1
|
Maeda K, Zhou Z, Guo M, Zhang J, Chen L, Yang F. Functional properties and skin care effects of sodium trehalose sulfate. Skin Res Technol 2024; 30:e13666. [PMID: 38606717 PMCID: PMC11010266 DOI: 10.1111/srt.13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND It is known that heparinoid, a mucopolysaccharide polysulfate, is effective in improving rough skin and promoting blood circulation as medicines for diseased areas. However, heparinoid has a molecular weight of more than 5000 and cannot penetrate healthy stratum corneum. OBJECTIVE We tested the efficacy of sulfated oligosaccharides with a molecular weight of less than 2000 on the human skin barrier function and moisturizing function. METHODS We measured the transepidermal water loss (TEWL) of a three-dimensional human epidermis model cultured for 3 days after topical application of sulfated oligosaccharides, then observed the effects on TEWL suppression. The mRNA levels of proteins involved in intercellular lipid transport and storage in the stratum corneum, and moisture retention were measured using RT-qPCR. RESULTS An increase in the mRNA levels of the ATP-binding cassette subfamily A member 12 (ABCA12), which transports lipids into stratum granulosum, was confirmed. Increases were also observed in the mRNA levels of filaggrin (FLG), which is involved in the generation of natural moisturizing factors, and of caspase-14, calpain-1 and bleomycin hydrolase, which are involved in the degradation of FLG. Antibody staining confirmed that the application of sodium trehalose sulfate to 3D model skin resulted in more ABCA12, ceramide, transglutaminase1, and FLG than those in controls. In a randomized, placebo-controlled, double-blind study, participants with low stratum corneum water content applied a lotion and emulsion containing sodium trehalose sulfate to their faces for 4 weeks. Sodium trehalose sulfate decreased the TEWL and increased the stratum corneum water content. CONCLUSION These results suggest that cosmetics containing sodium trehalose sulfate act on the epidermis by increasing barrier factors and moisturizing factors, thereby ameliorating dry skin.
Collapse
Affiliation(s)
- Kazuhisa Maeda
- School of Bioscience and BiotechnologyTokyo University of TechnologyHachiojiTokyoJapan
| | - Zheng Zhou
- Mageline Biology Tech Co., Ltd.WuhanHubeiChina
| | - Miao Guo
- Mageline Biology Tech Co., Ltd.WuhanHubeiChina
| | | | - Lang Chen
- Bionics ProgramTokyo University of Technology Graduate SchoolHachiojiTokyoJapan
| | - Fan Yang
- Mageline Biology Tech Co., Ltd.WuhanHubeiChina
| |
Collapse
|
2
|
Almazroea A, Ijaz A, Aziz A, Mushtaq Yasinzai M, Rafiullah R, Rehman FU, Daud S, Shaikh R, Ayub M, Wali A. Identification and In Silico Analysis of a Homozygous Nonsense Variant in TGM1 Gene Segregating with Congenital Ichthyosis in a Consanguineous Family. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:103. [PMID: 36676727 PMCID: PMC9866252 DOI: 10.3390/medicina59010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Background and Objectives: Lamellar ichthyosis is a rare skin disease characterized by large, dark brown plate-like scales on the entire body surface with minimum or no erythema. This phenotype is frequently associated with a mutation in the TGM1 gene, encoding the enzyme transglutaminase 1 which plays a catalytic role in the formation of the cornified cell envelop. The present study aimed to carry out clinical and genetic characterization of the autosomal recessive lamellar ichthyosis family from Balochistan. Materials and Methods: A consanguineous family with lamellar ichthyosis was enrolled from Balochistan, Pakistan. PCR amplification of all the exons and splice site junctions of the TGM1 gene followed by Sanger sequencing was performed on the genomic DNA. The identified variant was checked by In silico prediction tools to evaluate the effect of the variant on protein. Results: Sanger sequencing identified a homozygous nonsense variant c.131G >A (p.Trp44*) in the TGM1 gene that segregated in the autosomal recessive mode of inheritance in the family. The identified variant results in premature termination of transcribed mRNA and is predicted to cause a truncated or absent translation product transglutaminase-1 (TGase-1) accompanied by loss of catalytic activity, causing a severe clinical phenotype of lamellar ichthyosis in the patients. Conclusions: Here, we report a consanguineous lamellar ichthyosis family with a homozygous nonsense variant in the TGM1 gene. The variant is predicted as pathogenic by different In silico prediction tools.
Collapse
Affiliation(s)
- Abdulhadi Almazroea
- Pediatrician, Associate Professor at College of Medicine, Taibah University, Madinah 41477, Saudi Arabia
| | - Ambreen Ijaz
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta 87300, Pakistan
- Department of Zoology, SBK Women’s University, Quetta 87500, Pakistan
| | - Abdul Aziz
- Department of Computer Sciences and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
| | - Muhammad Mushtaq Yasinzai
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta 87300, Pakistan
| | - Rafiullah Rafiullah
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta 87300, Pakistan
| | - Fazal Ur Rehman
- Department of Microbiology, University of Balochistan, Quetta 87550, Pakistan
| | - Shakeela Daud
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta 87300, Pakistan
| | - Rozeena Shaikh
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta 87300, Pakistan
| | - Muhammad Ayub
- Institute of Biochemistry, University of Balochistan, Quetta 87550, Pakistan
| | - Abdul Wali
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta 87300, Pakistan
| |
Collapse
|
3
|
Prado-Mantilla A, Lechler T. Polarity in skin development and cancer. Curr Top Dev Biol 2023; 154:317-336. [PMID: 37100522 DOI: 10.1016/bs.ctdb.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The epidermis is a stratified squamous epithelium that forms the outermost layer of the skin. Its primary function is to act as a barrier, keeping pathogens and toxins out and moisture in. This physiological role has necessitated major differences in the organization and polarity of the tissue as compared to simple epithelia. We discuss four aspects of polarity in the epidermis - the distinctive polarities of basal progenitor cells as well as differentiated granular cells, the polarity of adhesions and the cytoskeleton across the tissue as keratinocytes differentiate, and the planar cell polarity of the tissue. These distinctive polarities are essential for the morphogenesis and the function of the epidermis and have also been implicated in regulating tumor formation.
Collapse
|
4
|
Tran VK, Diep QM, Zilong Q, Phuong LT, Tran HA, Van Tung N, Lien NTK, Xuan NT, Ha LT, Van Ta T, Tran TH, Hoang NH. Case Report: Novel rare mutation c.6353C > G in the ABCA12 gene causing harlequin ichthyosis identified by whole exome sequencing. Front Pediatr 2023; 11:1128716. [PMID: 36873642 PMCID: PMC9977293 DOI: 10.3389/fped.2023.1128716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Harlequin ichthyosis (HI) is a severe rare genetic disease that mainly affects the skin. Neonates with this disease are born with thick skin and large diamond-shaped plates covering most of their bodies. Affected neonates lose the ability to control dehydration and regulate temperature and are more susceptible to infections. They also face respiratory failure and feeding problems. These clinical symptoms are factors associated with high mortality rates of neonates with HI. Until now, there are still no effective treatments for HI patients and most patients die in the newborn period. Mutation in the ABCA12 gene, which encodes an adenosine triphosphate-binding cassette (ABC) transporter, has been demonstrated as the major cause of HI. CASE PRESENTATION In this study, we report the case who is one infant that was born prematurely at 32 gestational weeks with the whole body covered with thick plate-like scales of skin. The infant was severely infected with mild edema, multiple cracked skins full of the body, yellow discharge, and necrosis of fingers and toes. The infant was suspected to be affected by HI. Whole exome sequencing (WES) was performed as a tool for detecting the novel mutation in one prematurely born Vietnam infant with HI phenotype. And after that, the mutation was confirmed by the Sanger sequencing method in the patient and the members of his family. In this case, one novel mutation c.6353C > G (p.S2118X, Hom) in the ABCA12 gene, was detected in the patient. The mutation has not been reported in any HI patients previously. This mutation was also found in a heterozygous state in the members of the patient's family, including his parents, an older brother, and an older sister who are no symptoms. CONCLUSIONS In this study, we identified a novel mutation in a Vietnamese patient with HI by whole exome sequencing. The results for the patient and the members of his family will be helpful in understanding the etiology of the disease, diagnosing carriers, assisting in genetic counseling, and emphasizing the need for DNA-based prenatal screening for families with a history of the disease.
Collapse
Affiliation(s)
- Van Khanh Tran
- Department of Molecular Pathology Faculty of Medical Technology and Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Quang Minh Diep
- Assisted Reproductive Technology Center, Quang Ninh Hospital for Obstetric and Pediatric, Quang ninh, Vietnam
| | - Qiu Zilong
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Le Thi Phuong
- Department of Molecular Pathology Faculty of Medical Technology and Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Hai Anh Tran
- Department of Molecular Pathology Faculty of Medical Technology and Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Le Thi Ha
- Neonatal Care Center, Vietnam National Hospital of Pediatrics, Hanoi, Vietnam
| | - Thanh Van Ta
- Department of Molecular Pathology Faculty of Medical Technology and Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Thinh Huy Tran
- Department of Molecular Pathology Faculty of Medical Technology and Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
5
|
Chen B, Lu N, Lee K, Ye L, Hasegawa C, Maeda K. Application of mevalonolactone prevents deterioration of epidermal barrier function by accelerating the lamellar granule lipid transport system. Skin Res Technol 2022; 28:804-814. [PMID: 36148627 PMCID: PMC9907606 DOI: 10.1111/srt.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Fatty acids increase ATP-binding cassette ABC transporter A12 (ABCA12) levels via an increase in peroxisome proliferator-activated receptor β/δ (PPAR β/δ). Promoting lipid transport to lamellar granules has been suggested to improve epidermal barrier function in patients with dry skin. OBJECTIVE We investigated whether mevalonolactone (MVL) produced by Saccharomycopsis fibuligera improves dry skin by promoting ABCA12 expression and the amount of free fatty acids in epidermal keratinocytes. METHODS We examined whether MVL increases ABCA12 mRNA and protein levels and the amount of Nile red-positive lipids in cultured epidermal keratinocytes and in a three-dimensional epidermal model by cell staining. Promotion of fatty acid production by MVL was analyzed by liquid chromatography-mass spectrometry. We also evaluated whether MVL addition increases PPAR β/δ mRNA expression in cultured keratinocytes. Based on the results, a randomized controlled trial was conducted in which milky lotions containing MVL and placebo were applied to dry facial skin of healthy female volunteers in winter. RESULTS MVL increased ABCA12 mRNA and protein levels and lamellar granule number and size. Fatty acid analysis revealed that MVL elevated myristic acid, palmitic acid, and palmitoleic acid levels as well as PPAR β/δ mRNA expression. In human tests, milky lotions containing MVL were shown to significantly improve transepidermal water loss (TEWL) in the stratum corneum compared to placebo. CONCLUSION The results suggest that MVL increases fatty acid uptake and ABCA12, promotes fatty acid transport to lamellar granules, and improves epidermal barrier function in dry skin through increased expression of PPAR β/δ.
Collapse
Affiliation(s)
- Bin Chen
- Pechoin Biotech Co. Ltd., Shanghai, China
| | - Nan Lu
- Pechoin Biotech Co. Ltd., Shanghai, China
| | - KeeSuh Lee
- Pechoin Biotech Co. Ltd., Shanghai, China
| | - Lei Ye
- Pechoin Biotech Co. Ltd., Shanghai, China
| | | | | |
Collapse
|
6
|
Budani M, Auray-Blais C, Lingwood C. ATP-binding cassette transporters mediate differential biosynthesis of glycosphingolipid species. J Lipid Res 2021; 62:100128. [PMID: 34597626 PMCID: PMC8569594 DOI: 10.1016/j.jlr.2021.100128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023] Open
Abstract
The cytosolic-oriented glucosylceramide (GlcCer) synthase is enigmatic, requiring nascent GlcCer translocation to the luminal Golgi membrane to access glycosphingolipid (GSL) anabolic glycosyltransferases. The mechanism by which GlcCer is flipped remains unclear. To investigate the role of GlcCer-binding partners in this process, we previously made cleavable, biotinylated, photoreactive GlcCer analogs in which the reactive nitrene was closely apposed to the GlcCer head group, while maintaining a C16-acyl chain. GlcCer-binding protein specificity was validated for both photoprobes. Using one probe, XLB, here we identified ATP-binding cassette (ABC) transporters ABCA3, ABCB4, and ABCB10 as unfractionated microsomal GlcCer-binding proteins in DU-145 prostate tumor cells. siRNA knockdown (KD) of these transporters differentially blocked GSL synthesis assessed in toto and via metabolic labeling. KD of ABCA3 reduced acid/neutral GSL levels, but increased those of LacCer, while KD of ABCB4 preferentially reduced neutral GSL levels, and KD of ABCB10 reduced levels of both neutral and acidic GSLs. Depletion of ABCA12, implicated in GlcCer transport, preferentially decreased neutral GSL levels, while ABCB1 KD preferentially reduced gangliosides, but increased neutral GSL Gb3. These results imply that multiple ABC transporters may provide distinct but overlapping GlcCer and LacCer pools within the Golgi lumen for anabolism of different GSL series by metabolic channeling. Differential ABC family member usage may fine-tune GSL biosynthesis depending on cell/tissue type. We conclude that ABC transporters provide a new tool for the regulation of GSL biosynthesis and serve as potential targets to reduce selected GSL species/subsets in diseases in which GSLs are dysregulated.
Collapse
Affiliation(s)
- Monique Budani
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Baldo F, Brena M, Carbogno S, Minoia F, Lanni S, Guez S, Petaccia A, Agostoni C, Cimaz R, Filocamo G. Juvenile idiopathic arthritis in Harlequin ichthyosis, a rare combination or the clinical spectrum of the disease? Report of a child treated with etanercept and review of the literature. Pediatr Rheumatol Online J 2021; 19:80. [PMID: 34082764 PMCID: PMC8173856 DOI: 10.1186/s12969-021-00571-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Harlequin ichthyosis (HI) is the most severe phenotype of autosomal recessive congenital ichthyosis. Juvenile Idiopathic Arthritis (JIA) represents a heterogenous group of disorders all sharing the clinical manifestation of chronic arthritis. Association of HI and chronic arthritis has been reported in few cases. CASE PRESENTATION We report the case of a child with HI who developed a severe form of chronic polyarthritis during the first years of life, treated with repeated multiple joint injections, methotrexate and etanercept with good response and without any adverse events. CONCLUSION The reported case and the literature review highlighted the presence of a peculiar severe seronegative polyarthritis with early onset in a series of patients with HI, suggesting that polyarthritis may be a specific manifestation of HI, rather than a rare combination of two separate conditions.
Collapse
Affiliation(s)
- Francesco Baldo
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822University of Milan, Milan, Italy
| | - Michela Brena
- grid.414818.00000 0004 1757 8749Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Carbogno
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822University of Milan, Milan, Italy
| | - Francesca Minoia
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy
| | - Stefani Lanni
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy
| | - Sophie Guez
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy
| | - Antonella Petaccia
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy
| | - Carlo Agostoni
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822University of Milan, Milan, Italy
| | - Rolando Cimaz
- ASST G.Pini-CTO, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, and RECAP-RD, University of Milan, Milan, Italy
| | - Giovanni Filocamo
- Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122, Milan, Italy.
| |
Collapse
|
8
|
Wertz PW. Lipid Metabolic Events Underlying the Formation of the Corneocyte Lipid Envelope. Skin Pharmacol Physiol 2021; 34:38-50. [PMID: 33567435 DOI: 10.1159/000513261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/22/2020] [Indexed: 11/19/2022]
Abstract
Cornified cells of the stratum corneum have a monolayer of an unusual lipid covalently attached to the outer surface. This is referred to as the corneocyte lipid envelope (CLE). It consists of a monolayer of ω-hydroxyceramides covalently attached to the outer surface of the cornified envelope. The CLE is essential for proper barrier function of the skin and is derived from linoleate-rich acylglucosylceramides synthesized in the viable epidermis. Biosynthesis of acylglucosylceramide and its conversion to the cornified envelope is complex. Acylglucosylceramide in the bounding membrane of the lamellar granule is the precursor of the CLE. The acylglucosylceramide in the limiting membrane of the lamellar granule may be oriented with the glucosyl moiety on the inside. Conversion of the acylglucosylceramide to the CLE requires removal of the glucose by action of a glucocerebrosidase. The ester-linked fatty acid may be removed by an as yet unidentified esterase, and the resulting ω-hydroxyceramide may become ester linked to the outer surface of the cornified envelope through action of transglutaminase 1. Prior to removal of ester-linked fatty acids, linoleate is oxidized to an epoxy alcohol through action of 2 lipoxygenases. This can be further oxidized to an epoxy-enone, which can spontaneously attach to the cornified envelope through Schiff's base formation. Mutations of genes coding for enzymes involved in biosynthesis of the CLE result in ichthyosis, often accompanied by neurologic dysfunction. The CLE is recognized as essential for barrier function of skin, but many questions about details of this essentiality remain. What are the relative roles of the 2 mechanisms of lipid attachment? What is the orientation of acylglucosylceramide in the bounding membrane of lamellar granules? Some evidence supports a role for CLE as a scaffold upon which intercellular lamellae unfold, but other evidence does not support this role. There is also controversial evidence for a role in stratum corneum cohesion. Evidence is presented to suggest that covalently bound ω-hydroxyceramides serve as a reservoir for free sphingosine that can serve in communicating with the viable epidermis and act as a potent broad-acting antimicrobial at the skin surface. Many questions remain.
Collapse
|
9
|
Wang X, Cao C, Li Y, Hai T, Jia Q, Zhang Y, Zheng Q, Yao J, Qin G, Zhang H, Song R, Wang Y, Shui G, Lam SM, Liu Z, Wei H, Meng A, Zhou Q, Zhao J. A harlequin ichthyosis pig model with a novel ABCA12 mutation can be rescued by acitretin treatment. J Mol Cell Biol 2020; 11:1029-1041. [PMID: 30925591 PMCID: PMC6934153 DOI: 10.1093/jmcb/mjz021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/20/2019] [Accepted: 03/08/2019] [Indexed: 11/20/2022] Open
Abstract
Harlequin ichthyosis (HI) is a severe genetic skin disorder and caused by mutation in the ATP-binding cassette A12 (ABCA12) gene. The retinoid administration has dramatically improved long-term survival of HI, but improvements are still needed. However, the ABCA12 null mice failed to respond to retinoid treatment, which impedes the development of novel cure strategies for HI. Here we generated an ethylnitrosourea mutagenic HI pig model (named Z9), which carries a novel deep intronic mutation IVS49-727 A>G in the ABCA12 gene, resulting in abnormal mRNA splicing and truncated protein production. Z9 pigs exhibit significant clinical symptom as human patients with HI. Most importantly, systemic retinoid treatment significantly prolonged the life span of the mutant pigs via improving epidermal maturation, decreasing epidermal apoptosis, and triggering the expression of ABCA6. Taken together, this pig model perfectly resembles the clinical symptom and molecular pathology of patients with HI and will be useful for understanding mechanistic insight and developing therapeutic strategies.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Yongshun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Qitao Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Ruigao Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Anming Meng
- School of Life Sciences, Tsinghua University, Beijing 100084, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Chinese Swine Mutagenesis Consortium, Beijing 100101, China
| |
Collapse
|
10
|
Yang Z, Qi Z, Xu Z, Li W, Ma L. Congenital ichthyosiform erythroderma with a novel variant in ABCA12 in a Chinese patient. Pediatr Investig 2020; 4:51-54. [PMID: 32851342 PMCID: PMC7331307 DOI: 10.1002/ped4.12182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Congenital ichthyosiform erythroderma (CIE ) is characterized by fine, whitish scales on a background of erythematous skin over the whole body; it is reportedly caused by mutations in ABCA12, ALOX12B, ALOXE3, CERS3, CYP4F22, NIPAL4, PNPLA1, and TGM1 genes. CASE PRESENTATION A 15-month-old girl presented with CIE associated with compound heterozygous ABCA12 mutations, a known missense mutation c.4139A>G (p.Asn1380Ser) from her father, and a novel missense mutation c.4300A>G (p.Thr1434Ala) from her mother. CONCLUSION This is the first report to indicate that compound heterozygous missense mutations in the first ATP-binding cassette of ABCA12 could contribute to the onset of CIE.
Collapse
Affiliation(s)
- Zhou Yang
- Department of DermatologyBeijing Children’s HospitalCapital Medical UniversityNational Center for Children’s HealthBeijingChina
| | - Zhan Qi
- Beijing Key Laboratory for Genetics of Birth DefectsMOE Key Laboratory of Major Diseases in ChildrenCenter for Medical GeneticsBeijing Pediatric Research InstituteBeijing Children’s HospitalCapital Medical UniversityNational Center for Children’s HealthChina
| | - Zhe Xu
- Department of DermatologyBeijing Children’s HospitalCapital Medical UniversityNational Center for Children’s HealthBeijingChina
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth DefectsMOE Key Laboratory of Major Diseases in ChildrenCenter for Medical GeneticsBeijing Pediatric Research InstituteBeijing Children’s HospitalCapital Medical UniversityNational Center for Children’s HealthChina
| | - Lin Ma
- Department of DermatologyBeijing Children’s HospitalCapital Medical UniversityNational Center for Children’s HealthBeijingChina
| |
Collapse
|
11
|
De Tollenaere M, Meunier M, Scandolera A, Sandre J, Lambert C, Chapuis E, Auriol D, Reynaud R. Well-aging: A new strategy for skin homeostasis under multi-stressed conditions. J Cosmet Dermatol 2019; 19:444-455. [PMID: 31232507 PMCID: PMC7003805 DOI: 10.1111/jocd.13047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/19/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Background Several studies evidenced significant increase of cortisol is the consequence of UV or emotional stress and leads to various deleterious effects in the skin. Aim The well‐aging, a new concept of lifestyle, procures an alternative to the anti‐aging strategy. We demonstrated that Tephrosia purpurea extract is able to stimulate well‐being hormones while reducing cortisol release. Furthermore, we hypothesized that the extract could positively influence the global skin homeostasis. Method We evaluated the impact of the extract on cortisol, β‐endorphin, and dopamine, released by normal human epidermal keratinocytes (NHEKs). A gene expression study was realized on NHEKs and NHDFs. The protein over‐expression of HMOX1 and NQO1 was evidenced at cellular and tissue level. Finally, we conducted a clinical study on 21 women living in a polluted environment in order to observe the impact of the active on global skin improvement. Results The extract is able to reduce significantly the cortisol release while inducing the production of β‐endorphin and dopamine. The gene expression study revealed that Tephrosia purpurea extract up‐regulated the genes involved in antioxidant response and skin renewal. Moreover, the induction of HMOX and NQO1 expression was confirmed on NHDFs, NHEKs and in RHE. We clinically demonstrated that the extract improved significantly the skin by reducing dark circles, represented by an improvement of L*, a*, and ITA parameters. Conclusion Tephrosia purpurea extract has beneficial effects on skin homeostasis through control of the well‐being state and antioxidant defenses leading to an improvement of dark circles, a clinical features particularly impacted by emotional and environmental stress.
Collapse
Affiliation(s)
| | - Marie Meunier
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | | | - Jérôme Sandre
- Chirurgien Plasticien et Esthétique, Polyclinique de Courlancy, Reims, France
| | - Carole Lambert
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | - Emilie Chapuis
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | - Daniel Auriol
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | - Romain Reynaud
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| |
Collapse
|
12
|
Ishida-Yamamoto A, Igawa S, Kishibe M. Molecular basis of the skin barrier structures revealed by electron microscopy. Exp Dermatol 2018; 27:841-846. [PMID: 29704884 DOI: 10.1111/exd.13674] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
The barrier function of skin is indispensable for terrestrial animals. This function is mainly carried out by the epidermis, more specifically by its granular and cornified layers. The major structural components associated with this function are the intercellular lipid layer, desmosomes, corneodesmosomes, tight junctions, cornified cell envelope and keratin filaments. In this review, we discuss the current knowledge of their ultrastructure, their molecular basis and their relevance to skin disease.
Collapse
Affiliation(s)
| | - Satomi Igawa
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Mari Kishibe
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
13
|
Ro T, Blasiak RC, Morrell DS. A newborn with significant white hyperkeratotic plaques. Pediatr Dermatol 2018; 35:143-144. [PMID: 29356112 DOI: 10.1111/pde.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Teresa Ro
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel C Blasiak
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dean S Morrell
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Cerovska E, Elsnerova K, Vaclavikova R, Soucek P. The role of membrane transporters in ovarian cancer chemoresistance and prognosis. Expert Opin Drug Metab Toxicol 2017; 13:741-753. [PMID: 28511565 DOI: 10.1080/17425255.2017.1332179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Ovarian cancer has the highest mortality rate of all cancers in women. There is currently no effective method for early diagnosis, limiting the precision of clinical expectations. Predictions of therapeutic efficacy are currently not available either. Specifically, the development of chemoresistance against conventional chemotherapy poses a fundamental complication. Some membrane transporters have been reported to influence chemoresistance, which is often associated with a poor prognosis. Areas covered: The aim of this article is to review the existing information about membrane transporters and their role in both ovarian cancer chemoresistance and its outcomes. We then highlight limitations of current methodologies and suggest alternatives providing avenues for future research. Expert opinion: Membrane transporters play an important role in development of chemoresistance and affect prognosis of ovarian cancer patients; however, due to variations in methodology and in patient populations, their specific roles have yet to be clarified. For further evaluation of the clinical utility of membrane transporters, it is essential to validate results and improve methods for marker assessment across laboratories. A promising area for future research is to identify the genetic variability in potential markers in peripheral blood. These markers would then stratify patients into defined groups for optimal intervention.
Collapse
Affiliation(s)
- Ela Cerovska
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic
| | - Katerina Elsnerova
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic.,b 3rd Faculty of Medicine , Charles University , Prague , Czech Republic.,c Biomedical Center, Faculty of Medicine in Pilsen , Charles University , Pilsen , Czech Republic
| | - Radka Vaclavikova
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic.,c Biomedical Center, Faculty of Medicine in Pilsen , Charles University , Pilsen , Czech Republic
| | - Pavel Soucek
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic.,c Biomedical Center, Faculty of Medicine in Pilsen , Charles University , Pilsen , Czech Republic
| |
Collapse
|
15
|
Glick JB, Craiglow BG, Choate KA, Kato H, Fleming RE, Siegfried E, Glick SA. Improved Management of Harlequin Ichthyosis With Advances in Neonatal Intensive Care. Pediatrics 2017; 139:peds.2016-1003. [PMID: 27999114 DOI: 10.1542/peds.2016-1003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 11/24/2022] Open
Abstract
Harlequin ichthyosis (HI) is the most severe phenotype of the autosomal recessive congenital ichthyoses. HI is caused by mutations in the lipid transporter adenosine triphosphate binding cassette A 12 (ABCA12). Neonates are born with a distinct clinical appearance, encased in a dense, platelike keratotic scale separated by deep erythematous fissures. Facial features are distorted by severe ectropion, eclabium, flattened nose, and rudimentary ears. Skin barrier function is markedly impaired, which can lead to hypernatremic dehydration, impaired thermoregulation, increased metabolic demands, and increased risk of respiratory dysfunction and infection. Historically, infants with HI did not survive beyond the neonatal period; however, recent advances in neonatal intensive care and coordinated multidisciplinary management have greatly improved survival. In this review, the authors combine the growing HI literature with their collective experiences to provide a comprehensive review of the management of neonates with HI.
Collapse
Affiliation(s)
- Jaimie B Glick
- Department of Dermatology, State University of New York Downstate Medical Center, Brooklyn, New York
| | | | - Keith A Choate
- Departments of Dermatology.,Genetics, and.,Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | | | | | - Elaine Siegfried
- Departments of Pediatrics and.,Dermatology, Saint Louis University School of Medicine, St Louis, Missouri
| | - Sharon A Glick
- Department of Dermatology, State University of New York Downstate Medical Center, Brooklyn, New York;
| |
Collapse
|
16
|
Johannes L, Wunder C, Shafaq-Zadah M. Glycolipids and Lectins in Endocytic Uptake Processes. J Mol Biol 2016; 428:S0022-2836(16)30453-3. [PMID: 27984039 DOI: 10.1016/j.jmb.2016.10.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023]
Abstract
A host of endocytic processes has been described at the plasma membrane of eukaryotic cells. Their categorization has most commonly referenced cytosolic machinery, of which the clathrin coat has occupied a preponderant position. In what concerns intra-membrane constituents, the focus of interest has been on phosphatidylinositol lipids and their capacity to orchestrate endocytic events on the cytosolic leaflet of the membrane. The contribution of extracellular determinants to the construction of endocytic pits has received much less attention, depite the fact that (glyco)sphingolipids are exoplasmic leaflet fabric of membrane domains, termed rafts, whose contributions to predominantly clathrin-independent internalization processes is well recognized. Furthermore, sugar modifications on extracellular domains of proteins, and sugar-binding proteins, termed lectins, have also been linked to the uptake of endocytic cargoes at the plasma membrane. In this review, we first summarize these contributions by extracellular determinants to the endocytic process. We thus propose a molecular hypothesis - termed the GL-Lect hypothesis - on how GlycoLipids and Lectins drive the formation of compositional nanoenvrionments from which the endocytic uptake of glycosylated cargo proteins is operated via clathrin-independent carriers. Finally, we position this hypothesis within the global context of endocytic pathway proposals that have emerged in recent years.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | - Christian Wunder
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Massiullah Shafaq-Zadah
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
17
|
Glycosphingolipid storage in Fabry mice extends beyond globotriaosylceramide and is affected by ABCB1 depletion. Future Sci OA 2016; 2:FSO147. [PMID: 28116130 PMCID: PMC5242178 DOI: 10.4155/fsoa-2016-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 11/17/2022] Open
Abstract
Aim: Fabry disease is caused by α-galactosidase A deficiency leading to accumulation of globotriaosylceramide (Gb3) in tissues. Clinical manifestations do not appear to correlate with total Gb3 levels. Studies examining tissue distribution of specific acyl chain species of Gb3 and upstream glycosphingolipids are lacking. Material & methods/Results: Thorough characterization of the Fabry mouse sphingolipid profile by LC-MS revealed unique Gb3 acyl chain storage profiles. Storage extended beyond Gb3; all Fabry tissues also accumulated monohexosylceramides. Depletion of ABCB1 had a complex effect on glycosphingolipid storage. Conclusion: These data provide insights into how specific sphingolipid species correlate with one another and how these correlations change in the α-galactosidase A-deficient state, potentially leading to the identification of more specific biomarkers of Fabry disease. Fabry disease is caused by a shortage of the enzyme α-galactosidase A leading to storage of a fat called globotriaosylceramide (Gb3) in tissues. Disease severity does not appear to correlate directly with total Gb3. Importantly, Gb3 is comprised of many highly related but distinct species. We examined levels of Gb3 species and precursor molecules in Fabry mice. Gb3 species and storage are unique to each tissue. Furthermore, storage is not limited to Gb3; precursor fats are also elevated. Detailed analyses of differences in storage between the normal and α-galactosidase A-deficient state may provide a better understanding of the causes of Fabry disease.
Collapse
|
18
|
Defects in Stratum Corneum Desquamation Are the Predominant Effect of Impaired ABCA12 Function in a Novel Mouse Model of Harlequin Ichthyosis. PLoS One 2016; 11:e0161465. [PMID: 27551807 PMCID: PMC4994956 DOI: 10.1371/journal.pone.0161465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023] Open
Abstract
Harlequin Ichthyosis is a severe skin disease caused by mutations in the human gene encoding ABCA12. Here, we characterize a novel mutation in intron 29 of the mouse Abca12 gene that leads to the loss of a 5' splice donor site and truncation of the Abca12 RNA transcript. Homozygous mutants of this smooth skin or smsk allele die perinatally with shiny translucent skin, typical of animal models of Harlequin Ichthyosis. Characterization of smsk mutant skin showed that the delivery of glucosylceramides and CORNEODESMOSIN was defective, while ultrastructural analysis revealed abnormal lamellar bodies and the absence of lipid lamellae in smsk epidermis. Unexpectedly, mutant stratum corneum remained intact when subjected to harsh chemical dissociation procedures. Moreover, both KALLIKREIN 5 and -7 were drastically decreased, with retention of desmoplakin in mutant SC. In cultured wild type keratinocytes, both KALLIKREIN 5 and -7 colocalized with ceramide metabolites following calcium-induced differentiation. Reducing the intracellular levels of glucosylceramide with a glucosylceramide synthase inhibitor resulted in decreased secretion of KALLIKREIN proteases by wild type keratinocytes, but not by smsk mutant keratinocytes. Together, these findings suggest an essential role for ABCA12 in transferring not only lipids, which are required for the formation of multilamellar structures in the stratum corneum, but also proteolytic enzymes that are required for normal desquamation. Smsk mutant mice recapitulate many of the pathological features of HI and can be used to explore novel topical therapies against a potentially lethal and debilitating neonatal disease.
Collapse
|
19
|
Pomorski TG, Menon AK. Lipid somersaults: Uncovering the mechanisms of protein-mediated lipid flipping. Prog Lipid Res 2016; 64:69-84. [PMID: 27528189 DOI: 10.1016/j.plipres.2016.08.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022]
Abstract
Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support diverse aspects of cellular life. Here we discuss the mechanisms by which rapid flip-flop occurs, and what role lipid flipping plays in membrane homeostasis and cell growth. We focus on conceptual aspects, highlighting mechanistic insights from biochemical and in silico experiments, and the recent, ground-breaking identification of a number of lipid scramblases.
Collapse
Affiliation(s)
- Thomas Günther Pomorski
- Faculty of Chemistry and Biochemistry, Molecular Biochemistry, Ruhr University Bochum, Universitätstrasse 150, D-44780 Bochum, Germany; Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
20
|
A case report of fatal harlequin ichthyosis: Insights into infectious and respiratory complications. JAAD Case Rep 2016; 2:301-3. [PMID: 27536717 PMCID: PMC4976614 DOI: 10.1016/j.jdcr.2016.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
21
|
Erdő F, Hashimoto N, Karvaly G, Nakamichi N, Kato Y. Critical evaluation and methodological positioning of the transdermal microdialysis technique. A review. J Control Release 2016; 233:147-61. [DOI: 10.1016/j.jconrel.2016.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/28/2023]
|
22
|
Shibata A, Sugiura K, Suzuki A, Ichiki T, Akiyama M. Apparent homozygosity due to compound heterozygosity of one point mutation and an overlapping exon deletion mutation in ABCA12: A genetic diagnostic pitfall. J Dermatol Sci 2015; 80:196-202. [DOI: 10.1016/j.jdermsci.2015.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/20/2015] [Accepted: 10/01/2015] [Indexed: 11/16/2022]
|
23
|
Shibata A, Akiyama M. Epidemiology, medical genetics, diagnosis and treatment of harlequin ichthyosis in Japan. Pediatr Int 2015; 57:516-22. [PMID: 25857373 DOI: 10.1111/ped.12638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/01/2015] [Accepted: 02/13/2015] [Indexed: 11/30/2022]
Abstract
Ichthyoses are a group of disorders marked by whitish, brown or dark-brown scales on the skin of almost the whole body. Harlequin ichthyosis (HI) is the most severe form. Neonatal death from HI was once common. Due to intensive neonatal care and, probably, to the early introduction of oral retinoids, HI outcome has improved. For definitive diagnosis and the exclusion of other disorders, such as lamellar ichthyosis, which also shows a collodion baby phenotype, it is helpful to refer to electron microscopy of abnormal or absent lamellar granules and a heavy accumulation of lipid droplets in the keratinocytes. ATP-binding cassette transporter A12 (ABCA12) is known as the causative gene of HI. Severe ABCA12 deficiency results in malformation of intercellular lipid layers in the cornified layers and leads to epidermal lipid barrier disruption. In HI patients, at least one mutation on each allele must be a truncation or deletion mutation to cause serious loss of ABCA12 function. Identification of the gene underlying HI has enabled DNA-based prenatal diagnosis for HI at the earlier stages of pregnancy with low risk. There are no curative treatments for HI. Abca12-deficient mice were created as a model of HI. Treatment of the model mice with retinoid or steroid has not been successful.
Collapse
Affiliation(s)
- Akitaka Shibata
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
24
|
Chan A, Godoy-Gijon E, Nuno-Gonzalez A, Crumrine D, Hupe M, Choi EH, Gruber R, Williams ML, Choate K, Fleckman PH, Elias PM. Cellular basis of secondary infections and impaired desquamation in certain inherited ichthyoses. JAMA Dermatol 2015; 151:285-92. [PMID: 25565224 DOI: 10.1001/jamadermatol.2014.3369] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IMPORTANCE Secondary infections and impaired desquamation complicate certain inherited ichthyoses, but their cellular basis remains unknown. In healthy human epidermis, the antimicrobial peptides cathelicidin (LL-37) and human β-defensin 2 (HBD2), as well as the desquamatory protease kallikrein-related peptidase 7 (KLK7), are delivered to the stratum corneum (SC) interstices by lamellar body (LB) exocytosis. OBJECTIVE To assess whether abnormalities in the LB secretory system could account for increased risk of infections and impaired desquamation in inherited ichthyoses with known abnormalities in LB assembly (Harlequin ichthyosis [HI]), secretion (epidermolytic ichthyosis [EI]), or postsecretory proteolysis (Netherton syndrome [NS]). DESIGN, SETTING, AND PARTICIPANTS Samples from library material were taken from patients with HI, EI, NS, and other ichthyoses, but with a normal LB secretory system, and in healthy controls and were evaluated by electron microscopy and immunohistochemical analysis from July 1, 2010, through March 31, 2013. MAIN OUTCOME AND MEASURES Changes in LB secretion and in the fate of LB-derived enzymes and antimicrobial peptides in ichthyotic patients vs healthy controls. RESULTS In healthy controls and patients with X-linked ichthyosis, neutral lipid storage disease with ichthyosis, and Gaucher disease, LB secretion is normal, and delivery of LB-derived proteins and LL-37 immunostaining persists high into the SC. In contrast, proteins loaded into nascent LBs and their delivery to the SC interstices decrease markedly in patients with HI, paralleled by reduced immunostaining for LL-37, HBD2, and KLK7 in the SC. In patients with EI, the cytoskeletal abnormality impairs the exocytosis of LB contents and thus results in decreased LL-37, HBD2, and KLK7 secretion, causing substantial entombment of these proteins within the corneocyte cytosol. Finally, in patients with NS, although abundant enzyme proteins loaded in parallel with accelerated LB production, LL-37 disappears, whereas KLK7 levels increase markedly in the SC. CONCLUSIONS AND RELEVANCE Together, these results suggest that diverse abnormalities in the LB secretory system account for the increased risk of secondary infections and impaired desquamation in patients with HI, EI, and NS.
Collapse
Affiliation(s)
- Aegean Chan
- Dermatology Service, Department of Veterans Affairs Medical Center, University of California, San Francisco2Department of Dermatology, University of California, San Francisco
| | - Elena Godoy-Gijon
- Dermatology Service, Department of Veterans Affairs Medical Center, University of California, San Francisco2Department of Dermatology, University of California, San Francisco
| | - Almudena Nuno-Gonzalez
- Dermatology Service, Department of Veterans Affairs Medical Center, University of California, San Francisco2Department of Dermatology, University of California, San Francisco
| | - Debra Crumrine
- Dermatology Service, Department of Veterans Affairs Medical Center, University of California, San Francisco2Department of Dermatology, University of California, San Francisco
| | - Melanie Hupe
- Dermatology Service, Department of Veterans Affairs Medical Center, University of California, San Francisco2Department of Dermatology, University of California, San Francisco
| | - Eung-Ho Choi
- Department of Dermatology, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | - Robert Gruber
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mary L Williams
- Department of Dermatology, University of California, San Francisco5Department of Pediatrics, University of California, San Francisco
| | - Keith Choate
- Department of Dermatology, Yale University, New Haven, Connecticut7Department of Pathology, Yale University, New Haven, Connecticut
| | | | - Peter M Elias
- Dermatology Service, Department of Veterans Affairs Medical Center, University of California, San Francisco2Department of Dermatology, University of California, San Francisco
| |
Collapse
|
25
|
Haslam IS, El-Chami C, Faruqi H, Shahmalak A, O'Neill CA, Paus R. Differential expression and functionality of ATP-binding cassette transporters in the human hair follicle. Br J Dermatol 2015; 172:1562-1572. [PMID: 25418064 DOI: 10.1111/bjd.13549] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters are involved in the active transport of an extremely diverse range of substrates across biological membranes. These transporters are commonly implicated in the development of multidrug resistance and are also involved in numerous physiological and homeostatic processes, including lipid transport, cell migration and differentiation. OBJECTIVES To close the knowledge gap in the expression of ABC transporters in the human hair follicle (HF). METHODS Quantitative polymerase chain reaction (qPCR) of ABC genes and immunofluorescence microscopy analysis of cryosections of human HFs. RESULTS By qPCR analysis, numerous members of the ABC transporter superfamily, such as ABCB1, ABCG2 and ABCA12, were found to be transcribed in full-length human scalp HFs. Immunofluorescence microscopy demonstrated that the intrafollicular protein expression of different xenobiotic ABC transporters (ABCB1, ABCC1, ABCC4, ABCG2) varies greatly, with ABCG2 expression restricted primarily to the epithelial stem cell region of the outer root sheath (bulge), whereas expression of ABCB1, ABCC1 and ABCC4 was more widespread. Lipid transporters ABCA1, ABCA12 and ABCA4 were almost uniformly expressed throughout the HF epithelium. Functional ABCB1/G2 activity was demonstrated by exclusion of the substrate dye, Hoechst 33342. In the bulge, this was reversed by ABCB1 and ABCG2 inhibition. CONCLUSIONS These data encourage further investigation of ABC transporters as potentially important regulators of HF epithelial biology. Clinically, pharmacological modulation of the activity of selected intrafollicular ABC transporters may permit novel therapeutic interventions, such as protecting HF stem cells from chemotherapy-induced damage, counteracting cholesterol-associated hypertrichosis, and manipulating the intrafollicular prostaglandin balance in androgenetic alopecia.
Collapse
Affiliation(s)
- I S Haslam
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Stopford Building, Manchester, M13 9PT, U.K
| | - C El-Chami
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Stopford Building, Manchester, M13 9PT, U.K
| | - H Faruqi
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Stopford Building, Manchester, M13 9PT, U.K
| | - A Shahmalak
- Crown Cosma Clinic, Thorley House, Bailey Lane, Manchester, U.K
| | - C A O'Neill
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Stopford Building, Manchester, M13 9PT, U.K
| | - R Paus
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Stopford Building, Manchester, M13 9PT, U.K.,Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
26
|
Rajagopal MD, Ch Toi P, Plakkal N, Ayyanar P. Harlequin Infant Born to a Varicella Infected Mother: A Case Report. Fetal Pediatr Pathol 2015; 34:241-7. [PMID: 26083791 DOI: 10.3109/15513815.2015.1051253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Harlequin ichthyosis is a rare, severe form of congenital ichthyosis characterised by distinct physical appearance of the infant. It has occurrence of 1 in 1 million births and over 100 cases have been reported so far. It is caused by mutation in ABCA12 gene involved in lipid transport leading to profound thickening of stratum corneum. The mainstay of management relies on supportive care & administration of retinoid derivatives. Outcome is usually fatal and most of the babies die during neonatal period. In this article, we report a case of harlequin baby born of non-consanguineous marriage with history of chicken pox in the mother during first trimester of pregnancy.
Collapse
|
27
|
Shimizu Y, Ogawa Y, Sugiura K, Takeda JI, Sakai-Sawada K, Yanagi T, Kon A, Sawamura D, Shimizu H, Akiyama M. A palindromic motif in the -2084 to -2078 upstream region is essential for ABCA12 promoter function in cultured human keratinocytes. Sci Rep 2014; 4:6737. [PMID: 25338618 PMCID: PMC4206840 DOI: 10.1038/srep06737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/03/2014] [Indexed: 01/24/2023] Open
Abstract
ATP-binding cassette transporter family A member 12 (ABCA12) is a keratinocyte transmembrane lipid transporter that plays a critical role in preserving the skin permeability barrier. Biallelic loss of function of the ABCA12 gene is causative of some forms of recessive congenital ichthyosis, an intractable disease marked by dry, thickened and scaly skin on the whole body. Genetic diagnosis is essential, although the results may occasionally be inconclusive, because some patients with low ABCA12 expression have one mutant allele and one apparently intact allele. Aside from aberrant splicing or deletion mutations, one possible explanation for such discrepancy is loss of promoter function. This study aims to elucidate the promoter region of ABCA12 and to locate the essential elements therein, thus providing the necessary information for genetic diagnostic screening of congenital ichthyosis. Close examination of the 2980-bp upstream regions of the ABCA12 gene revealed that a palindromic motif (tgagtca) at -2084 to -2078 is essential for the promoter function, and a short fragment of -2200/-1934 alone has potent promoter activity. Identification of the key promoter element of ABCA12 in this study may provide relevant information for genetic diagnosis of recessive congenital ichthyosis.
Collapse
Affiliation(s)
- Yoshitaka Shimizu
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasushi Ogawa
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaori Sakai-Sawada
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Teruki Yanagi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Atsushi Kon
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
28
|
Tontchev G, Silverberg NB, Shlasko E, Henry C, Roberts JL, Roth MZ. Techniques for toddlers: linear band incision for harlequin ichthyosis with associated compartment syndrome. Pediatr Dermatol 2014; 31:625-9. [PMID: 25187390 DOI: 10.1111/pde.12446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Harlequin ichthyosis (HI) is a rare autosomal recessive disorder of cornification in which children are born with an extremely thick stratum corneum that becomes a restrictive circumferential encasement around the orifices, limbs, chest, and abdomen, resulting in limb contractures. We present a neonate diagnosed in utero with HI. The infant was born with encasing bands of thickened skin creating strictures that were causing digital and limb cyanosis (compartment syndrome). We treated the child using a new technique of lysis of the encasing bands that we call linear band incision, using a new escharotomy-like procedure while the infant was undergoing a 3-week course oral acitretin therapy. The technique involved linear incision and lysis of encasements that resulted in reperfusion of the injured limbs and prevention of further digital necrosis. The child is currently a healthy 8-year-old boy with skin manifestations resembling congenital ichthyosiform erythroderma. He has use of all of the limbs that were released in the procedures and is maintained on frequent application of bland emollients. Linear band incision is a potentially life- and limb-saving technique in children with HI.
Collapse
Affiliation(s)
- Gramen Tontchev
- Department of Surgery, Maimonides Medical Center, Brooklyn, New York
| | | | | | | | | | | |
Collapse
|
29
|
Discovery in genetic skin disease: the impact of high throughput genetic technologies. Genes (Basel) 2014; 5:615-34. [PMID: 25093584 PMCID: PMC4198921 DOI: 10.3390/genes5030615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 11/21/2022] Open
Abstract
The last decade has seen considerable advances in our understanding of the genetic basis of skin disease, as a consequence of high throughput sequencing technologies including next generation sequencing and whole exome sequencing. We have now determined the genes underlying several monogenic diseases, such as harlequin ichthyosis, Olmsted syndrome, and exfoliative ichthyosis, which have provided unique insights into the structure and function of the skin. In addition, through genome wide association studies we now have an understanding of how low penetrance variants contribute to inflammatory skin diseases such as psoriasis vulgaris and atopic dermatitis, and how they contribute to underlying pathophysiological disease processes. In this review we discuss strategies used to unravel the genes underlying both monogenic and complex trait skin diseases in the last 10 years and the implications on mechanistic studies, diagnostics, and therapeutics.
Collapse
|
30
|
Törmä H, Bergström A, Ghiasifarahani G, Berne B. The effect of two endogenous retinoids on the mRNA expression profile in human primary keratinocytes, focusing on genes causing autosomal recessive congenital ichthyosis. Arch Dermatol Res 2014; 306:739-47. [PMID: 24925226 PMCID: PMC4168020 DOI: 10.1007/s00403-014-1476-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 02/03/2023]
Abstract
Retinoids (natural forms and synthetic derivatives of vitamin A) are used as therapeutic agents for numerous skin diseases such as keratinization disorders (e.g. ichthyoses) and psoriasis. Two endogenous ligands for retinoic acid receptors exist, retinoic acid (atRA) and 3,4-didehydroretinoic acid (ddRA). In primary human epidermal keratinocytes many transcriptional targets for atRA are known, whereas the targets for ddRA are unknown. In an attempt to determine the targets, we compared the effect of atRA and ddRA on transcriptional profiles in undifferentiated and differentiating human primary keratinocytes. First, as expected, many genes were induced or suppressed in response to keratinocyte differentiation. Furthermore, the two retinoids affected substantially more genes in differentiated keratinocytes (>350) than in proliferating keratinocytes (≈20). In differentiating keratinocytes markers of cornification were suppressed suggesting a de-differentiating effect by the two retinoids. When comparing the expression profile of atRA to that of ddRA, no differently regulated genes were found. The array analysis also found that a minor number of miRNAs and a large number of non-coding transcripts were changed during differentiation and in response to the two retinoids. Furthermore, the expression of all, except one, genes known to cause autosomal recessive congenital ichthyosis (ARCI) were found to be induced by differentiation. These results comprehensively document that atRA and ddRA exert similar transcriptional changes in keratinocytes and also add new insights into the molecular mechanism influenced by retinoids in the epidermis. Furthermore, it suggests which ARCI patients could benefit from therapy with retinoids.
Collapse
Affiliation(s)
- H Törmä
- Department of Medical Sciences, Dermatology and Venereology, Uppsala University, SE-751 85, Uppsala, Sweden,
| | | | | | | |
Collapse
|
31
|
Volkov IA, Frigo NV, Znamenskaya LF, Katunina OR. Application of Confocal Laser Scanning Microscopy in Biology and Medicine. VESTNIK DERMATOLOGII I VENEROLOGII 2014. [DOI: 10.25208/0042-4609-2014-90-1-17-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Fluorescence confocal laser scanning microscopy and reflectance confocal laser scanning microscopy are up-to-date highend study methods. Confocal microscopy is used in cell biology and medicine. By using confocal microscopy, it is possible to study bioplasts and localization of protein molecules and other compounds relative to cell or tissue structures, and to monitor dynamic cell processes. Confocal microscopes enable layer-by-layer scanning of test items to create demonstrable 3D models. As compared to usual fluorescent microscopes, confocal microscopes are characterized by a higher contrast ratio and image definition.
Collapse
|
32
|
Haller JF, Cavallaro P, Hernandez NJ, Dolat L, Soscia SJ, Welti R, Grabowski GA, Fitzgerald ML, Freeman MW. Endogenous β-glucocerebrosidase activity in Abca12⁻/⁻epidermis elevates ceramide levels after topical lipid application but does not restore barrier function. J Lipid Res 2013; 55:493-503. [PMID: 24293640 DOI: 10.1194/jlr.m044941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
ABCA12 mutations disrupt the skin barrier and cause harlequin ichthyosis. We previously showed Abca12(-/-) skin has increased glucosylceramide (GlcCer) and correspondingly lower amounts of ceramide (Cer). To examine why loss of ABCA12 leads to accumulation of GlcCer, de novo sphingolipid synthesis was assayed using [(14)C]serine labeling in ex vivo skin cultures. A defect was found in β-glucocerebrosidase (GCase) processing of newly synthesized GlcCer species. This was not due to a decline in GCase function. Abca12(-/-) epidermis had 5-fold more GCase protein (n = 4, P < 0.01), and a 5-fold increase in GCase activity (n = 3, P < 0.05). As with Abca12(+/+) epidermis, immunostaining in null skin showed a typical interstitial distribution of the GCase protein in the Abca12(-/-) stratum corneum. Hence, we tested whether the block in GlcCer conversion could be circumvented by topically providing GlcCer. This approach restored up to 15% of the lost Cer products of GCase activity in the Abca12(-/-) epidermis. However, this level of barrier ceramide replacement did not significantly reduce trans-epidermal water loss function. Our results indicate loss of ABCA12 function results in a failure of precursor GlcCer substrate to productively interact with an intact GCase enzyme, and they support a model of ABCA12 function that is critical for transporting GlcCer into lamellar bodies.
Collapse
Affiliation(s)
- Jorge F Haller
- Lipid Metabolism Unit and Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Akiyama M. The roles of ABCA12 in epidermal lipid barrier formation and keratinocyte differentiation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:435-40. [PMID: 23954554 DOI: 10.1016/j.bbalip.2013.08.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 01/01/2023]
Abstract
ATP-binding cassette (ABC) transporters form a large superfamily of transporters that bind and hydrolyze ATP to transport various molecules across limiting membranes or into vesicles. The ABCA subfamily members are thought to transport lipid materials. ABCA12 is a keratinocyte transmembrane lipid transporter protein associated with the transport of lipids via lamellar granules. ABCA12 is considered to transport lipids including ceramides to form extracellular lipid layers in the stratum corneum of the epidermis, which is essential for skin barrier function. ABCA12 mutations are known to underlie the three major types of autosomal recessive congenital ichthyoses: harlequin ichthyosis, lamellar ichthyosis and congenital ichthyosiform erythroderma. ABCA12 mutations result in defective lipid transport via lamellar granules in the keratinocytes, leading to ichthyosis phenotypes from malformation of the stratum corneum lipid barrier. Studies on ABCA12-deficient bioengineered models have revealed that lipid transport by ABCA12 is required for keratinocyte differentiation and epidermal morphogenesis. Defective lipid transport due to loss of ABCA12 function leads to the accumulation of intracellular lipids, including glucosylceramides and gangliosides, in the epidermal keratinocytes. The accumulation of gangliosides seems to result in the apoptosis of Abca12(-/-) keratinocytes. It was reported that AKT activation occurs in Abca12(-/-) granular-layer keratinocytes, which suggests that AKT activation serves to prevent the cell death of Abca12(-/-) keratinocytes. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
34
|
Tarling EJ, de Aguiar Vallim TQ, Edwards PA. Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab 2013; 24:342-50. [PMID: 23415156 PMCID: PMC3659191 DOI: 10.1016/j.tem.2013.01.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 12/28/2022]
Abstract
Almost half of the 48 human ATP-binding cassette (ABC) transporter proteins are thought to facilitate the ATP-dependent translocation of lipids or lipid-related compounds. Such substrates include cholesterol, plant sterols, bile acids, phospholipids, and sphingolipids. Mutations in a substantial number of the 48 human ABC transporters have been linked to human disease. Indeed the finding that 12 diseases have been associated with abnormal lipid transport and/or homeostasis demonstrates the importance of this family of transporters in cell physiology. This review highlights the role of ABC transporters in lipid transport and movement, in addition to discussing their roles in cellular homeostasis and inherited disorders.
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
35
|
Ishibashi Y, Kohyama-Koganeya A, Hirabayashi Y. New insights on glucosylated lipids: metabolism and functions. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1475-85. [PMID: 23770033 DOI: 10.1016/j.bbalip.2013.06.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/01/2013] [Accepted: 06/04/2013] [Indexed: 01/05/2023]
Abstract
Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | | |
Collapse
|
36
|
Tu CL, Bikle DD. Role of the calcium-sensing receptor in calcium regulation of epidermal differentiation and function. Best Pract Res Clin Endocrinol Metab 2013; 27:415-27. [PMID: 23856269 PMCID: PMC3713412 DOI: 10.1016/j.beem.2013.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The epidermis is a stratified squamous epithelium composed of proliferating basal and differentiated suprabasal keratinocytes. It serves as the body's major physical and chemical barrier against infection and harsh environmental insults, as well as preventing excess water loss from the body into the atmosphere. Calcium is a key regulator of the proliferation and differentiation in keratinocytes. Elevated extracellular Ca(2+) concentration ([Ca(2+)]o) raises the levels of intracellular free calcium ([Ca(2+)]i), promotes cell-cell adhesion, and activates differentiation-related genes. Keratinocytes deficient in the calcium-sensing receptor fail to respond to [Ca(2+)]o stimulation and to differentiate, indicating a role for the calcium-sensing receptor in transducing the [Ca(2+)]o signal during differentiation. The concepts derived from in vitro gene knockdown experiments have been evaluated and confirmed in three mouse models in vivo.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Unit, Veterans Affair Medical Center and The University of California, San Francisco, CA, USA
| | | |
Collapse
|
37
|
|
38
|
Autosomal recessive congenital ichthyosis. ACTAS DERMO-SIFILIOGRAFICAS 2013; 104:270-84. [PMID: 23562412 DOI: 10.1016/j.adengl.2011.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/13/2011] [Indexed: 12/15/2022] Open
Abstract
The term autosomal recessive congenital ichthyosis (ARCI) refers to a group of rare disorders of keratinization classified as nonsyndromic forms of ichthyosis. This group was traditionally divided into lamellar ichthyosis (LI) and congenital ichthyosiform erythroderma (CIE) but today it also includes harlequin ichthyosis, self-healing collodion baby, acral self-healing collodion baby, and bathing suit ichthyosis. The combined prevalence of LI and CIE has been estimated at 1 case per 138 000 to 300 000 population. In some countries or regions, such as Norway and the coast of Galicia, the prevalence may be higher due to founder effects. ARCI is genetically highly heterogeneous and has been associated with 6 genes to date: TGM1, ALOXE3, ALOX12B, NIPAL4, CYP4F22, and ABCA12. In this article, we review the current knowledge on ARCI, with a focus on clinical, histological, ultrastructural, genetic, molecular, and treatment-related aspects.
Collapse
|
39
|
Markó L, Paragh G, Ugocsai P, Boettcher A, Vogt T, Schling P, Balogh A, Tarabin V, Orsó E, Wikonkál N, Mandl J, Remenyik É, Schmitz G. Keratinocyte ATP binding cassette transporter expression is regulated by ultraviolet light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 116:79-88. [DOI: 10.1016/j.jphotobiol.2012.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/02/2012] [Accepted: 06/17/2012] [Indexed: 01/06/2023]
|
40
|
Coleman JA, Quazi F, Molday RS. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:555-74. [PMID: 23103747 DOI: 10.1016/j.bbalip.2012.10.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 02/08/2023]
Abstract
Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P(4)-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P(4)-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P(4)-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Jonathan A Coleman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | | |
Collapse
|
41
|
Harlequin ichthyosis: ABCA12 mutations underlie defective lipid transport, reduced protease regulation and skin-barrier dysfunction. Cell Tissue Res 2012; 351:281-8. [PMID: 22864982 DOI: 10.1007/s00441-012-1474-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/21/2012] [Indexed: 01/09/2023]
Abstract
Harlequin ichthyosis (HI) is a devastating autosomal recessive congenital skin disease. It has been vital to elucidate the biological importance of the protein ABCA12 in skin-barrier permeability, following the discovery that ABCA12 gene mutations can result in this rare disease. ATP-binding cassette transporter A12 (ABCA12) is a member of the subfamily of ATP-binding cassette transporters and functions to transport lipid glucosylceramides (GlcCer) to the extracellular space through lamellar granules (LGs). GlcCer are hydrolysed into hydroxyceramides extracellularly and constitute a portion of the extracellular lamellar membrane, lipid envelope and lamellar granules. In HI skin, loss of function of ABCA12 due to null mutations results in impaired lipid lamellar membrane formation in the cornified layer, leading to defective permeability of the skin barrier. In addition, abnormal lamellar granule formation (distorted shape, reduced in number or absent) could further cause aberrant production of LG-associated desquamation enzymes, which are likely to contribute to the impaired skin barrier in HI. This article reviews current opinions on the patho-mechanisms of ABCA12 action in HI and potential therapeutic interventions based on targeted molecular therapy and gene therapy strategies.
Collapse
|
42
|
Piehler AP, Ozcürümez M, Kaminski WE. A-Subclass ATP-Binding Cassette Proteins in Brain Lipid Homeostasis and Neurodegeneration. Front Psychiatry 2012; 3:17. [PMID: 22403555 PMCID: PMC3293240 DOI: 10.3389/fpsyt.2012.00017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/19/2012] [Indexed: 12/24/2022] Open
Abstract
The A-subclass of ATP-binding cassette (ABC) transporters comprises 12 structurally related members of the evolutionarily highly conserved superfamily of ABC transporters. ABCA transporters represent a subgroup of "full-size" multispan transporters of which several members have been shown to mediate the transport of a variety of physiologic lipid compounds across membrane barriers. The importance of ABCA transporters in human disease is documented by the observations that so far four members of this protein family (ABCA1, ABCA3, ABCA4, ABCA12) have been causatively linked to monogenetic disorders including familial high-density lipoprotein deficiency, neonatal surfactant deficiency, degenerative retinopathies, and congenital keratinization disorders. Recent research also point to a significant contribution of several A-subfamily ABC transporters to neurodegenerative diseases, in particular Alzheimer's disease (AD). This review will give a summary of our current knowledge of the A-subclass of ABC transporters with a special focus on brain lipid homeostasis and their involvement in AD.
Collapse
|
43
|
Fukuda S, Hamada T, Ishii N, Sakaguchi S, Sakai K, Akiyama M, Shimizu H, Masuda K, Izu K, Teye K, Tsuruta D, Karashima T, Nakama T, Yasumoto S, Hashimoto T. Novel adenosine triphosphate (ATP)-binding cassette, subfamily A, member 12 (ABCA12) mutations associated with congenital ichthyosiform erythroderma. Br J Dermatol 2011; 166:218-21. [DOI: 10.1111/j.1365-2133.2011.10516.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Li Q, Frank M, Akiyama M, Shimizu H, Ho SY, Thisse C, Thisse B, Sprecher E, Uitto J. Abca12-mediated lipid transport and Snap29-dependent trafficking of lamellar granules are crucial for epidermal morphogenesis in a zebrafish model of ichthyosis. Dis Model Mech 2011; 4:777-85. [PMID: 21816950 PMCID: PMC3209647 DOI: 10.1242/dmm.007146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Zebrafish (Danio rerio) can serve as a model system to study heritable skin diseases. The skin is rapidly developed during the first 5–6 days of embryonic growth, accompanied by expression of skin-specific genes. Transmission electron microscopy (TEM) of wild-type zebrafish at day 5 reveals a two-cell-layer epidermis separated from the underlying collagenous stroma by a basement membrane with fully developed hemidesmosomes. Scanning electron microscopy (SEM) reveals an ordered surface contour of keratinocytes with discrete microridges. To gain insight into epidermal morphogenesis, we have employed morpholino-mediated knockdown of the abca12 and snap29 genes, which are crucial for secretion of lipids and intracellular trafficking of lamellar granules, respectively. Morpholinos, when placed on exon-intron junctions, were >90% effective in preventing the corresponding gene expression when injected into one- to four-cell-stage embryos. By day 3, TEM of abca12 morphants showed accumulation of lipid-containing electron-dense lamellar granules, whereas snap29 morphants showed the presence of apparently empty vesicles in the epidermis. Evaluation of epidermal morphogenesis by SEM revealed similar perturbations in both cases in the microridge architecture and the development of spicule-like protrusions on the surface of keratinocytes. These morphological findings are akin to epidermal changes in harlequin ichthyosis and CEDNIK syndrome, autosomal recessive keratinization disorders due to mutations in the ABCA12 and SNAP29 genes, respectively. The results indicate that interference of independent pathways involving lipid transport in the epidermis can result in phenotypically similar perturbations in epidermal morphogenesis, and that these fish mutants can serve as a model to study the pathomechanisms of these keratinization disorders.
Collapse
Affiliation(s)
- Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- K Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, North 15 West 7, Sapporo 060-8638, Japan.
| | | | | |
Collapse
|
46
|
Akiyama M. The roles of ABCA12 in keratinocyte differentiation and lipid barrier formation in the epidermis. DERMATO-ENDOCRINOLOGY 2011; 3:107-12. [PMID: 21695020 PMCID: PMC3117010 DOI: 10.4161/derm.3.2.15136] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/26/2011] [Accepted: 02/14/2011] [Indexed: 11/19/2022]
Abstract
ABCA12 is a member of the large superfamily of ATP-binding cassette (ABC) transporters, which bind and hydrolyze ATP to transport various molecules across limiting membranes or into vesicles. The ABCA subfamily members are thought to be lipid transporters. ABCA12 is a keratinocyte transmembrane lipid transporter protein associated with the transport of lipids in lamellar granules to the apical surface of granular layer keratinocytes. Extracellular lipids, including ceramide, are thought to be essential for skin barrier function. ABCA12 mutations are known to underlie the three main types of autosomal recessive congenital ichthyoses: harlequin ichthyosis, lamellar ichthyosis and congenital ichthyosiform erythroderma. ABCA12 mutations lead to defective lipid transport via lamellar granules in the keratinocytes, resulting in malformation of the epidermal lipid barrier and ichthyosis phenotypes. Studies of ABCA12-deficient model mice indicate that lipid transport by ABCA12 is also indispensable for intact differentiation of keratinocytes.
Collapse
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology; Nagoya University Graduate School of Medicine; Nagoya, Japan
| |
Collapse
|
47
|
Akiyama M. ABCA12 mutations and autosomal recessive congenital ichthyosis: A review of genotype/phenotype correlations and of pathogenetic conceptsa. Hum Mutat 2010; 31:1090-6. [DOI: 10.1002/humu.21326] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Jiang YJ, Lu B, Tarling EJ, Kim P, Man MQ, Crumrine D, Edwards PA, Elias PM, Feingold KR. Regulation of ABCG1 expression in human keratinocytes and murine epidermis. J Lipid Res 2010; 51:3185-95. [PMID: 20675829 DOI: 10.1194/jlr.m006445] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ABCG1, a member of the ATP binding cassette superfamily, facilitates the efflux of cholesterol from cells to HDL. In this study, we demonstrate that ABCG1 is expressed in cultured human keratinocytes and murine epidermis, and induced during keratinocyte differentiation, with increased levels in the outer epidermis. ABCG1 is regulated by liver X receptor (LXR) and peroxisome proliferator-activated receptor-δ (PPAR-δ) activators, cellular sterol levels, and acute barrier disruption. Both LXR and PPAR-δ activators markedly stimulate ABCG1 expression in a dose- and time-dependent fashion. PPAR-γ activators also increase ABCG1 expression, but to a lesser degree. In contrast, activators of PPAR-α, retinoic acid receptor, retinoid X receptor, and vitamin D receptor do not alter ABCG1 expression. In response to increased intracellular sterol levels, ABCG1 expression increases, whereas inhibition of cholesterol biosynthesis decreases ABCG1 expression. In vivo, ABCG1 is stimulated 3-6 h after acute barrier disruption by either tape stripping or acetone treatment, an increase that can be inhibited by occlusion, suggesting a potential role of ABCG1 in permeability barrier homeostasis. Although Abcg1-null mice display normal epidermal permeability barrier function and gross morphology, abnormal lamellar body (LB) contents and secretion leading to impaired lamellar bilayer formation could be demonstrated by electron microscopy, indicating a potential role of ABCG1 in normal LB formation and secretion.
Collapse
Affiliation(s)
- Yan J Jiang
- Metabolism Section, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California at San Francisco, San Francisco, CA 94121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fu Y. Rate-limiting factors of cholesterol efflux in reverse cholesterol transport: Acceptors and donors. Clin Exp Pharmacol Physiol 2010; 37:703-9. [DOI: 10.1111/j.1440-1681.2010.05386.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Rapaport D, Lugassy Y, Sprecher E, Horowitz M. Loss of SNAP29 impairs endocytic recycling and cell motility. PLoS One 2010; 5:e9759. [PMID: 20305790 PMCID: PMC2841205 DOI: 10.1371/journal.pone.0009759] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 02/25/2010] [Indexed: 01/20/2023] Open
Abstract
Intracellular membrane trafficking depends on the ordered formation and consumption of transport intermediates and requires that membranes fuse with each other in a tightly regulated and highly specific manner. Membrane anchored SNAREs assemble into SNARE complexes that bring membranes together to promote fusion. SNAP29 is a ubiquitous synaptosomal-associated SNARE protein. It interacts with several syntaxins and with the EH domain containing protein EHD1. Loss of functional SNAP29 results in CEDNIK syndrome (Cerebral Dysgenesis, Neuropathy, Ichthyosis and Keratoderma). Using fibroblast cell lines derived from CEDNIK patients, we show that SNAP29 mediates endocytic recycling of transferrin and β1-integrin. Impaired β1-integrin recycling affected cell motility, as reflected by changes in cell spreading and wound healing. No major changes were detected in exocytosis of VSVG protein from the Golgi apparatus, although the Golgi system acquired a dispersed morphology in SNAP29 deficient cells. Our results emphasize the importance of SNAP29 mediated membrane fusion in endocytic recycling and consequently, in cell motility.
Collapse
Affiliation(s)
- Debora Rapaport
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | - Yevgenia Lugassy
- Center for Translational Genetics, Rappaport Institute and Technion – Israel Institute of Technology, Haifa, Israel
| | - Eli Sprecher
- Tel Aviv University, Ramat Aviv, Israel
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Center for Translational Genetics, Rappaport Institute and Technion – Israel Institute of Technology, Haifa, Israel
| | - Mia Horowitz
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
- * E-mail:
| |
Collapse
|