1
|
Shelby SA, Castello-Serrano I, Wisser KC, Levental I, Veatch SL. Membrane phase separation drives responsive assembly of receptor signaling domains. Nat Chem Biol 2023; 19:750-758. [PMID: 36997644 PMCID: PMC10771812 DOI: 10.1038/s41589-023-01268-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/17/2023] [Indexed: 04/01/2023]
Abstract
Plasma membrane heterogeneity has been tied to a litany of cellular functions and is often explained by analogy to membrane phase separation; however, models based on phase separation alone fall short of describing the rich organization available within cell membranes. Here we present comprehensive experimental evidence motivating an updated model of plasma membrane heterogeneity in which membrane domains assemble in response to protein scaffolds. Quantitative super-resolution nanoscopy measurements in live B lymphocytes detect membrane domains that emerge upon clustering B cell receptors (BCRs). These domains enrich and retain membrane proteins based on their preference for the liquid-ordered phase. Unlike phase-separated membranes that consist of binary phases with defined compositions, membrane composition at BCR clusters is modulated through the protein constituents in clusters and the composition of the membrane overall. This tunable domain structure is detected through the variable sorting of membrane probes and impacts the magnitude of BCR activation.
Collapse
Affiliation(s)
- Sarah A Shelby
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | | | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Shelby SA, Shaw TR, Veatch SL. Measuring the Co-Localization and Dynamics of Mobile Proteins in Live Cells Undergoing Signaling Responses. Methods Mol Biol 2023; 2654:1-23. [PMID: 37106172 PMCID: PMC10758997 DOI: 10.1007/978-1-0716-3135-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Single molecule imaging in live cells enables the study of protein interactions and dynamics as they participate in signaling processes. When combined with fluorophores that stochastically transition between fluorescent and reversible dark states, as in super-resolution localization imaging, labeled molecules can be visualized in single cells over time. This improvement in sampling enables the study of extended cellular responses at the resolution of single molecule localization. This chapter provides optimized experimental and analytical methods used to quantify protein interactions and dynamics within the membranes of adhered live cells. Importantly, the use of pair-correlation functions resolved in both space and time allows researchers to probe interactions between proteins on biologically relevant distance and timescales, even though fluorescence localization methods typically require long times to assemble well-sampled reconstructed images. We describe an application of this approach to measure protein interactions in B cell receptor signaling and include sample analysis code for post-processing of imaging data. These methods are quantitative, sensitive, and broadly applicable to a range of signaling systems.
Collapse
Affiliation(s)
- Sarah A Shelby
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Thomas R Shaw
- Program in Applied Physics, University of Michigan, Ann Arbor, MI, USA
| | - Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Shahhosseini M, Beshay PE, Akbari E, Roki N, Lucas CR, Avendano A, Song JW, Castro CE. Multiplexed Detection of Molecular Interactions with DNA Origami Engineered Cells in 3D Collagen Matrices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55307-55319. [PMID: 36509424 PMCID: PMC9785045 DOI: 10.1021/acsami.2c07971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/29/2022] [Indexed: 06/17/2023]
Abstract
The interactions of cells with signaling molecules present in their local microenvironment maintain cell proliferation, differentiation, and spatial organization and mediate progression of diseases such as metabolic disorders and cancer. Real-time monitoring of the interactions between cells and their extracellular ligands in a three-dimensional (3D) microenvironment can inform detection and understanding of cell processes and the development of effective therapeutic agents. DNA origami technology allows for the design and fabrication of biocompatible and 3D functional nanodevices via molecular self-assembly for various applications including molecular sensing. Here, we report a robust method to monitor live cell interactions with molecules in their surrounding environment in a 3D tissue model using a microfluidic device. We used a DNA origami cell sensing platform (CSP) to detect two specific nucleic acid sequences on the membrane of B cells and dendritic cells. We further demonstrated real-time detection of biomolecules with the DNA sensing platform on the surface of dendritic cells in a 3D microfluidic tissue model. Our results establish the integration of live cells with membranes engineered with DNA nanodevices into microfluidic chips as a highly capable biosensor approach to investigate subcellular interactions in physiologically relevant 3D environments under controlled biomolecular transport.
Collapse
Affiliation(s)
- Melika Shahhosseini
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Peter E. Beshay
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Ehsan Akbari
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Niksa Roki
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Christopher R. Lucas
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Alex Avendano
- Department
of Biomedical Engineering, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jonathan W. Song
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Carlos E. Castro
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Shaw TR, Fazekas FJ, Kim S, Flanagan-Natoli JC, Sumrall ER, Veatch SL. Estimating the localization spread function of static single-molecule localization microscopy images. Biophys J 2022; 121:2906-2920. [PMID: 35787472 PMCID: PMC9388596 DOI: 10.1016/j.bpj.2022.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022] Open
Abstract
Single-molecule localization microscopy (SMLM) permits the visualization of cellular structures an order of magnitude smaller than the diffraction limit of visible light, and an accurate, objective evaluation of the resolution of an SMLM data set is an essential aspect of the image processing and analysis pipeline. Here, we present a simple method to estimate the localization spread function (LSF) of a static SMLM data set directly from acquired localizations, exploiting the correlated dynamics of individual emitters and properties of the pair autocorrelation function evaluated in both time and space. The method is demonstrated on simulated localizations, DNA origami rulers, and cellular structures labeled by dye-conjugated antibodies, DNA-PAINT, or fluorescent fusion proteins. We show that experimentally obtained images have LSFs that are broader than expected from the localization precision alone, due to additional uncertainty accrued when localizing molecules imaged over time.
Collapse
Affiliation(s)
- Thomas R Shaw
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan; Program in Applied Physics, University of Michigan, Ann Arbor, Michigan
| | - Frank J Fazekas
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan
| | - Sumin Kim
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| | | | - Emily R Sumrall
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan
| | - Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan; Program in Applied Physics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
5
|
Fazekas FJ, Shaw TR, Kim S, Bogucki RA, Veatch SL. A mean shift algorithm for drift correction in localization microscopy. BIOPHYSICAL REPORTS 2021; 1. [PMID: 35382035 PMCID: PMC8978553 DOI: 10.1016/j.bpr.2021.100008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Single-molecule localization microscopy techniques transcend the diffraction limit of visible light by localizing isolated emitters sampled stochastically. This time-lapse imaging necessitates long acquisition times, over which sample drift can become large relative to the localization precision. Here, we present an efficient and robust method for estimating drift, using a simple peak-finding algorithm based on mean shifts that is effective for single-molecule localization microscopy in two or three dimensions.
Collapse
|
6
|
Oudinet C, Braikia FZ, Dauba A, Khamlichi AA. Mechanism and regulation of class switch recombination by IgH transcriptional control elements. Adv Immunol 2020; 147:89-137. [PMID: 32981636 DOI: 10.1016/bs.ai.2020.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Class switch recombination (CSR) plays an important role in humoral immunity by generating antibodies with different effector functions. CSR to a particular antibody isotype is induced by external stimuli, and occurs between highly repetitive switch (S) sequences. CSR requires transcription across S regions, which generates long non-coding RNAs and secondary structures that promote accessibility of S sequences to activation-induced cytidine deaminase (AID). AID initiates DNA double-strand breaks (DSBs) intermediates that are repaired by general DNA repair pathways. Switch transcription is controlled by various regulatory elements, including enhancers and insulators. The current paradigm posits that transcriptional control of CSR involves long-range chromatin interactions between regulatory elements and chromatin loops-stabilizing factors, which promote alignment of partner S regions in a CSR centre (CSRC) and initiation of CSR. In this review, we focus on the role of IgH transcriptional control elements in CSR and the chromatin-based mechanisms underlying this control.
Collapse
Affiliation(s)
- Chloé Oudinet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Fatima-Zohra Braikia
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
7
|
Van Laethem F, Saba I, Lu J, Bhattacharya A, Tai X, Guinter TI, Engelhardt B, Alag A, Rojano M, Ashe JM, Hanada KI, Yang JC, Sun PD, Singer A. Novel MHC-Independent αβTCRs Specific for CD48, CD102, and CD155 Self-Proteins and Their Selection in the Thymus. Front Immunol 2020; 11:1216. [PMID: 32612609 PMCID: PMC7308553 DOI: 10.3389/fimmu.2020.01216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
MHC-independent αβTCRs (TCRs) recognize conformational epitopes on native self-proteins and arise in mice lacking both MHC and CD4/CD8 coreceptor proteins. Although naturally generated in the thymus, these TCRs resemble re-engineered therapeutic chimeric antigen receptor (CAR) T cells in their specificity for MHC-independent ligands. Here we identify naturally arising MHC-independent TCRs reactive to three native self-proteins (CD48, CD102, and CD155) involved in cell adhesion. We report that naturally arising MHC-independent TCRs require high affinity TCR-ligand engagements in the thymus to signal positive selection and that high affinity positive selection generates a peripheral TCR repertoire with limited diversity and increased self-reactivity. We conclude that the affinity of TCR-ligand engagements required to signal positive selection in the thymus inversely determines the diversity and self-tolerance of the mature TCR repertoire that is selected.
Collapse
Affiliation(s)
- François Van Laethem
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Ingrid Saba
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Abhisek Bhattacharya
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Terry I Guinter
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Britta Engelhardt
- Theodor Kocher Institute, Faculty of Bern, Universität Bern, Bern, Switzerland
| | - Amala Alag
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Mirelle Rojano
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Jennifer M Ashe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Ken-Ichi Hanada
- Surgery Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - James C Yang
- Surgery Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Peter D Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
8
|
Núñez MF, Wisser K, Veatch SL. Synergistic factors control kinase-phosphatase organization in B-cells engaged with supported bilayers. Mol Biol Cell 2019; 31:667-682. [PMID: 31877064 PMCID: PMC7202075 DOI: 10.1091/mbc.e19-09-0507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
B-cells become activated by ligands with varying valency and mode of presentation to the B-cell receptor (BCR). We previously demonstrated that clustering the immunoglobulin M (IgM) isotype of BCR with an artificial soluble cross-linker stabilized an ordered phase-like domain that enriched kinases and depleted phosphatases to promote receptor tyrosine phosphorylation. BCR is also activated by ligands presented at surfaces, and here we activate B-cells via supported bilayers of phosphatidylcholine lipids, a natural ligand for the IgM BCR expressed in the CH27 cells used. Using superresolution fluorescence localization microscopy, along with a quantitative cross-correlation analysis, we find that BRCs engaged with bilayers sort minimal peptide markers of liquid-ordered and liquid-disordered phases, indicating that ordered-domain stabilization is a general feature of BCR clustering. The phosphatase CD45 is more strongly excluded from bilayer-engaged BRCs than a transmembrane peptide, indicating that mechanisms other than domain partitioning contribute to its organization. Experimental observations are assembled into a minimal model of receptor activation that incorporates both ordered domains and direct phosphatase exclusion mechanisms to produce a more sensitive response.
Collapse
Affiliation(s)
| | - Kathleen Wisser
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48105
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48105
| |
Collapse
|
9
|
Uche UU, Piccirillo AR, Kataoka S, Grebinoski SJ, D'Cruz LM, Kane LP. PIK3IP1/TrIP restricts activation of T cells through inhibition of PI3K/Akt. J Exp Med 2018; 215:3165-3179. [PMID: 30429249 PMCID: PMC6279406 DOI: 10.1084/jem.20172018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/27/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Abstract
This study demonstrates a role for the transmembrane regulator of PI3K (TrIP) in restricting early T cell activation, at least in part through effects on PI3K. It is also shown that levels of TrIP decrease preceding full T cell activation. Phosphatidylinositol-3 kinases (PI3Ks) modulate cellular growth, proliferation, and survival; dysregulation of the PI3K pathway can lead to autoimmune disease and cancer. PIK3IP1 (or transmembrane inhibitor of PI3K [TrIP]) is a putative transmembrane regulator of PI3K. TrIP contains an extracellular kringle domain and an intracellular domain with homology to the inter-SH2 domain of the PI3K regulatory subunit p85, but the mechanism of TrIP function is poorly understood. We show that both the kringle and p85-like domains are necessary for TrIP inhibition of PI3K and that TrIP is down-modulated from the surface of T cells during T cell activation. In addition, we present evidence that the kringle domain may modulate TrIP function by mediating oligomerization. Using an inducible knockout mouse model, we show that TrIP-deficient T cells exhibit more robust activation and can mediate clearance of Listeria monocytogenes infection faster than WT mice. Thus, TrIP is a negative regulator of T cell activation and may represent a novel target for immune modulation.
Collapse
Affiliation(s)
- Uzodinma U Uche
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA.,Interdisciplinary Biomedical Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ann R Piccirillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Stephanie J Grebinoski
- Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Louise M D'Cruz
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
10
|
Differing roles of CD1d2 and CD1d1 proteins in type I natural killer T cell development and function. Proc Natl Acad Sci U S A 2018; 115:E1204-E1213. [PMID: 29351991 DOI: 10.1073/pnas.1716669115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MHC class I-like CD1 molecules have evolved to present lipid-based antigens to T cells. Differences in the antigen-binding clefts of the CD1 family members determine the conformation and size of the lipids that are presented, although the factors that shape CD1 diversity remain unclear. In mice, two homologous genes, CD1D1 and CD1D2, encode the CD1d protein, which is essential to the development and function of natural killer T (NKT) cells. However, it remains unclear whether both CD1d isoforms are equivalent in their antigen presentation capacity and functions. Here, we report that CD1d2 molecules are expressed in the thymus of some mouse strains, where they select functional type I NKT cells. Intriguingly, the T cell antigen receptor repertoire and phenotype of CD1d2-selected type I NKT cells in CD1D1-/- mice differed from CD1d1-selected type I NKT cells. The structures of CD1d2 in complex with endogenous lipids and a truncated acyl-chain analog of α-galactosylceramide revealed that its A'-pocket was restricted in size compared with CD1d1. Accordingly, CD1d2 molecules could not present glycolipid antigens with long acyl chains efficiently, favoring the presentation of short acyl chain antigens. These results indicate that the two CD1d molecules present different sets of self-antigen(s) in the mouse thymus, thereby impacting the development of invariant NKT cells.
Collapse
|
11
|
Akbari E, Mollica MY, Lucas CR, Bushman SM, Patton RA, Shahhosseini M, Song JW, Castro CE. Engineering Cell Surface Function with DNA Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201703632. [PMID: 29027713 PMCID: PMC5739518 DOI: 10.1002/adma.201703632] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/08/2017] [Indexed: 05/23/2023]
Abstract
A specific and reversible method is reported to engineer cell-membrane function by embedding DNA-origami nanodevices onto the cell surface. Robust membrane functionalization across epithelial, mesenchymal, and nonadherent immune cells is achieved with DNA nanoplatforms that enable functions including the construction of higher-order DNA assemblies at the cell surface and programed cell-cell adhesion between homotypic and heterotypic cells via sequence-specific DNA hybridization. It is anticipated that integration of DNA-origami nanodevices can transform the cell membrane into an engineered material that can mimic, manipulate, and measure biophysical and biochemical function within the plasma membrane of living cells.
Collapse
Affiliation(s)
- Ehsan Akbari
- Department of Mechanical and Aerospace Engineering, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, The United States of America
| | - Molly Y. Mollica
- Department of Mechanical and Aerospace Engineering, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, The United States of America
| | - Christopher R. Lucas
- Department of Mechanical and Aerospace Engineering, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, The United States of America
| | - Sarah M. Bushman
- Department of Biomedical Engineering, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, The United States of America
| | - Randy A. Patton
- Department of Mechanical and Aerospace Engineering, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, The United States of America
| | - Melika Shahhosseini
- Department of Mechanical and Aerospace Engineering, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, The United States of America
| | - Jonathan W. Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, The United States of America
| | - Carlos E. Castro
- Department of Mechanical and Aerospace Engineering, Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, The United States of America
| |
Collapse
|
12
|
Stone MB, Shelby SA, Núñez MF, Wisser K, Veatch SL. Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 2017; 6. [PMID: 28145867 PMCID: PMC5373823 DOI: 10.7554/elife.19891] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
Diverse cellular signaling events, including B cell receptor (BCR) activation, are hypothesized to be facilitated by domains enriched in specific plasma membrane lipids and proteins that resemble liquid-ordered phase-separated domains in model membranes. This concept remains controversial and lacks direct experimental support in intact cells. Here, we visualize ordered and disordered domains in mouse B lymphoma cell membranes using super-resolution fluorescence localization microscopy, demonstrate that clustered BCR resides within ordered phase-like domains capable of sorting key regulators of BCR activation, and present a minimal, predictive model where clustering receptors leads to their collective activation by stabilizing an extended ordered domain. These results provide evidence for the role of membrane domains in BCR signaling and a plausible mechanism of BCR activation via receptor clustering that could be generalized to other signaling pathways. Overall, these studies demonstrate that lipid mediated forces can bias biochemical networks in ways that broadly impact signal transduction. DOI:http://dx.doi.org/10.7554/eLife.19891.001 Membranes made of molecules called lipids surround every living cell to protect the cell's contents. Cells also communicate with the outside environment via their membranes. Proteins in the membrane receive information from the environment and trigger signaling pathways inside the cell to relay this information to the center of cell. The way in which proteins are organized on the membrane has a major influence on their signaling activity. Some areas of the membrane are more crowded with certain lipids and signaling proteins than others. Lipid and protein molecules of particular types can come together and form distinct areas called “ordered” and “disordered” domains. The lipids in ordered domains are more tightly packed than disordered domains and it is thought that this difference allows domains to selectively exclude or include certain proteins. Ordered domains are also known as "lipid rafts". Lipid rafts and disordered domains may help cells to control the activities of signaling pathways, however, technical limitations have made it difficult to study the roles of these domains. The membranes surrounding immune cells called B cells contain a protein called the B cell receptor, which engages with proteins from microbes and other foreign invaders. When the B cell receptor binds to a foreign protein it forms clusters with other B cell receptors and becomes active, triggering a signaling pathway that leads to immune responses. Stone, Shelby et al. examined lipid rafts and disordered domains in B cells from mice using a technique called super-resolution fluorescence microscopy. The results show that clusters of B cell receptors are present within lipid rafts. These clusters made the lipid rafts larger and more stable. A protein that is needed during the early stages of B cell receptor signaling was also found in the same lipid rafts. Another protein that terminates signaling was excluded because it prefers disordered domains. Together, this provides a local environment in certain areas of the membrane that favors receptor activity and supports the subsequent immune response. Future work is needed to understand how cells control the make-up of lipids and proteins within their membranes, and how defects in this regulation can alter signaling activity and lead to disease. DOI:http://dx.doi.org/10.7554/eLife.19891.002
Collapse
Affiliation(s)
- Matthew B Stone
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Sarah A Shelby
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Marcos F Núñez
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Kathleen Wisser
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| |
Collapse
|
13
|
Britton GJ, Ambler R, Clark DJ, Hill EV, Tunbridge HM, McNally KE, Burton BR, Butterweck P, Sabatos-Peyton C, Hampton-O’Neil LA, Verkade P, Wülfing C, Wraith DC. PKCθ links proximal T cell and Notch signaling through localized regulation of the actin cytoskeleton. eLife 2017; 6:e20003. [PMID: 28112644 PMCID: PMC5310840 DOI: 10.7554/elife.20003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/22/2017] [Indexed: 11/16/2022] Open
Abstract
Notch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28. PKCθ selectively inactivates the negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation. We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways.
Collapse
Affiliation(s)
- Graham J Britton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Rachel Ambler
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Danielle J Clark
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Elaine V Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Helen M Tunbridge
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kerrie E McNally
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Bronwen R Burton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Philomena Butterweck
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Lea A Hampton-O’Neil
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - David Cameron Wraith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
14
|
Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching. Nature 2015; 525:134-139. [PMID: 26308889 PMCID: PMC4592165 DOI: 10.1038/nature14970] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/21/2015] [Indexed: 01/08/2023]
Abstract
During B-cell development, RAG endonuclease cleaves immunoglobulin heavy chain (IgH) V, D, and J gene segments and orchestrates their fusion as deletional events that assemble a V(D)J exon in the same transcriptional orientation as adjacent Cμ constant region exons. In mice, six additional sets of constant region exons (CHs) lie 100-200 kilobases downstream in the same transcriptional orientation as V(D)J and Cμ exons. Long repetitive switch (S) regions precede Cμ and downstream CHs. In mature B cells, class switch recombination (CSR) generates different antibody classes by replacing Cμ with a downstream CH (ref. 2). Activation-induced cytidine deaminase (AID) initiates CSR by promoting deamination lesions within Sμ and a downstream acceptor S region; these lesions are converted into DNA double-strand breaks (DSBs) by general DNA repair factors. Productive CSR must occur in a deletional orientation by joining the upstream end of an Sμ DSB to the downstream end of an acceptor S-region DSB. However, the relative frequency of deletional to inversional CSR junctions has not been measured. Thus, whether orientation-specific joining is a programmed mechanistic feature of CSR as it is for V(D)J recombination and, if so, how this is achieved is unknown. To address this question, we adapt high-throughput genome-wide translocation sequencing into a highly sensitive DSB end-joining assay and apply it to endogenous AID-initiated S-region DSBs in mouse B cells. We show that CSR is programmed to occur in a productive deletional orientation and does so via an unprecedented mechanism that involves in cis Igh organizational features in combination with frequent S-region DSBs initiated by AID. We further implicate ATM-dependent DSB-response factors in enforcing this mechanism and provide an explanation of why CSR is so reliant on the 53BP1 DSB-response factor.
Collapse
|
15
|
Paul S, Schaefer BC. Visualizing TCR-induced POLKADOTS formation and NF-κB activation in the D10 T-cell clone and mouse primary effector T cells. Methods Mol Biol 2015; 1280:219-238. [PMID: 25736751 DOI: 10.1007/978-1-4939-2422-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
T cells are an immune cell lineage that play a central role in protection against pathogen infection. Antigen, in the form of pathogen-derived peptides, stimulates the T-cell receptor (TCR), leading to activation of the transcription factor, nuclear factor kappa B (NF-κB). The subsequent NF-κB-dependent gene expression program drives expansion and effector differentiation of antigen-specific T cells, leading to the adaptive anti-pathogen immune response. The cell surface TCR transmits activating signals to cytosolic NF-κB by a complex signaling cascade, in which the adapter protein Bcl10 plays a key role. We have previously demonstrated that TCR engagement leads to the formation of cytosolic Bcl10 clusters, called POLKADOTS, that provide a platform for the assembly of the terminal signaling complex that ultimately mediates NF-κB activation. In this chapter, we describe the methods utilized to visualize the formation of TCR-induced POLKADOTS and to study the temporal association between POLKADOTS formation and nuclear translocation of the NF-κB subunit, RelA/p65.
Collapse
Affiliation(s)
- Suman Paul
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| | | |
Collapse
|
16
|
Maloney JM, Van Vliet KJ. Chemoenvironmental modulators of fluidity in the suspended biological cell. SOFT MATTER 2014; 10:8031-8042. [PMID: 25160132 DOI: 10.1039/c4sm00743c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biological cells can be characterized as "soft matter" with mechanical characteristics potentially modulated by external cues such as pharmaceutical dosage or fever temperature. Further, quantifying the effects of chemical and physical stimuli on a cell's mechanical response informs models of living cells as complex materials. Here, we investigate the mechanical behavior of single biological cells in terms of fluidity, or mechanical hysteresivity normalized to the extremes of an elastic solid or a viscous liquid. This parameter, which complements stiffness when describing whole-cell viscoelastic response, can be determined for a suspended cell within subsecond times. Questions remain, however, about the origin of fluidity as a conserved parameter across timescales, the physical interpretation of its magnitude, and its potential use for high-throughput sorting and separation of interesting cells by mechanical means. Therefore, we exposed suspended CH27 lymphoma cells to various chemoenvironmental conditions--temperature, pharmacological agents, pH, and osmolarity--and measured cell fluidity with a non-contact technique to extend familiarity with suspended-cell mechanics in the context of both soft-matter physics and mechanical flow cytometry development. The actin-cytoskeleton-disassembling drug latrunculin exacted a large effect on mechanical behavior, amenable to dose-dependence analysis of coupled changes in fluidity and stiffness. Fluidity was minimally affected by pH changes from 6.5 to 8.5, but strongly modulated by osmotic challenge to the cell, where the range spanned halfway from solid to liquid behavior. Together, these results support the interpretation of fluidity as a reciprocal friction within the actin cytoskeleton, with implications both for cytoskeletal models and for expectations when separating interesting cell subpopulations by mechanical means in the suspended state.
Collapse
Affiliation(s)
- John M Maloney
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | |
Collapse
|
17
|
Maloney JM, Lehnhardt E, Long AF, Van Vliet KJ. Mechanical fluidity of fully suspended biological cells. Biophys J 2014; 105:1767-77. [PMID: 24138852 DOI: 10.1016/j.bpj.2013.08.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/01/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Abstract
Mechanical characteristics of single biological cells are used to identify and possibly leverage interesting differences among cells or cell populations. Fluidity-hysteresivity normalized to the extremes of an elastic solid or a viscous liquid-can be extracted from, and compared among, multiple rheological measurements of cells: creep compliance versus time, complex modulus versus frequency, and phase lag versus frequency. With multiple strategies available for acquisition of this nondimensional property, fluidity may serve as a useful and robust parameter for distinguishing cell populations, and for understanding the physical origins of deformability in soft matter. Here, for three disparate eukaryotic cell types deformed in the suspended state via optical stretching, we examine the dependence of fluidity on chemical and environmental influences at a timescale of ∼1 s. We find that fluidity estimates are consistent in the time and frequency domains under a structural damping (power-law or fractional-derivative) model, but not under an equivalent-complexity, lumped-component (spring-dashpot) model; the latter predicts spurious time constants. Although fluidity is suppressed by chemical cross-linking, we find that ATP depletion in the cell does not measurably alter the parameter, and we thus conclude that active ATP-driven events are not a crucial enabler of fluidity during linear viscoelastic deformation of a suspended cell. Finally, by using the capacity of optical stretching to produce near-instantaneous increases in cell temperature, we establish that fluidity increases with temperature-now measured in a fully suspended, sortable cell without the complicating factor of cell-substratum adhesion.
Collapse
Affiliation(s)
- John M Maloney
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
18
|
Toll-like receptor agonists induce apoptosis in mouse B-cell lymphoma cells by altering NF-κB activation. Cell Mol Immunol 2013; 10:360-72. [PMID: 23727784 DOI: 10.1038/cmi.2013.14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes microbial DNA containing unmethylated cytosyl guanosyl (CpG) sequences, induces innate immune responses, and facilitates antigen-specific adaptive immunity. Recent studies report that in addition to stimulating innate immunity, TLR9 ligands induce apoptosis of TLR9 expressing cancer cells. To understand the mechanism of TLR9-induced apoptosis, we compared the effects of CpG containing oligodeoxynucleotides (CpG ODN) on a mouse B-cell lymphoma line, CH27, with those on mouse splenic B cells. CpG ODN inhibited constitutive proliferation and induced apoptosis in the CH27 B-cell lymphoma line. In contrast, CpG ODN-treated primary B cells were stimulated to proliferate and were rescued from spontaneous apoptosis. The induction of apoptosis required the ODNs to contain the CpG motif and the expression of TLR9 in lymphoma B cells. A decrease in Bcl-xl expression and an increase in Fas and Fas ligand expression accompanied lymphoma B-cell apoptosis. Treatment with the Fas ligand-neutralizing antibody inhibited CpG ODN-induced apoptosis. CpG ODN triggered a transient NF-κB activation in the B-cell lymphoma cell line, which constitutively expresses a high level of c-Myc, while CpG ODN induced sustained increases in NF-κB activation and c-Myc expression in primary B cells. Furthermore, an NF-κB inhibitor inhibited the proliferation of the CH27 B-cell lymphoma line. Our data suggest that the differential responses of lymphoma and primary B cells to CpG ODN are the result of differences in NF-κB activation. The impaired NF-κB activation in the CpG ODN-treated B-cell lymphoma cell line alters the balance between NF-κB and c-Myc, which induces Fas/Fas ligand-dependent apoptosis.
Collapse
|
19
|
Lucas CR, Cordero-Nieves HM, Erbe RS, McAlees JW, Bhatia S, Hodes RJ, Campbell KS, Sanders VM. Prohibitins and the cytoplasmic domain of CD86 cooperate to mediate CD86 signaling in B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2012; 190:723-36. [PMID: 23241883 DOI: 10.4049/jimmunol.1201646] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CD86 engagement on a CD40L/IL-4-primed murine B cell activates signaling intermediates that promote NF-κB activation to increase Oct-2 and mature IgG1 mRNA and protein expression, as well as the rate of IgG1 transcription, without affecting class switch recombination. One of the most proximal signaling intermediates identified is phospholipase Cγ2, a protein reported to bind tyrosine residues, which are absent in the cytoplasmic domain of CD86. Using a proteomics-based identification approach, we show that the tyrosine-containing transmembrane adaptor proteins prohibitin (Phb)1 and Phb2 bind to CD86. The basal expression of Phb1/2 and association with CD86 was low in resting B cells, whereas the level of expression and association increased primarily after priming with CD40. The CD86-induced increase in Oct-2 and IgG1 was less when either Phb1/2 expression was reduced by short hairpin RNA or the cytoplasmic domain of CD86 was truncated or mutated at serine/threonine protein kinase C phosphorylation sites, which did not affect Phb1/2 binding to CD86. Using this approach, we also show that Phb1/2 and the CD86 cytoplasmic domain are required for the CD86-induced phosphorylation of IκBα, which we previously reported leads to NF-κB p50/p65 activation, whereas only Phb1/2 was required for the CD86-induced phosphorylation of phospholipase Cγ2 and protein kinase Cα/β(II), which we have previously reported leads to NF-κB (p65) phosphorylation and subsequent nuclear translocation. Taken together, these findings suggest that Phb1/2 and the CD86 cytoplasmic domain cooperate to mediate CD86 signaling in a B cell through differential phosphorylation of distal signaling intermediates required to increase IgG1.
Collapse
Affiliation(s)
- Christopher R Lucas
- Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hardy RR, Hayakawa K. Positive and negative selection of natural autoreactive B cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:227-38. [PMID: 22903678 DOI: 10.1007/978-1-4614-3461-0_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Naturally occurring antibodies (NAbs) produced by CD5(+) B-1 B cells include those with specificity for thymocytes (anti-thymocyte autoantibody, ATA). Here we describe a prototypic example, encoded by an unmutated immunoglobulin μ/κ heavy chain/light chain. Studies with ATA-μ ("heavy chain only") transgenic mice demonstrated a critical requirement for self-antigen in the accumulation of B cells with this specificity and for the production of high levels of serum ATA NAb. Furthermore, analysis of B-cell development in ATA-μκ ("heavy and light chain") transgenic mice revealed two distinct responses by B cells to expression of this B-cell receptor (BCR). (1) Most B cells developing from bone marrow of adult mice were blocked at an immature stage in spleen and only escaped apoptosis by editing their BCR to eliminate the ATA specificity. (2) Some B cells differentiated to antibody-forming cells without altering their specificity, produced high levels of serum ATA, and many ATA-secreting plasma cells were observed in spleen. Finally, examination of B-cell development and ATA NAb production in ATA-μκ transgenic mice with levels of Thy-1 autoantigen varying from very low to above physiologic reveals a clear relationship between BCR crosslinking by antigen and B-cell fate. Low levels of Thy-1 autoantigen resulted in diversion of ATA B cells into the marginal zone B-cell compartment, presumably because of reduced BCR signaling. Thus, our studies demonstrate a key positive selection step in the development of NAb-producing B cells and show that most of these cells in adult mice bearing such specificities fail to reach a mature stage. Importantly, because these specificities are isolated from B-1 B cells and, when expressed as transgenes, guide development into the B-1 or marginal zone B-cell pool, we identify these B cells as a major source of natural autoantibodies in mice.
Collapse
|
21
|
Harding CV, Ramachandra L. Presenting exogenous antigen to T cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2010; Chapter 16:16.2.1-16.2.18. [PMID: 20143316 DOI: 10.1002/0471142735.im1602s88] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antigen processing and presentation experiments can be done with a wide variety of antigen-presenting cells (APCs). Most experiments will use one of the "professional" APC types: dendritic cells (DCs), macrophages, and B lymphocytes. Other types of cells may be used for antigen presentation in some circumstances. Each type of professional APC has an important antigen-presentation function, but the different APC types contribute to different aspects of the immune response. Therefore, selection of an APC type for study must include consideration of the stage or aspect of immune response that is to be modeled in the experiment. An important technical distinction for some types of experiments is whether the APCs are adherent or nonadherent, since this dictates the procedures that must be used to wash the cells as the medium is changed.
Collapse
|
22
|
Rubtsova K, Scott-Browne JP, Crawford F, Dai S, Marrack P, Kappler JW. Many different Vbeta CDR3s can reveal the inherent MHC reactivity of germline-encoded TCR V regions. Proc Natl Acad Sci U S A 2009; 106:7951-6. [PMID: 19416894 PMCID: PMC2674405 DOI: 10.1073/pnas.0902728106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Indexed: 11/18/2022] Open
Abstract
We have hypothesized that in the prenegative selection TCR repertoire, many somatically generated complementary-determining region (CDR) 3 loops combine with evolutionarily selected germline Valpha/Vbeta CDR1/CDR2 loops to create highly MHC/peptide cross-reactive T cells that are subsequently deleted by negative selection. Here, we present a mutational analysis of the Vbeta CDR3 of such a cross-reactive T-cell receptor (TCR), YAe62. Most YAe62 TCRs with the mutant CDR3s became less MHC promiscuous. However, others with CDR3s unrelated in sequence to the original recognized even more MHC alleles than the original TCR. Most importantly, this recognition was still dependent on the conserved CDR1/CDR2 residues. These results bolster the idea that germline TCR V elements are inherently reactive to MHC but that this reactivity is fine-tuned by the somatically generated CDR3 loops.
Collapse
Affiliation(s)
- Kira Rubtsova
- Howard Hughes Medical Institute and
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206
| | - James P. Scott-Browne
- Howard Hughes Medical Institute and
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206
| | - Frances Crawford
- Howard Hughes Medical Institute and
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206
| | - Shaodong Dai
- Howard Hughes Medical Institute and
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206
| | - Philippa Marrack
- Howard Hughes Medical Institute and
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045; and
| | - John W. Kappler
- Howard Hughes Medical Institute and
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206
- Program in Biomolecular Structure, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
23
|
Knorr R, Karacsonyi C, Lindner R. Endocytosis of MHC molecules by distinct membrane rafts. J Cell Sci 2009; 122:1584-94. [PMID: 19383725 DOI: 10.1242/jcs.039727] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In B-lymphocytes, endocytosis of MHC I and MHC II molecules is important for the cross-priming and presentation of labile antigens, respectively. Here, we report that MHC I and MHC II were internalized by separate endocytic carriers that lacked transferrin receptor. Cholera toxin B was co-internalized with MHC II, but not with MHC I, suggesting that the CLIC/GEEC pathway is involved in the uptake of MHC II. Endocytosis of MHC I and MHC II was inhibited by filipin, but only MHC II showed a strong preference for a membrane raft environment in a co-clustering analysis with G(M)1. By using a novel method for the extraction of detergent-resistant membranes (DRMs), we observed that MHC I and MHC II associate with two distinct types of DRMs. These differ in density, protein content, lipid composition, and ultrastructure. The results of cell surface biotinylation and subsequent DRM isolation show that precursors for both DRMs coexist in the plasma membrane. Moreover, clustering of MHC proteins at the cell surface resulted in shifts of the respective DRMs, revealing proximity-induced changes in the membrane environment. Our results suggest that the preference of MHC I and MHC II for distinct membrane rafts directs them to different cellular entry points.
Collapse
Affiliation(s)
- Ruth Knorr
- Department of Cell Biology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
24
|
Hematopoietic protein tyrosine phosphatase mediates beta2-adrenergic receptor-induced regulation of p38 mitogen-activated protein kinase in B lymphocytes. Mol Cell Biol 2008; 29:675-86. [PMID: 19047375 DOI: 10.1128/mcb.01466-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation of the beta(2)-adrenergic receptor (beta(2)AR) on a CD40L/interleukin-4-activated B lymphocyte increases the level of immunoglobulin E (IgE) in a protein kinase A (PKA)- and p38 mitogen-activated protein kinase (MAPK)-dependent manner. However, the mechanism by which beta(2)AR stimulation mediates the increase in the level of p38 MAPK activation has remained unclear. Here we show that the beta(2)AR-induced increase in p38 MAPK activation occurred via a hematopoietic protein tyrosine phosphatase (HePTP)-mediated cross talk between PKA and p38 MAPK. beta(2)AR agonists, cAMP-elevating agents, and PKA inhibitors were used to show that beta(2)AR stimulation resulted in a PKA-dependent increase in p38 MAPK phosphorylation. Pharmacological agents and gene-deficient mice revealed that p38 MAPK phosphorylation was regulated by the G-stimulatory (Gs)/cAMP/PKA pathway independently of the G-inhibitory or beta-arrestin-2 pathways. Coimmunoprecipitation and Western blot analysis showed that HePTP was phosphorylated in a PKA-dependent manner, which inactivated HePTP and allowed for increased free p38 MAPK to be phosphorylated by the MAPK cascade that was activated by CD40L. HePTP short hairpin RNA confirmed that HePTP played a role in regulating the level of p38 MAPK phosphorylation in a B cell. Thus, beta(2)AR stimulation on a B cell phosphorylates and inactivates HePTP in a Gs/cAMP/PKA-dependent manner to release bound p38 MAPK, making more available for phosphorylation and subsequent IgE regulation.
Collapse
|
25
|
Fagone P, Sriburi R, Ward-Chapman C, Frank M, Wang J, Gunter C, Brewer JW, Jackowski S. Phospholipid Biosynthesis Program Underlying Membrane Expansion during B-lymphocyte Differentiation. J Biol Chem 2007; 282:7591-605. [PMID: 17213195 DOI: 10.1074/jbc.m608175200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Stimulated B-lymphocytes differentiate into plasma cells committed to antibody production. Expansion of the endoplasmic reticulum and Golgi compartments is a prerequisite for high rate synthesis, assembly, and secretion of immunoglobulins. The bacterial cell wall component lipopolysaccharide (LPS) stimulates murine B-cells to proliferate and differentiate into antibody-secreting cells that morphologically resemble plasma cells. LPS activation of CH12 B-cells augmented phospholipid production and initiated a genetic program, including elevated expression of the genes for the synthesis, elongation, and desaturation of fatty acids that supply the phospholipid acyl moieties. Likewise, many of the genes in phospholipid biosynthesis were up-regulated, most notably those encoding Lipin1 and choline phosphotransferase. In contrast, CTP:phosphocholine cytidylyltransferase alpha (CCTalpha) protein, a key control point in phosphatidylcholine biosynthesis, increased because of stabilization of protein turnover rather than transcriptional activation. Furthermore, an elevation in cellular diacylglycerol and fatty acid correlated with enhanced allosteric activation of CCTalpha by the membrane lipids. This work defines a genetic and biochemical program for membrane phospholipid biogenesis that correlates with an increase in the phospholipid components of the endoplasmic reticulum and Golgi compartments in LPS-stimulated B-cells.
Collapse
Affiliation(s)
- Paolo Fagone
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
CD5+ B cells have attracted considerable interest because of their association with self-reactivity, autoimmunity, and leukemia. In mice, CD5+ B cells are readily generated from fetal/neonatal precursors, but inefficiently from precursors in adult. One model proposed to explain this difference is that their production occurs through a distinctive developmental process, termed B-1, that enriches pre-B cells with novel germline VDJs and that requires positive selection of newly formed B cells by self-Ag. In contrast, follicular B cells are generated throughout adult life in a developmental process termed B-2, selecting VDJs that pair well with surrogate L chain, and whose maturation appears relatively independent of antigenic selection. In the present study, I focus on processes that shape the repertoire of mouse CD5+ B cells, describing the differences between B-1 and B-2 development, and propose a model encompassing both in the generation of functional B cell subpopulations.
Collapse
Affiliation(s)
- Richard R Hardy
- Division of Basic Sciences, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
27
|
Kin NW, Sanders VM. CD86 stimulation on a B cell activates the phosphatidylinositol 3-kinase/Akt and phospholipase C gamma 2/protein kinase C alpha beta signaling pathways. THE JOURNAL OF IMMUNOLOGY 2006; 176:6727-35. [PMID: 16709832 DOI: 10.4049/jimmunol.176.11.6727] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stimulation of CD86 on a CD40L/IL-4-activated murine B cell increases the rate of mature IgG1 transcription by increasing the level of NF-kappaB activation, as well as Oct-2 expression and binding to the 3'-IgH enhancer. The signal transduction pathway activated by CD86 proximal to NF-kappaB activation is unknown. In this study, we show that CD86 stimulation on an activated B cell increases the activity of PI3K and the phosphorylation of phosphoinositide-dependent kinase 1, Akt, and IkappaB kinase alphabeta. In addition, CD86 stimulation induces an increase in the phosphorylation of phospholipase Cgamma2 and protein kinase C alphabeta. CD86-mediated activation of these two signaling pathways leads to increased Oct-2 expression, increased gene activity mediated by NF-kappaB and 3'-IgH enhancer increased activity. These results identify a previously unknown signaling pathway induced by CD86 to regulate the level of B cell gene expression and activity.
Collapse
Affiliation(s)
- Nicholas W Kin
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
28
|
Takada E, Shimo K, Hata K, Abiake M, Mukai Y, Moriyama M, Heasley L, Mizuguchi J. Interferon-β-induced activation of c-Jun NH2-terminal kinase mediates apoptosis through up-regulation of CD95 in CH31 B lymphoma cells. Exp Cell Res 2005; 304:518-30. [PMID: 15748896 DOI: 10.1016/j.yexcr.2004.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 11/15/2004] [Accepted: 11/16/2004] [Indexed: 11/24/2022]
Abstract
Type I interferon (IFN)-induced antitumor action is due in part to apoptosis, but the molecular mechanisms underlying IFN-induced apoptosis remain largely unresolved. In the present study, we demonstrate that IFN-beta induced apoptosis and the loss of mitochondrial membrane potential (delta psi m) in the murine CH31 B lymphoma cell line, and this was accompanied by the up-regulation of CD95, but not CD95-ligand (CD95-L), tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL). Pretreatment with anti-CD95-L mAb partially prevented the IFN-beta-induced loss of delta psi m, suggesting that the interaction of IFN-beta-up-regulated CD95 with CD95-L plays a crucial role in the induction of fratricide. IFN-beta induced a sustained activation of c-Jun NH2-terminal kinase 1 (JNK1), but not extracellular signal-regulated kinases (ERKs). The IFN-beta-induced apoptosis and loss of delta psi m were substantially compromised in cells overexpressing a dominant-negative form of JNK1 (dnJNK1), and it was slightly enhanced in cells carrying a constitutively active JNK construct, MKK7-JNK1 fusion protein. The IFN-beta-induced up-regulation of CD95 together with caspase-8 activation was also abrogated in the dnJNK1 cells while it was further enhanced in the MKK7-JNK1 cells. The levels of cellular FLIP (c-FLIP), competitively interacting with caspase-8, were down-regulated by stimulation with IFN-beta but were reversed by the proteasome inhibitor lactacystin. Collectively, the IFN-beta-induced sustained activation of JNK mediates apoptosis, at least in part, through up-regulation of CD95 protein in combination with down-regulation of c-FLIP protein.
Collapse
Affiliation(s)
- Eiko Takada
- Department of Immunology and Intractable Disease Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, 160-8402, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Dal Porto JM, Burke K, Cambier JC. Regulation of BCR signal transduction in B-1 cells requires the expression of the Src family kinase Lck. Immunity 2004; 21:443-53. [PMID: 15357954 DOI: 10.1016/j.immuni.2004.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Revised: 06/06/2004] [Accepted: 07/14/2004] [Indexed: 01/07/2023]
Abstract
Although found predominantly in the peritoneal and pleural cavities, B-1 cells are also present in other peripheral tissues such as spleen and lung. While similar in surface phenotypes, such as CD5, all B-1 cells are not equivalent in their response to stimuli. Here, we report that the src family kinase Lck is required to confer the BCR hyporesponsiveness typical of CD5+ B-1 cells and appears involved in the maintenance of their unique function. Splenic B-1 cells express CD5 but not Lck and are not hyporesponsive; however, within the peritoneum, these B-1 cells are induced to express Lck and acquire a hyporesponsive phenotype. Peritoneal B-1 cells from lck-deficient mice, while CD5+, no longer exhibit attenuated BCR signaling. Interestingly, lck-null mice exhibited increased natural antibody levels characteristic of B-1 cells. Taken together, these results demonstrate a key role for Lck in modulating the signaling and cellular fate of B-1 B cells.
Collapse
Affiliation(s)
- Joseph M Dal Porto
- Integrated Department of Immunology, National Jewish Medical and Research Center, University of Colorado School of Medicine, Denver 80206, USA
| | | | | |
Collapse
|
30
|
Schaefer BC, Kappler JW, Kupfer A, Marrack P. Complex and dynamic redistribution of NF-kappaB signaling intermediates in response to T cell receptor stimulation. Proc Natl Acad Sci U S A 2004; 101:1004-9. [PMID: 14724296 PMCID: PMC327141 DOI: 10.1073/pnas.0307858100] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The central zone of the supramolecular activation cluster (c-SMAC) is a zone of T cell receptor (TCR) enrichment that forms at a T cell/antigen-presenting cell (APC) junction in response to antigen stimulation. We demonstrate that there is a surprisingly complex relocalization process that brings PKC and Bcl10, two intermediates in TCR activation of NF-kappaB, to the cytoplasmic face of the c-SMAC. TCR activation causes enrichment of PKC at the c-SMAC, followed by Bcl10 relocalization to punctate cytoplasmic structures, often at sites distant from the c-SMAC. These Bcl10 structures then undergo further relocalization, becoming enriched at the c-SMAC. TCR activation of NF-kappaB therefore involves the dynamic relocalization of multiple signaling intermediates, with distinct phases proximal to and distant from the c-SMAC.
Collapse
Affiliation(s)
- Brian C Schaefer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | | | |
Collapse
|
31
|
Gass JN, Gifford NM, Brewer JW. Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J Biol Chem 2002; 277:49047-54. [PMID: 12374812 DOI: 10.1074/jbc.m205011200] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The unfolded protein response pathway (UPR) is believed to detect and compensate for excessive protein accumulation in the endoplasmic reticulum (ER). The UPR can be induced by pharmacological agents that perturb ER functions, but may also occur during cellular developmental processes such as the transition of B-lymphocytes into antibody-secreting plasma cells. Here we show that major UPR components are activated in B cells stimulated to secrete antibody. Increased expression of UPR targets including the ER chaperones BiP and GRP94 and the transcription factor XBP-1 initiates early in the differentiation program prior to up-regulated synthesis of Ig chains. Furthermore, these same kinetics are observed during differentiation for cleavage of the ER-localized ATF6alpha protein and splicing of XBP-1 mRNA to generate p50ATF6alpha and p54XBP-1, the two known UPR transcriptional activators. All of these UPR events reach maximal levels once Ig synthesis and secretion are markedly induced. Interestingly, these events are not accompanied by expression of CHOP, a transcription factor induced by ER stress agents commonly used to investigate the UPR. These results suggest that a physiological UPR elicited during differentiation of B-lymphocytes into high-rate secretory cells may be distinct from the UPR defined by agents that disrupt protein maturation in the ER.
Collapse
Affiliation(s)
- Jennifer N Gass
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
32
|
Stoddart A, Dykstra ML, Brown BK, Song W, Pierce SK, Brodsky FM. Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity 2002; 17:451-62. [PMID: 12387739 DOI: 10.1016/s1074-7613(02)00416-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A major function of the B cell is the internalization of antigen through the BCR for processing and presentation to T cells. While there is evidence suggesting that lipid raft signaling may regulate internalization, the molecular machinery coordinating these two processes remains to be defined. Here we present a link between the B cell signaling and internalization machinery and show that Src-family kinase activity is required for inducible clathrin heavy chain phosphorylation, BCR colocalization with clathrin, and regulated internalization. An analysis of different B cell lines shows that BCR uptake occurs only when clathrin is associated with rafts and is tyrosine phosphorylated following BCR crosslinking. We therefore propose that lipid rafts spatially organize signaling cascades with clathrin to regulate BCR internalization.
Collapse
Affiliation(s)
- Angela Stoddart
- The G.W. Hooper Foundation, Department of Microbiology and Immunology, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
33
|
Weber DA, Dao CT, Jun J, Wigal JL, Jensen PE. Transmembrane domain-mediated colocalization of HLA-DM and HLA-DR is required for optimal HLA-DM catalytic activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5167-74. [PMID: 11673529 DOI: 10.4049/jimmunol.167.9.5167] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA-DM catalyzes peptide loading and exchange reactions by MHC class II molecules. Soluble recombinant DM, lacking transmembrane and cytoplasmic domains, was observed to have 200- to 400-fold less activity compared with the full-length protein in assays measuring DM-catalyzed peptide dissociation from purified HLA-DR1 in detergent solutions. Additional studies with truncated soluble DR1 demonstrated that transmembrane domains in DR1 molecules are also required for optimal activity. The potential requirement for specific interaction between the transmembrane domains of DM and DR was ruled out in experiments with chimeric DR1 molecules containing transmembrane domains from either DM or the unrelated protein CD80. These results suggested that the major role of the transmembrane domains is to facilitate colocalization of DM and DR in detergent micelles. The latter conclusion was further supported by the observation that HLA-DM-catalyzed peptide binding to certain murine class II proteins is increased by reducing the volume of detergent micelles. The importance of membrane colocalization was directly demonstrated in experiments in which DM and DR were reconstituted separately or together into membrane bilayers in unilamellar liposomes. Our findings demonstrate the importance of membrane anchoring in DM activity and underscore the potential importance of membrane localization in regulating peptide exchange by class II molecules.
Collapse
Affiliation(s)
- D A Weber
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
34
|
Brown BK, Song W. The actin cytoskeleton is required for the trafficking of the B cell antigen receptor to the late endosomes. Traffic 2001; 2:414-27. [PMID: 11389769 DOI: 10.1034/j.1600-0854.2001.002006414.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The B cell antigen receptor (BCR) plays two central roles in B cell activation: to internalize antigens for processing and presentation, and to initiate signal transduction cascades that both promote B cells to enter the cell cycle and facilitate antigen processing by accelerating antigen transport. An early event in B cell activation is the association of BCR with the actin cytoskeleton, and an increase in cellular F-actin. Current evidence indicates that the organization of actin filaments changes in response to BCR-signaling, making actin filaments good candidates for regulation of BCR-antigen targeting. Here, we have analyzed the role of actin filaments in BCR-mediated antigen transport, using actin filament-disrupting reagents, cytochalasin D and latrunculin B, and an actin filament-stabilizing reagent, jasplakinolide. Perturbing actin filaments, either by disrupting or stabilizing them, blocked the movement of BCR from the plasma membrane to late endosomes/lysosomes. Cytochalasin D-treatment dramatically reduced the rate of internalization of BCR, and blocked the movement of the BCR from early endosomes to late endosomes/lysosomes, without affecting BCR-signaling. Thus, BCR-trafficking requires functional actin filaments for both internalization and movement to late endosomes/lysosomes, defining critical control points in BCR-antigen targeting.
Collapse
Affiliation(s)
- B K Brown
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
35
|
|
36
|
Herzenberg LA, Baumgarth N, Wilshire JA. B-1 cell origins and VH repertoire determination. Curr Top Microbiol Immunol 2001; 252:3-13. [PMID: 11125487 DOI: 10.1007/978-3-642-57284-5_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- L A Herzenberg
- Genetics Department, Stanford University Medical School, Stanford, California 94305-5318, USA
| | | | | |
Collapse
|
37
|
Vratsanos GS, Jung S, Park YM, Craft J. CD4(+) T cells from lupus-prone mice are hyperresponsive to T cell receptor engagement with low and high affinity peptide antigens: a model to explain spontaneous T cell activation in lupus. J Exp Med 2001; 193:329-37. [PMID: 11157053 PMCID: PMC2195926 DOI: 10.1084/jem.193.3.329] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2000] [Accepted: 12/18/2000] [Indexed: 11/24/2022] Open
Abstract
Polyclonal CD4(+) T cell activation is characteristic of spontaneous lupus. As a potential explanation for this phenotype, we hypothesized that T cells from lupus-prone mice are intrinsically hyperresponsive to stimulation with antigen, particularly to those peptide ligands having a low affinity for the T cell receptor (TCR). To test this hypothesis, we backcrossed the alpha and beta chain genes of the AND TCR specific for amino acids 88-104 of pigeon cytochrome C (PCC) to the Fas-intact MRL/Mp(+)(Fas-lpr) and to the H-2(k)-matched control backgrounds B10.BR and CBA/CaJ (MRL.AND, B10.AND, and CBA.AND, respectively), and assessed naive CD4(+) TCR transgenic T cell activation in vitro after its encounter with cognate antigen and lower affinity altered peptide ligands (APLs). MRL.AND T cells, compared with control B10.AND and CBA.AND cells, proliferated more when stimulated with agonist antigen. More strikingly, MRL.AND T cells proliferated significantly more and produced more interleukin 2 when stimulated with the APLs of PCC 88-104, having lower affinity for the transgenic TCR. These results imply that one of the forces driving polyclonal activation of alpha/beta T cells in lupus is an intrinsically heightened response to peptide antigen, particularly those with low affinity for the TCR, independent of the nature of the antigen-presenting cell and degree of costimulation.
Collapse
Affiliation(s)
- George S. Vratsanos
- Section of Rheumatology, Department of Medicine, and the Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sungsoo Jung
- Section of Rheumatology, Department of Medicine, and the Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Yeong-Min Park
- Section of Rheumatology, Department of Medicine, and the Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Joe Craft
- Section of Rheumatology, Department of Medicine, and the Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
38
|
Takada E, Toyota H, Suzuki J, Mizuguchi J. Prevention of anti-IgM-induced apoptosis accompanying G1 arrest in B lymphoma cells overexpressing dominant-negative mutant form of c-Jun N-terminal kinase 1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1641-9. [PMID: 11160206 DOI: 10.4049/jimmunol.166.3.1641] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A family of mitogen-activated protein (MAP) kinases comprising the extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38 MAP kinases are involved in proliferation and apoptosis. However, there are some arguments concerning the role of these kinases in Ag-induced B cell apoptosis. Two of the B lymphoma cell lines (CH31 and WEHI-231) susceptible to anti-IgM-induced apoptosis were used as a model. To address these issues, we examined the kinetics of anti-IgM-induced activation of MAP kinases and established cell lines overexpressing a dominant-negative (dn) mutant form of JNK1 (dnJNK1). Anti-IgM induced a sustained JNK1 activation with a peak at 8 h, with a marginal activation of ERK1/ERK2 in CH31 cells. The sustained JNK1 activation was not a secondary event through a caspase activation. The peak point of the JNK1 activation was just before the onset of a decline in mitochondrial membrane potential, which preceded anti-IgM-induced cell death. Following anti-IgM stimulation, dnJNK1 prevented a decline in mitochondrial membrane potential at 24 h, with a prolonged inhibition up to 72 h in WEHI-231, although it did so only partially during a later time period in CH31. The dnJNK1 cells also demonstrated diminished procaspase-3 activation and a decreased rate of apoptosis upon anti-IgM stimulation, with a concomitant increased arrest in G(1) phase, which could be explained by enhanced levels of cyclin-dependent kinase inhibitor p27(Kip1) protein. Thus, anti-IgM-induced JNK activation might be implicated in cell cycle progression as well as in apoptosis regulation, probably involving p27(Kip1) protein.
Collapse
Affiliation(s)
- E Takada
- Department of Immunology and Intractable Disease Research Center, Tokyo Medical University, Tokyo, Japan
| | | | | | | |
Collapse
|
39
|
Lindner R. One-step separation of endocytic organelles, Golgi/trans-Golgi network and plasma membrane by density gradient electrophoresis. Electrophoresis 2001; 22:386-93. [PMID: 11258743 DOI: 10.1002/1522-2683(200102)22:3<386::aid-elps386>3.0.co;2-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many different methods for the fractionation of subcellular organelles have been reported. However, no protocol for rapid separation of plasma membrane, Golgi/trans-Golgi network (TGN) and endosomes is available to date. Such a method is a prerequisite for a quantitative biochemical analysis of vesicular transport from the Golgi/TGN compartment to plasma membrane and endosomes. Here a density gradient electrophoresis protocol is described that allows the fractionation of these organelles in one step. This protocol requires only low-cost instrumentation available in most biochemical laboratories.
Collapse
Affiliation(s)
- R Lindner
- Department of Cell Biology, Center of Anatomy Hannover Medical School, Germany.
| |
Collapse
|
40
|
Mueller CM, Scott DW. Distinct molecular mechanisms of Fas resistance in murine B lymphoma cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1854-62. [PMID: 10925264 DOI: 10.4049/jimmunol.165.4.1854] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A panel of murine B lymphoma cell lines, which express different levels of Fas, was extensively studied for sensitivity to Fas-mediated death signals via an anti-Fas mAb and Fas ligand-bearing cell lines. Expression of the Fas receptor on the B lymphoma cell lines did not correlate with their capacity to undergo Fas-mediated apoptosis. Moreover, Fas-associated death domain protein recruitment to the death-inducing signaling complex (DISC) complex occurred in all cell lines expressing Fas, regardless of whether they were sensitive to Fas-mediated death. Interestingly, the protein synthesis inhibitor, cycloheximide, and protein kinase C inhibitors, such as bisindolylmaleimide, rendered one of the resistant cell lines, CH33, sensitive to signals from the Fas receptor, although the levels of Fas were unchanged. This suggests that constitutive PKC activation plays a role in Fas resistance, perhaps by up-regulating NF-kappaB or Bcl-2 family members. Interestingly, CH33 demonstrated caspase 8 activity upon engagement of the Fas receptor in the absence of pharmacological manipulation, suggesting that the block in apoptosis is downstream of the DISC complex. In contrast, the fact that Fas-associated death domain protein was recruited to the DISC complex in other resistant lines, such as WEHI-231, with no caspase 8 activation indicates that these cells may be blocked within the DISC complex. Indeed, Western blot analysis showed that WEHI-231 expressed an isoform of FLICE-like inhibitory protein (cFLIPL), an antiapoptotic protein within the DISC. These studies provide evidence that murine B lymphoma cells utilize different molecular mechanisms along the Fas-signaling cascade to block apoptosis.
Collapse
Affiliation(s)
- C M Mueller
- Department of Immunology, J. H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, MD 20855, USA
| | | |
Collapse
|
41
|
Chintalacharuvu SR, Emancipator SN. Differential glycosylation of two glycoproteins synthesized by murine B cells in response to IL-4 plus IL-5. Cytokine 2000; 12:1182-8. [PMID: 10930294 DOI: 10.1006/cyto.2000.0699] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to determine whether selected cytokines, known to stimulate profoundly B-cell activation and differentiation, also have as yet unrecognized effects upon the glycosylation of secreted Ig and/or membrane-associated proteins. The glycosylation of both secreted IgM and membrane-bound MHC Class-I synthesized by CH12LX cells was detected by enzyme-lectin conjugates in immunoabsorption assays. Stimulation of B cells with IL-4 plus IL-5 significantly decreases the terminal glycosylation of secreted IgM, whereas LPS has a minor effect, despite the fact that both stimuli are equipotent for IgM secretion. Neither LPS nor IL-4 plus IL-5 affect MHC Class-I expression. However, IL-4 plus IL-5 substantially increases the terminal glycosylation of MHC Class-I produced from both mIgM(+)and mIgA(+)CH12LX cells. LPS has no or a modest effect on the terminal glycosylation of MHC Class-I produced from CH12LX cells. These results suggest that Th(2)-derived cytokines differentially influence the glycosylation of secreted and membrane-associated glycoproteins of B cells. In turn, this might elucidate the basis of aberrant glycosylation reported in conditions such as IgA nephropathy, cancer and rheumatoid arthritis.
Collapse
Affiliation(s)
- S R Chintalacharuvu
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
42
|
Phillips-Quagliata JM, Faria AM, Han J, Spencer DH, Haughton G, Casali P. The IgG2a/IgA produced by the murine T560 B lymphoma that arose during a graft-versus-host reaction is polyreactive and somatically mutated. Autoimmunity 1999; 29:215-33. [PMID: 10433101 DOI: 10.3109/08916939908998536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In mice undergoing a graft-versus-host (GVH) reaction, donor T cells responding to the host's MHC antigens induce polyclonal activation of the host's B cells and secretion of their antibodies and autoantibodies. T560, a CD5- B lymphoma that arose in the gut-associated lymphoid tissue (GALT) of a (B10 x B10.H2aH4(b)pWts) F1 hybrid mouse that had been injected with parental B10.H2aH4b splenocytes, is of particular interest because it produces switched, heavily mutated, but, nevertheless, polyreactive immunoglobulin. T560 bears and contains IgG2a but switches to IgA spontaneously. The T560 Ig variable region is encoded by a V186.2-related VH gene, juxtaposed to DFL 16 and J(H)1, and by a Vkappa gene of the Vkappa 4/5 group juxtaposed to Jkappa1. Both VH and VK are heavily mutated. The IgA binds to polystyrene, to p-azophenyl-phosphorylcholine (PC)-conjugated keyhole limpet hemocyanin (KLH) (PC-KLH), to 2,4,6 trinitrophenylated (TNP)-KLH and to human TNF-beta but not to KLH, human TNF-alpha, or any of several other Ags tested. Hapten inhibition experiments indicate that the polystyrene, PC- and TNP-binding sites do not overlap. The switched isotypes and heavy load of somatic mutations found in the T560 IgG2a/IgA suggest that T cell-dependant somatic selection of the T560 precursor B cell may have been superimposed on polyclonal B cell activation originally associated with the GVH.
Collapse
Affiliation(s)
- J M Phillips-Quagliata
- Department of Pathology and Kaplan Cancer Center, New York University Medical Center, NY 10016-6451, USA
| | | | | | | | | | | |
Collapse
|
43
|
Hayakawa K, Asano M, Shinton SA, Gui M, Allman D, Stewart CL, Silver J, Hardy RR. Positive selection of natural autoreactive B cells. Science 1999; 285:113-6. [PMID: 10390361 DOI: 10.1126/science.285.5424.113] [Citation(s) in RCA: 459] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lymphocyte development is critically influenced by self-antigens. T cells are subject to both positive and negative selection, depending on their degree of self-reactivity. Although B cells are subject to negative selection, it has been difficult to test whether self-antigen plays any positive role in B cell development. A murine model system of naturally generated autoreactive B cells with a germ line gene-encoded specificity for the Thy-1 (CD90) glycoprotein was developed, in which the presence of self-antigen promotes B cell accumulation and serum autoantibody secretion. Thus, B cells can be subject to positive selection, generated, and maintained on the basis of their autoreactivity.
Collapse
Affiliation(s)
- K Hayakawa
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Doerre S, Corley RB. Constitutive Nuclear Translocation of NF-κB in B Cells in the Absence of IκB Degradation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.1.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Members of the NF-κB/Rel family of transcription factors are involved in many aspects of B lymphocyte development and function. NF-κB is constitutively active in these cells, in contrast with most other cell types. In the inactive form, NF-κB/Rel proteins are sequestered in the cytoplasm by members of the IκB family of NF-κB inhibitors. When activated, NF-κB is translocated to the nucleus, a process that involves the phosphorylation and proteasomal degradation of IκB proteins. Thus, NF-κB activation is accompanied by the rapid turnover of IκB proteins. We show that while this “classical” mode of NF-κB activation is a uniform feature of IgM+ B cell lines, all IgG+ B cells analyzed contain nuclear NF-κB yet have stable IκBα, IκBβ, and IκBε. Furthermore, Iκβε levels are at least 10 times lower in IgG+ B cells than in IgM+ B cells, an additional indication that the regulation of constitutive NF-κB activity in these two types of B cells is fundamentally different. These data imply the existence of a novel mechanism of NF-κB activation in IgG+ B cells that operates independently of IκB degradation. They further suggest that different isoforms of the B cell receptor may have distinct roles in regulating NF-κB activity.
Collapse
Affiliation(s)
- Stefan Doerre
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | - Ronald B. Corley
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
45
|
Cheng PC, Steele CR, Gu L, Song W, Pierce SK. MHC Class II Antigen Processing in B Cells: Accelerated Intracellular Targeting of Antigens. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Processing and presentation by Ag-specific B cells is initiated by Ag binding to the B cell Ag receptor (BCR). Cross-linking of the BCR by Ag results in a rapid targeting of the BCR and bound Ag to the MHC class II peptide loading compartment (IIPLC). This accelerated delivery of Ag may be essential in vivo during periods of rapid Ag-driven B cell expansion and T cell-dependent selection. Here, we use both immunoelectron microscopy and a nondisruptive protein chemical polymerization method to define the intracellular pathway of the targeting of Ags by the BCR. We show that following cross-linking, the BCR is rapidly transported through transferrin receptor-containing early endosomes to a LAMP-1+, β-hexosaminadase+, multivesicular compartment that is an active site of peptide-class II complex assembly, containing both class II-invariant chain complexes in the process of invariant chain proteolytic removal as well as mature peptide-class II complexes. The BCR enters the class II-containing compartment as an intact mIg/Igα/Igβ complex bound to Ag. The pathway by which the BCR targets Ag to the IIPLC appears not to be identical to that by which Ags taken up by fluid phase pinocytosis traffick, suggesting that the accelerated BCR pathway may be specialized and potentially independently regulated.
Collapse
Affiliation(s)
- Paul C. Cheng
- *Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208; and
| | - Carrie R. Steele
- *Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208; and
| | - Lin Gu
- *Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208; and
| | - Wenxia Song
- †Department of Microbiology, University of Maryland, College Park, MD 20742
| | - Susan K. Pierce
- *Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208; and
| |
Collapse
|
46
|
Brown BK, Li C, Cheng PC, Song W. Trafficking of the Igalpha/Igbeta heterodimer with membrane Ig and bound antigen to the major histocompatibility complex class II peptide-loading compartment. J Biol Chem 1999; 274:11439-46. [PMID: 10196238 DOI: 10.1074/jbc.274.16.11439] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of antigen to the B cell antigen receptor (BCR) initiates two major cellular events. First, upon cross-linking by antigen, the BCR induces signal transduction cascades leading to the transcription of a number of genes associated with B cell activation. Second, the BCR internalizes and delivers antigens to processing compartments, where processed antigenic peptides are loaded onto major histocompatibility complex (MHC) class II molecules for presentation to T helper cells. The BCR consists of membrane Ig (mIg) and Igalpha/Igbeta heterodimer (Igalpha/Igbeta). The Igalpha/Igbeta, the signal transducing component of the BCR, has been indicated to play a role in antigen processing. In order to understand the function of the Igalpha/Igbeta in antigen transport, we studied the intracellular trafficking pathway of the Igalpha/Igbeta. We show that in the absence of antigen binding, the Igalpha/Igbeta constitutively traffics with mIg from the plasma membrane, through the early endosomes, to the MHC class II peptide-loading compartment. Cross-linking the BCR does not alter the trafficking pathway; however, it accelerates the transport of the Igalpha/Igbeta to the MHC class II peptide-loading compartment. This suggests that the Igalpha/Igbeta heterodimer is involved in BCR-mediated antigen transport through the entire antigen transport pathway.
Collapse
Affiliation(s)
- B K Brown
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, Maryland 20742, USA
| | | | | | | |
Collapse
|
47
|
Lauring J, Schlissel MS. Distinct factors regulate the murine RAG-2 promoter in B- and T-cell lines. Mol Cell Biol 1999; 19:2601-12. [PMID: 10082526 PMCID: PMC84053 DOI: 10.1128/mcb.19.4.2601] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The recombination activating genes RAG-1 and RAG-2 are expressed in a lymphoid-cell-specific and developmentally regulated fashion. To understand the transcriptional basis for this regulation, we have cloned and characterized the murine RAG-2 promoter. The promoter was lymphoid cell specific, showing activity in various B- and T-cell lines but little activity in nonlymphoid cells. To our surprise, however, the promoter was regulated differently in B and T cells. Using nuclear extracts from B-cell lines, we found that the B-cell-specific transcription factor BSAP (Pax-5) could bind to a conserved sequence critical for promoter activity. BSAP activated the promoter in transfected cells, and the BSAP site was occupied in a tissue-specific manner in vivo. An overlapping DNA sequence binding to a distinct factor was necessary for promoter activity in T cells. Full promoter activity in T cells was also dependent on a more distal DNA sequence whose disruption had no effect on B-cell activity. The unexpected finding that a B-cell-specific factor regulates the RAG-2 promoter may explain some of the recently observed differences in the regulation of RAG transcription between B and T cells.
Collapse
Affiliation(s)
- J Lauring
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
48
|
Wagle NM, Faassen AE, Kim JH, Pierce SK. Regulation of B Cell Receptor-Mediated MHC Class II Antigen Processing by FcγRIIB1. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.5.2732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The processing and presentation of Ag by Ag-specific B cells is highly efficient due to the dual function of the B cell Ag receptor (BCR) in both signaling for enhanced processing and endocytosing bound Ag. The BCR for IgG (FcγRIIB1) is a potent negative coreceptor of the BCR that blocks Ag-induced B cell proliferation. Here we investigate the influence of the FcγRIIB1 on BCR-mediated Ag processing and show that coligating the FcγRIIB1 and the BCR negatively regulates both BCR signaling for enhanced Ag processing and BCR-mediated Ag internalization. Treatment of splenic B cells with F(ab′)2 anti-Ig significantly enhances APC function compared with the effect of whole anti-Ig; however, whole anti-Ig treatment is effective when binding to the FcγRIIB1 was blocked by a FcγRII-specific mAb. Processing and presentation of Ag covalently coupled to anti-Ig were significantly decreased compared with Ag coupled to F(ab′)2anti-Ig; however, the processing of the two Ag-Ab conjugates was similar in cells that did not express FcγRIIB1 and in splenic B cells treated with a FcγRII-specific mAb to block Fc binding. Internalization of monovalent Ag by B cells was reduced in the presence of whole anti-Ig as compared with F(ab′)2 anti-Ig, but the internalized Ag was correctly targeted to the class II peptide loading compartment. Taken together, these results indicate that the FcγRIIB1 is a negative regulator of the BCR-mediated Ag-processing function.
Collapse
Affiliation(s)
- Neelam M. Wagle
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208
| | - Anne E. Faassen
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208
| | - Julie H. Kim
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208
| | - Susan K. Pierce
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208
| |
Collapse
|
49
|
Reuss FU, Coffin JM. Mouse mammary tumor virus superantigen expression in B cells is regulated by a central enhancer within the pol gene. J Virol 1998; 72:6073-82. [PMID: 9621071 PMCID: PMC110413 DOI: 10.1128/jvi.72.7.6073-6082.1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Expression of mouse mammary tumor virus (MMTV)-encoded superantigens in B lymphocytes is required for viral transmission and pathogenesis. The mechanism of superantigen expression from the viral sag gene in B cells is largely unknown, due to problems with detection and quantification of these low-abundance proteins. We have established a sensitive superantigen-luciferase reporter assay to study the expression and regulation of the MMTV sag gene in B-cell lymphomas. The regulatory elements for retroviral gene expression are generally located in the 5' long terminal repeat (LTR) of the provirus. However, we found that neither promoters nor enhancers in the MMTV 5' LTR play a significant role in superantigen expression in these cells. Instead, the essential regulatory regions are located in the pol and env genes of MMTV. We report here that maximal sag expression in B-cell lines depends on an enhancer within the viral pol gene which can be localized to a minimal 183-bp region. Regulation of sag gene expression differs between B-cell lymphomas and pro-B cells, where an enhancer within the viral LTRs is involved. Thus, MMTV sag expression during B-cell development is achieved through the use of two separate enhancer elements.
Collapse
Affiliation(s)
- F U Reuss
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
50
|
McMahon CW, Traxler B, Grigg ME, Pullen AM. Transposon-mediated random insertions and site-directed mutagenesis prevent the trafficking of a mouse mammary tumor virus superantigen. Virology 1998; 243:354-65. [PMID: 9568034 DOI: 10.1006/viro.1998.9071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse mammary tumor viruses (MMTVs) encode superantigens (Sags) which are critical to the life cycle of infectious virus and can mediate extensive deletion of T lymphocytes when expressed by endogenous proviruses. Little is known about the structure, intracellular trafficking, or nature of Sag association with major histocompatibility (MHC) class II products. In order to gain a better understanding of Sag structure-function relationships, we extensively mutagenized this type II glycoprotein using two different approaches: transposon-mediated random in-frame insertion mutagenesis and site-directed mutagenesis targeting clusters of charged residues. We find that 31 codon insertions are infrequently tolerated in Mtv-7 Sag, with just 1 of 14 insertion mutants functionally presented on the surface of B cells. Surprisingly, similar effects were observed with Sag mutants with substitutions at pairs of charged residues; only 2 of 6 mutants trafficked to the plasma membrane and stimulated T cells, 1 with a temperature-sensitive phenotype. The data suggest that the nonfunctional Mtv-7 Sag mutants are stringently retained in the endoplasmic reticulum due to conformational defects rather than disrupted interactions with MHC class II, thus identifying charged amino acids critical to the structural stability of viral superantigens.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Blotting, Western
- Cell Line
- Cell Membrane/metabolism
- DNA Transposable Elements
- Histocompatibility Antigens Class II/immunology
- Intracellular Fluid
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/immunology
- Mammary Tumor Virus, Mouse/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutagenesis, Site-Directed
- Superantigens/genetics
- Superantigens/immunology
- Superantigens/metabolism
- Temperature
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- C W McMahon
- Department of Immunology, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|