1
|
Smits JPH, Qu J, Pardow F, van den Brink NJM, Rodijk-Olthuis D, van Vlijmen-Willems IMJJ, van Heeringen SJ, Zeeuwen PLJM, Schalkwijk J, Zhou H, van den Bogaard EH. The Aryl Hydrocarbon Receptor Regulates Epidermal Differentiation through Transient Activation of TFAP2A. J Invest Dermatol 2024; 144:2013-2028.e2. [PMID: 38401701 DOI: 10.1016/j.jid.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/26/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is an evolutionary conserved environmental sensor identified as an indispensable regulator of epithelial homeostasis and barrier organ function. Molecular signaling cascade and target genes upon AHR activation and their contribution to cell and tissue function are however not fully understood. Multiomics analyses using human skin keratinocytes revealed that upon ligand activation, AHR binds open chromatin to induce expression of transcription factors, for example, TFAP2A, as a swift response to environmental stimuli. The terminal differentiation program, including upregulation of barrier genes, FLG and keratins, was mediated by TFAP2A as a secondary response to AHR activation. The role of AHR-TFAP2A axis in controlling keratinocyte terminal differentiation for proper barrier formation was further confirmed using CRISPR/Cas9 in human epidermal equivalents. Overall, the study provides additional insights into the molecular mechanism behind AHR-mediated barrier function and identifies potential targets for the treatment of skin barrier diseases.
Collapse
Affiliation(s)
- Jos P H Smits
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands; Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jieqiong Qu
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Felicitas Pardow
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Noa J M van den Brink
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | | | - Simon J van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands; Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands.
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Kellett SK, Masterson JC. Cellular metabolism and hypoxia interfacing with allergic diseases. J Leukoc Biol 2024; 116:335-348. [PMID: 38843075 DOI: 10.1093/jleuko/qiae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Allergic diseases display significant heterogeneity in their pathogenesis. Understanding the influencing factors, pathogenesis, and advancing new treatments for allergic diseases is becoming more and more vital as currently, prevalence continues to rise, and mechanisms of allergic diseases are not fully understood. The upregulation of the hypoxia response is linked to an elevated infiltration of activated inflammatory cells, accompanied by elevated metabolic requirements. An enhanced hypoxia response may potentially contribute to inflammation, remodeling, and the onset of allergic diseases. It has become increasingly clear that the process underlying immune and stromal cell activation during allergic sensitization requires well-tuned and dynamic changes in cellular metabolism. The purpose of this review is to examine current perspectives regarding metabolic dysfunction in allergic diseases. In the past decade, new technological platforms such as "omic" techniques have been applied, allowing for the identification of different biomarkers in multiple models ranging from altered lipid species content, increased nutrient transporters, and altered serum amino acids in various allergic diseases. Better understanding, recognition, and integration of these alterations would increase our knowledge of pathogenesis and potentially actuate a novel repertoire of targeted treatment approaches that regulate immune metabolic pathways.
Collapse
Affiliation(s)
- Shauna K Kellett
- Allergy, Inflammation & Remodelling Research Laboratory, Department of Biology, Maynooth University, Maynooth, W23 C2N1, County Kildare, Ireland
| | - Joanne C Masterson
- Allergy, Inflammation & Remodelling Research Laboratory, Department of Biology, Maynooth University, Maynooth, W23 C2N1, County Kildare, Ireland
- Gastrointestinal Eosinophilic Diseases Program, Department of Paediatrics, Digestive Health Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 C2N1, County Kildare, Ireland
| |
Collapse
|
3
|
Wrześniewska M, Wołoszczak J, Świrkosz G, Szyller H, Gomułka K. The Role of the Microbiota in the Pathogenesis and Treatment of Atopic Dermatitis-A Literature Review. Int J Mol Sci 2024; 25:6539. [PMID: 38928245 PMCID: PMC11203945 DOI: 10.3390/ijms25126539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition with a high prevalence worldwide. AD pathogenesis is complex and consists of immune system dysregulation and impaired skin barrier, influenced by genetic and environmental factors. The purpose of the review is to show the complex interplay between atopic dermatitis and the microbiota. Human microbiota plays an important role in AD pathogenesis and the course of the disease. Dysbiosis is an important factor contributing to the development of atopic diseases, including atopic dermatitis. The gut microbiota can influence the composition of the skin microbiota, strengthening the skin barrier and regulating the immune response via the involvement of bacterial metabolites, particularly short-chain fatty acids, in signaling pathways of the gut-skin axis. AD can be modulated by antibiotic intake, dietary adjustments, hygiene, and living conditions. One of the promising strategies for modulating the course of AD is probiotics. This review offers a summary of how the microbiota influences the development and treatment of AD, highlighting aspects that warrant additional investigation.
Collapse
Affiliation(s)
- Martyna Wrześniewska
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Julia Wołoszczak
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Gabriela Świrkosz
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Hubert Szyller
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
4
|
Fritz B, Halling AS, Cort IDP, Christensen MO, Rønnstad ATM, Olesen CM, Knudgaard MH, Zachariae C, Heegaard S, Thyssen JP, Bjarnsholt T. RNA-sequencing of paired tape-strips and skin biopsies in atopic dermatitis reveals key differences. Allergy 2024; 79:1548-1559. [PMID: 38477552 DOI: 10.1111/all.16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Skin tape-strips and biopsies are widely used methods for investigating the skin in atopic dermatitis (AD). Biopsies are more commonly used but can cause scarring and pain, whereas tape-strips are noninvasive but sample less tissue. The study evaluated the performance of skin tape-strips and biopsies for studying AD. METHODS Whole-transcriptome RNA-sequencing was performed on paired tape-strips and biopsies collected from lesional and non-lesional skin from AD patients (n = 7) and non-AD controls (n = 5). RNA yield, mapping efficiency, and differentially expressed genes (DEGs) for the two methods (tape-strip/biopsy) and presence of AD (AD/non-AD) were compared. RESULTS Tape-strips demonstrated a lower RNA yield (22 vs. 4596 ng) and mapping efficiency to known genes (28% vs. 93%) than biopsies. Gene-expression profiles of paired tape-strips and biopsies demonstrated a medium correlation (R2 = 0.431). Tape-strips and biopsies demonstrated systematic differences in measured expression levels of 6483 genes across both AD and non-AD samples. Tape-strips preferentially detected many itch (CCL3/CCL4/OSM) and immune-response (CXCL8/IL4/IL5/IL22) genes as well as markers of epidermal dendritic cells (CD1a/CD207), while certain cytokines (IL18/IL37), skin-barrier genes (KRT2/FLG2), and dermal fibroblasts markers (COL1A/COL3A) were preferentially detected by biopsies. Tape-strips identified more DEGs between AD and non-AD (3157 DEGs) then biopsies (44 DEGs). Tape-strips also detected higher levels of bacterial mRNA than biopsies. CONCLUSIONS This study concludes that tape-strips and biopsies each demonstrate respective advantages for measuring gene-expression changes in AD. Thus, the specific skin layers and genes of interest should be considered before selecting either method.
Collapse
Affiliation(s)
- Blaine Fritz
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Isabel Díaz-Pinés Cort
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | | | - Claus Zachariae
- Department of Allergy, Skin, and Venereology, Gentofte Hospital, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Steffen Heegaard
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg Hospital, Copenhagen NV, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
| |
Collapse
|
5
|
Schmuth M, Eckmann S, Moosbrugger-Martinz V, Ortner-Tobider D, Blunder S, Trafoier T, Gruber R, Elias PM. Skin Barrier in Atopic Dermatitis. J Invest Dermatol 2024; 144:989-1000.e1. [PMID: 38643989 DOI: 10.1016/j.jid.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024]
Abstract
A compromised permeability barrier is a hallmark of atopic dermatitis (AD). Localized to the outermost skin layer, the stratum corneum (SC) is critically dependent on terminal differentiation of epidermal keratinocytes, which transform into protein-rich corneocytes surrounded by extracellular lamellae of unique epidermal lipids, conferring permeability barrier function. These structures are disrupted in AD. A leaky barrier is prone to environmental insult, which in AD elicits type 2-dominant inflammation, in turn resulting in a vicious cycle further impairing the SC structure. Therapies directed at enforcing SC structure and anti-inflammatory strategies administered by topical and systemic route as well as UV therapy have differential effects on the permeability barrier. The expanding armamentarium of therapeutic modalities for AD treatment warrants optimization of their effects on permeability barrier function.
Collapse
Affiliation(s)
- Matthias Schmuth
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria.
| | - Sonja Eckmann
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Stefan Blunder
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Trafoier
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria
| | - Peter M Elias
- Dermatology, Veteran Affairs Health Care System, San Francisco, California, USA; University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
6
|
Williams SF, Wan H, Chittock J, Brown K, Wigley A, Cork MJ, Danby SG. Characterization of skin barrier defects using infrared spectroscopy in patients with atopic dermatitis. Clin Exp Dermatol 2024; 49:466-477. [PMID: 38011533 DOI: 10.1093/ced/llad416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is characterized by skin barrier defects that are often measured by biophysical tools that observe the functional properties of the stratum corneum (SC). OBJECTIVES To employ in vivo infrared spectroscopy alongside biophysical measurements to analyse changes in the chemical composition of the SC in relation to AD severity. METHODS We conducted an observational cross-sectional cohort study where attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy measurements were collected on the forearm alongside surface pH, capacitance, erythema and transepidermal water loss (TEWL), combined with tape stripping, in a cohort of 75 participants (55 patients with AD stratified by phenotypic severity and 20 healthy controls). Common FLG variant alleles were genotyped. RESULTS Reduced hydration, elevated TEWL and redness were all associated with greater AD severity. Spectral analysis showed a reduction in 1465 cm-1 (full width half maximum) and 1340 cm-1 peak areas, indicative of less orthorhombic lipid ordering and reduced carboxylate functional groups, which correlated with clinical severity (lipid structure r = -0.59, carboxylate peak area r = -0.50). CONCLUSIONS ATR-FTIR spectroscopy is a suitable tool for the characterization of structural skin barrier defects in AD and has potential as a clinical tool for directing individual treatment based on chemical structural deficiencies.
Collapse
Affiliation(s)
- Samuel F Williams
- Sheffield Dermatology Research, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Helen Wan
- Sheffield Dermatology Research, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - John Chittock
- Sheffield Dermatology Research, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Kirsty Brown
- Sheffield Dermatology Research, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Andrew Wigley
- Sheffield Dermatology Research, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Michael J Cork
- Sheffield Dermatology Research, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
- Sheffield Children's NHS Foundation Trust, Sheffield Children's Hospital, Western Bank, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, The Royal Hallamshire Hospital, Sheffield, UK
| | - Simon G Danby
- Sheffield Dermatology Research, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| |
Collapse
|
7
|
Andrew PV, Pinnock A, Poyner A, Brown K, Chittock J, Kay LJ, Cork MJ, Danby SG. Maintenance of an Acidic Skin Surface with a Novel Zinc Lactobionate Emollient Preparation Improves Skin Barrier Function in Patients with Atopic Dermatitis. Dermatol Ther (Heidelb) 2024; 14:391-408. [PMID: 38175365 PMCID: PMC10891035 DOI: 10.1007/s13555-023-01084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION The skin of patients with atopic dermatitis (AD) is characterised by elevated pH. As a central homeostatic regulator, an increased pH accelerates desquamation and suppresses lipid processing, resulting in diminished skin barrier function. The aim of this study was to determine whether a novel zinc lactobionate emollient cream can strengthen the skin barrier by lowering skin surface pH. METHODS A double-blind, forearm-controlled cohort study was undertaken in patients with AD. Participants applied the test cream to one forearm and a vehicle cream to the other (randomised allocation) twice daily for 56 days. Skin surface pH and barrier function (primary outcomes) were assessed at baseline and after 28 days and 56 days of treatment, amongst other tests. RESULTS A total of 23 adults with AD completed the study. During and after treatment, a sustained difference in skin surface pH was observed between areas treated with the test cream and vehicle (4.50 ± 0.38 versus 5.25 ± 0.54, respectively, p < 0.0001). This was associated with significantly reduced transepidermal water loss (TEWL) on the test cream treated areas compared with control (9.71 ± 2.47 versus 11.20 ± 3.62 g/m2/h, p = 0.0005). Improvements in skin barrier integrity, skin sensitivity to sodium lauryl sulphate, skin hydration, and chymotrypsin-like protease activity were all observed at sites treated with the test cream compared with the control. CONCLUSION Maintenance of an acidic skin surface pH and delivery of physiologic lipids are beneficial for skin health and may help improve AD control by reducing sensitivity to irritants and allergens.
Collapse
Affiliation(s)
- Paul V Andrew
- Sheffield Dermatology Research, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield, UK.
| | - Abigail Pinnock
- Sheffield Dermatology Research, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Anna Poyner
- Sheffield Dermatology Research, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Kirsty Brown
- Sheffield Dermatology Research, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - John Chittock
- Sheffield Dermatology Research, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Linda J Kay
- Sheffield Dermatology Research, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Michael J Cork
- Sheffield Dermatology Research, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, The Royal Hallamshire Hospital, Sheffield, UK
- Sheffield Children's NHS Foundation Trust, Sheffield Children's Hospital, Western Bank, Sheffield, UK
| | - Simon G Danby
- Sheffield Dermatology Research, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield, UK
| |
Collapse
|
8
|
Del Duca E, He H, Liu Y, Pagan AD, David E, Cheng J, Carroll B, Renert-Yuval Y, Bar J, Estrada YD, Maari C, Proulx ESC, Krueger JG, Bissonnette R, Guttman-Yassky E. Intrapatient comparison of atopic dermatitis skin transcriptome shows differences between tape-strips and biopsies. Allergy 2024; 79:80-92. [PMID: 37577841 DOI: 10.1111/all.15845] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Our knowledge of etiopathogenesis of atopic dermatitis (AD) is largely derived from skin biopsies, which are associated with pain, scarring and infection. In contrast, tape-stripping is a minimally invasive, nonscarring technique to collect skin samples. METHODS To construct a global AD skin transcriptomic profile comparing tape-strips to whole-skin biopsies, we performed RNA-seq on tape-strips and biopsies taken from the lesional skin of 20 moderate-to-severe AD patients and the skin of 20 controls. Differentially expressed genes (DEGs) were defined by fold-change (FCH) ≥2.0 and false discovery rate <0.05. RESULTS We detected 4104 (2513 Up; 1591 Down) and 1273 (546 Up; 727 Down) DEGs in AD versus controls, in tape-strips and biopsies, respectively. Although both techniques captured dysregulation of key immune genes, tape-strips showed higher FCHs for innate immunity (IL-1B, IL-8), dendritic cell (ITGAX/CD11C, FCER1A), Th2 (IL-13, CCL17, TNFRSF4/OX40), and Th17 (CCL20, CXCL1) products, while biopsies showed higher upregulation of Th22 associated genes (IL-22, S100As) and dermal cytokines (IFN-γ, CCL26). Itch-related genes (IL-31, TRPV3) were preferentially captured by tape-strips. Epidermal barrier abnormalities were detected in both techniques, with terminal differentiation defects (FLG2, PSORS1C2) better represented by tape-strips and epidermal hyperplasia changes (KRT16, MKI67) better detected by biopsies. CONCLUSIONS Tape-strips and biopsies capture overlapping but distinct features of the AD molecular signature, suggesting their respective utility for monitoring specific AD-related immune, itch, and barrier abnormalities in clinical trials and longitudinal studies.
Collapse
Affiliation(s)
- Ester Del Duca
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Dermatology, University of Magna Graecia, Catanzaro, Italy
| | - Helen He
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Ying Liu
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Angel D Pagan
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Eden David
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Julia Cheng
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Britta Carroll
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Yael Renert-Yuval
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, USA
| | - Jonathan Bar
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Yeriel D Estrada
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | | | | | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, USA
| | | | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
9
|
Upadhyay PR, Seminario-Vidal L, Abe B, Ghobadi C, Sims JT. Cytokines and Epidermal Lipid Abnormalities in Atopic Dermatitis: A Systematic Review. Cells 2023; 12:2793. [PMID: 38132113 PMCID: PMC10741881 DOI: 10.3390/cells12242793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease and presents a major public health problem worldwide. It is characterized by a recurrent and/or chronic course of inflammatory skin lesions with intense pruritus. Its pathophysiologic features include barrier dysfunction, aberrant immune cell infiltration, and alterations in the microbiome that are associated with genetic and environmental factors. There is a complex crosstalk between these components, which is primarily mediated by cytokines. Epidermal barrier dysfunction is the hallmark of AD and is caused by the disruption of proteins and lipids responsible for establishing the skin barrier. To better define the role of cytokines in stratum corneum lipid abnormalities related to AD, we conducted a systematic review of biomedical literature in PubMed from its inception to 5 September 2023. Consistent with the dominant TH2 skewness seen in AD, type 2 cytokines were featured prominently as possessing a central role in epidermal lipid alterations in AD skin. The cytokines associated with TH1 and TH17 were also identified to affect barrier lipids. Considering the broad cytokine dysregulation observed in AD pathophysiology, understanding the role of each of these in lipid abnormalities and barrier dysfunction will help in developing therapeutics to best achieve barrier homeostasis in AD patients.
Collapse
Affiliation(s)
- Parth R. Upadhyay
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA (C.G.); (J.T.S.)
| | - Lucia Seminario-Vidal
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA (C.G.); (J.T.S.)
| | | | | | | |
Collapse
|
10
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
11
|
Smits JP, Qu J, Pardow F, van den Brink NJ, Rodijk-Olthuis D, van Vlijmen-Willems IM, van Heeringen SJ, Zeeuwen PL, Schalkwijk J, Zhou H, van den Bogaard EH. The aryl hydrocarbon receptor regulates epidermal differentiation through transient activation of TFAP2A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544032. [PMID: 37333234 PMCID: PMC10274772 DOI: 10.1101/2023.06.07.544032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is an evolutionary conserved environmental sensor identified as indispensable regulator of epithelial homeostasis and barrier organ function. Molecular signaling cascade and target genes upon AHR activation and their contribution to cell and tissue function are however not fully understood. Multi-omics analyses using human skin keratinocytes revealed that, upon ligand activation, AHR binds open chromatin to induce expression of transcription factors (TFs), e.g., Transcription Factor AP-2α (TFAP2A), as a swift response to environmental stimuli. The terminal differentiation program including upregulation of barrier genes, filaggrin and keratins, was mediated by TFAP2A as a secondary response to AHR activation. The role of AHR-TFAP2A axis in controlling keratinocyte terminal differentiation for proper barrier formation was further confirmed using CRISPR/Cas9 in human epidermal equivalents. Overall, the study provides novel insights into the molecular mechanism behind AHR-mediated barrier function and potential novel targets for the treatment of skin barrier diseases.
Collapse
Affiliation(s)
- Jos P.H. Smits
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jieqiong Qu
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Felicitas Pardow
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Noa J.M. van den Brink
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | | | - Simon J. van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Patrick L.J.M. Zeeuwen
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc
| | - Ellen H. van den Bogaard
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
12
|
van den Bogaard EH, Elias PM, Goleva E, Berdyshev E, Smits JPH, Danby SG, Cork MJ, Leung DYM. Targeting Skin Barrier Function in Atopic Dermatitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1335-1346. [PMID: 36805053 PMCID: PMC11346348 DOI: 10.1016/j.jaip.2023.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in the general population. Skin barrier dysfunction is the central abnormality leading to AD. The cause of skin barrier dysfunction is complex and rooted in genetic mutations, interactions between the immune pathway activation and epithelial cells, altered host defense mechanisms, as well as environmental influences that cause epithelial cell activation and release of alarmins (such as thymic stromal lymphopoietin) that can activate the type 2 immune pathway, including generation of interleukins 4 and 13, which induces defects in the skin barrier and increased allergic inflammation. These inflammatory pathways are further influenced by environmental factors including the microbiome (especially Staphylococcus aureus), air pollution, stress, and other factors. As such, AD is a syndrome involving multiple phenotypes, all of which have in common skin barrier dysfunction as a key contributing factor. Understanding mechanisms leading to skin barrier dysfunction in AD is pointing to the development of new topical and systemic treatments in AD that helps keep skin borders secure and effectively treat the disease.
Collapse
Affiliation(s)
- Ellen H van den Bogaard
- Department of Dermatology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M Elias
- Department of Dermatology, University of California San Francisco and VA Medical Center, San Francisco, Calif
| | - Elena Goleva
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, National Jewish Health, Denver, Colo
| | - Evgeny Berdyshev
- Department of Pulmonology, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colo
| | - Jos P H Smits
- Department of Dermatology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon G Danby
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School at The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Michael J Cork
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School at The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Donald Y M Leung
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, National Jewish Health, Denver, Colo.
| |
Collapse
|
13
|
Chhajed M, Gunasekaran PK, Bhanudeep S, Saini L. Charcot-Marie-Tooth Disease Type 4C and Autosomal Dominant Heterozygous Ichthyosis Vulgaris, with Bilateral Hearing Loss: A Novel Association with Review of Literature. J Pediatr Genet 2022. [DOI: 10.1055/s-0042-1759780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractA 3-year-old boy, firstborn to nonconsanguineous parents, presented with motor development delay and floppiness of bilateral lower limbs since birth. No significant family history presented at time of check-up. He could stand with support, eat with a spoon without spillage, and speak in two-word sentences. There was no history suggestive of cranial nerve impairment. Examination revealed normal head circumference, dry, scaly skin lesions on the trunk, distal weakness with sluggish deep tendon reflexes in bilateral lower limbs, and a high stepping gait. Nerve conduction studies revealed demyelinating polyneuropathy. Brain stem-evoked response audiometry testing revealed auditory neuropathy. Clinical exome sequencing revealed a known pathogenic variant of 3325C > T in the SH3TC2 gene suggestive of Charcot-Marie-Tooth disease type 4C and ichthyosis vulgaris with a novel variant of 2218C > T in the FLG gene. We have reviewed the available literature for reported associations of Charcot-Marie-Tooth disease type 4C and ichthyosis vulgaris. This is probably the first reported association of Charcot-Marie-Tooth disease type 4C and ichthyosis vulgaris with bilateral hearing loss.
Collapse
Affiliation(s)
- Monika Chhajed
- Department of Pediatrics, Chaitanya Hospital, Chandigarh, India
| | | | | | - Lokesh Saini
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
14
|
Tsukui K, Kakiuchi T, Suzuki M, Sakurai H, Tokudome Y. The ion balance of Shotokuseki extract promotes filaggrin fragmentation and increases amino acid production and pyrrolidone carboxylic acid content in three-dimensional cultured human epidermis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:37. [PMID: 36245006 PMCID: PMC9573832 DOI: 10.1007/s13659-022-00353-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 06/16/2023]
Abstract
Natural moisturizing factor (NMF) in the stratum corneum contributes to the retention of moisture there. The purpose of this study was to determine the penetration of ions in Shotokuseki extract (SE) into the three-dimensional cultured epidermis and the effect of NMF on the biosynthesis of amino acids and pyrrolidone carboxylic acid formation. Various ions, amino acids and pyrrolidone carboxylic acid were quantified by inductively coupled plasma mass spectrometry, fully automatic amino acid analyzer or high-performance liquid chromatography (HPLC) in three-dimensional cultured epidermis after application of SE. Gene expression levels of profilaggrin, calpain1, caspase14, and bleomycin hydrolase, which are involved in NMF production, were determined by reverse-transcription qPCR and bleomycin hydrolase activity was determined by aminopeptidase assay. The application of SE increased Na, K, Mg, Ca, Al, and Fe levels in three-dimensional cultured epidermis. The mRNA levels of the starting material of amino acid synthesis profilaggrin, and calpain1 and bleomycin hydrolase, which are involved in its fragmentation, increased. The activity of bleomycin hydrolase also increased. Furthermore, the levels of amino acids and pyrrolidone carboxylic acid increased in the three-dimensional cultured epidermis. This suggests that the ionic composition of SE may be involved in its moisturizing effect on the stratum corneum.
Collapse
Affiliation(s)
- Kei Tsukui
- Laboratory of Cosmetic Sciences, Graduate School of Advanced Health Sciences, Saga University, 1 Honjo, Saga, 840-8502, Japan
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Takuya Kakiuchi
- Zeria Pharmaceutical Co., Ltd., 10-11 Nihonbashi, Kobuna-cho, Chuo-ku, Tokyo, 103-8351, Japan
| | - Masamitsu Suzuki
- Zeria Pharmaceutical Co., Ltd., 10-11 Nihonbashi, Kobuna-cho, Chuo-ku, Tokyo, 103-8351, Japan
| | - Hidetomo Sakurai
- Zeria Pharmaceutical Co., Ltd., 10-11 Nihonbashi, Kobuna-cho, Chuo-ku, Tokyo, 103-8351, Japan
| | - Yoshihiro Tokudome
- Laboratory of Cosmetic Sciences, Graduate School of Advanced Health Sciences, Saga University, 1 Honjo, Saga, 840-8502, Japan.
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
- Laboratory of Cosmetic Sciences, Regional Innovation Center, Saga University, 1 Honjo, Saga, 840-8502, Japan.
| |
Collapse
|
15
|
Moosbrugger-Martinz V, Leprince C, Méchin MC, Simon M, Blunder S, Gruber R, Dubrac S. Revisiting the Roles of Filaggrin in Atopic Dermatitis. Int J Mol Sci 2022; 23:5318. [PMID: 35628125 PMCID: PMC9140947 DOI: 10.3390/ijms23105318] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/31/2022] Open
Abstract
The discovery in 2006 that loss-of-function mutations in the filaggrin gene (FLG) cause ichthyosis vulgaris and can predispose to atopic dermatitis (AD) galvanized the dermatology research community and shed new light on a skin protein that was first identified in 1981. However, although outstanding work has uncovered several key functions of filaggrin in epidermal homeostasis, a comprehensive understanding of how filaggrin deficiency contributes to AD is still incomplete, including details of the upstream factors that lead to the reduced amounts of filaggrin, regardless of genotype. In this review, we re-evaluate data focusing on the roles of filaggrin in the epidermis, as well as in AD. Filaggrin is important for alignment of keratin intermediate filaments, control of keratinocyte shape, and maintenance of epidermal texture via production of water-retaining molecules. Moreover, filaggrin deficiency leads to cellular abnormalities in keratinocytes and induces subtle epidermal barrier impairment that is sufficient enough to facilitate the ingress of certain exogenous molecules into the epidermis. However, although FLG null mutations regulate skin moisture in non-lesional AD skin, filaggrin deficiency per se does not lead to the neutralization of skin surface pH or to excessive transepidermal water loss in atopic skin. Separating facts from chaff regarding the functions of filaggrin in the epidermis is necessary for the design efficacious therapies to treat dry and atopic skin.
Collapse
Affiliation(s)
- Verena Moosbrugger-Martinz
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| | - Corinne Leprince
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS UMR5051, Inserm UMR1291, UPS, 31059 Toulouse, France; (C.L.); (M.-C.M.); (M.S.)
| | - Marie-Claire Méchin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS UMR5051, Inserm UMR1291, UPS, 31059 Toulouse, France; (C.L.); (M.-C.M.); (M.S.)
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS UMR5051, Inserm UMR1291, UPS, 31059 Toulouse, France; (C.L.); (M.-C.M.); (M.S.)
| | - Stefan Blunder
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| |
Collapse
|
16
|
Crépy MN, Bensefa-Colas L, Aubin F, Simon M, Soria A. Vocational Guidance for Young Patients with Atopic Dermatitis: A Survey of Physicians’ Opinions and Practices. Acta Derm Venereol 2022; 102:adv00671. [PMID: 35229162 PMCID: PMC9574681 DOI: 10.2340/actadv.v102.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Marie-Noëlle Crépy
- Department of Occupational and Environmental Diseases, Hôpital Hotel Dieu, Paris, France.
| | | | | | | | | |
Collapse
|
17
|
Danby SG, Andrew PV, Kay LJ, Pinnock A, Chittock J, Brown K, Williams SF, Cork MJ. Enhancement of stratum corneum lipid structure improves skin barrier function and protects against irritation in adults with dry, eczema-prone, skin. Br J Dermatol 2021; 186:875-886. [PMID: 34921679 PMCID: PMC9321855 DOI: 10.1111/bjd.20955] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The skin of atopic dermatitis (AD) patients is characterised by abnormal stratum corneum (SC) lipid levels. Consequently, the lamellar matrices are disrupted and skin barrier function is diminished, increasing skin sensitivity to irritants and allergens. OBJECTIVE To determine whether a cream containing ceramides, triglycerides and cholesterol in a multi-vesicular emulsion can reinforce the skin barrier, and protect against skin irritation. METHODS A randomized observer-blind intrasubject-controlled study in 34 adults with dry, eczema-prone, skin was conducted. Each participant underwent 4 weeks treatment with the test cream on one forearm and lower leg and a reference emollient cream on the other. Skin properties were determined before and after treatment. Lipid structure was assessed by FTIR spectroscopy using a novel interface. RESULTS Skin barrier integrity was greater at sites treated with the Test cream (effect size -161.9 area-under-the-TEWL-curve, 95% CI -205.5, -118.3), and skin sensitivity to sodium lauryl sulfate reduced (-0.5 points [97.57% CI -1.00, -0.25] visual redness and -15.34 g/m2 /h [95% CI -20.28, -10.40] TEWL) compared to the reference. Sites treated with the test cream displayed enhanced lipid chain ordering, which was significantly associated with skin barrier integrity (r0.606). Compared to the reference, treatment with the Test cream increased hydration (8.61 capacitance units, 95% CI 6.61 to 10.60) and decreased signs of dryness. CONCLUSION The Test cream facilitates skin barrier restoration and protects the skin from dryness and irritation. Compared to a commonly prescribed emollient in the UK, the Test cream is highly suited to the management of dry, sensitive, skin.
Collapse
Affiliation(s)
- Simon G Danby
- Sheffield Dermatology Research, Dept. Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Paul V Andrew
- Sheffield Dermatology Research, Dept. Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Linda J Kay
- Sheffield Dermatology Research, Dept. Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Abigail Pinnock
- Sheffield Dermatology Research, Dept. Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - John Chittock
- Sheffield Dermatology Research, Dept. Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Kirsty Brown
- Sheffield Dermatology Research, Dept. Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Samuel F Williams
- Sheffield Dermatology Research, Dept. Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Michael J Cork
- Sheffield Dermatology Research, Dept. Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK.,Sheffield Children's NHS Foundation Trust, Sheffield Children's Hospital, Western Bank, Sheffield, UK.,Sheffield Teaching Hospitals NHS Foundation Trust, The Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
18
|
Transcriptomic Profiling of Tape-Strips From Moderate to Severe Atopic Dermatitis Patients Treated With Dupilumab. Dermatitis 2021; 32:S71-S80. [PMID: 34405829 DOI: 10.1097/der.0000000000000764] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tape-strips are a minimally invasive approach to characterize skin biomarkers in atopic dermatitis (AD). However, they have not yet been used for tracking gene expression changes with systemic treatment. OBJECTIVE The aim of the study was to evaluate gene expression changes and therapeutic response biomarkers in AD patients before and after dupilumab (interleukin 4Rα antibody) treatment using tape-strips to obtain epidermal tissue for analysis. METHODS Lesional and nonlesional tape-stripped skin was sampled from 18 AD patients before and after dupilumab treatment and from 17 healthy subjects and analyzed by RNA-seq. RESULTS At baseline, we detected 6745 and 4859 differentially expressed genes between lesional and nonlesional skin versus normal, respectively, whereas 841 and 977 genes were differentially expressed after treatment, respectively (fold change >1.5 and false discovery rate <0.05). Tape-strips captured significant modulation with dupilumab in key AD immune (eg, C-C motif chemokine ligand 13 [CCL13], CCL17, CCL18) and barrier (eg, periplakin, FA2H) biomarkers. Changes in biomarkers (CCL20, interleukin 34, FABP7) were also significantly correlated with clinical disease improvements (Eczema Area and Severity Index; R > 0.5 or R < -0.4, P < 0.05). CONCLUSIONS This real-life study represents the first comprehensive RNA-seq molecular profiling of tape-strips from moderate to severe AD patients after dupilumab therapy. Analysis of tape strip specimens detected significant gene expression changes in key AD biomarkers with dupilumab treatment, suggesting that this approach may be useful to monitor therapeutic responses in inflammatory skin diseases.
Collapse
|
19
|
Fujii M. The Pathogenic and Therapeutic Implications of Ceramide Abnormalities in Atopic Dermatitis. Cells 2021; 10:2386. [PMID: 34572035 PMCID: PMC8468445 DOI: 10.3390/cells10092386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Ceramides play an essential role in forming a permeability barrier in the skin. Atopic dermatitis (AD) is a common chronic skin disease associated with skin barrier dysfunction and immunological abnormalities. In patients with AD, the amount and composition of ceramides in the stratum corneum are altered. This suggests that ceramide abnormalities are involved in the pathogenesis of AD. The mechanism underlying lipid abnormalities in AD has not yet been fully elucidated, but the involvement of Th2 and Th1 cytokines is implicated. Ceramide-dominant emollients have beneficial effects on skin barrier function; thus, they have been approved as an adjunctive barrier repair agent for AD. This review summarizes the current understanding of the mechanisms of ceramide abnormalities in AD. Furthermore, the potential therapeutic approaches for correcting ceramide abnormalities in AD are discussed.
Collapse
Affiliation(s)
- Masanori Fujii
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| |
Collapse
|
20
|
Holvoet S, Nutten S, Dupuis L, Donnicola D, Bourdeau T, Hughes-Formella B, Simon D, Simon HU, Carvalho RS, Spergel JM, Koletzko S, Blanchard C. Partially Hydrolysed Whey-Based Infant Formula Improves Skin Barrier Function. Nutrients 2021; 13:nu13093113. [PMID: 34578990 PMCID: PMC8472312 DOI: 10.3390/nu13093113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
Specific partially hydrolysed whey-based infant formulas (pHF-W) have been shown to decrease the risk of atopic dermatitis (AD) in infants. Historically, AD has been associated primarily with milk allergy; however, defective skin barrier function can be a primary cause of AD. We aimed to ascertain whether oral supplementation with pHF-W can improve skin barrier function. The effect of pHF-W was assessed on transepidermal water loss (TEWL) and antibody productions in mice epicutaneously exposed to Aspergillus fumigatus. Human primary keratinocytes were stimulated in vitro, and the expression of genes related to skin barrier function was measured. Supplementation with pHF-W in neonatal mice led to a significant decrease in TEWL and total IgE, but not in allergen-specific antibody levels. The whey hydrolysate was sufficient to decrease both TEWL and total IgE. Aquaporin-3 gene expression, linked with skin hydration, was modulated in the skin of mice and human primary keratinocytes following protein hydrolysate exposure. Skin barrier improvement may be an additional mechanism by which pHF-W may potentially reduce the risk of AD development in infants. Further human studies are warranted to confirm the clinical efficacy of these observations.
Collapse
Affiliation(s)
- Sébastien Holvoet
- Department of Gastrointestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (S.H.); (S.N.); (D.D.); (T.B.)
| | - Sophie Nutten
- Department of Gastrointestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (S.H.); (S.N.); (D.D.); (T.B.)
| | - Lénaïck Dupuis
- Biostatistics and Data Management, Clinical Research Unit, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland;
| | - Dominique Donnicola
- Department of Gastrointestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (S.H.); (S.N.); (D.D.); (T.B.)
| | - Tristan Bourdeau
- Department of Gastrointestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (S.H.); (S.N.); (D.D.); (T.B.)
| | | | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland;
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3012 Bern, Switzerland;
- Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Institute of Biochemistry, Medical School Brandenburg, 16816 Neuruppin, Germany
| | | | - Jonathan M. Spergel
- Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and University Hospital, LMU Munich, 80337 Munich, Germany;
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Carine Blanchard
- Department of Gastrointestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (S.H.); (S.N.); (D.D.); (T.B.)
- Correspondence: ; Tel.: +41-21-785-87-56
| |
Collapse
|
21
|
Pavel P, Leman G, Hermann M, Ploner C, Eichmann TO, Minzaghi D, Radner FP, Del Frari B, Gruber R, Dubrac S. Peroxisomal Fatty Acid Oxidation and Glycolysis Are Triggered in Mouse Models of Lesional Atopic Dermatitis. JID INNOVATIONS 2021; 1:100033. [PMID: 34909730 PMCID: PMC8659757 DOI: 10.1016/j.xjidi.2021.100033] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Alterations of the lipid profile of the stratum corneum have an important role in the pathogenesis of atopic dermatitis (AD) because they contribute to epidermal barrier impairment. However, they have not previously been envisioned as a cellular response to altered metabolic requirements in AD epidermis. In this study, we report that the lipid composition in the epidermis of flaky tail, that is, ft/ft mice mimics that of human lesional AD (ADL) epidermis, both showing a shift toward shorter lipid species. The amounts of C24 and C26 free fatty acids and C24 and C26 ceramides-oxidized exclusively in peroxisomes-were reduced in the epidermis of ft/ft mice despite increased lipid synthesis, similar to that seen in human ADL edpidermis. Increased ACOX1 protein and activity in granular keratinocytes of ft/ft epidermis, altered lipid profile in human epidermal equivalents overexpressing ACOX1, and increased ACOX1 immunostaining in skin biopsies from patients with ADL suggest that peroxisomal β-oxidation significantly contributes to lipid signature in ADL epidermis. Moreover, we show that increased anaerobic glycolysis in ft/ft mouse epidermis is essential for keratinocyte proliferation and adenosine triphosphate synthesis but does not contribute to local inflammation. Thus, this work evidenced a metabolic shift toward enhanced peroxisomal β-oxidation and anaerobic glycolysis in ADL epidermis.
Collapse
Key Words
- AD, atopic dermatitis
- ADL, lesional atopic dermatitis
- ATP, adenosine triphosphate
- Cer, ceramide
- CoA, coenzyme A
- FA, fatty acid
- FFA, free fatty acid
- HEE, human epidermal equivalent
- IMQ, imiquimod
- KC, keratinocyte
- KO, knockout
- LB, lamellar body
- PPAR, peroxisome proliferator–activated receptor
- SC, stratum corneum
- TEWL, transepidermal water loss
- ULCFA, ultra long-chain fatty acid
- VLCFA, very-long-chain fatty acid
Collapse
Affiliation(s)
- Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Géraldine Leman
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franz P.W. Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Barbara Del Frari
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Berdyshev E, Bronova I, Leung DYM, Goleva E. Methodological Considerations for Lipid and Polar Component Analyses in Human Skin Stratum Corneum. Cell Biochem Biophys 2021; 79:659-668. [PMID: 34264438 PMCID: PMC8551066 DOI: 10.1007/s12013-021-01016-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
Collection of skin very top layer, called stratum corneum, by tape stripping and the analysis of stratum corneum components by mass spectrometry provides multiple advantages for clinical studies that aim to understand the origins of allergic skin diseases and food allergy. However, such a methodology has multiple challenges on the way of complex stratum corneum analysis when molecules of different polarity are needed to be analyzed from minimal amount of skin tape strips. This review provides an overview of current knowledge about lipid and polar molecules in the skin, discusses challenging aspects of sample processing when dealing with skin tape strips, and provides some guidance towards approaches that generate complex, quantitative, normalized to total sample protein data that fit best the purpose of analysis of stratum corneum components for the purpose of clinical trials.
Collapse
Affiliation(s)
- E Berdyshev
- National Jewish Health, 1400 Jackson Street, Goodman Building, K924b, Denver, CO, 80206, USA.
| | - I Bronova
- National Jewish Health, 1400 Jackson Street, Goodman Building, K924b, Denver, CO, 80206, USA
| | - D Y M Leung
- National Jewish Health, 1400 Jackson Street, Goodman Building, K924b, Denver, CO, 80206, USA
| | - E Goleva
- National Jewish Health, 1400 Jackson Street, Goodman Building, K924b, Denver, CO, 80206, USA
| |
Collapse
|
23
|
Erdem Y, Inal S, Sivaz O, Copur S, Boluk KN, Ugurer E, Kaya HE, Gulsunay IE, Sekerlisoy G, Vural O, Altunay IK, Aksu Çerman A, Özkaya E. How does working in pandemic units affect the risk of occupational hand eczema in healthcare workers during the coronavirus disease-2019 (COVID-19) pandemic: A comparative analysis with nonpandemic units. Contact Dermatitis 2021; 85:215-224. [PMID: 33797109 PMCID: PMC8251387 DOI: 10.1111/cod.13853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Hand eczema (HE) has increased among healthcare workers (HCWs) working in coronavirus disease-2019 (COVID-19) units, and was associated with increased hand hygiene practices. OBJECTIVES To compare the prevalence and clinical characteristics of HE, and hand hygiene practices in HCWs working in COVID-19 and non-COVID-19 units. METHODS A total of 244 HCWs working in COVID-19 (n = 118) and non-COVID-19 patient care units (n = 126) were examined by dermatologists with regard to demographic parameters and hand hygiene practices. The COVID-19 and non-COVID-19 groups were matched at a 1:1 ratio according to age, atopy, and generalized dry skin. RESULTS HE was more frequent in the COVID-19 group (48.3% vs 12.7%, P < .001), whereas working years (P < .05) and additional housework at home (P < .001) were longer in the non-COVID-19 group. After the development of HE, moisturizing creams were reported to be more frequently used in the COVID group (P < .001). Topical corticosteroids were used in a minority (40% in the COVID group and 26.7% in the non-COVID group). CONCLUSIONS HCWs in COVID-19 units developed HE more frequently. A majority increased the frequency of moisturizer use, instead of using topical corticosteroids, after the development of HE for the purpose of treating eczema. New approaches are needed for the prevention and management of HE in HCWs, especially by facilitating access to dermatologists.
Collapse
Affiliation(s)
- Yasemin Erdem
- Department of DermatologyHealth Science University, Şişli Hamidiye Etfal Training and Research HospitalIstanbulTurkey
| | - Sena Inal
- Department of DermatologyHealth Science University, Şişli Hamidiye Etfal Training and Research HospitalIstanbulTurkey
| | - Onur Sivaz
- Department of DermatologyHealth Science University, Şişli Hamidiye Etfal Training and Research HospitalIstanbulTurkey
| | - Sevkiye Copur
- Istanbul Faculty of Medicine, Department of Dermatology and VenereologyIstanbul UniversityIstanbulTurkey
| | - Kubra N. Boluk
- Istanbul Faculty of Medicine, Department of Dermatology and VenereologyIstanbul UniversityIstanbulTurkey
| | - Ece Ugurer
- Department of DermatologyHealth Science University, Şişli Hamidiye Etfal Training and Research HospitalIstanbulTurkey
| | - Hazel E. Kaya
- Department of DermatologyHealth Science University, Şişli Hamidiye Etfal Training and Research HospitalIstanbulTurkey
| | - Ilayda E. Gulsunay
- Department of DermatologyHealth Science University, Şişli Hamidiye Etfal Training and Research HospitalIstanbulTurkey
| | - Gul Sekerlisoy
- Department of DermatologyHealth Science University, Şişli Hamidiye Etfal Training and Research HospitalIstanbulTurkey
| | - Osman Vural
- Department of DermatologyHealth Science University, Şişli Hamidiye Etfal Training and Research HospitalIstanbulTurkey
| | - Ilknur K. Altunay
- Department of DermatologyHealth Science University, Şişli Hamidiye Etfal Training and Research HospitalIstanbulTurkey
| | - Aslı Aksu Çerman
- Department of DermatologyHealth Science University, Şişli Hamidiye Etfal Training and Research HospitalIstanbulTurkey
| | - Esen Özkaya
- Istanbul Faculty of Medicine, Department of Dermatology and VenereologyIstanbul UniversityIstanbulTurkey
| |
Collapse
|
24
|
Miao H, Dong R, Zhang S, Yang L, Liu Y, Wang T. Hereditäre Ichthyose und Pilzinfektion: aktuelle Daten zu Pathogenese und Behandlungsstrategien. J Dtsch Dermatol Ges 2021; 19:341-351. [PMID: 33709589 DOI: 10.1111/ddg.14389_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Huilei Miao
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruijia Dong
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiyu Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Yang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Knox S, O'Boyle NM. Skin lipids in health and disease: A review. Chem Phys Lipids 2021; 236:105055. [PMID: 33561467 DOI: 10.1016/j.chemphyslip.2021.105055] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Our skin is the interface between us and our environment - a flexible barrier that has evolved for protection, immunity, regulation and sensation. Once regarded as inert, we now know that it is a dynamic environment. Skin lipids are crucial to the structure and function of skin. From deep in the hypodermis, through the ceramide-rich epidermis, to the lipids of the skin surface, there are a vast array of different lipids with important roles to play. This review firstly discusses the lipid composition of human skin and secondly, changes that have been found in skin lipid composition in different skin diseases. Further research into skin lipids facilitated by ever-improving methodologies will no doubt generate new knowledge, paving the way for diagnosis, prevention and treatment of skin disorders and diseases.
Collapse
Affiliation(s)
- Sophie Knox
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40, Ireland
| | - Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40, Ireland.
| |
Collapse
|
26
|
Yang M, Zhou M, Li Y, Huang H, Jia Y. Lipidomic analysis of facial skin surface lipid reveals the causes of pregnancy-related skin barrier weakness. Sci Rep 2021; 11:3229. [PMID: 33547383 PMCID: PMC7864992 DOI: 10.1038/s41598-021-82624-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Self-reported skin discomfort is a common problem during pregnancy, but it is not clear whether skin barrier function is altered in the process. Few studies have described the skin barrier function during pregnancy. In this work, we used highly sensitive and high-resolution ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) to distinguish skin surface lipid (SSL) combined with multivariate analysis of lipids and metabolic changes to determine the relationship between SSL changes and skin physiology during pregnancy in order to better understand the skin condition of pregnant women. The results showed a significant reduction in the total lipid content in pregnant women. A total of 2270 lipids were detected, and the relative abundances of fatty acyls and glycerolipids were significantly reduced, while glycerophospholipids (GPs), sphingolipids, and saccharolipids was significantly increased in the pregnancy group. Multivariate data analysis indicated that 23 entities constituted the most important individual species responsible for the discrimination and phosphatidylcholine was the most abundant lipid in pregnancy group. In addition, compared to SSL profile of control group, it was observed that the average chain length of ceramides and fatty acids both decreased in SSL profile of pregnancy group. The main and most commonly affected pathway was that of GP pathways. These findings indicate that skin lipids are significantly altered in mid-pregnancy compared to the control group. Changes in ostrogen during pregnancy also make the skin more susceptible to inflammatory factors and lead to more fragile and susceptible skin, weakening the skin barrier along with the lipid alterations.
Collapse
Affiliation(s)
- Manli Yang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.,Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Mingyue Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yuan Li
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hong Huang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China. .,Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
27
|
Miao H, Dong R, Zhang S, Yang L, Liu Y, Wang T. Inherited ichthyosis and fungal infection: an update on pathogenesis and treatment strategies. J Dtsch Dermatol Ges 2021; 19:341-350. [PMID: 33448147 DOI: 10.1111/ddg.14389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/04/2020] [Indexed: 12/30/2022]
Abstract
Inherited ichthyoses are a group of genodermatoses classified as either nonsyndromic or syndromic. Nonsyndromic ichthyoses and keratitis, ichthyosis and deafness (KID) syndrome predispose to fungal infection. The diagnosis and treatment of fungal infections underlying ichthyoses are challenging. In this review, we summarize reported cases of ichthyosis with fungal infection over the past 50 years. Atypical manifestations such as alopecia, papules and brittle nails occurred in patients with ichthyosis combined with fungal infection. Various pathogenic mechanisms have been implicated, including mutations of ichthyosis-related genes leading to disruption of the skin barrier via multiple pathways. Host immune disorders, including atopy and abnormal innate immunity also contribute to susceptibility. Specific fungi may escape the immune response. Extensive and recurrent fungal infections are not uncommon in patients with ichthyosis, making a cure more difficult and increasing the need for systemic antifungal therapy. Traditional and new ichthyosis treatments aiming to improve skin barrier function could help prevent fungal infection. In conclusion, the close relationship between ichthyosis and fungal infection is of vital importance in clinical practice and requires more attention from physicians. More studies are required to investigate the mechanisms and explore useful treatment strategies.
Collapse
Affiliation(s)
- Huilei Miao
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruijia Dong
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiyu Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Yang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Tape strips detect distinct immune and barrier profiles in atopic dermatitis and psoriasis. J Allergy Clin Immunol 2021; 147:199-212. [DOI: 10.1016/j.jaci.2020.05.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
|
29
|
Genetics and Individual Predispositions in Contact Dermatitis. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Pavel AB, Renert‐Yuval Y, Wu J, Del Duca E, Diaz A, Lefferdink R, Fang MM, Canter T, Rangel SM, Zhang N, Krueger JG, Paller AS, Guttman‐Yassky E. Tape strips from early-onset pediatric atopic dermatitis highlight disease abnormalities in nonlesional skin. Allergy 2021; 76:314-325. [PMID: 32639640 DOI: 10.1111/all.14490] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Skin biopsies promote our understanding of atopic dermatitis/AD pathomechanisms in infants/toddlers with early-onset AD, but are not feasible in pediatric populations. Tape strips are an emerging, minimally invasive alternative, but global transcriptomic profiling in early pediatric AD is lacking. We aimed to provide global lesional and nonlesional skin profiles of infants/toddlers with recent-onset, moderate-to-severe AD using tape strips. METHODS Sixteen tape strips were collected for RNA-seq profiling from 19 infants/toddlers (<5 years old; lesional and nonlesional) with early-onset moderate-to-severe AD (≤6 months) and 17 healthy controls. RESULTS We identified 1829 differentially expressed genes/DEGs in lesional AD and 662 DEGs in nonlesional AD, vs healthy skin (fold-change ≥2, FDR <0.05), with 100% sample recovery. Both lesional and nonlesional skin showed significant dysregulations of Th2 (CCL17 and IL4R) and Th22/Th17 (IL36G, CCL20, and S100As)-related genes, largely lacking significant Th1-skewing. Significant down-regulation of terminal differentiation (FLG and FLG2), lipid synthesis/metabolism (ELOVL3 and FA2H), and tight junction (CLDN8) genes were primarily seen in lesional AD. Significant negative correlations were identified between Th2 measures and epidermal barrier gene-subsets and individual genes (FLG with IL-4R and CCL17; r < -0.4, P < .05). Significant correlations were also identified between clinical measures (body surface area/BSA, pruritus ADQ, and transepidermal water loss/TEWL) with immune and barrier mRNAs in lesional and/or nonlesional AD (FLG/FLG2 with TEWL; r < -0.4, P < .05). CONCLUSION RNA-seq profiling using tape strips in early-onset pediatric AD captures immune and barrier alterations in both lesional and nonlesional skin. Tape strips provide insight into disease pathomechanisms and cutaneous disease activity.
Collapse
Affiliation(s)
- Ana B. Pavel
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology Icahn School of Medicine at Mount Sinai New York NY USA
- Department of Biomedical Engineering University of Mississippi MS USA
| | - Yael Renert‐Yuval
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Jianni Wu
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
- College of Medicine State University of New York Downstate Medical Center Brooklyn NY USA
| | - Ester Del Duca
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
- Department of Dermatology University of Rome Tor Vergata Rome Italy
| | - Aisleen Diaz
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
- Ponce Health Sciences University School of Medicine Ponce PR USA
| | - Rachel Lefferdink
- Department of Dermatology Northwestern University Feinberg School of Medicine Chicago IL USA
| | - Milie M. Fang
- Department of Dermatology Northwestern University Feinberg School of Medicine Chicago IL USA
| | - Talia Canter
- Department of Dermatology Northwestern University Feinberg School of Medicine Chicago IL USA
| | | | - Ning Zhang
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology Icahn School of Medicine at Mount Sinai New York NY USA
| | - James G. Krueger
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Amy S. Paller
- Department of Dermatology Northwestern University Feinberg School of Medicine Chicago IL USA
| | - Emma Guttman‐Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| |
Collapse
|
31
|
Brans R, John SM, Frosch PJ. Clinical Aspects of Irritant Contact Dermatitis. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Nakahara T, Kido‐Nakahara M, Tsuji G, Furue M. Basics and recent advances in the pathophysiology of atopic dermatitis. J Dermatol 2020; 48:130-139. [DOI: 10.1111/1346-8138.15664] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Takeshi Nakahara
- Department of DermatologyGraduate School of Medical SciencesKyushu University FukuokaJapan
- Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University FukuokaJapan
| | - Makiko Kido‐Nakahara
- Department of DermatologyGraduate School of Medical SciencesKyushu University FukuokaJapan
| | - Gaku Tsuji
- Department of DermatologyGraduate School of Medical SciencesKyushu University FukuokaJapan
- Research and Clinical Center for Yusho and Dioxin Kyushu University Hospital Fukuoka Japan
| | - Masutaka Furue
- Department of DermatologyGraduate School of Medical SciencesKyushu University FukuokaJapan
- Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University FukuokaJapan
- Research and Clinical Center for Yusho and Dioxin Kyushu University Hospital Fukuoka Japan
| |
Collapse
|
33
|
He H, Olesen CM, Pavel AB, Clausen ML, Wu J, Estrada Y, Zhang N, Agner T, Guttman-Yassky E. Tape-Strip Proteomic Profiling of Atopic Dermatitis on Dupilumab Identifies Minimally Invasive Biomarkers. Front Immunol 2020; 11:1768. [PMID: 32849633 PMCID: PMC7423990 DOI: 10.3389/fimmu.2020.01768] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Tape-stripping is a minimally invasive approach for skin sampling that captures the cutaneous immune/barrier abnormalities in atopic dermatitis (AD). However, tape-strips have not been used to evaluate molecular changes with therapeutic targeting. In this study, we sought to characterize the proteomic signature of tape-strips from AD patients, before and after dupilumab therapy. Twenty-six AD patients were treated with every-other-week dupilumab 300 mg for 16 weeks. Tape-strips from lesional and non-lesional skin were collected before and after treatment, and analyzed with the Olink proteomic assay. Using criteria of fold-change>1.5 and FDR < 0.05, 136 proteins significantly decreased after dupilumab treatment, corresponding to an overall mean improvement of 66.2% in the lesional vs. non-lesional AD proteome. Significant decreases after dupilumab were observed in immune markers related to general inflammation (MMP12), Th2 (CCL13/CCL17), Th17/Th22 (IL-12B, CXCL1, S100A12), and innate immunity (IL-6, IL-8, IL-17C), while the Th1 chemokines CXCL9/CXCL10 remained elevated. Proteins related to atherosclerosis/cardiovascular risk (e.g., SELE/E-selectin, IGFBP7, CHIT1/ chitotriosidase-1, AXL) also significantly decreased after treatment. Dupilumab therapy suppressed AD-related immune biomarkers and atherosclerosis/cardiovascular risk proteins. Tape-strip proteomics may be useful for monitoring therapeutic response in real-life settings, clinical trials, and longitudinal studies for AD and beyond.
Collapse
Affiliation(s)
- Helen He
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Caroline M Olesen
- Department of Dermatology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Ana B Pavel
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Maja-Lisa Clausen
- Department of Dermatology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jianni Wu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yeriel Estrada
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ning Zhang
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tove Agner
- Department of Dermatology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
34
|
Lipsky ZW, Marques CNH, German GK. Lipid depletion enables permeation of Staphylococcus aureus bacteria through human stratum corneum. Tissue Barriers 2020; 8:1754706. [PMID: 32338129 PMCID: PMC7549745 DOI: 10.1080/21688370.2020.1754706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/01/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease that affects approximately 2-5% of adults worldwide. The pathogenesis of AD continues to be a well-debated point of conjecture, with numerous hypotheses having been proposed. AD conditions are associated with increased populations of Staphylococcus aureus and reduced skin lipids. In this study, we evaluate the ability of S. aureus to permeate across human stratum corneum (SC) exhibiting both normal and depleted lipid conditions consistent with AD. This permeation would enable bacteria to interact with underlying viable epidermal cells, which could serve as a trigger for inflammation and disease onset. Our results indicate that permeation of S. aureus through SC exhibiting normal lipid conditions is not statistically significant. However, bacteria can readily permeate through lipid depleted tissue over a 9-d period. These findings suggest that S. aureus may potentially act as the mechanistic cause, rather than merely the result of AD. ABBREVIATIONS AD: Atopic dermatitis; SC: Stratum Corneum; AMP: Antimicrobial peptide; DIW: Deionized water; PDMS: Polydimethylsiloxane; GFP: Green fluorescent protein; BHI: Brain heart infusion medium.
Collapse
Affiliation(s)
- Zachary W. Lipsky
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, USA
| | - Cláudia N. H. Marques
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Guy K. German
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
35
|
Wang X, Ye L, Lai Q, Wen S, Long Z, Qiu X, Elias PM, Yang B, Man MQ. Altered Epidermal Permeability Barrier Function in the Uninvolved Skin Supports a Role of Epidermal Dysfunction in the Pathogenesis of Occupational Hand Eczema. Skin Pharmacol Physiol 2020; 33:94-101. [PMID: 32224613 DOI: 10.1159/000506425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/07/2020] [Indexed: 11/19/2022]
Abstract
Although a compromised epidermal permeability barrier can contribute to the development of contact dermatitis, whether subjects with hand eczema display abnormalities in baseline epidermal permeability barrier function in their uninvolved skin remains unknown. The aim of the present study was to assess epidermal permeability barrier function in subjects with and without hand eczema in clothing manufacturers. Upon approval by the institutional review board, volunteers were recruited from clothing manufacturers in Guangzhou City, China. An 11-item questionnaire was used to collect general data from the volunteers. The diagnoses of self-proclaimed hand eczema were further confirmed by a dermatologist. Epidermal biophysical properties, including transepidermal water loss (TEWL) rates, stratum corneum hydration and skin surface pH were measured on the flexural surface of the left forearm in all volunteers. Epidermal biophysical properties were compared among cohorts of subjects with active hand eczema, a prior history of hand eczema and without any history of hand eczema. A total of 650 questionnaires were collected from 462 females and 188 males, with a mean age of 36.7 ± 0.46 years (range 16-69 years; 95% CI 35.8-37.59). Thirty-five subjects (5.4%) currently had hand eczema, while 28 subjects (4.3%) reported a prior history of hand eczema that was inactive currently. The prevalence of hand eczema did not differ significantly between genders. Neither a prior personal nor a family history of allergies was associated with the prevalence of hand eczema, but certain occupations and frequent contact with disinfectants were independently associated with the prevalence of hand eczema. In the overall cohort, males displayed higher TEWL rates and stratum corneum hydration levels than did females. Both skin surface pH and TEWL rates differed significantly among normal controls and subjects with active hand eczema or a prior history of hand eczema (p < 0.05). In conclusion, the uninvolved skin site of subjects with hand eczema exhibits abnormalities in epidermal perme-ability barrier, supporting a pathogenic role of epidermal dysfunction in hand eczema. Whether subjects with hand eczema in other occupations also display altered epidermal function on uninvolved skin remains to be explored.
Collapse
Affiliation(s)
- Xiaohua Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Li Ye
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qingsong Lai
- Center of Chronic Disease Prevention, Puning City, China
| | - Si Wen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zijun Long
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyu Qiu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Peter M Elias
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, California, USA
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou, China,
| |
Collapse
|
36
|
Genetics and Individual Predispositions in Contact Dermatitis. Contact Dermatitis 2020. [DOI: 10.1007/978-3-319-72451-5_2-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Opálka L, Kováčik A, Pullmannová P, Maixner J, Vávrová K. Effects of omega- O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models. J Lipid Res 2019; 61:219-228. [PMID: 31857390 DOI: 10.1194/jlr.ra119000420] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/10/2019] [Indexed: 11/20/2022] Open
Abstract
Ceramides (Cers) with ultralong (∼32-carbon) chains and ω-esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ∼10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content-namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.
Collapse
Affiliation(s)
- Lukáš Opálka
- Charles University, Faculty of Pharmacy in Hradec Králové, Prague, Czech Republic
| | - Andrej Kováčik
- Charles University, Faculty of Pharmacy in Hradec Králové, Prague, Czech Republic
| | - Petra Pullmannová
- Charles University, Faculty of Pharmacy in Hradec Králové, Prague, Czech Republic
| | - Jaroslav Maixner
- Hradec Králové, Czech Republic. University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Kateřina Vávrová
- Charles University, Faculty of Pharmacy in Hradec Králové, Prague, Czech Republic
| |
Collapse
|
38
|
Lee JH, Shih YT, Wei ML, Sun CK, Chiang BL. Classification of established atopic dermatitis in children with the in vivo imaging methods. JOURNAL OF BIOPHOTONICS 2019; 12:e201800148. [PMID: 30302943 DOI: 10.1002/jbio.201800148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/24/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Atopic dermatitis (AD) is a cutaneous disease resulting from a defective barrier and dysregulated immune response. The severity scoring of atopic dermatitis (SCORAD) is used to classify AD. Noninvasive imaging approaches supplementary to SCORAD were investigated. Cr:forsterite laser-based microscopy was employed to analyze endogenous third-harmonic generation (THG) and second-harmonic generation (SHG) signals from skin. Imaging parameters were compared between different AD severities. Three-dimensional reconstruction of imaged skin layers was performed. Finally, statistic models from quantitative imaging parameters were developed for predicting disease severity. Our data demonstrate that THG signal intensity of lesional skin in AD were significantly increased and was positively correlated with AD severity. Characteristic gray level co-occurrence matrix (GLCM) values were observed in more severe AD. In the 3D reconstruction video, individual dermal papilla and obvious fibrosis in the upper papillary dermis were easily identified. Our estimation models could predict the disease severity of AD patients with an accuracy of nearly 85%. The THG signal intensity and characteristic GLCM patterns are associated with AD severity and can serve as quantitative predictive parameters. Our imaging approach can be used to identify the histopathological changes of AD objectively, and to complement the SCORAD index, thus improving the accuracy of classifying AD severity.
Collapse
Affiliation(s)
- Jyh-Hong Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Yuan-Ta Shih
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Ming-Liang Wei
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chi-Kuang Sun
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
- Research Center for Applied Sciences and Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| |
Collapse
|
39
|
Bhattacharya N, Sato WJ, Kelly A, Ganguli-Indra G, Indra AK. Epidermal Lipids: Key Mediators of Atopic Dermatitis Pathogenesis. Trends Mol Med 2019; 25:551-562. [PMID: 31054869 DOI: 10.1016/j.molmed.2019.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
The skin barrier keeps the 'inside in' and the 'outside out', forming a protective blanket against external insults. Epidermal lipids, such as ceramides, fatty acids (FAs), triglycerides, and cholesterol, are integral components driving the formation and maintenance of the epidermal permeability barrier (EPB). A breach in this lipid barrier sets the platform for the subsequent onset and progression of atopic dermatitis (AD). Such lipids are also important in the normal functioning of organisms, both plants and animals, and in diseases, including cancer. Given the doubling of the number of cases of AD in recent years and the chronic nature of this disorder, here we shed light on the multifaceted role of diverse types of lipid in mediating AD pathogenesis.
Collapse
Affiliation(s)
- Nilika Bhattacharya
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - William J Sato
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Avalon Kelly
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Knight Cancer Institute, Portland, OR 97239, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Knight Cancer Institute, Portland, OR 97239, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Science Center, Oregon State University, Corvallis, OR, USA; Departments of Dermatology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA.
| |
Collapse
|
40
|
Cao F, Li X, Yang Y, Fang H, Qu H, Chang N, Ma Q, Cao W, Zhou J, Wang W. Toward Candidate Proteomic Biomarkers in Clinical Monitoring of Acute Promyelocytic Leukemia Treatment with Arsenic Trioxide. ACTA ACUST UNITED AC 2019; 23:119-130. [PMID: 30767729 DOI: 10.1089/omi.2018.0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fenglin Cao
- Department of Central Laboratory, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xingang Li
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Yiju Yang
- The Third People's Hospital of Hainan Province, Sanya, China
| | - Honghong Fang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Haixia Qu
- Bioyong (Beijing) Technology Co., Ltd., Beijing, China
| | - Naibai Chang
- Department of Hematology, Beijing Hospital, Beijing, China
| | - Qingwei Ma
- Bioyong (Beijing) Technology Co., Ltd., Beijing, China
| | - Weifan Cao
- College of Life Science, Northeast Forest University, Harbin, China
| | - Jin Zhou
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Public Health, Taishan Medical University, Taishan, China
| |
Collapse
|
41
|
Brans R, John SM, Frosch PJ. Clinical Aspects of Irritant Contact Dermatitis. Contact Dermatitis 2019. [DOI: 10.1007/978-3-319-72451-5_16-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
|
43
|
Jakasa I, Thyssen JP, Kezic S. The role of skin barrier in occupational contact dermatitis. Exp Dermatol 2018; 27:909-914. [DOI: 10.1111/exd.13704] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Ivone Jakasa
- Laboratory for Analytical Chemistry; Department of Chemistry and Biochemistry; Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| | - Jacob P. Thyssen
- Department of Dermatology and Allergy; National Allergy Research Centre; Herlev and Gentofte Hospital; University of Copenhagen; Hellerup Denmark
| | - Sanja Kezic
- Coronel Institute of Occupational Health; Amsterdam Public Health Research Institute; Academic Medical Center, University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
44
|
Angelova-Fischer I, Fischer TW, Abels C, Zillikens D. Accelerated barrier recovery and enhancement of the barrier integrity and properties by topical application of a pH 4 vs. a pH 5·8 water-in-oil emulsion in aged skin. Br J Dermatol 2018; 179:471-477. [PMID: 29577247 DOI: 10.1111/bjd.16591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Increased skin-surface pH is an important host-related factor for deteriorated barrier function in aged skin. OBJECTIVES We investigated whether restoration of skin pH through topical application of a water-in-oil emulsion with pH 4 improved the barrier homeostasis in aged skin, and compared the effects with an identical galenic formulation with pH 5·8. METHODS The effects of the test formulations on barrier recovery were investigated by repeated measurements of transepidermal water loss (TEWL) and skin pH 3 h, 6 h and 24 h after acetone-induced impairment of barrier function in aged skin. The long-term effects of the pH 4 and pH 5·8 emulsions were analysed by investigation of the barrier integrity and cohesion, the skin-surface pH and the skin roughness and scaliness before and after a 4-week, controlled application of the formulations. RESULTS The application of the pH 4 emulsion accelerated barrier recovery in aged skin: 3 h and 6 h after acetone-induced barrier disruption the differences in the TEWL recovery between the pH 4 treated and acetone control fields were significant. Furthermore, long-term application of the pH 4 formulation resulted in significantly decreased skin pH, enhanced barrier integrity and reduced skin-surface roughness and scaliness. At the same time points, the pH 5·8 formulation exerted only minor effects on the barrier function parameters. CONCLUSIONS Exogenous acidification through topical application of a water-in-oil emulsion with pH 4 leads to improvement of the skin barrier function and maintenance of the barrier homeostasis in aged skin.
Collapse
Affiliation(s)
- I Angelova-Fischer
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Department of Dermatology, Kepler University Hospital, Linz, Austria
| | - T W Fischer
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - C Abels
- Dr August Wolff GmbH & Co. KG Arzneimittel, Sudbrackstraße 56, D-33611, Bielefeld, Germany
| | - D Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
45
|
Niehues H, Bouwstra JA, El Ghalbzouri A, Brandner JM, Zeeuwen PLJM, van den Bogaard EH. 3D skin models for 3R research: The potential of 3D reconstructed skin models to study skin barrier function. Exp Dermatol 2018. [DOI: 10.1111/exd.13531] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hanna Niehues
- Department of Dermatology; Radboud university medical center (Radboudumc); Radboud Institute for Molecular Life Sciences (RIMLS); Nijmegen The Netherlands
| | - Joke A. Bouwstra
- Division of Drug Delivery Technology; Cluster BioTherapeutics; Leiden Academic Centre for Drug Research; Leiden University; Leiden The Netherlands
| | | | - Johanna M. Brandner
- Department of Dermatology and Venerology; University Hospital Hamburg-Eppendorf; Hamburg Germany
| | - Patrick L. J. M. Zeeuwen
- Department of Dermatology; Radboud university medical center (Radboudumc); Radboud Institute for Molecular Life Sciences (RIMLS); Nijmegen The Netherlands
| | - Ellen H. van den Bogaard
- Department of Dermatology; Radboud university medical center (Radboudumc); Radboud Institute for Molecular Life Sciences (RIMLS); Nijmegen The Netherlands
| |
Collapse
|
46
|
Berkers T, Visscher D, Gooris GS, Bouwstra JA. Topically Applied Ceramides Interact with the Stratum Corneum Lipid Matrix in Compromised Ex Vivo Skin. Pharm Res 2018; 35:48. [PMID: 29411158 PMCID: PMC5801391 DOI: 10.1007/s11095-017-2288-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/19/2017] [Indexed: 11/24/2022]
Abstract
PURPOSE To determine whether formulations containing ceramides (including a ceramide with a long hydroxyl acyl chain linked to a linoleate, CER EOS) and fatty acids are able to repair the skin barrier by normalizing the lipid organization in stratum corneum (SC). METHODS The formulations were applied on a skin barrier repair model consisting of ex vivo human skin from which SC was removed by stripping. The effect of formulations on the lipid organization and conformational ordering in the regenerated SC were analyzed using Fourier transform infrared spectroscopy and small angle X-ray diffraction. RESULTS Application of the formulation containing only one ceramide on regenerating SC resulted in a higher fraction of lipids adopting an orthorhombic organization. A similar fraction of lipids forming an orthorhombic organization was observed after application of a formulation containing two ceramides and a fatty acid on regenerating SC. No effects on the lamellar lipid organization were observed. CONCLUSIONS Application of a formulation containing either a single ceramide or two ceramides and a fatty acid on regenerating SC, resulted in a denser lateral lipid packing of the SC lipids in compromised skin. The strongest effect was observed after application of a formulation containing a single ceramide.
Collapse
Affiliation(s)
- Tineke Berkers
- Department of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Dani Visscher
- Department of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Gert S Gooris
- Department of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Joke A Bouwstra
- Department of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| |
Collapse
|
47
|
Tončić RJ, Kezić S, Hadžavdić SL, Marinović B. Skin barrier and dry skin in the mature patient. Clin Dermatol 2017; 36:109-115. [PMID: 29566915 DOI: 10.1016/j.clindermatol.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dry skin is the most common clinical manifestation of dermatologic diseases, and it presents with itching, redness, and desquamation-signs and clinical manifestations that are not only physically uncomfortable but also affect patients psychologically. The water content in the stratum corneum is largely dependent on the composition and amount of the intercellular lipids, which regulate the loss of water from the skin, and on the levels of hygroscopic substances of the natural moisturizing factors, which are responsible for retention of water in the stratum corneum. Prevention of water loss and penetration of potentially toxic substances and microorganisms into the body are the most important functions of the skin, which acts as a natural frontier between the inner organism and the environment. Skin barrier defects occur in several skin diseases, but the influence of aging on the skin barrier function is largely unknown and conflicting results have been reported. In this review, the structure and function of the barrier in relation to the aging process are discussed.
Collapse
Affiliation(s)
- Ružica Jurakić Tončić
- Department of Dermatology and Venereology, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Sanja Kezić
- Academic Medical Center Amsterdam, Coronel Institute of Occupational Health, Amsterdam, The Netherlands
| | - Suzana Ljubojević Hadžavdić
- Department of Dermatology and Venereology, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Branka Marinović
- Department of Dermatology and Venereology, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
48
|
Danso M, Boiten W, van Drongelen V, Gmelig Meijling K, Gooris G, El Ghalbzouri A, Absalah S, Vreeken R, Kezic S, van Smeden J, Lavrijsen S, Bouwstra J. Altered expression of epidermal lipid bio-synthesis enzymes in atopic dermatitis skin is accompanied by changes in stratum corneum lipid composition. J Dermatol Sci 2017; 88:57-66. [PMID: 28571749 DOI: 10.1016/j.jdermsci.2017.05.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/26/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The barrier dysfunction in atopic dermatitis (AD) skin correlates with stratum corneum (SC) lipid abnormalities including reduction of global lipid content, shorter ceramide (CER) as well as free fatty acid (FFA) chain length and altered CER subclass levels. However, the underlying cause of these changes in lipid composition has not been fully investigated. AIM We investigated whether the expression of CER and FFA biosynthesis enzymes are altered in AD skin compared with control skin and determine whether changes in enzyme expression can be related with changes in lipid composition. METHODS In AD patients and controls the expression of enzymes involved in the biosynthesis of FFAs and CERs was analyzed in relation to the SC lipid composition. These enzymes include stearoyl CoA desaturase (SCD), elongase 1 (ELOVL1) and ELOVL6 involved in FFA synthesis and β-glucocerebrosidase (GBA), acid-sphingomyelinase (aSmase), ceramide synthase 3 (CerS3) involved in CER synthesis. In TH2 treated human skin equivalents (AD HSEs) mimicking lesional AD skin, the mRNA expression of these enzymes was investigated. RESULTS The results reveal an altered expression of SCD and ELOVL1 in AD lesional skin. This was accompanied by functional changes displayed by increased unsaturated FFAs (SCD) and reduced FFA C22-C28 (ELOVL1) in AD lesional skin. The expression of GBA, aSmase and CerS3 were also altered in lesional skin. The CER composition in AD lesional skin showed corresponding changes such as increased CER AS and NS (aSmase) and decreased esterified ω-hydroxy CERs (CerS3). In support of the results from AD skin, the AD HSEs showed reduced mRNA ELOVL1, GBA and a Smase levels. CONCLUSION This study shows that alterations in the expression of key enzymes involved in SC lipid synthesis contribute to changes in the lipid composition in AD skin and inflammation may influence expression of these enzymes.
Collapse
Affiliation(s)
- Mogbekeloluwa Danso
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands; Department of Dermatology, Leiden University Medical Centre, Leiden, 2333 ZA, The Netherlands
| | - Walter Boiten
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Vincent van Drongelen
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands; Department of Dermatology, Leiden University Medical Centre, Leiden, 2333 ZA, The Netherlands
| | - Kevin Gmelig Meijling
- Department of Dermatology, Leiden University Medical Centre, Leiden, 2333 ZA, The Netherlands
| | - Gert Gooris
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Abdoel El Ghalbzouri
- Department of Dermatology, Leiden University Medical Centre, Leiden, 2333 ZA, The Netherlands
| | - Samira Absalah
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Rob Vreeken
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Jeroen van Smeden
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Sjan Lavrijsen
- Department of Dermatology, Leiden University Medical Centre, Leiden, 2333 ZA, The Netherlands
| | - Joke Bouwstra
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands.
| |
Collapse
|
49
|
Andersen YMF, Egeberg A, Balslev E, Jørgensen CLT, Szecsi PB, Stender S, Kaae J, Linneberg A, Gislason G, Skov L, Elias PM, Thyssen JP. Filaggrin loss-of-function mutations, atopic dermatitis and risk of actinic keratosis: results from two cross-sectional studies. J Eur Acad Dermatol Venereol 2017; 31:1038-1043. [PMID: 28213896 DOI: 10.1111/jdv.14172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/30/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Common loss-of-function mutations in filaggrin gene (FLG) represent a strong genetic risk factor for atopic dermatitis (AD). Homozygous mutation carriers typically display ichthyosis vulgaris (IV) and many have concomitant AD. Previously, homozygous, but not heterozygous, filaggrin gene mutations have been associated with squamous cell carcinomas. OBJECTIVE The first objective was to examine the association between FLG mutations and actinic keratosis (AK). The second objective was to investigate the occurrence of AK in patients with IV and AD, respectively. METHODS FLG mutation status in patients with AK was compared with controls from the general population. Furthermore, based on nationwide data from Danish registers, we compared the risk of AK in patients with IV, AD and psoriasis, respectively. RESULTS The prevalence of homozygous FLG mutations was significantly higher in the AK group (n = 4, 0.8%) in comparison with the control group (n = 18, 0.2%), whereas the prevalence of heterozygous FLG mutations was lower. In hospital registry data, patients with AD exhibited an increased risk of AK than did psoriasis controls (adjusted OR 1.46; [95% CI 1.12-1.90]), whereas no difference in risk was observed between patients with IV and AD. CONCLUSIONS This study indicates an increased susceptibility to AK in individuals with homozygous, but not heterozygous, FLG mutations and in patients with AD compared to psoriasis. Whether a reduction or absence of epidermal filaggrin could contribute to the susceptibility to AK in patients with IV and AD is unknown and additional research is needed to further explore this relationship.
Collapse
Affiliation(s)
- Y M F Andersen
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - A Egeberg
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - E Balslev
- Department of Pathology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - C L T Jørgensen
- Department of Pathology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - P B Szecsi
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - S Stender
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - J Kaae
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - A Linneberg
- Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen, Denmark.,Department of Clinical Experimental Research, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - G Gislason
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - L Skov
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - P M Elias
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, UCSF, San Francisco, CA, USA
| | - J P Thyssen
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| |
Collapse
|
50
|
Eaaswarkhanth M, Xu D, Flanagan C, Rzhetskaya M, Hayes MG, Blekhman R, Jablonski NG, Gokcumen O. Atopic Dermatitis Susceptibility Variants in Filaggrin Hitchhike Hornerin Selective Sweep. Genome Biol Evol 2016; 8:3240-3255. [PMID: 27678121 PMCID: PMC5174745 DOI: 10.1093/gbe/evw242] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human skin has evolved rapidly, leaving evolutionary signatures in the genome. The filaggrin (FLG) gene is widely studied for its skin-barrier function in humans. The extensive genetic variation in this gene, especially common loss-of-function (LoF) mutations, has been established as primary risk factors for atopic dermatitis. To investigate the evolution of this gene, we analyzed 2,504 human genomes and genotyped the copy number variation of filaggrin repeats within FLG in 126 individuals from diverse ancestral backgrounds. We were unable to replicate a recent study claiming that LoF of FLG is adaptive in northern latitudes with lower ultraviolet light exposure. Instead, we present multiple lines of evidence suggesting that FLG genetic variation, including LoF variants, have little or no effect on fitness in modern humans. Haplotype-level scrutinization of the locus revealed signatures of a recent selective sweep in Asia, which increased the allele frequency of a haplotype group (Huxian haplogroup) in Asian populations. Functionally, we found that the Huxian haplogroup carries dozens of functional variants in FLG and hornerin (HRNR) genes, including those that are associated with atopic dermatitis susceptibility, HRNR expression levels and microbiome diversity on the skin. Our results suggest that the target of the adaptive sweep is HRNR gene function, and the functional FLG variants that involve susceptibility to atopic dermatitis, seem to hitchhike the selective sweep on HRNR. Our study presents a novel case of a locus that harbors clinically relevant common genetic variation with complex evolutionary trajectories.
Collapse
Affiliation(s)
- Muthukrishnan Eaaswarkhanth
- Department of Biological Sciences, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY
| | - Duo Xu
- Department of Biological Sciences, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY
| | - Colin Flanagan
- Department of Biological Sciences, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY
| | - Margarita Rzhetskaya
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN
| | - Nina G Jablonski
- Department of Anthropology, Pennsylvania State University, University Park, PA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY
| |
Collapse
|