGA cohort of patients through the survivALL package, whereas the pro-migratory role of EphA3 signaling was ascertained in both BC cells and cancer-associated fibroblasts (CAFs). Statistical analysis was performed by t-tests. RESULTS RNA-seq findings and GSEA analysis revealed that RAGE overexpression leads to a motility-related gene signature in ER-positive BC cells. Accordingly, we found that RAGE-overexpressing BC cells exhibit long filopodia-like membrane protrusions as well as an enhanced dissemination potential, as determined by the diverse experimental assays. Mechanistically, we established for the first time that EphA3 signaling may act as a physical mediator of BC cells and CAFs motility through both homotypic and heterotypic interactions. CONCLUSIONS Our data demonstrate that RAGE up-regulation leads to migratory ability in ER-positive BC cells. Noteworthy, our findings suggest that EphA3 may be considered as a novel RAGE target gene facilitating BC invasion and scattering from the primary tumor mass. Overall, the current results may provide useful insights for more comprehensive therapeutic approaches in BC, particularly in obese and diabetic patients that are characterized by high RAGE levels.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | | | | | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036, Rende, Italy
| | - Mariano Davoli
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036, Rende, Italy
| | - Rosanna De Rosa
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036, Rende, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036, Rende, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036, Rende, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Bruno Nardo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
- Breast and General Surgery Unit, Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Daniela Tosoni
- European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Salvatore Pece
- European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università Degli Studi Di Milano, 20142, Milan, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
13
|
Aslam S, Rehman HM, Sarwar MZ, Ahmad A, Ahmed N, Amirzada MI, Rehman HM, Yasmin H, Nadeem T, Bashir H. Computational Modeling, High-Level Soluble Expression and In Vitro Cytotoxicity Assessment of Recombinant Pseudomonas aeruginosa Azurin: A Promising Anti-Cancer Therapeutic Candidate. Pharmaceutics 2023; 15:1825. [PMID: 37514012 PMCID: PMC10383417 DOI: 10.3390/pharmaceutics15071825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Azurin is a natural protein produced by Pseudomonas aeruginosa that exhibits potential anti-tumor, anti-HIV, and anti-parasitic properties. The current study aimed to investigate the potential of azurin protein against breast cancer using both in silico and in vitro analyses. The amino acid sequence of Azurin was used to predict its secondary and tertiary structures, along with its physicochemical properties, using online software. The resulting structure was validated and confirmed using Ramachandran plots and ERRAT2. The mature azurin protein comprises 128 amino acids, and the top-ranked structure obtained from I-TASSER was shown to have a molecular weight of 14 kDa and a quality factor of 100% by ERRAT2, with 87.4% of residues in the favored region of the Ramachandran plot. Docking and simulation studies of azurin protein were conducted using HDOCK and Desmond servers, respectively. The resulting analysis revealed that Azurin docked against p53 and EphB2 receptors demonstrated maximum binding affinity, indicating its potential to cause apoptosis. The recombinant azurin gene was successfully cloned and expressed in a BL21 (DE3) strain using a pET20b expression vector under the control of the pelB ladder, followed by IPTG induction. The azurin protein was purified to high levels using affinity chromatography, yielding 70 mg/L. In vitro cytotoxicity assay was performed using MCF-7 cells, revealing the significant cytotoxicity of the azurin protein to be 105 µg/mL. These findings highlight the potential of azurin protein as an anticancer drug candidate.
Collapse
Affiliation(s)
- Shakira Aslam
- Centre for Applied Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
- Department of Human Genetics and Molecular Biology, University of Health Science, Lahore 54600, Pakistan
| | | | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54000, Pakistan
- International Center for Genetic Engineering and Biotechnology, Galleria Padriciano, 99, 34149 Trieste, TS, Italy
| | - Muhammad Imran Amirzada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214082, China
| | - Hafiz Muhammad Rehman
- Centre for Applied Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Humaira Yasmin
- Department of Infectious Diseases, Faculty of Medicine, South Kensington Campus, Imperial College, London W2 1NY, UK
- Department of Biosciences, COMSATS University Islamabad, Islamabad 54000, Pakistan
| | - Tariq Nadeem
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54000, Pakistan
| | - Hamid Bashir
- Centre for Applied Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
14
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
15
|
Lau A, Le N, Nguyen C, Kandpal RP. Signals transduced by Eph receptors and ephrin ligands converge on MAP kinase and AKT pathways in human cancers. Cell Signal 2023; 104:110579. [PMID: 36572189 DOI: 10.1016/j.cellsig.2022.110579] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Eph receptors, the largest known family of receptor tyrosine kinases, and ephrin ligands have been implicated in a variety of human cancers. The novel bidirectional signaling events initiated by binding of Eph receptors to their cognate ephrin ligands modulate many cellular processes such as proliferation, metastasis, angiogenesis, invasion, and apoptosis. The relationships between the abundance of a unique subset of Eph receptors and ephrin ligands with associated cellular processes indicate a key role of these molecules in tumorigenesis. The combinatorial expression of these molecules converges on MAP kinase and/or AKT/mTOR signaling pathways. The intracellular target proteins of the initial signal may, however, vary in some cancers. Furthermore, we have also described the commonality of up- and down-regulation of individual receptors and ligands in various cancers. The current state of research in Eph receptors illustrates MAP kinase and mTOR pathways as plausible targets for therapeutic interventions in various cancers.
Collapse
Affiliation(s)
- Andreas Lau
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Nghia Le
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Claudia Nguyen
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Raj P Kandpal
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America.
| |
Collapse
|
16
|
Lee H, Wilson D, Bunting KV, Kotecha D, Jackson T. Repurposing digoxin for geroprotection in patients with frailty and multimorbidity. Ageing Res Rev 2023; 86:101860. [PMID: 36682465 DOI: 10.1016/j.arr.2023.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/22/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
The geroscience hypothesis proposes biological hallmarks of ageing are modifiable. Increasing evidence supports targeting these hallmarks with therapeutics could prevent and ameliorate age-related conditions - collectively termed "geroprotector drugs". Cellular senescence is a hallmark with considerable potential to be modified with geroprotector drugs. Senotherapeutics are drugs that target cellular senescence for therapeutic benefit. Repurposing commonly used medications with secondary geroprotector properties is a strategy of interest to promote incorporation of geroprotector drugs into clinical practice. One candidate is the cardiac glycoside digoxin. Evidence in mouse models of pulmonary fibrosis, Alzheimer's disease, arthritis and atherosclerosis support digoxin as a senotherapeutic agent. Proposed senolytic mechanisms are upregulation of intrinsic apoptotic pathways and promoting intracellular acidification. Digoxin also appears to have a senomorphic mechanism - altering the T cell pool to ameliorate pro-inflammatory SASP. Despite being widely prescribed to treat atrial fibrillation and heart failure, often in multimorbid older adults, it is not known whether digoxin exerts senotherapeutic effects in humans. Further cellular and animal studies, and ultimately clinical trials with participation of pre-frail older adults, are required to identify whether digoxin has senotherapeutic effect at low dose. This paper reviews the biological mechanisms identified in preliminary cellular and animal studies that support repurposing digoxin as a geroprotector in patients with frailty and multimorbidity.
Collapse
Affiliation(s)
- Helena Lee
- Institute of Inflammation and Ageing, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham B15 2WD, UK.
| | - Daisy Wilson
- Institute of Inflammation and Ageing, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham B15 2WD, UK
| | - Karina V Bunting
- Institute of Cardiovascular Sciences, University of Birmingham, Medical School, Vincent Drive, Birmingham B15 2TT, UK; University Hospitals Birmingham NHS Foundation Trust, Institute of Translational Medicine, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2GW, UK
| | - Dipak Kotecha
- Institute of Cardiovascular Sciences, University of Birmingham, Medical School, Vincent Drive, Birmingham B15 2TT, UK; University Hospitals Birmingham NHS Foundation Trust, Institute of Translational Medicine, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2GW, UK
| | - Thomas Jackson
- Institute of Inflammation and Ageing, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham B15 2WD, UK
| |
Collapse
|
17
|
Eph Receptors in Cancer. Biomedicines 2023; 11:biomedicines11020315. [PMID: 36830852 PMCID: PMC9953285 DOI: 10.3390/biomedicines11020315] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Eph receptor tyrosine kinases play critical functions during development, in the formation of tissue and organ borders, and the vascular and neural systems. Uniquely among tyrosine kinases, their activities are controlled by binding to membrane-bound ligands, called ephrins. Ephs and ephrins generally have a low expression in adults, functioning mainly in tissue homeostasis and plasticity, but are often overexpressed in cancers, where they are especially associated with undifferentiated or progenitor cells, and with tumour development, vasculature, and invasion. Mutations in Eph receptors also occur in various tumour types and are suspected to promote tumourigenesis. Ephs and ephrins have the capacity to operate as both tumour promoters and tumour suppressors, depending on the circumstances. They have been demonstrated to impact tumour cell proliferation, migration, and invasion in vitro, as well as tumour development, angiogenesis, and metastases in vivo, making them potential therapeutic targets. However, successful development of therapies will require detailed understanding of the opposing roles of Ephs in various cancers. In this review, we discuss the variations in Eph expression and functions in a variety of malignancies. We also describe the multiple strategies that are currently available to target them in tumours, including preclinical and clinical development.
Collapse
|
18
|
EPH/Ephrin-Targeting Treatment in Breast Cancer: A New Chapter in Breast Cancer Therapy. Int J Mol Sci 2022; 23:ijms232315275. [PMID: 36499598 PMCID: PMC9740341 DOI: 10.3390/ijms232315275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the most common malignant tumor in women. Erythropoietin-producing hepatocellular receptors (EPHs), receptor tyrosine kinases binding the membrane-bound proteins ephrins, are differentially expressed in BC, and correlate with carcinogenesis and tumor progression. With a view to examining available therapeutics targeting the EPH/ephrin system in BC, a literature review was conducted, using the MEDLINE, LIVIVO, and Google Scholar databases. EPHA2 is the most studied EPH/ephrin target in BC treatment. The targeting of EPHA2, EPHA10, EPHB4, ephrin-A2, ephrin-A4, as well as ephrin-B2 in BC cells or xenograft models is associated with apoptosis induction, tumor regression, anticancer immune response activation, and impaired cell motility. In conclusion, EPHs/ephrins seem to represent promising future treatment targets in BC.
Collapse
|
19
|
Design, construction and in vivo functional assessment of a hinge truncated sFLT01. Gene Ther 2022; 30:347-361. [PMID: 36114375 DOI: 10.1038/s41434-022-00362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
Gene therapy for the treatment of ocular neovascularization has reached clinical trial phases. The AAV2-sFLT01 construct was already evaluated in a phase 1 open-label trial administered intravitreally to patients with advanced neovascular age-related macular degeneration. SFLT01 protein functions by binding to VEGF and PlGF molecules and inhibiting their activities simultaneously. It consists of human VEGFR1/Flt-1 (hVEGFR1), a polyglycine linker, and the Fc region of human IgG1. The IgG1 upper hinge region of the sFLT01 molecule makes it vulnerable to radical attacks and prone to causing immune reactions. This study pursued two goals: (i) minimizing the immunogenicity and vulnerability of the molecule by designing a truncated molecule called htsFLT01 (hinge truncated sFLT01) that lacked the IgG1 upper hinge and lacked 2 amino acids from the core hinge region; and (ii) investigating the structural and functional properties of the aforesaid chimeric molecule at different levels (in silico, in vitro, and in vivo). Molecular dynamics simulations and molecular mechanics energies combined with Poisson-Boltzmann and surface area continuum solvation calculations revealed comparable free energy of binding and binding affinity for sFLT01 and htsFLT01 to their cognate ligands. Conditioned media from human retinal pigment epithelial (hRPE) cells that expressed htsFLT01 significantly reduced tube formation in HUVECs. The AAV2-htsFLT01 virus suppressed vascular development in the eyes of newborn mice. The htsFLT01 gene construct is a novel anti-angiogenic tool with promising improvements compared to existing treatments.
Collapse
|
20
|
Najar MA, Arefian M, Sidransky D, Gowda H, Prasad TSK, Modi PK, Chatterjee A. Tyrosine Phosphorylation Profiling Revealed the Signaling Network Characteristics of CAMKK2 in Gastric Adenocarcinoma. Front Genet 2022; 13:854764. [PMID: 35646067 PMCID: PMC9136244 DOI: 10.3389/fgene.2022.854764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine protein kinase which functions via the calcium-triggered signaling cascade with CAMK1, CAMK4, and AMPKα as the immediate downstream substrates. CAMKK2 is reported to be overexpressed in gastric cancer; however, its signaling mechanism is poorly understood. We carried out label-free quantitative tyrosine phosphoproteomics to investigate tyrosine-mediated molecular signaling associated with CAMKK2 in gastric cancer cells. Using a high-resolution Orbitrap Fusion Tribrid Fourier-transform mass spectrometer, we identified 350 phosphotyrosine sites mapping to 157 proteins. We observed significant alterations in 81 phosphopeptides corresponding to 63 proteins upon inhibition of CAMKK2, among which 16 peptides were hyperphosphorylated corresponding to 13 proteins and 65 peptides were hypophosphorylated corresponding to 51 proteins. We report here that the inhibition of CAMKK2 leads to changes in the phosphorylation of several tyrosine kinases such as PKP2, PTK2, EPHA1, EPHA2, PRKCD, MAPK12, among others. Pathway analyses revealed that proteins are differentially phosphorylated in response to CAMKK2 inhibition involved in focal adhesions, actin cytoskeleton, axon guidance, and signaling by VEGF. The western blot analysis upon inhibition and/or silencing of CAMKK2 revealed a decrease in phosphorylation of PTK2 at Y925, c-JUN at S73, and STAT3 at Y705, which was in concordance with the mass spectrometry data. The study indicates that inhibition of CAMKK2 has an anti-oncogenic effect in gastric cells regulating phosphorylation of STAT3 through PTK2/c-JUN in gastric cancer.
Collapse
Affiliation(s)
- Mohd. Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - David Sidransky
- Department of Oncology and Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| |
Collapse
|
21
|
Nacchio M, Pisapia P, Pepe F, Russo G, Vigliar E, Porcelli T, Luongo C, Iaccarino A, Pagni F, Salvatore D, Troncone G, Malapelle U, Bellevicine C. Predictive molecular pathology in metastatic thyroid cancer: the role of RET fusions. Expert Rev Endocrinol Metab 2022; 17:167-178. [PMID: 35404189 DOI: 10.1080/17446651.2022.2060819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rearranged during transfection (RET) gene fusions are detected in 10-20% of thyroid cancer patients. Recently, RET fusion-positive metastatic thyroid cancers have attracted much attention owing to the FDA approval of two highly selective anti-RET tyrosine kinase inhibitors, namely, selpercatinib, and pralsetinib. AREAS COVERED This review summarizes the available evidence on the biological and predictive role of RET gene fusions in thyroid carcinoma patients and the latest screening assays currently used to detect these genomic alterations in histological and cytological specimens. EXPERT OPINION Management of advanced thyroid carcinoma has significantly evolved over the last decade thanks to the approval of three multikinase inhibitors, i.e. sorafenib, lenvatinib, cabozantinib, and of two selective RET-tyrosine inhibitors, i.e. selpercatinib and pralsetinib. In this setting, the detection of RET-fusions in advanced thyroid cancer specimens through the use of next-generation sequencing has become a commonly used strategy in clinical practice to select the best treatment options.
Collapse
Affiliation(s)
- Mariantonia Nacchio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Tommaso Porcelli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Liu W, Yu C, Li J, Fang J. The Roles of EphB2 in Cancer. Front Cell Dev Biol 2022; 10:788587. [PMID: 35223830 PMCID: PMC8866850 DOI: 10.3389/fcell.2022.788587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptors and their Eph receptor-interacting (ephrin) ligands together constitute a vital cell communication system with diverse roles. Experimental evidence revealed Eph receptor bidirectional signaling with both tumor-promoting and tumor-suppressing activities in different cancer types and surrounding environment. Eph receptor B2 (EphB2), an important member of the Eph receptor family, has been proved to be aberrantly expressed in many cancer types, such as colorectal cancer, gastric cancer and hepatocellular carcinoma, resulting in tumor occurrence and progression. However, there are no reviews focusing on the dual roles of EphB2 in cancer. Thus, in this paper we systematically summarize and discuss the roles of EphB2 in cancer. Firstly, we review the main biological features and the related signaling regulatory mechanisms of EphB2, and then we summarize the roles of EphB2 in cancer through current studies. Finally, we put forward our viewpoint on the future prospects of cancer research focusing on EphB2, especially with regard to the effects of EphB2 on tumor immunity.
Collapse
Affiliation(s)
- Wei Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Chengpeng Yu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiwei Fang
- Department of Geriatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Jiwei Fang,
| |
Collapse
|
23
|
Nikas I, Giaginis C, Petrouska K, Alexandrou P, Michail A, Sarantis P, Tsourouflis G, Danas E, Pergaris A, Politis PK, Nakopoulou L, Theocharis S. EPHA2, EPHA4, and EPHA7 Expression in Triple-Negative Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12020366. [PMID: 35204461 PMCID: PMC8871500 DOI: 10.3390/diagnostics12020366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Ongoing research continues to elucidate the complex role of ephrin receptors (EPHs) and their ligands (ephrins) in breast cancer pathogenesis, with their varying expression patterns implied to have an important impact on patients’ outcome. The current study aims to investigate the clinical significance of EPHA2, EPHA4, and EPHA7 expression in triple-negative breast cancer (TNBC) cases. EPHA2, EPHA4, and EPHA7 protein expression was assessed immunohistochemically on formalin-fixed and paraffin-embedded (FFPE) TNBC tissue sections from 52 TNBC patients and correlated with key clinicopathologic parameters and patients’ survival data (overall survival (OS); disease-free survival (DFS)). EPHA2, EPHA4, and EPHA7 expression was further examined in TNBC cell lines. EPHA2 overexpression was observed in 26 (50%) of the TNBC cases, who exhibited a shorter OS and DFS than their low-expression counterparts, with EPHA2 representing an independent prognostic factor for OS and DFS (p = 0.0041 and p = 0.0232, respectively). EPHA4 overexpression was associated with lymph node metastasis in TNBC patients (p = 0.0546). Alterations in EPHA2, EPHA4, and EPHA7 expression levels were also noted in the examined TNBC cell lines. Our study stresses that EPHA2 expression constitutes a potential prognostic factor for TNBC patients. Given the limited treatment options and poorer outcome that accompany the TNBC subtype, EPHA2 could also pose as a target for novel, more personalized, and effective therapeutic approaches for those patients.
Collapse
Affiliation(s)
- Ilias Nikas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, Myrina, 811 00 Lemnos, Greece;
| | - Kalliopi Petrouska
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Paraskevi Alexandrou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Artemis Michail
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece; (A.M.); (P.K.P.)
| | - Panagiotis Sarantis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, Laikon Hospital, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Eugene Danas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Panagiotis K. Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece; (A.M.); (P.K.P.)
| | - Lydia Nakopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
- Correspondence: ; Tel.: + 30-210-7462178; Fax: + 30-210-7456259
| |
Collapse
|
24
|
Xia T, Xiang T, Xie H. Update on the role of C1GALT1 in cancer (Review). Oncol Lett 2022; 23:97. [PMID: 35154428 PMCID: PMC8822393 DOI: 10.3892/ol.2022.13217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer remains one of the most difficult diseases to treat. In the quest for early diagnoses to improve patient survival and prognosis, targeted therapies have become a hot research topic in recent years. Glycosylation is the most common posttranslational modification in mammalian cells. Core 1β1,3-galactosyltransferase (C1GALT1) is a key glycosyltransferase in the glycosylation process and is the key enzyme in the formation of the core 1 structure on which most complex and branched O-glycans are formed. A recent study reported that C1GALT1 was aberrantly expressed in tumors. In cancer cells, C1GALT1 is regulated by different factors. In the present review, the expression of C1GALT1 in different tumors and its possible molecular mechanisms of action are described and the role of C1GALT1 in cancer development is discussed.
Collapse
Affiliation(s)
- Tong Xia
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ting Xiang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hailong Xie
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
25
|
Ephrin Receptors (Ephs) Expression in Thymic Epithelial Tumors: Prognostic Implications and Future Therapeutic Approaches. Diagnostics (Basel) 2021; 11:diagnostics11122265. [PMID: 34943502 PMCID: PMC8700455 DOI: 10.3390/diagnostics11122265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 01/09/2023] Open
Abstract
Ephrin receptors (Ephs) are receptor tyrosine kinases (RTKs) implicated in tissue development and homeostasis, and they are aberrantly expressed in tumors. Here, immunohistochemical Eph type-A and -B expression in thymic epithelial tumors (TETs) was assessed and correlated with clinicopathological parameters. Tissue microarrays from 98 TETs were stained for EphA1, -A2, -A4 -A6, -B1, -B2, -B4 and -B6. The relationship between neoplastic and lymphoid cell immunoreactivity score (H-score), histopathological parameters (Pearson’s test) and survival of 35 patients (Mantel-Cox model) was explored. Epithelial-rich subtypes showed higher EphA6 cytoplasmic H-score (B2/B3, carcinoma) (p < 0.001) and stronger EphA4 H-score (B3, carcinoma) (p = 0.011). The immature T-cells, especially in subtypes AB/B1, had higher EphB6 H-score than carcinoma-associated mature lymphocytes (p < 0.001); carcinomas had higher lymphocytic EphB1 H-score (p = 0.026). Higher lymphocytic and lower epithelial EphB6 H-score correlated with Masaoka stage ≤II (p = 0.043, p = 0.010, respectively). All cases showed variable epithelial and lymphocytic EphA2 expression, but clinicopathological associations were not reached. Our study confirmed that Eph type-A and -B expression in TETs is associated with established prognostic parameters, i.e., tumor subtype and Masaoka stage, although correlation with patient survival was not reached. Such findings suggest involvement of these RTKs in thymic neoplasia, as well as their potential utility as treatment targets.
Collapse
|
26
|
Bahmani A, Shokri E, Hosseini M, Hosseinkhani S. A fluorescent aptasensor based on copper nanoclusters for optical detection of CD44 exon v10, an important isoform in metastatic breast cancer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3837-3844. [PMID: 34378562 DOI: 10.1039/d1ay01087e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent studies suggest that breast cancer cells express various CD44 isoforms. CD44 is an integral transmembrane protein encoded by a single 20-exon gene. Exon v10 of CD44 plays a critical role in promoting cancer metastasis, so sensitive detection of this isoform helps in early diagnosis of metastatic breast cancer and facilitates the treatment process. This study aimed to use v10-specific aptamers to set up an optical aptasensor based on fluorescent metal nanoclusters. For this purpose, nanoclusters of silver, gold, and copper were prepared by different CD44 v10 DNA aptamers as molecular templates. UV-vis, TEM, and fluorescence spectrometer results confirmed the accuracy and quality of the synthesized aptamer-templated nanoclusters (Apt-NCs). Finally, we compared the performance of the as-prepared Apt-NCs in response to different cultured cell lines. According to the results, the optical response of M-Apt4-CuNCs was more efficient and correlated well with the concentrations of CD44 v10-enriched cells. The detection limit of the aptasensor was 40 ± 5 cells per mL.
Collapse
Affiliation(s)
- Amin Bahmani
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Ehsan Shokri
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
27
|
Saha D, Ryan KR, Lakkaniga NR, Acharya B, Garcia NG, Smith EL, Frett B. Targeting Rearranged during Transfection in Cancer: A Perspective on Small-Molecule Inhibitors and Their Clinical Development. J Med Chem 2021; 64:11747-11773. [PMID: 34402300 DOI: 10.1021/acs.jmedchem.0c02167] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rearranged during transfection (RET) is a receptor tyrosine kinase essential for the normal development and maturation of a diverse range of tissues. Aberrant RET signaling in cancers, due to RET mutations, gene fusions, and overexpression, results in the activation of downstream pathways promoting survival, growth, and metastasis. Pharmacological manipulation of RET is effective in treating RET-driven cancers, and efforts toward developing RET-specific therapies have increased over the last 5 years. In 2020, RET-selective inhibitors pralsetinib and selpercatinib achieved clinical approval, which marked the first approvals for kinase inhibitors specifically developed to target the RET oncoprotein. This Perspective discusses current development and clinical applications for RET precision medicine by providing an overview of the incremental improvement of kinase inhibitors for use in RET-driven malignancies.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Baku Acharya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Noemi Garcia Garcia
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Erica Lane Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| |
Collapse
|
28
|
Sahoo AR, Buck M. Structural and Functional Insights into the Transmembrane Domain Association of Eph Receptors. Int J Mol Sci 2021; 22:ijms22168593. [PMID: 34445298 PMCID: PMC8395321 DOI: 10.3390/ijms22168593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/04/2022] Open
Abstract
Eph receptors are the largest family of receptor tyrosine kinases and by interactions with ephrin ligands mediate a myriad of processes from embryonic development to adult tissue homeostasis. The interaction of Eph receptors, especially at their transmembrane (TM) domains is key to understanding their mechanism of signal transduction across cellular membranes. We review the structural and functional aspects of EphA1/A2 association and the techniques used to investigate their TM domains: NMR, molecular modelling/dynamics simulations and fluorescence. We also introduce transmembrane peptides, which can be used to alter Eph receptor signaling and we provide a perspective for future studies.
Collapse
Affiliation(s)
- Amita R. Sahoo
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA;
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA;
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
29
|
Maggiorani D, Beauséjour C. Senescence and Aging: Does It Impact Cancer Immunotherapies? Cells 2021; 10:1568. [PMID: 34206425 PMCID: PMC8307798 DOI: 10.3390/cells10071568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer incidence increases drastically with age. Of the many possible reasons for this, there is the accumulation of senescent cells in tissues and the loss of function and proliferation potential of immune cells, often referred to as immuno-senescence. Immune checkpoint inhibitors (ICI), by invigorating immune cells, have the potential to be a game-changers in the treatment of cancer. Yet, the variability in the efficacy of ICI across patients and cancer types suggests that several factors influence the success of such inhibitors. There is currently a lack of clinical studies measuring the impact of aging and senescence on ICI-based therapies. Here, we review how cellular senescence and aging, either by directly altering the immune system fitness or indirectly through the modification of the tumor environment, may influence the cancer-immune response.
Collapse
Affiliation(s)
- Damien Maggiorani
- Centre de Recherche du CHU Ste-Justine, Montréal, QC H3T 1C5, Canada;
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Christian Beauséjour
- Centre de Recherche du CHU Ste-Justine, Montréal, QC H3T 1C5, Canada;
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
30
|
Sun X, Zhan M, Sun X, Liu W, Meng X. C1GALT1 in health and disease. Oncol Lett 2021; 22:589. [PMID: 34149900 PMCID: PMC8200938 DOI: 10.3892/ol.2021.12850] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
O-linked glycosylation (O-glycosylation) and N-linked glycosylation (N-glycosylation) are the two most important forms of protein glycosylation, which is an important post-translational modification. The regulation of protein function involves numerous mechanisms, among which protein glycosylation is one of the most important. Core 1 synthase glycoprotein-N-acetylgalactosamine 3-β-galactosyltransferase 1 (C1GALT1) serves an important role in the regulation of O-glycosylation and is an essential enzyme for synthesizing the core 1 structure of mucin-type O-glycans. Furthermore, C1GALT1 serves a vital role in a number of biological functions, such as angiogenesis, platelet production and kidney development. Impaired C1GALT1 expression activity has been associated with different types of human diseases, including inflammatory or immune-mediated diseases, and cancer. O-glycosylation exists in normal tissues, as well as in tumor tissues. Previous studies have revealed that changes in the level of glycosyltransferase in different types of cancer may be used as potential therapeutic targets. Currently, numerous studies have reported the dual role of C1GALT1 in tumors (carcinogenesis and cancer suppression). The present review reports the role of C1GALT1 in normal development and human diseases. Since the mechanism and regulation of C1GALT1 and O-glycosylation remain elusive, further studies are required to elucidate their effects on development and disease.
Collapse
Affiliation(s)
- Xiaojie Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mengru Zhan
- Department of Hepatobiliary and Pancreatic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xun Sun
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wanqi Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiangwei Meng
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
31
|
Fantino M, Paquette M, Bernard S, Baass A. ANKS1A genotype predicts cardiovascular events in patients with familial hypercholesterolemia. J Clin Lipidol 2021; 15:602-607. [PMID: 34130940 DOI: 10.1016/j.jacl.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The rs17609940 variant of the ANKS1A gene has been associated with coronary artery disease (CAD) risk in genome-wide association studies (GWAS), but no study has yet replicated this association in familial hypercholesterolemia (FH) population. OBJECTIVE The aim of this study is to validate the association between the rs17609940 genotype and incident major adverse cardiovascular events (MACE) in a cohort of genetically-confirmed FH patients. METHODS This association study includes 725 genetically-confirmed FH patients with a median observation period of 50 years (33 805 person-years). MACE were defined as either myocardial infarction (MI), stroke, coronary revascularization, hospital admission for unstable angina and cardiovascular disease (CVD) death. The rs17609940 genotype was imputed with an imputation quality of 0.831 following an exome chip genotyping method (Illumina). RESULTS The cohort comprised 469 subjects with GG genotype, 218 subjects with CG genotype and 38 subjects with CC genotype. All baseline characteristics were balanced between the three groups. The CC genotype of rs17609940 was associated with a significant lower risk of incident MACE compared to GG and GC carriers in a recessive model (HR 0.30, 95% CI 0.11-0.82, p=0.02). Even after correction for confounding cardiovascular risk factors, the association between the ANKS1A polymorphism and incident MACE remained strongly significant. CONCLUSIONS We demonstrated that the rs17609940 SNP of the ANKS1A gene is associated with the risk of incident MACE in FH subjects. The exact mechanism underlying this association remains to be clarified.
Collapse
Affiliation(s)
- Manon Fantino
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec, Canada
| | - Martine Paquette
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec, Canada
| | - Sophie Bernard
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec, Canada; Department of Medicine, Division of Endocrinology, Université de Montreal, Québec, Canada
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec, Canada; Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Québec, Canada.
| |
Collapse
|
32
|
Volz C, Breid S, Selenz C, Zaplatina A, Golfmann K, Meder L, Dietlein F, Borchmann S, Chatterjee S, Siobal M, Schöttle J, Florin A, Koker M, Nill M, Ozretić L, Uhlenbrock N, Smith S, Büttner R, Miao H, Wang B, Reinhardt HC, Rauh D, Hallek M, Acker-Palmer A, Heukamp LC, Ullrich RT. Inhibition of Tumor VEGFR2 Induces Serine 897 EphA2-Dependent Tumor Cell Invasion and Metastasis in NSCLC. Cell Rep 2021; 31:107568. [PMID: 32348765 DOI: 10.1016/j.celrep.2020.107568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 03/11/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
Anti-angiogenic treatment targeting vascular endothelial growth factor (VEGF)-VEGFR2 signaling has shown limited efficacy in lung cancer patients. Here, we demonstrate that inhibition of VEGFR2 in tumor cells, expressed in ∼20% of non-squamous non-small cell lung cancer (NSCLC) patients, leads to a pro-invasive phenotype. Drug-induced inhibition of tumor VEGFR2 interferes with the formation of the EphA2/VEGFR2 heterocomplex, thereby allowing RSK to interact with Serine 897 of EphA2. Inhibition of RSK decreases phosphorylation of Serine 897 EphA2. Selective genetic modeling of Serine 897 of EphA2 or inhibition of EphA2 abrogates the formation of metastases in vivo upon VEGFR2 inhibition. In summary, these findings demonstrate that VEGFR2-targeted therapy conditions VEGFR2-positive NSCLC to Serine 897 EphA2-dependent aggressive tumor growth and metastasis. These data shed light on the molecular mechanisms explaining the limited efficacy of VEGFR2-targeted anti-angiogenic treatment in lung cancer patients.
Collapse
Affiliation(s)
- Caroline Volz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Sara Breid
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Carolin Selenz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Alina Zaplatina
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Kristina Golfmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Lydia Meder
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Felix Dietlein
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, US Institute for Pathology, Cambridge, MA, USA
| | - Sven Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany; University of Cologne, Department I of Internal Medicine, German Hodgkin Study Group (GHSG), Cologne, Germany; University of Cologne, Department I of Internal Medicine, Else Kröner Forschungskolleg Clonal Evolution in Cancer, Cologne, Germany
| | - Sampurna Chatterjee
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Maike Siobal
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Jakob Schöttle
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Department of Translational Genomics, University of Cologne, Medical Faculty, Cologne, Germany
| | - Alexandra Florin
- Institute of Pathology, University Hospital Medical School, Cologne, Germany
| | - Mirjam Koker
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Marieke Nill
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Luka Ozretić
- Department of Cellular Pathology, Royal Free Hospital, London NW3 2QG, UK
| | - Niklas Uhlenbrock
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Steven Smith
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Medical School, Cologne, Germany
| | - Hui Miao
- Rammelkamp Center for Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Bingcheng Wang
- Rammelkamp Center for Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - H Christian Reinhardt
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Amparo Acker-Palmer
- Institute for Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany
| | | | - Roland T Ullrich
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany.
| |
Collapse
|
33
|
Kaczmarek R, Zimmer K, Gajdzis P, Gajdzis M. The Role of Eph Receptors and Ephrins in Corneal Physiology and Diseases. Int J Mol Sci 2021; 22:ijms22094567. [PMID: 33925443 PMCID: PMC8123804 DOI: 10.3390/ijms22094567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
The cornea, while appearing to be simple tissue, is actually an extremely complex structure. In order for it to retain its biomechanical and optical properties, perfect organization of its cells is essential. Proper regeneration is especially important after injuries and in the course of various diseases. Eph receptors and ephrin are mainly responsible for the proper organization of tissues as well as cell migration and communication. In this review, we present the current state of knowledge on the role of Eph and ephrins in corneal physiology and diseases, in particular, we focused on the functions of the epithelium and endothelium. Since the role of Eph and ephrins in the angiogenesis process has been well established, we also analyzed their influence on conditions with corneal neovascularization.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (R.K.); (K.Z.)
| | - Katarzyna Zimmer
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (R.K.); (K.Z.)
| | - Pawel Gajdzis
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Malgorzata Gajdzis
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (R.K.); (K.Z.)
- Correspondence: ; Tel.: +48-71-736-43-00
| |
Collapse
|
34
|
Review of novel liquid-based biomarkers for prostate cancer: towards personalised and targeted medicine. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396921000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Background:
Prostate cancer is the most commonly diagnosed cancer in men and it is responsible for about 10% of all cancer mortalities in both American and Canadian men. At present, serum prostate-specific antigen levels remain the most commonly used test to detect prostate cancer, and the standard and definitive diagnosis of the disease is via prostate biopsy. Conventional tissue biopsies are usually invasive, expensive, painful, time-consuming, and unsuitable for screening and need to be consistently evaluated by expert pathologists and have limited repeatability. Consequently, liquid biopsies are emerging as a favourable alternative to conventional tissue biopsies, providing a non-invasive and cost-effective approach for screening, diagnosis, treatment and monitoring of prostate cancer patients.
Materials and methods:
We searched several databases from August to December 2020 for relevant studies published in English between 2000 and 2020 and reporting on liquid-based biomarkers available in detectable quantities in patient bodily fluid samples. In this narrative review paper, we describe seven novel and promising liquid-based biomarkers that potentially account for individual patient variability as well as used in disease risk assessment, screening for early disease detection and diagnosis, identification of patients’ risk for metastatic disease and subsequent relapse, monitoring patient response to specific treatment and providing clinicians the potential to stratify patients likely to benefit from a particular treatment.
Conclusions:
The concept of precision medicine from prevention to treatment techniques that take individual patient variability into account will depend on the development of effective clinical biomarkers that interrogate key aberrant pathways potentially targetable with molecular targets or immunologic therapies. Liquid-based biomarkers with high sensitivity and specificity for prostate cancer are emerging as minimally invasive, lower risk, readily obtainable and easily repeatable technique for screening for early disease detection and diagnosis, patient stratification at diagnosis into different risk categories, identification of patients’ risk for metastatic disease and subsequent relapse, and real-time monitoring of patient response to specific treatment. Thus, effective liquid-based biomarkers will potentially shift the treatment paradigm of prostate cancer towards more personalised and targeted medicine.
Collapse
|
35
|
Fitsiou E, Soto-Gamez A, Demaria M. Biological functions of therapy-induced senescence in cancer. Semin Cancer Biol 2021; 81:5-13. [PMID: 33775830 DOI: 10.1016/j.semcancer.2021.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023]
Abstract
Therapy-induced cellular senescence is a state of stable growth arrest induced by common cancer treatments such as chemotherapy and radiation. In an oncogenic context, therapy-induced senescence can have different consequences. By blocking cellular proliferation and by facilitating immune cell infiltration, it functions as tumor suppressive mechanism. By fueling the proliferation of bystander cells and facilitating metastasis, it acts as a tumor promoting factor. This dual role is mainly attributed to the differential expression and secretion of a set of pro-inflammatory cytokines and tissue remodeling factors, collectively known as the Senescence-Associated Secretory Phenotype (SASP). Here, we describe cell-autonomous and non-cell-autonomous mechanisms that senescent cells activate in response to chemotherapy and radiation leading to tumor suppression and tumor promotion. We present the current state of knowledge on the stimuli that affect the activation of these opposing mechanisms and the effect of senescent cells on their micro-environment eg. by regulating the functions of immune cells in tumor clearance as well as strategies to eliminate senescent tumor cells before exerting their deleterious side-effects.
Collapse
Affiliation(s)
- Eleni Fitsiou
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands
| | - Abel Soto-Gamez
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands; University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands.
| |
Collapse
|
36
|
Liu M, Chen P, Hu HY, Ou-Yang DJ, Khushbu RA, Tan HL, Huang P, Chang S. Kinase gene fusions: roles and therapeutic value in progressive and refractory papillary thyroid cancer. J Cancer Res Clin Oncol 2021; 147:323-337. [PMID: 33387037 DOI: 10.1007/s00432-020-03491-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
The incidence of papillary thyroid cancer (PTC), the major type of thyroid cancer, is increasing rapidly around the world, and its pathogenesis is still unclear. There is poor prognosis for PTC involved in rapidly progressive tumors and resistance to radioiodine therapy. Kinase gene fusions have been discovered to be present in a wide variety of malignant tumors, and an increasing number of novel types have been detected in PTC, especially progressive tumors. As a tumor-driving event, kinase fusions are constitutively activated or overexpress their kinase function, conferring oncogenic potential, and their frequency is second only to BRAFV600E mutation in PTC. Diverse forms of kinase fusions have been observed and are associated with specific pathological features of PTC (usually at an advanced stage), and clinical trials of therapeutic strategies targeting kinase gene fusions are feasible for radioiodine-resistant PTC. This review summarizes the roles of kinase gene fusions in PTC and the value of clinical therapy of targeting fusions in progressive or refractory PTC, and discusses the future perspectives and challenges related to kinase gene fusions in PTC patients.
Collapse
Affiliation(s)
- Mian Liu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Pei Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hui-Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Deng-Jie Ou-Yang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rooh-Afza Khushbu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hai-Long Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
37
|
Zhang X. The Expression Profile and Prognostic Values of EPHA Family Members in Breast Cancer. Front Oncol 2021; 11:619949. [PMID: 34221956 PMCID: PMC8250424 DOI: 10.3389/fonc.2021.619949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND EphAs are a class of ephrin receptors that belong to the membrane-bound receptor tyrosine kinases group. Accumulating experimental evidence has shown that the EphA family is involved in tumor progression, namely in cell proliferation, invasiveness, and metastasis. EphAs are a promising target for anticancer therapy. However, their role in breast cancer (BC) is still not well understood. MATERIALS AND METHODS We used a series of bioinformatic approaches to analyze the expression of the EphA family members and investigate their prognostic value in BC. RESULTS Lower expression levels of EphA2, EphA3, EphA4, EphA5, and EphA7 and higher expression levels of EphA10 were found in BC tissues compared to those in normal tissues. The expression levels of the EphA family genes were correlated with molecular subtyping but not with tumor stage. High expression levels of most EphAs indicated a better prognosis in BC. CONCLUSIONS This study suggested that EphA2, EphA3, EphA4, and EphA5 can act as tumor-inhibiting factors as well as biomarkers for the prognosis of BC.
Collapse
|
38
|
Huang F, Shu Q, Qin Z, Tian J, Su Z, Huang Y, Gao M. Anticancer Actions of Azurin and Its Derived Peptide p28. Protein J 2020; 39:182-189. [PMID: 32180097 DOI: 10.1007/s10930-020-09891-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cancers are a great threat to humans. In cancer therapy, surgical removal of the tumor combined with radiotherapy and chemotherapy is the most routine treatment procedure and usually the most effective. However, radiotherapy and chemotherapy drugs that kill cancer cells efficiently also kill normal cells, thus exhibiting large side effects. Cancer-targeted drugs, which aim to specifically recognize proteins or signaling pathways associated with tumor proliferation and migration, have achieved marked progress in recent years. Azurin is a copper-containing redox protein secreted by Pseudomonas aeruginosa. Azurin and its derived peptide p28 preferentially enter a variety of cancer cells and induce apoptosis or cell cycle arrest. Mechanistic studies revealed that azurin and p28 target the p53 and receptor tyrosine kinase signaling pathways as well as other pathways. Two phase I trials of p28 have been carried out, with findings that p28 is safe and exhibits anticancer activity in both adult and pediatric patients. In this review paper, we provide an up-to-date summary of progress on the anticancer mechanisms and therapeutic strategies for azurin and p28.
Collapse
Affiliation(s)
- Fan Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, Hubei, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Qianhui Shu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, Hubei, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zhaojie Qin
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, Hubei, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jianglin Tian
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, Hubei, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, Hubei, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, Hubei, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, Hubei, China. .,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
39
|
Xue Y, Beyer G, Mayerle J. FAPα in pancreatic stellate cells upregulated by TGFβ1: a novel insight into pancreatic cancer progress. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:910. [PMID: 32953710 PMCID: PMC7475386 DOI: 10.21037/atm-20-2559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yonggan Xue
- Department of Medicine II, University Hospital, LMU Munich, Germany
| | - Georg Beyer
- Department of Medicine II, University Hospital, LMU Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Germany
| |
Collapse
|
40
|
Scherer D, Deutelmoser H, Balavarca Y, Toth R, Habermann N, Buck K, Kap EJ, Botma A, Seibold P, Jansen L, Lorenzo Bermejo J, Weigl K, Benner A, Hoffmeister M, Ulrich A, Brenner H, Burwinkel B, Chang-Claude J, Ulrich CM. Polymorphisms in the Angiogenesis-Related Genes EFNB2, MMP2 and JAG1 Are Associated with Survival of Colorectal Cancer Patients. Int J Mol Sci 2020; 21:E5395. [PMID: 32751332 PMCID: PMC7432124 DOI: 10.3390/ijms21155395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
An individual's inherited genetic variation may contribute to the 'angiogenic switch', which is essential for blood supply and tumor growth of microscopic and macroscopic tumors. Polymorphisms in angiogenesis-related genes potentially predispose to colorectal cancer (CRC) or affect the survival of CRC patients. We investigated the association of 392 single nucleotide polymorphisms (SNPs) in 33 angiogenesis-related genes with CRC risk and survival of CRC patients in 1754 CRC cases and 1781 healthy controls within DACHS (Darmkrebs: Chancen der Verhütung durch Screening), a German population-based case-control study. Odds ratios and 95% confidence intervals (CI) were estimated from unconditional logistic regression to test for genetic associations with CRC risk. The Cox proportional hazard model was used to estimate hazard ratios (HR) and 95% CIs for survival. Multiple testing was adjusted for by a false discovery rate. No variant was associated with CRC risk. Variants in EFNB2, MMP2 and JAG1 were significantly associated with overall survival. The association of the EFNB2 tagging SNP rs9520090 (p < 0.0001) was confirmed in two validation datasets (p-values: 0.01 and 0.05). The associations of the tagging SNPs rs6040062 in JAG1 (p-value 0.0003) and rs2241145 in MMP2 (p-value 0.0005) showed the same direction of association with overall survival in the first and second validation sets, respectively, although they did not reach significance (p-values: 0.09 and 0.25, respectively). EFNB2, MMP2 and JAG1 are known for their functional role in angiogenesis and the present study points to novel evidence for the impact of angiogenesis-related genetic variants on the CRC outcome.
Collapse
Affiliation(s)
- Dominique Scherer
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (D.S.); (H.D.); (Y.B.); (R.T.); (N.H.); (K.B.); (A.B.); (H.B.)
- Institute of Medical Biometry and Informatics, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Heike Deutelmoser
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (D.S.); (H.D.); (Y.B.); (R.T.); (N.H.); (K.B.); (A.B.); (H.B.)
- Institute of Medical Biometry and Informatics, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Yesilda Balavarca
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (D.S.); (H.D.); (Y.B.); (R.T.); (N.H.); (K.B.); (A.B.); (H.B.)
| | - Reka Toth
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (D.S.); (H.D.); (Y.B.); (R.T.); (N.H.); (K.B.); (A.B.); (H.B.)
- Division of Cancer Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany
| | - Nina Habermann
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (D.S.); (H.D.); (Y.B.); (R.T.); (N.H.); (K.B.); (A.B.); (H.B.)
- European Molecular Biology Laboratory (EMBL), Genome Biology, 69117 Heidelberg, Germany
| | - Katharina Buck
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (D.S.); (H.D.); (Y.B.); (R.T.); (N.H.); (K.B.); (A.B.); (H.B.)
| | - Elisabeth Johanna Kap
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (E.J.K.); (P.S.); (J.C.-C.)
| | - Akke Botma
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (D.S.); (H.D.); (Y.B.); (R.T.); (N.H.); (K.B.); (A.B.); (H.B.)
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (E.J.K.); (P.S.); (J.C.-C.)
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (E.J.K.); (P.S.); (J.C.-C.)
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (L.J.); (K.W.); (M.H.)
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry and Informatics, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Korbinian Weigl
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (L.J.); (K.W.); (M.H.)
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany;
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (L.J.); (K.W.); (M.H.)
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69117 Heidelberg, Germany;
- Chirurgische Klinik I, Lukaskrankenhaus Neuss, 41464 Neuss, Germany
| | - Hermann Brenner
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (D.S.); (H.D.); (Y.B.); (R.T.); (N.H.); (K.B.); (A.B.); (H.B.)
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (L.J.); (K.W.); (M.H.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany;
- Division Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, 69117 Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (E.J.K.); (P.S.); (J.C.-C.)
- Cancer Epidemiology Group, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cornelia M. Ulrich
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany; (D.S.); (H.D.); (Y.B.); (R.T.); (N.H.); (K.B.); (A.B.); (H.B.)
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
41
|
London M, Gallo E. Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics. Mol Biol Rep 2020; 47:5523-5533. [PMID: 32621117 DOI: 10.1007/s11033-020-05571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
The erythropoietin-producing human hepatocellular (Eph) receptors are transmembrane glycoprotein members of the tyrosine kinase receptors family. The Ephs may bind to various ephrin ligands resulting in the phosphorylation of their tyrosine kinase domain and the activation of the Eph receptor. In this review we focus on EphA3, one receptor of the 14 different Ephs, as it carries out both redundant and restricted functions in the germline development of mammals and in the maintenance of various adult tissues. The loss of EphA3 regulation is correlated with various human malignancies, the most notable being cancer. This receptor is overexpressed and/or mutated in multiple tumors, and is also associated with poor prognosis and decreased survival in patients. Here we highlight the role of EphA3 in normal and malignant tissues that are specific to cancer; these include hematologic disorders, gastric cancer, glioblastoma multiforme, colorectal cancer, lung cancer, renal cell carcinoma, and prostate cancer. Moreover, various anticancer agents against EphA3 have been developed to either inhibit its kinase domain activity or to function as agonists. Thus, we examine the most potent small molecule drugs and mAb-based therapeutics against EphA3 that are currently in pre-clinical or clinical stages.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
42
|
Buckens OJ, El Hassouni B, Giovannetti E, Peters GJ. The role of Eph receptors in cancer and how to target them: novel approaches in cancer treatment. Expert Opin Investig Drugs 2020; 29:567-582. [PMID: 32348169 DOI: 10.1080/13543784.2020.1762566] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Erythropoietin-producing human hepatocellular (Eph) receptors are among the largest family of tyrosine kinases that are divided into two classes: EphA and EphB receptors. Over the past two decades, their role in cancer has become more evident. AREAS COVERED There is a need for new anticancer treatments and more insight in the emerging role of Eph receptors in cancer. Molecular mechanisms underlying the pro-tumorigenic effects of Eph receptors could be exploited for future therapeutic strategies. This review describes the variability in expression levels and different effects on oncogenic and tumor suppressive downstream signaling of Eph receptors in various cancer types, and the small molecules, antibodies and peptides that target these receptors. EXPERT OPINION The complexity of Eph signaling is a challenge for the definition of clear targets for cancer treatment. Nevertheless, numerous drugs that target EphA2 and EphB4 are currently in clinical trials. However, some Eph targeted drugs also inhibit other tyrosine kinases, so it is unclear to what extent the targeting of Eph receptors contributes to their efficacy. Future research is warranted for an improved understanding of the full network in which Eph receptors function. This will be critical for the improvement of the anticancer effects of drugs that target the Eph receptors.
Collapse
Affiliation(s)
- Oscar J Buckens
- Amsterdam University College , Amsterdam, The Netherlands.,Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
| | - Btissame El Hassouni
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands.,Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza , Pisa, Italy
| | - Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands.,Department of Biochemistry, Medical University of Gdansk , Gdansk, Poland
| |
Collapse
|
43
|
EphrinB2 expression in prostate adenocarcinoma: Implications for targeted therapy. Pathol Res Pract 2020; 216:152967. [PMID: 32362422 DOI: 10.1016/j.prp.2020.152967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Prostate cancer is managed by surgery, androgen deprivation and cytotoxic chemotherapy. Targeted therapy is emerging as an important pillar in cancer therapeutics, however, efficacy in prostate cancer has been limited. Eph-ephrin is a novel pathway that is upregulated in prostate cancer and promotes the initiation and progression of cancer. The aim of this study was to determine the immunohistochemical expression of ephrinB2 in prostate adenocarcinoma. METHODS A tissue microarray comprising of prostate adenocarcinoma of different grade groups was stained with a monoclonal anti-ephrinB2 antibody (Abcam, AB201512). The tumor and endothelial cells expressing the ephrinB2 positivity were noted. The statistical analysis was performed to determine the difference in expression based on grade groups and the TNM stage. RESULTS EphrinB2 was expressed in 40 out of 72 cases (55.5 %) of prostate adenocarcinoma and was predominantly negative in the normal prostatic tissue. There was no significant difference in the expression of ephrinB2 in various grade groups (p = 0.7) or stages (p = 0.6). CONCLUSIONS EphrinB2 is expressed in a significant number of prostate adenocarcinoma regardless of grade and stage. Hence, there is a potential to target this molecule in the low-grade tumors with localized disease as well as high grade, high volume tumors with metastatic disease.
Collapse
|
44
|
Lu L, Daigle BJ. Prognostic analysis of histopathological images using pre-trained convolutional neural networks: application to hepatocellular carcinoma. PeerJ 2020; 8:e8668. [PMID: 32201640 PMCID: PMC7073245 DOI: 10.7717/peerj.8668] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Histopathological images contain rich phenotypic descriptions of the molecular processes underlying disease progression. Convolutional neural networks, state-of-the-art image analysis techniques in computer vision, automatically learn representative features from such images which can be useful for disease diagnosis, prognosis, and subtyping. Hepatocellular carcinoma (HCC) is the sixth most common type of primary liver malignancy. Despite the high mortality rate of HCC, little previous work has made use of CNN models to explore the use of histopathological images for prognosis and clinical survival prediction of HCC. We applied three pre-trained CNN models-VGG 16, Inception V3 and ResNet 50-to extract features from HCC histopathological images. Sample visualization and classification analyses based on these features showed a very clear separation between cancer and normal samples. In a univariate Cox regression analysis, 21.4% and 16% of image features on average were significantly associated with overall survival (OS) and disease-free survival (DFS), respectively. We also observed significant correlations between these features and integrated biological pathways derived from gene expression and copy number variation. Using an elastic net regularized Cox Proportional Hazards model of OS constructed from Inception image features, we obtained a concordance index (C-index) of 0.789 and a significant log-rank test (p = 7.6E-18). We also performed unsupervised classification to identify HCC subgroups from image features. The optimal two subgroups discovered using Inception model image features showed significant differences in both overall (C-index = 0.628 and p = 7.39E-07) and DFS (C-index = 0.558 and p = 0.012). Our work demonstrates the utility of extracting image features using pre-trained models by using them to build accurate prognostic models of HCC as well as highlight significant correlations between these features, clinical survival, and relevant biological pathways. Image features extracted from HCC histopathological images using the pre-trained CNN models VGG 16, Inception V3 and ResNet 50 can accurately distinguish normal and cancer samples. Furthermore, these image features are significantly correlated with survival and relevant biological pathways.
Collapse
Affiliation(s)
- Liangqun Lu
- Departments of Biological Sciences and Computer Science, The University of Memphis, Memphis, TN, USA
| | - Bernie J. Daigle
- Departments of Biological Sciences and Computer Science, The University of Memphis, Memphis, TN, USA
| |
Collapse
|
45
|
Subbiah V, Yang D, Velcheti V, Drilon A, Meric-Bernstam F. State-of-the-Art Strategies for Targeting RET-Dependent Cancers. J Clin Oncol 2020; 38:1209-1221. [PMID: 32083997 DOI: 10.1200/jco.19.02551] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activating receptor tyrosine kinase RET (rarranged during transfection) gene alterations have been identified as oncogenic in multiple malignancies. RET gene rearrangements retaining the kinase domain are oncogenic drivers in papillary thyroid cancer, non-small-cell lung cancer, and multiple other cancers. Activating RET mutations are associated with different phenotypes of multiple endocrine neoplasia type 2 as well as sporadic medullary thyroid cancer. RET is thus an attractive therapeutic target in patients with oncogenic RET alterations. Multikinase inhibitors with RET inhibitor activity, such as cabozantinib and vandetanib, have been explored in the clinic for tumors with activating RET gene alterations with modest clinical efficacy. As a result of the nonselective nature of these multikinase inhibitors, patients had off-target adverse effects, such as hypertension, rash, and diarrhea. This resulted in a narrow therapeutic index of these drugs, limiting ability to dose for clinically effective RET inhibition. In contrast, the recent discovery and clinical validation of highly potent selective RET inhibitors (pralsetinib, selpercatinib) demonstrating improved efficacy and a more favorable toxicity profile are poised to alter the landscape of RET-dependent cancers. These drugs appear to have broad activity across tumors with activating RET alterations. The mechanisms of resistance to these next-generation highly selective RET inhibitors is an area of active research. This review summarizes the current understanding of RET alterations and the state-of-the-art treatment strategies in RET-dependent cancers.
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Investigational Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.,Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX.,MD Anderson Cancer Network, Houston, TX
| | - Dong Yang
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Alexander Drilon
- Thoracic Oncology Service, Early Drug Development Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.,Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
46
|
Zhu F, Dai SN, Xu DL, Hou CQ, Liu TT, Chen QY, Wu JL, Miao Y. EFNB2 facilitates cell proliferation, migration, and invasion in pancreatic ductal adenocarcinoma via the p53/p21 pathway and EMT. Biomed Pharmacother 2020; 125:109972. [PMID: 32036221 DOI: 10.1016/j.biopha.2020.109972] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Ephrin-2 (EFNB2) is expressed at abnormally high levels in some neoplasms, such as squamous cell carcinoma of the head and neck and colorectal cancer. Its overexpression is associated with the malignant progression of tumors. However, the expression of EFNB2 in pancreatic ductal adenocarcinoma (PDAC) has not been thoroughly studied. EFNB2 expression was evaluated by quantitative real-time PCR, immunohistochemistry, and western blotting. Furthermore, the association between its expression levels and the clinicopathological features of PDAC patients was explored. To determine the underlying mechanisms of EFNB2, we transfected PDAC cells with small interfering RNA and performed in vitro and in vivo experiments. EFNB2 expression levels were significantly increased in cancer tissues and were associated with PDAC clinical stage and Ki67 expression. The down-regulation of EFNB2 inhibited cell proliferation by up-regulating p53/p21-mediated G0/G1 phase blockade. Knockdown of EFNB2 decreased the migration and invasion of PDAC cells by blocking epithelial-mesenchymal transition. These results suggested that EFNB2 may participate in the development of PDAC by promoting cell proliferation, migration, and invasion. Thus, EFNB2 is a potential target for the diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Feng Zhu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shang-Nan Dai
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Da-Lai Xu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chao-Qun Hou
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tong-Tai Liu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiu-Yang Chen
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun-Li Wu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yi Miao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
47
|
Lee PC, Chen ST, Kuo TC, Lin TC, Lin MC, Huang J, Hung JS, Hsu CL, Juan HF, Lee PH, Huang MC. C1GALT1 is associated with poor survival and promotes soluble Ephrin A1-mediated cell migration through activation of EPHA2 in gastric cancer. Oncogene 2020; 39:2724-2740. [PMID: 32005975 PMCID: PMC7098884 DOI: 10.1038/s41388-020-1178-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 11/09/2022]
Abstract
C1GALT1 controls the crucial step of GalNAc-type O-glycosylation and is associated with both physiologic and pathologic conditions, including cancers. EPH receptors comprise the largest family of receptor tyrosine kinases (RTKs) and modulate a diverse range of developmental processes and human diseases. However, the role of C1GALT1 in the signaling of EPH receptors remains largely overlooked. Here, we showed that C1GALT1 high expression in gastric adenocarcinomas correlated with adverse clinicopathologic features and is an independent prognostic factor for poor overall survival. Silencing or loss of C1GALT1 inhibited cell viability, migration, invasion, tumor growth and metastasis, as well as increased apoptosis and cytotoxicity of 5-fluorouracil in AGS and MKN45 cells. Phospho-RTK array and western blot analysis showed that C1GALT1 depletion suppressed tyrosine phosphorylation of EPHA2 induced by soluble Ephrin A1-Fc. O-glycans on EPHA2 were modified by C1GALT1 and both S277A and T429A mutants, which are O-glycosites on EPHA2, dramatically enhanced phosphorylation of Y588, suggesting that not only overall O-glycan structures but also site-specific O-glycosylation can regulate EPHA2 activity. Furthermore, depletion of C1GALT1 decreased Ephrin A1-Fc induced migration and reduced Ephrin A1 binding to cell surfaces. The effects of C1GALT1 knockdown or knockout on cell invasiveness in vitro and in vivo were phenocopied by EPHA2 knockdown in gastric cancer cells. These results suggest that C1GALT1 promotes phosphorylation of EPHA2 and enhances soluble Ephrin A1-mediated migration primarily by modifying EPHA2 O-glycosylation. Our study highlights the importance of GalNAc-type O-glycosylation in EPH receptor-regulated diseases and identifies C1GALT1 as a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Department of Traumatology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Syue-Ting Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Chun Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Department of Traumatology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Chi Lin
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Chun Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - John Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ji-Shiang Hung
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Department of Surgery, E-DA Hospital, Kaohsiung City, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
48
|
Liu YL, Horning AM, Lieberman B, Kim M, Lin CK, Hung CN, Chou CW, Wang CM, Lin CL, Kirma NB, Liss MA, Vasisht R, Perillo EP, Blocher K, Horng H, Taverna JA, Ruan J, Yankeelov TE, Dunn AK, Huang THM, Yeh HC, Chen CL. Spatial EGFR Dynamics and Metastatic Phenotypes Modulated by Upregulated EphB2 and Src Pathways in Advanced Prostate Cancer. Cancers (Basel) 2019; 11:cancers11121910. [PMID: 31805710 PMCID: PMC6966510 DOI: 10.3390/cancers11121910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Advanced prostate cancer is a very heterogeneous disease reflecting in diverse regulations of oncogenic signaling pathways. Aberrant spatial dynamics of epidermal growth factor receptor (EGFR) promote their dimerization and clustering, leading to constitutive activation in oncogenesis. The EphB2 and Src signaling pathways are associated with the reorganization of the cytoskeleton leading to malignancy, but their roles in regulating EGFR dynamics and activation are scarcely reported. Using single-particle tracking techniques, we found that highly phosphorylated EGFR in the advanced prostate cancer cell line, PC3, was associated with higher EGFR diffusivity, as compared with LNCaP and less aggressive DU145. The increased EGFR activation and biophysical dynamics were consistent with high proliferation, migration, and invasion. After performing single-cell RNA-seq on prostate cancer cell lines and circulating tumor cells from patients, we identified that upregulated gene expression in the EphB2 and Src pathways are associated with advanced malignancy. After dasatinib treatment or siRNA knockdowns of EphB2 or Src, the PC3 cells exhibited significantly lower EGFR dynamics, cell motility, and invasion. Partial inhibitory effects were also found in DU145 cells. The upregulation of parts of the EphB2 and Src pathways also predicts poor prognosis in the prostate cancer patient cohort of The Cancer Genome Atlas. Our results provide evidence that overexpression of the EphB2 and Src signaling pathways regulate EGFR dynamics and cellular aggressiveness in some advanced prostate cancer cells.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Aaron M. Horning
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Brandon Lieberman
- Department of Biology, Trinity University, San Antonio, TX 78212, USA;
| | - Mirae Kim
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Che-Kuang Lin
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chia-Nung Hung
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chih-Wei Chou
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chiou-Miin Wang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chun-Lin Lin
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Nameer B. Kirma
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Michael A. Liss
- Department of Urology, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Rohan Vasisht
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Evan P. Perillo
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Katherine Blocher
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Hannah Horng
- Department of Bioengineering, the University of Maryland, College Park, MD 20742, USA;
| | - Josephine A. Taverna
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Jianhua Ruan
- Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712, USA
- Department of Diagnostic Medicine, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Tim H.-M. Huang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
- Texas Materials Institute, University of Texas at Austin, Austin, TX 78712, USA
- Correspondence: (H.-C.Y.); (C.-L.C.); Tel.: +1-512-471-7931 (H.-C.Y.); +1-210-562-4143 (C.-L.C.); Fax: +1-512-471-0616 (H.-C.Y.); +1-210-562-4161 (C.-L.C.)
| | - Chun-Liang Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
- Correspondence: (H.-C.Y.); (C.-L.C.); Tel.: +1-512-471-7931 (H.-C.Y.); +1-210-562-4143 (C.-L.C.); Fax: +1-512-471-0616 (H.-C.Y.); +1-210-562-4161 (C.-L.C.)
| |
Collapse
|
49
|
Angus SP, Oblinger JL, Stuhlmiller TJ, DeSouza PA, Beauchamp RL, Witt L, Chen X, Jordan JT, Gilbert TSK, Stemmer-Rachamimov A, Gusella JF, Plotkin SR, Haggarty SJ, Chang LS, Johnson GL, Ramesh V. EPH receptor signaling as a novel therapeutic target in NF2-deficient meningioma. Neuro Oncol 2019; 20:1185-1196. [PMID: 29982664 DOI: 10.1093/neuonc/noy046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Meningiomas are the most common primary brain tumor in adults, and somatic loss of the neurofibromatosis 2 (NF2) tumor suppressor gene is a frequent genetic event. There is no effective treatment for tumors that recur or continue to grow despite surgery and/or radiation. Therefore, targeted therapies that either delay tumor progression or cause tumor shrinkage are much needed. Our earlier work established mammalian target of rapamycin complex mTORC1/mTORC2 activation in NF2-deficient meningiomas. Methods High-throughput kinome analyses were performed in NF2-null human arachnoidal and meningioma cell lines to identify functional kinome changes upon NF2 loss. Immunoblotting confirmed the activation of kinases and demonstrated effectiveness of drugs to block the activation. Drugs, singly and in combination, were screened in cells for their growth inhibitory activity. Antitumor drug efficacy was tested in an orthotopic meningioma model. Results Erythropoietin-producing hepatocellular receptor tyrosine kinases (EPH RTKs), c-KIT, and Src family kinase (SFK) members, which are biological targets of dasatinib, were among the top candidates activated in NF2-null cells. Dasatinib significantly inhibited phospho-EPH receptor A2 (pEPHA2), pEPHB1, c-KIT, and Src/SFK in NF2-null cells, showing no cross-talk with mTORC1/2 signaling. Posttreatment kinome analyses showed minimal adaptive changes. While dasatinib treatment showed some activity, dual mTORC1/2 inhibitor and its combination with dasatinib elicited stronger growth inhibition in meningiomas. Conclusion Co-targeting mTORC1/2 and EPH RTK/SFK pathways could be a novel effective treatment strategy for NF2-deficient meningiomas.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Janet L Oblinger
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Timothy J Stuhlmiller
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Patrick A DeSouza
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Roberta L Beauchamp
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Luke Witt
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Xin Chen
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Justin T Jordan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Thomas S K Gilbert
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Scott R Plotkin
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephen J Haggarty
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Vijaya Ramesh
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
50
|
Saravia CH, Flores C, Schwarz LJ, Bravo L, Zavaleta J, Araujo J, Neciosup S, Pinto JA. Patterns of Mutation Enrichment in Metastatic Triple-Negative Breast Cancer. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2019; 13:1179554919868482. [PMID: 31447598 PMCID: PMC6689917 DOI: 10.1177/1179554919868482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022]
Abstract
Background: Triple-negative breast cancer (TNBC) is a heterogeneous disease with aggressive biology and complex tumor evolution. Our purpose was to identify enrichment patterns of genomic alterations in metastatic triple-negative breast cancer (mTNBC). Methods: Genomic data were retrieved (mutations and copy number variations) from 550 primary TNBC tumors from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome Atlas (TCGA) data sets and 58 mTNBC tumors from “Mutational Profile of Metastatic Breast Cancers” and “The Metastatic Breast Cancer Project.” Statistical analysis of microarray data between primary and metastatic tumors was performed using a chi-square test, and the percentage of mutation enrichment in mTNBC cases was estimated. P-values were adjusted for multiple testing with Benjamini-Hochberg method with a false-discovery rate (FDR) <.05. In addition, we identified dominant hallmarks of cancer in mTNBC. Results: Seven genes with mutations were enriched in mTNBC after correcting for multiple testing. These included TTN, HMCN1, RELN, PKHD1L1, DMD, FRAS1, and RYR3. Only RPS6KB2 amplification was statistically significant in mTNBC; on the contrary, deletion of the genes TET1, RHOA, EPHA5, SET, KCNJ5, ABCG4, NKX3-1, SDHB, IGF2, and BRCA1 were the most frequent. The molecular alterations related to the hallmark of “genetic instability and mutation” were predominant in mTNBC. Interestingly, the hallmark of “activating immune destruction” was the least represented in mTNBC. Conclusion: Despite the study limitations, we identified recurrent patterns of genomic alterations with potential contribution to tumor evolution. Deletions were the aberrations more commonly found in mTNBC. Several molecular alterations are potentially targetable.
Collapse
Affiliation(s)
- César H Saravia
- Escuela de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Perú
| | - Claudio Flores
- Unidad de Investigación Básica y Traslacional, Oncosalud-AUNA, Lima, Perú
| | - Luis J Schwarz
- Unidad de Investigación Básica y Traslacional, Oncosalud-AUNA, Lima, Perú
| | - Leny Bravo
- Escuela de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Perú
| | - Jenny Zavaleta
- Escuela de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Perú
| | - Jhajaira Araujo
- Unidad de Investigación Básica y Traslacional, Oncosalud-AUNA, Lima, Perú
| | - Silvia Neciosup
- Unidad de Investigación Básica y Traslacional, Oncosalud-AUNA, Lima, Perú
| | - Joseph A Pinto
- Unidad de Investigación Básica y Traslacional, Oncosalud-AUNA, Lima, Perú
| |
Collapse
|