1
|
Reis AL, Rathakrishnan A, Petrovan V, Islam M, Goatley L, Moffat K, Vuong MT, Lui Y, Davis SJ, Ikemizu S, Dixon LK. From structure prediction to function: defining the domain on the African swine fever virus CD2v protein required for binding to erythrocytes. mBio 2024:e0165524. [PMID: 39688401 DOI: 10.1128/mbio.01655-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
African swine fever virus (ASFV) is a high-consequence pathogen posing a substantial threat to global food security. This large DNA virus encodes more than 150 open reading frames, many of which are uncharacterized. The EP402R gene encodes CD2v, a glycoprotein expressed on the surface of infected cells and the only viral protein known to be present in the virus external envelope. This protein mediates binding of erythrocytes to both cells and virions. This interaction is known to prolong virus persistence in blood thus facilitating viral transmission. The sequence of the extracellular domain of CD2v shows similarity with that of mammalian CD2 proteins and is therefore likely to feature two immunoglobulin (Ig)-like domains. A combination of protein structure modeling and extensive mutagenesis was used to identify residues mediating binding of transiently expressed CD2v to erythrocytes. The N-terminal Ig-like domain AGFCC'C″ β sheet was identified as the putative CD2v erythrocyte-binding area. This region differed from the putative CD58 ligand binding site of host CD2, suggesting that CD2v may bind to a ligand(s) other than CD58. An attenuated genotype I ASFV was constructed by replacing the wild-type EP402R gene for a mutant form expressing CD2v bearing a single amino acid substitution, which abrogated the binding to erythrocytes. Pigs immunized with the recombinant virus developed early antibody and cellular responses, low levels of viremia, mild clinical signs post-immunization, and high levels of protection against challenge. These findings improve our understanding of virus-host interactions and provide a promising approach to modified live vaccine development. IMPORTANCE A better understanding of the interactions between viruses and their hosts is a crucial step in the development of strategies for controlling viral diseases, such as vaccines and antivirals. African swine fever, a pig disease with fatality rates approaching 100%, causes very substantial economic losses in affected countries, and new control measures are clearly needed. In this study, we characterized the interaction between the ASFV CD2v protein and host erythrocytes. The interaction plays a key role in viral persistence in blood since it can allow the virus to "hide" from the host immune system. We identified the amino acids in the viral protein that mediate the interaction with erythrocytes and used this information to construct a mutant virus that is no longer able to bind these cells. This virus induces strong immune responses that provide high levels of protection against infection with the deadly parental virus.
Collapse
Affiliation(s)
- Ana Luisa Reis
- The Pirbright Institute, Woking, Pirbright, Surrey, United Kingdom
| | | | - Vlad Petrovan
- The Pirbright Institute, Woking, Pirbright, Surrey, United Kingdom
| | - Muneeb Islam
- The Pirbright Institute, Woking, Pirbright, Surrey, United Kingdom
| | - Lynnette Goatley
- The Pirbright Institute, Woking, Pirbright, Surrey, United Kingdom
| | - Katy Moffat
- The Pirbright Institute, Woking, Pirbright, Surrey, United Kingdom
| | - Mai Tuyet Vuong
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Yuan Lui
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Shinji Ikemizu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Linda K Dixon
- The Pirbright Institute, Woking, Pirbright, Surrey, United Kingdom
| |
Collapse
|
2
|
Juul-Madsen K, Parbo P, Ismail R, Ovesen PL, Schmidt V, Madsen LS, Thyrsted J, Gierl S, Breum M, Larsen A, Andersen MN, Romero-Ramos M, Holm CK, Andersen GR, Zhao H, Schuck P, Nygaard JV, Sutherland DS, Eskildsen SF, Willnow TE, Brooks DJ, Vorup-Jensen T. Amyloid-β aggregates activate peripheral monocytes in mild cognitive impairment. Nat Commun 2024; 15:1224. [PMID: 38336934 PMCID: PMC10858199 DOI: 10.1038/s41467-024-45627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The peripheral immune system is important in neurodegenerative diseases, both in protecting and inflaming the brain, but the underlying mechanisms remain elusive. Alzheimer's Disease is commonly preceded by a prodromal period. Here, we report the presence of large Aβ aggregates in plasma from patients with mild cognitive impairment (n = 38). The aggregates are associated with low level Alzheimer's Disease-like brain pathology as observed by 11C-PiB PET and 18F-FTP PET and lowered CD18-rich monocytes. We characterize complement receptor 4 as a strong binder of amyloids and show Aβ aggregates are preferentially phagocytosed and stimulate lysosomal activity through this receptor in stem cell-derived microglia. KIM127 integrin activation in monocytes promotes size selective phagocytosis of Aβ. Hydrodynamic calculations suggest Aβ aggregates associate with vessel walls of the cortical capillaries. In turn, we hypothesize aggregates may provide an adhesion substrate for recruiting CD18-rich monocytes into the cortex. Our results support a role for complement receptor 4 in regulating amyloid homeostasis.
Collapse
Affiliation(s)
- Kristian Juul-Madsen
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- Max-Delbrueck-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Peter Parbo
- Department of Nuclear Medicine, Odense University Hospital, J. B. Winsløws Vej 4, DK-5000, Odense C, Denmark
| | - Rola Ismail
- Department of Nuclear medicine and PET, Vejle Hospital, Beriderbakken 4, DK-7100, Vejle, Denmark
| | - Peter L Ovesen
- Max-Delbrueck-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Vanessa Schmidt
- Max-Delbrueck-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Lasse S Madsen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, DK-8200, Aarhus N, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University and Aarhus University Hospital, Building 1710, Universitetsbyen 3, DK-8200, Aarhus C, Denmark
| | - Jacob Thyrsted
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Sarah Gierl
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Mihaela Breum
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Morten N Andersen
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, DK-8200, Aarhus N, Denmark
- Department of Hematology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- NEURODIN AU IDEAS Center, Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8200, Aarhus C, Denmark
| | - Christian K Holm
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | - Huaying Zhao
- Laboratory of Dynamics and Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, Building 31, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics and Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, Building 31, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jens V Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds vej 10 D, DK-8200, Aarhus C, Denmark
| | - Duncan S Sutherland
- Interdisiciplinary Nanoscience Center, Aarhus University, The iNANO House, Gustav Wieds Vej 14, DK-8200, Aarhus C, Denmark
- Center for Cellular Signal Patterns, Aarhus University, The iNANO House, Gustav Wieds Vej 14, DK-8200, Aarhus C, Denmark
| | - Simon F Eskildsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, DK-8200, Aarhus N, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University and Aarhus University Hospital, Building 1710, Universitetsbyen 3, DK-8200, Aarhus C, Denmark
| | - Thomas E Willnow
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- Max-Delbrueck-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - David J Brooks
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
- Department of Brain Sciences, Imperial College London, Burlington Danes, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Institute of Translational and Clinical Research, University of Newcastle, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.
- NEURODIN AU IDEAS Center, Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8200, Aarhus C, Denmark.
- Interdisiciplinary Nanoscience Center, Aarhus University, The iNANO House, Gustav Wieds Vej 14, DK-8200, Aarhus C, Denmark.
| |
Collapse
|
3
|
Tanaka T, Ekimoto T, Nagatomo M, Neyazaki M, Shimoji E, Yamane T, Kanagawa S, Oi R, Mihara E, Takagi J, Akashi S, Ikeguchi M, Nogi T. Hybrid in vitro/in silico analysis of low-affinity protein-protein interactions that regulate signal transduction by Sema6D. Protein Sci 2022; 31:e4452. [PMID: 36156831 PMCID: PMC9601788 DOI: 10.1002/pro.4452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
Semaphorins constitute a large family of secreted and membrane-bound proteins that signal through cell-surface receptors, plexins. Semaphorins generally use low-affinity protein-protein interactions to bind with their specific plexin(s) and regulate distinct cellular processes such as neurogenesis, immune response, and organogenesis. Sema6D is a membrane-bound semaphorin that interacts with class A plexins. Sema6D exhibited differential binding affinities to class A plexins in prior cell-based assays, but the molecular mechanism underlying this selectivity is not well understood. Therefore, we performed hybrid in vitro/in silico analysis to examine the binding mode of Sema6D to class A plexins and to identify residues that give rise to the differential affinities and thus contribute to the selectivity within the same class of semaphorins. Our biophysical binding analysis indeed confirmed that Sema6D has a higher affinity for Plexin-A1 than for other class A plexins, consistent with the binding selectivity observed in the previous cell-based assays. Unexpectedly, our present crystallographic analysis of the Sema6D-Plexin-A1 complex showed that the pattern of polar interactions is not interaction-specific because it matches the pattern in the prior structure of the Sema6A-Plexin-A2 complex. Thus, we performed in silico alanine scanning analysis and discovered hotspot residues that selectively stabilized the Sema6D-Plexin-A1 pair via Van der Waals interactions. We then validated the contribution of these hotspot residues to the variation in binding affinity with biophysical binding analysis and molecular dynamics simulations on the mutants. Ultimately, our present results suggest that shape complementarity in the binding interfaces is a determinant for binding selectivity.
Collapse
Affiliation(s)
- Tsubasa Tanaka
- Graduate School of Medical Life ScienceYokohama City UniversityYokohamaKanagawaJapan
| | - Toru Ekimoto
- Graduate School of Medical Life ScienceYokohama City UniversityYokohamaKanagawaJapan
| | - Meri Nagatomo
- Graduate School of Medical Life ScienceYokohama City UniversityYokohamaKanagawaJapan
| | - Makiko Neyazaki
- Graduate School of Medical Life ScienceYokohama City UniversityYokohamaKanagawaJapan
| | - Erena Shimoji
- Graduate School of Medical Life ScienceYokohama City UniversityYokohamaKanagawaJapan
| | - Tsutomu Yamane
- Center for Computational Science, RIKENYokohamaKanagawaJapan
| | - Sakura Kanagawa
- Graduate School of Medical Life ScienceYokohama City UniversityYokohamaKanagawaJapan
| | - Rika Oi
- Graduate School of Medical Life ScienceYokohama City UniversityYokohamaKanagawaJapan
| | - Emiko Mihara
- Institute for Protein Research, Osaka UniversitySuitaOsakaJapan
| | - Junichi Takagi
- Institute for Protein Research, Osaka UniversitySuitaOsakaJapan
| | - Satoko Akashi
- Graduate School of Medical Life ScienceYokohama City UniversityYokohamaKanagawaJapan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life ScienceYokohama City UniversityYokohamaKanagawaJapan
- Center for Computational Science, RIKENYokohamaKanagawaJapan
| | - Terukazu Nogi
- Graduate School of Medical Life ScienceYokohama City UniversityYokohamaKanagawaJapan
| |
Collapse
|
4
|
Arumugaperumal A, Sudalaimani DK, Arumugaswami V, Sivasubramaniam S. Draft Genome Sequence of the Earthworm Eudrilus eugeniae. Curr Genomics 2022; 23:118-125. [PMID: 36778974 PMCID: PMC9878837 DOI: 10.2174/1389202923666220401095626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Earthworms are annelids. They play a major role in agriculture and soil fertility. Vermicompost is the best organic manure for plant crops. Eudrilus eugeniae is an earthworm well suited for efficient vermicompost production. The worm is also used to study the cell and molecular biology of regeneration, molecular toxicology, developmental biology, etc., because of its abilities like high growth rate, rapid reproduction, tolerability toward wide temperature range, and less cost of maintenance. Objective: The whole genome has been revealed only for Eisenia andrei and Eisenia fetida. Methods: In the present work, we sequenced the genome of E. eugeniae using the Illumina platform and generated 160,684,383 paired-end reads. Results: The reads were assembled into a draft genome of size 488 Mb with 743,870 contigs and successfully annotated 24,599 genes. Further, 208 stem cell-specific genes and 3,432 non-coding genes were identified. Conclusion: The sequence and annotation details were hosted in a web application available at https://sudhakar-sivasubramaniam-labs.shinyapps.io/eudrilus_genome/.
Collapse
Affiliation(s)
| | | | | | - Sudhakar Sivasubramaniam
- Address correspondence to this author at the Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu- 627012, India; Tel: +91 9940998936; E-mail:
| |
Collapse
|
5
|
Bjornson-Hooper ZB, Fragiadakis GK, Spitzer MH, Chen H, Madhireddy D, Hu K, Lundsten K, McIlwain DR, Nolan GP. A Comprehensive Atlas of Immunological Differences Between Humans, Mice, and Non-Human Primates. Front Immunol 2022; 13:867015. [PMID: 35359965 PMCID: PMC8962947 DOI: 10.3389/fimmu.2022.867015] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Animal models are an integral part of the drug development and evaluation process. However, they are unsurprisingly imperfect reflections of humans, and the extent and nature of many immunological differences are unknown. With the rise of targeted and biological therapeutics, it is increasingly important that we understand the molecular differences in the immunological behavior of humans and model organisms. However, very few antibodies are raised against non-human primate antigens, and databases of cross-reactivity between species are incomplete. Thus, we screened 332 antibodies in five immune cell populations in blood from humans and four non-human primate species generating a comprehensive cross-reactivity catalog that includes cell type-specificity. We used this catalog to create large mass cytometry universal cross-species phenotyping and signaling panels for humans, along with three of the model organisms most similar to humans: rhesus and cynomolgus macaques and African green monkeys; and one of the mammalian models most widely used in drug development: C57BL/6 mice. As a proof-of-principle, we measured immune cell signaling responses across all five species to an array of 15 stimuli using mass cytometry. We found numerous instances of different cellular phenotypes and immune signaling events occurring within and between species, and detailed three examples (double-positive T cell frequency and signaling; granulocyte response to Bacillus anthracis antigen; and B cell subsets). We also explore the correlation of herpes simian B virus serostatus on the immune profile. Antibody panels and the full dataset generated are available online as a resource to enable future studies comparing immune responses across species during the evaluation of therapeutics.
Collapse
Affiliation(s)
| | - Gabriela K. Fragiadakis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
- Department of Medicine, Division of Rheumatology, University of California San Francisco, San Francisco, CA, United States
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, United States
- University of California, San Francisco (UCSF) Data Science CoLab and University of California, San Francisco (UCSF) Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Matthew H. Spitzer
- Immunology Program, Stanford University, Stanford, CA, United States
- Departments of Otolaryngology – Head and Neck Surgery and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Deepthi Madhireddy
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Kevin Hu
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Kelly Lundsten
- BioLegend Inc, Advanced Cytometry, San Diego, CA, United States
| | - David R. McIlwain
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Garry P. Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| |
Collapse
|
6
|
Zhang Y, Liu Q, Yang S, Liao Q. CD58 Immunobiology at a Glance. Front Immunol 2021; 12:705260. [PMID: 34168659 PMCID: PMC8218816 DOI: 10.3389/fimmu.2021.705260] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
The glycoprotein CD58, also known as lymphocyte-function antigen 3 (LFA-3), is a costimulatory receptor distributed on a broad range of human tissue cells. Its natural ligand CD2 is primarily expressed on the surface of T/NK cells. The CD2-CD58 interaction is an important component of the immunological synapse (IS) that induces activation and proliferation of T/NK cells and triggers a series of intracellular signaling in T/NK cells and target cells, respectively, in addition to promoting cell adhesion and recognition. Furthermore, a soluble form of CD58 (sCD58) is also present in cellular supernatant in vitro and in local tissues in vivo. The sCD58 is involved in T/NK cell-mediated immune responses as an immunosuppressive factor by affecting CD2-CD58 interaction. Altered accumulation of sCD58 may lead to immunosuppression of T/NK cells in the tumor microenvironment, allowing sCD58 as a novel immunotherapeutic target. Recently, the crucial roles of costimulatory molecule CD58 in immunomodulation seem to be reattracting the interests of investigators. In particular, the CD2-CD58 interaction is involved in the regulation of antiviral responses, inflammatory responses in autoimmune diseases, immune rejection of transplantation, and immune evasion of tumor cells. In this review, we provide a comprehensive summary of CD58 immunobiology.
Collapse
Affiliation(s)
- Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Bao YJ, Qiu J, Luo Y, Rodríguez F, Qiu HJ. The genetic variation landscape of African swine fever virus reveals frequent positive selection and adaptive flexibility. Transbound Emerg Dis 2021; 68:2703-2721. [PMID: 33751854 DOI: 10.1111/tbed.14018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
African swine fever virus (ASFV) is a lethal disease agent that causes high mortality in swine population and devastating loss in swine industries. The development of efficacious vaccines has been hindered by the gap in knowledge concerning genetic variation of ASFV and the genetic factors involved in host adaptation and virus-host interactions. In this study, we performed a meta-genetic study of ASFV aiming to profile the variation landscape and identify genetic factors with signatures of positive selection and relevance to host adaptation. Our data reveal a high level of genetic variability of ASFV shaped by both diversifying selection and selective sweep. The selection signatures are widely distributed across the genome with the diversifying selection falling within 29 genes and selection sweep within 25 genes, highlighting strong signals of adaptive evolution of ASFV. Further examination of the sequence properties reveals the link of the selection signatures with virus-host interactions and adaptive flexibility. Specifically, we discovered a site at 157th of the key antigen protein EP402R under diversifying selection, which is located in the cytotoxic T-cell epitope related to the low level of cross-reaction in T-cell response. Importantly, two multigene families MGF360 and MGF505, the host range factors of ASFV, exhibit divergent selection among the paralogous members, conferring sequence pools for genetic diversification and adaptive capability. By integrating the genes with selection signatures into a unified framework of interactions between ASFV and hosts, we showed that the genes are involved in multiple processes of host immune interaction and virus life cycles, and may play crucial roles in circumventing host defence systems and enhancing adaptive fitness. Our findings will allow enhanced understanding of genetic basis of rapid spreading and adaptation of ASFV among the hosts.
Collapse
Affiliation(s)
- Yun-Juan Bao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Junhui Qiu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Universitat Autonòma de Barcelona, Bellaterra, 08193, Spain
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| |
Collapse
|
8
|
Belardi B, Son S, Felce JH, Dustin ML, Fletcher DA. Cell-cell interfaces as specialized compartments directing cell function. Nat Rev Mol Cell Biol 2020; 21:750-764. [PMID: 33093672 DOI: 10.1038/s41580-020-00298-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Cell-cell interfaces are found throughout multicellular organisms, from transient interactions between motile immune cells to long-lived cell-cell contacts in epithelia. Studies of immune cell interactions, epithelial cell barriers, neuronal contacts and sites of cell-cell fusion have identified a core set of features shared by cell-cell interfaces that critically control their function. Data from diverse cell types also show that cells actively and passively regulate the localization, strength, duration and cytoskeletal coupling of receptor interactions governing cell-cell signalling and physical connections between cells, indicating that cell-cell interfaces have a unique membrane organization that emerges from local molecular and cellular mechanics. In this Review, we discuss recent findings that support the emerging view of cell-cell interfaces as specialized compartments that biophysically constrain the arrangement and activity of their protein, lipid and glycan components. We also review how these biophysical features of cell-cell interfaces allow cells to respond with high selectivity and sensitivity to multiple inputs, serving as the basis for wide-ranging cellular functions. Finally, we consider how the unique properties of cell-cell interfaces present opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Brian Belardi
- Department of Bioengineering & Biophysics Program, UC Berkeley, Berkeley, CA, USA
| | - Sungmin Son
- Department of Bioengineering & Biophysics Program, UC Berkeley, Berkeley, CA, USA
| | | | | | - Daniel A Fletcher
- Department of Bioengineering & Biophysics Program, UC Berkeley, Berkeley, CA, USA.
- Division of Biological Systems & Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
9
|
Abu-Shah E, Trendel N, Kruger P, Nguyen J, Pettmann J, Kutuzov M, Dushek O. Human CD8 + T Cells Exhibit a Shared Antigen Threshold for Different Effector Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:1503-1512. [PMID: 32817332 PMCID: PMC7477745 DOI: 10.4049/jimmunol.2000525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
CD8+ T cells produce TNF-α, IL-2, and IFN-γ with similar Ag thresholds. Costimulation decreases Ag thresholds similarly for different cytokines. A common rate-limiting switch downstream of the TCR can explain these findings.
T cells recognizing cognate pMHC Ags become activated to elicit a myriad of cellular responses, such as target cell killing and the secretion of different cytokines, that collectively contribute to adaptive immunity. These effector responses have been hypothesized to exhibit different Ag dose and affinity thresholds, suggesting that pathogen-specific information may be encoded within the nature of the Ag. In this study, using systematic experiments in a reductionist system, in which primary human CD8+ T cell blasts are stimulated by recombinant peptides presented on MHC Ag alone, we show that different inflammatory cytokines have comparable Ag dose thresholds across a 25,000-fold variation in affinity. Although costimulation by CD28, CD2, and CD27 increased cytokine production in this system, the Ag threshold remained comparable across different cytokines. When using primary human memory CD8+ T cells responding to autologous APCs, equivalent thresholds were also observed for different cytokines and killing. These findings imply a simple phenotypic model of TCR signaling in which multiple T cell responses share a common rate-limiting threshold and a conceptually simple model of CD8+ T cell Ag recognition, in which Ag dose and affinity do not provide any additional response-specific information.
Collapse
Affiliation(s)
- Enas Abu-Shah
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and.,Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Nicola Trendel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Philipp Kruger
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - John Nguyen
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Johannes Pettmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Mikhail Kutuzov
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| |
Collapse
|
10
|
Hashem T, Kammala AK, Thaxton K, Griffin RM, Mullany K, Panettieri RA, Subramanian H, Das R. CD2 Regulates Pathogenesis of Asthma Induced by House Dust Mice Extract. Front Immunol 2020; 11:881. [PMID: 32477356 PMCID: PMC7235426 DOI: 10.3389/fimmu.2020.00881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023] Open
Abstract
Characteristic of allergic asthma, CD4+Th2 lymphocytes secrete Th2 cytokines, interleukin (IL)-4, IL-13, and IL-5 that mediate the inflammatory immune response. Surface expression of CD2 and its ligand, CD58, is increased on the monocytes and eosinophils of asthma patients, which correlate with elevated serum IgE levels, suggesting that CD2 may contribute to allergic airway inflammation. Using a murine model of asthma, we observed that house dust mice extract (HDME)-exposed Balb/c mice have increased airway hyperresponsiveness (AHR), lung inflammation, goblet cell hyperplasia, and elevated levels of Th2 cytokines in the lungs, as well as increased serum IgE levels as compared to the control mice. In contrast, with the exception of serum IgE levels, all the other parameters were significantly reduced in HDME-treated Cd2 -/- mice. Interestingly, Il13 but not Il4 or Il5 gene expression in the lungs was dramatically decreased in HDME-exposed Cd2 -/- mice. Of note, the gene expression of IL-13 downstream targets (Muc5b and Muc5ac) and high affinity IL-13Rα2 were upregulated in the lungs of HDME-exposed Balb/c mice but were significantly reduced in HDME-exposed Cd2 -/- mice. Consistently, gene expression of microRNAs regulating mucin production, inflammation, airway smooth muscle cell proliferation and IL-13 transcripts were increased in the lungs of HDME-exposed Cd2 -/- mice. Given the established role of IL-13 in promoting goblet cell hyperplasia, lung inflammation and AHR in allergic asthma, our studies reveal a unique role for CD2 in the regulation of Th2-associated allergic asthma.
Collapse
Affiliation(s)
- Tanwir Hashem
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Ananth K Kammala
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Kanedra Thaxton
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Ryan M Griffin
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Kellie Mullany
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, United States
| | - Hariharan Subramanian
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Rupali Das
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Pugh J, Nemat-Gorgani N, Djaoud Z, Guethlein LA, Norman PJ, Parham P. In vitro education of human natural killer cells by KIR3DL1. Life Sci Alliance 2019; 2:2/6/e201900434. [PMID: 31723004 PMCID: PMC6856763 DOI: 10.26508/lsa.201900434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022] Open
Abstract
Using NK cells isolated from individuals who lack the Bw4 epitope on HLA-B, Pugh et al reveal that KIR3DL1+ NK cells can be educated in vitro by co-culturing them with target cells that display the missing epitope. During development, NK cells are “educated” to respond aggressively to cells with low surface expression of HLA class I, a hallmark of malignant and infected cells. The mechanism of education involves interactions between inhibitory killer immunoglobulin–like receptors (KIRs) and specific HLA epitopes, but the details of this process are unknown. Because of the genetic diversity of HLA class I genes, most people have NK cells that are incompletely educated, representing an untapped source of human immunity. We demonstrate how mature peripheral KIR3DL1+ human NK cells can be educated in vitro. To accomplish this, we trained NK cells expressing the inhibitory KIR3DL1 receptor by co-culturing them with target cells that expressed its ligand, Bw4+HLA-B. After this training, KIR3DL1+ NK cells increased their inflammatory and lytic responses toward target cells lacking Bw4+HLA-B, as though they had been educated in vivo. By varying the conditions of this basic protocol, we provide mechanistic and translational insights into the process NK cell education.
Collapse
Affiliation(s)
- Jason Pugh
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Neda Nemat-Gorgani
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zakia Djaoud
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, Department of Immunology, School of Medicine, University of Colorado Denver, Denver, CO, USA
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
12
|
Suppression of costimulation by human cytomegalovirus promotes evasion of cellular immune defenses. Proc Natl Acad Sci U S A 2018; 115:4998-5003. [PMID: 29691324 PMCID: PMC5948980 DOI: 10.1073/pnas.1720950115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CD58 is an adhesion molecule that is known to play a critical role in costimulation of effector cells and is intrinsic to immune synapse structure. Herein, we describe a virally encoded gene that inhibits CD58 surface expression. Human cytomegalovirus (HCMV) UL148 was necessary and sufficient to promote intracellular retention of CD58 during HCMV infection. Blocking studies with antagonistic anti-CD58 mAb and an HCMV UL148 deletion mutant (HCMV∆UL148) with restored CD58 expression demonstrated that the CD2/CD58 axis was essential for the recognition of HCMV-infected targets by CD8+ HCMV-specific cytotoxic T lymphocytes (CTLs). Further, challenge of peripheral blood mononuclear cells ex vivo with HCMV∆UL148 increased both CTL and natural killer (NK) cell degranulation against HCMV-infected cells, including NK-driven antibody-dependent cellular cytotoxicity, showing that UL148 is a modulator of the function of multiple effector cell subsets. Our data stress the effect of HCMV immune evasion functions on shaping the immune response, highlighting the capacity for their potential use in modulating immunity during the development of anti-HCMV vaccines and HCMV-based vaccine vectors.
Collapse
|
13
|
Zhao H, Boyd LF, Schuck P. Measuring Protein Interactions by Optical Biosensors. ACTA ACUST UNITED AC 2017; 88:20.2.1-20.2.25. [PMID: 28369667 DOI: 10.1002/cpps.31] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This unit gives an introduction to the basic techniques of optical biosensing for measuring equilibrium and kinetics of reversible protein interactions. Emphasis is placed on description of robust approaches that will provide reliable results with few assumptions. How to avoid the most commonly encountered problems and artifacts is also discussed. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Huaying Zhao
- National Institutes of Health, Bethesda, Maryland
| | - Lisa F Boyd
- National Institutes of Health, Bethesda, Maryland
| | - Peter Schuck
- National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Sable R, Durek T, Taneja V, Craik DJ, Pallerla S, Gauthier T, Jois S. Constrained Cyclic Peptides as Immunomodulatory Inhibitors of the CD2:CD58 Protein-Protein Interaction. ACS Chem Biol 2016; 11:2366-74. [PMID: 27337048 DOI: 10.1021/acschembio.6b00486] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction between the cell-cell adhesion proteins CD2 and CD58 plays a crucial role in lymphocyte recruitment to inflammatory sites, and inhibitors of this interaction have potential as immunomodulatory drugs in autoimmune diseases. Peptides from the CD2 adhesion domain were designed to inhibit CD2:CD58 interactions. To improve the stability of the peptides, β-sheet epitopes from the CD2 region implicated in CD58 recognition were grafted into the cyclic peptide frameworks of sunflower trypsin inhibitor and rhesus theta defensin. The designed multicyclic peptides were evaluated for their ability to modulate cell-cell interactions in three different cell adhesion assays, with one candidate, SFTI-a, showing potent activity in the nanomolar range (IC50: 51 nM). This peptide also suppresses the immune responses in T cells obtained from mice that exhibit the autoimmune disease rheumatoid arthritis. SFTI-a was resistant to thermal denaturation, as judged by circular dichroism spectroscopy and mass spectrometry, and had a half-life of ∼24 h in human serum. Binding of this peptide to CD58 was predicted by molecular docking studies and experimentally confirmed by surface plasmon resonance experiments. Our results suggest that cyclic peptides from natural sources are promising scaffolds for modulating protein-protein interactions that are typically difficult to target with small-molecule compounds.
Collapse
Affiliation(s)
- Rushikesh Sable
- Basic
Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Thomas Durek
- The
University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Veena Taneja
- Department
of Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - David J. Craik
- The
University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Sandeep Pallerla
- Basic
Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Ted Gauthier
- LSU-Ag
Center, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Seetharama Jois
- Basic
Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| |
Collapse
|
15
|
Gan Z, Wang B, Tang J, Lu Y, Jian J, Wu Z, Nie P. Molecular characterization and expression of CD2 in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae stimulus. FISH & SHELLFISH IMMUNOLOGY 2016; 50:101-108. [PMID: 26804651 DOI: 10.1016/j.fsi.2016.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
The cluster of differentiation 2 (CD2), functioning as a cell adhesion and costimulatory molecule, plays a crucial role in T-cell activation. In this paper, the CD2 gene of Nile tilapia, Oreochromis niloticus (designated as On-CD2) was cloned and its expression pattern under the stimulation of Streptococcus agalactiae was investigated. Sequence analysis showed On-CD2 protein consists of two extracellular Ig-like domains, a transmembrane region, and a long proline-rich cytoplasmic tail, which is a hallmark of CD2, and several important structural characteristics required for T-cell activation were detected in the deduced amino acid sequence of On-CD2. In healthy tilapia, the On-CD2 transcripts were mainly detected in the head kidney, spleen, blood and thymus. Moreover, there was a clear time-dependent expression pattern of On-CD2 after immunized by formalin-inactivated S. agalactiae and the expression reached the highest level at 12 h in the brain and head kidney, 48 h in the spleen, and 72 h in the thymus, respectively. This is the first report on the expression of CD2 induced by bacteria vaccination in teleosts. These findings indicated that On-CD2 may play an important role in the immune response to intracellular bacteria in Nile tilapia.
Collapse
Affiliation(s)
- Zhen Gan
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China.
| | - JiChang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Lim HS, Cordoba SP, Dushek O, Goyette J, Taylor A, Rudd CE, van der Merwe PA. Costimulation of IL-2 Production through CD28 Is Dependent on the Size of Its Ligand. THE JOURNAL OF IMMUNOLOGY 2015; 195:5432-9. [PMID: 26500347 PMCID: PMC4654228 DOI: 10.4049/jimmunol.1500707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/22/2015] [Indexed: 11/25/2022]
Abstract
Optimal T cell activation typically requires engagement of both the TCR and costimulatory receptors, such as CD28. Engagement of CD28 leads to tyrosine phosphorylation of its cytoplasmic region and recruitment of cytoplasmic signaling proteins. Although the exact mechanism of CD28 signal transduction is unknown, CD28 triggering has similarities to the TCR, which was proposed to use the kinetic-segregation (KS) mechanism. The KS model postulates that, when small receptors engage their ligands within areas of close (∼15 nm) contact in the T cell/APC interface, this facilitates phosphorylation by segregating the engaged receptor/ligand complex from receptor protein tyrosine phosphatases with large ectodomains, such as CD45. To test this hypothesis, we examined the effect of elongating the extracellular region of the CD28 ligand, CD80, on its ability to costimulate IL-2 production by primary T cells. CD80 elongation reduced its costimulatory effect without abrogating CD28 binding. Confocal microscopy revealed that elongated CD80 molecules were less well segregated from CD45 at the T cell/APC interface. T cells expressing CD28 harboring a key tyrosine-170 mutation were less sensitive to CD80 elongation. In summary, the effectiveness of CD28 costimulation is inversely proportional to the dimensions of the CD28-CD80 complex. Small CD28-CD80 complex dimensions are required for optimal costimulation by segregation from large inhibitory tyrosine phosphatases. These results demonstrate the importance of ligand dimensions for optimal costimulation of IL-2 production by T cells and suggest that the KS mechanism contributes to CD28 signaling.
Collapse
Affiliation(s)
- Hong-Sheng Lim
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Shaun-Paul Cordoba
- University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom; and
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Jesse Goyette
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Alison Taylor
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Christopher E Rudd
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - P Anton van der Merwe
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom;
| |
Collapse
|
17
|
Abdel-Azeim S, Chermak E, Vangone A, Oliva R, Cavallo L. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories. BMC Bioinformatics 2014; 15 Suppl 5:S1. [PMID: 25077693 PMCID: PMC4095001 DOI: 10.1186/1471-2105-15-s5-s1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Molecular Dynamics (MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. Results On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. Conclusions MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes.
Collapse
|
18
|
Gonzalez LC. Protein microarrays, biosensors, and cell-based methods for secretome-wide extracellular protein-protein interaction mapping. Methods 2012; 57:448-58. [PMID: 22728035 DOI: 10.1016/j.ymeth.2012.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/02/2012] [Accepted: 06/08/2012] [Indexed: 12/15/2022] Open
Abstract
Approximately one quarter of all human genes encode proteins that function in the extracellular space or serve to bridge the extracellular and intracellular environments. Physical associations between these secretome proteins serve to regulate a wide range of biological activities and consequently represent important therapeutic targets. Moreover, some extracellular proteins are targeted by pathogens to allow host access or immune evasion. Despite the importance of extracellular protein-protein interactions, our knowledge in this area has remained sparse. Weak affinities and low abundance have often hindered efforts to identify these interactions using traditional methods such as biochemical purification and cDNA library expression cloning. Moreover, current large-scale protein-protein interaction mapping techniques largely under represent extracellular protein-protein interactions. This review highlights emerging biosensor and protein microarray technology, along with more traditional cell-based techniques, that are compatible with secretome-wide screens for extracellular protein-protein interaction discovery. A combination of these approaches will serve to rapidly expand our knowledge of the extracellular protein-protein interactome.
Collapse
Affiliation(s)
- Lino C Gonzalez
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
19
|
Sameshima S, Nakao M, Somamoto T. Diversity of CD2 subfamily receptors in cyprinid fishes. RESULTS IN IMMUNOLOGY 2012; 2:25-34. [PMID: 24371564 PMCID: PMC3862340 DOI: 10.1016/j.rinim.2012.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/18/2012] [Accepted: 01/24/2012] [Indexed: 01/08/2023]
Abstract
CD2 family receptor (CD2f) is evolutionarily conserved and is widely expressed by various types of leukocytes. To elucidate the phylogenetic diversity of the CD2f, we characterized CD2f in teleosts using ginbuna crucian carp and zebrafish. The identified CD2f isoforms of the ginbuna carp (caauCD2f) exhibited high sequence similarity to the mammalian CD2 subsets CD48, CD244, and CD319, but it was difficult to classify them into their respective mammalian CD2f based on sequence similarity, the presence of an immunoreceptor tyrosine-based switch motif (ITSM), and phylogenetic tree analysis. Although the four caauCD2f isoforms share an extracellular domain with quite high identity (83-94% identity at the nucleic acid level), they differ in the number of ITSM motifs in their cytoplasmic tail. RT-PCR and in situ hybridization analyses showed that the caauCD2f isoforms are expressed by different cell populations, suggesting that they, like mammalian CD2f, have diverse roles. Interestingly, immunoglobulin (Ig) domain-like sequences with high identity to caauCD2fs are clustered close together within 0.6 Mbp on zebrafish chromosomes 1 and 2 (at least 8 and 35 sequences, respectively), and many pairs of the Ig domains share more than 90% identity at the amino acid level. Therefore, the teleost CD2fs with considerably high identity have been probably generated from a common ancestral Ig-domain gene by a very recent gene duplication event. These findings suggest that the identified CD2f acquired functional diversification through successive duplications together with the acquisition of ITSM.
Collapse
Affiliation(s)
| | | | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
| |
Collapse
|
20
|
Guselnikov SV, Laktionov PP, Najakshin AM, Baranov KO, Taranin AV. Expansion and diversification of the signaling capabilities of the CD2/SLAM family in Xenopodinae amphibians. Immunogenetics 2011; 63:679-89. [DOI: 10.1007/s00251-011-0544-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 05/26/2011] [Indexed: 11/24/2022]
|
21
|
Lillehoj HS, Kim DK, Bravo DM, Lee SH. Effects of dietary plant-derived phytonutrients on the genome-wide profiles and coccidiosis resistance in the broiler chickens. BMC Proc 2011; 5 Suppl 4:S34. [PMID: 21645315 PMCID: PMC3108230 DOI: 10.1186/1753-6561-5-s4-s34] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The present study was conducted to investigate the effects of dietary plant-derived phytonutrients, carvacrol, cinnamaldehyde and Capsicum oleoresin, on the translational regulation of genes associated with immunology, physiology and metabolism using high-throughput microarray analysis and in vivo disease challenge model of avian coccidiosis. METHODS In this study, we used nutrigenomics technology to investigate the molecular and genetic mechanisms of dietary modulation of host innate immunity and metabolism by three phytonutrients. To validate their immunomodulatory effects in a disease model, young broiler chickens fed a standard diet supplemented with three phytochemicals (carvacrol, cinnamaldehyde, and Capsicum oleoresin) from one day post-hatch were orally challenged with E. acervulina. The body weight gain and fecal oocyst production were used to evaluate coccidiosis disease parameters. RESULTS Analysis of global gene expression profiles of intestinal tissues from phytonutrient-fed birds indicated that Capsicum oleoresin induced the most gene changes compared to the control group where many of these genes were associated with those of metabolism and immunity. The most reliable network induced by dietary cinnamaldehyde treatment was related with the functions of antigen presentation, humoral immune response, and inflammatory disease. Furthermore, dietary supplementation with these phytonutrients significantly protected broiler chickens against live coccidiosis challenge infection based on body weight and parasite fecundity. CONCLUSIONS The results of this study provide clear evidence to support the idea that plant-derived phytochemicals possess immune-enhancing properties in chickens and these new findings create a new possibility to develop effective drug-free alternative strategies for disease control for poultry infectious diseases.
Collapse
Affiliation(s)
- Hyun S Lillehoj
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
CD2 is a cell adhesion molecule that mediates T-cell activation by binding to its ligand CD58 on antigen-presenting cells. Interaction between CD2 and CD58 or leukocyte function-associated antigen-3 (LFA-3) helps to optimize immune recognition facilitating contact between T lymphocytes and antigen-presenting cells. Modulation or inhibition of this interaction has been shown to be therapeutically useful in the treatment of autoimmune diseases. Antibodies and small molecules including peptides have been designed to modulate or disrupt the cell adhesion interactions due to CD2 and CD58. E-rosetting assay is a widely used method applied in the study of the modulation of CD2-CD58 interaction, which is either labor-intensive or radio-hazardous. In this chapter, we describe two methods that are used to study cell adhesion inhibition: (a) E-rosetting Assay and (b) Lymphocyte-epithelial assay. The second method, lymphocyte-epithelial assay, is a rapid and sensitive heterotypic cell adhesion assay for studying cell adhesion inhibition. The method relies on the CD2 expression on the surface of Jurkat cells and the CD58 expression on the surface of Caco-2 cells, which were confirmed by flow cytometry and ELISA studies respectively. This heterotypic cell adhesion assay described typically takes less than 4 h to perform, allows the evaluation of inhibitory activity of peptides/small molecules to modulate CD2-CD58 interaction in real cell system.
Collapse
|
23
|
Otto DME, Campanero-Rhodes MA, Karamanska R, Powell AK, Bovin N, Turnbull JE, Field RA, Blackburn J, Feizi T, Crocker PR. An expression system for screening of proteins for glycan and protein interactions. Anal Biochem 2011; 411:261-70. [PMID: 21211507 PMCID: PMC3740237 DOI: 10.1016/j.ab.2010.12.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/22/2010] [Accepted: 12/30/2010] [Indexed: 12/14/2022]
Abstract
Here we describe a versatile high-throughput expression system that permits genome-wide screening of type 1 membrane and secreted proteins for interactions with glycans and proteins using both cell-expressed and soluble forms of the expressed proteins. Based on Gateway cloning methodology, we have engineered a destination vector that directs expression of enhanced green fluorescent protein (EGFP)-tagged proteins at the cell surface via a glycosylphosphatidylinositol tail. The EGFP fusion proteins can then be cleaved with PreScission protease to release soluble forms of proteins that can be optionally biotinylated. We demonstrate the utility of this cloning and expression system for selected low-affinity membrane lectins from the siglec family of sialic acid-binding immunoglobulin-like lectins, for the glycosaminoglycan-binding proteins FGF-1 and BACE, and for the heterotypic adhesion molecules JAM-B and JAM-C. Cell-expressed proteins can be evaluated for glycan interactions using polyvalent soluble glycan probes and for protein interactions using either cells or soluble proteins. Following cleavage from the cell surface, proteins were complexed in solution and sufficient avidity was achieved to measure weak protein–glycan and weak protein–protein interactions using glycan arrays and surface plasmon resonance, respectively.
Collapse
Affiliation(s)
- Diana M E Otto
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Surface plasmon resonance biosensing in studies of the binding between β₂ integrin I domains and their ligands. Methods Mol Biol 2011; 757:55-71. [PMID: 21909906 DOI: 10.1007/978-1-61779-166-6_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Measurements on the kinetic aspects of binding between macromolecular species such as proteins have been greatly advanced by the application of surface plasmon resonance (SPR) biosensors. In studies of ligand binding by integrin I domains, technologies such as the BIAcore instruments have provided important insights into the role of conformational regulation. This chapter describes a protocol for studying the binding between the I domain from integrin α(X)β(2) and its ligand iC3b. Also included are topics on the interpretation of data. Integrin I domains appear to support heterogeneous interactions with ligands, which pose significant challenges in deriving valid information on the binding kinetics from the SPR measurements. Fortunately, new algorithms are available that may resolve even complex ligand-binding reactions; with the application to data on the binding between the α(X) I domain, a more consistent and unambiguous result is obtained compared to those obtained by classical approaches for analyzing SPR biosensor data.
Collapse
|
25
|
Watzl C, Long EO. Signal transduction during activation and inhibition of natural killer cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2010; Chapter 11:Unit 11.9B. [PMID: 20814939 PMCID: PMC3857016 DOI: 10.1002/0471142735.im1109bs90] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Natural killer (NK) cells are important for early immune responses to viral infections and cancer. Upon activation, NK cells secrete cytokines and chemokines, and kill sensitive target cells by releasing the content of cytolytic granules. This unit is focused on the signal transduction pathways that regulate NK cell activities in response to contact with other cells. We will highlight signals regulating NK cell adhesion to target cells and describe the induction of cellular cytotoxicity by the engagement of different NK cell activation receptors. Negative signaling induced by inhibitory receptors opposes NK cell activation and provides an important safeguard from NK cell reactivity toward normal, healthy cells. We will discuss the complex integration of the different signals that occur during interaction of NK cells with target cells.
Collapse
Affiliation(s)
- Carsten Watzl
- Institute for Immunology, University Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
26
|
Schuck P, Zhao H. The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. Methods Mol Biol 2010; 627:15-54. [PMID: 20217612 DOI: 10.1007/978-1-60761-670-2_2] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter presents an introduction to the kinetic analysis of SPR biosensor data for the determination of affinity and kinetic rate constants of biomolecular interactions between an immobilized and a soluble binding partner. The need to be aware of and critically test the assumptions underlying the analysis models is emphasized and the consequences for the experimental design are discussed. The two most common sources of deviation in SPR surface binding kinetics from the ideal pseudo-first-order binding kinetics of bimolecular reactions are mass transport limitations and the heterogeneity of the surface sites. These problems are intrinsic to the use of a biosensor surface for characterizing interactions. The effect of these factors on the observed binding kinetics, and strategies to account for them are reviewed, both in the context of mathematical data analysis, as well as the design of the experiments and controls.
Collapse
Affiliation(s)
- Peter Schuck
- Dynamics of Macromolecular Assembly, Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
27
|
Wright GJ. Signal initiation in biological systems: the properties and detection of transient extracellular protein interactions. MOLECULAR BIOSYSTEMS 2010; 5:1405-12. [PMID: 19593473 PMCID: PMC2898632 DOI: 10.1039/b903580j] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extracellular glycoprotein interactions are not detected by most high throughput assays creating “blind-spots” in protein interaction maps. This review examines this problem and discusses recent advances that have begun to address it.
Individual cells within biological systems frequently coordinate their functions through signals initiated by specific extracellular protein interactions involving receptors that bridge the cellular membrane. Due to their biochemical nature, these membrane-embedded receptor proteins are difficult to manipulate and their interactions are characterised by very weak binding strengths that cannot be detected using popular high throughput assays. This review will provide a general outline of the biochemical attributes of receptor proteins focussing in particular on the biophysical properties of their transient interactions. Methods that are able to detect these weak extracellular binding events and especially those that can be used for identifying novel interactions will be compared. Finally, I discuss the feasibility of constructing a complete and accurate extracellular protein interaction map, and the methods that are likely to be useful in achieving this goal.
Collapse
Affiliation(s)
- Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| |
Collapse
|
28
|
Clarkson NG, Brown MH. Inhibition and activation by CD244 depends on CD2 and phospholipase C-gamma1. J Biol Chem 2009; 284:24725-34. [PMID: 19586919 PMCID: PMC2757176 DOI: 10.1074/jbc.m109.028209] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Indexed: 11/06/2022] Open
Abstract
Regulation by the NK and T cell surface receptor CD244 in mice and humans depends both on engagement at the cell surface by CD48 and intracellular interactions with SAP and EAT-2. Relevance to human disease by manipulating CD244 in mouse models is complicated by rodent CD2 also binding CD48. We distinguish between contributions of mouse CD244 and CD2 on engagement of CD48 in a mouse T cell hybridoma. CD2 and CD244 both contribute positively to the immune response as mutation of proline-rich motifs or tyrosine motifs in the tails of CD2 and CD244, respectively, result in a decrease in antigen-specific interleukin-2 production. Inhibitory effects of mouse CD244 are accounted for by competition with CD2 at the cell surface for CD48. In humans CD2 and CD244 are engaged separately at the cell surface but biochemical data suggest a potential conserved intracellular link between the two receptors through FYN kinase. We identify a novel signaling mechanism for CD244 through its potential to recruit phospholipase C-gamma1 via the conserved phosphorylated tyrosine motif in the tail of the adaptor protein EAT-2, which we show is important for function.
Collapse
Affiliation(s)
- Nicholas G. Clarkson
- From the Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Marion H. Brown
- From the Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
29
|
Kaizuka Y, Douglass AD, Vardhana S, Dustin ML, Vale RD. The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. ACTA ACUST UNITED AC 2009; 185:521-34. [PMID: 19398758 PMCID: PMC2700390 DOI: 10.1083/jcb.200809136] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The interaction between a T cell and an antigen-presenting cell (APC) can trigger a signaling response that leads to T cell activation. Prior studies have shown that ligation of the T cell receptor (TCR) triggers a signaling cascade that proceeds through the coalescence of TCR and various signaling molecules (e.g., the kinase Lck and adaptor protein LAT [linker for T cell activation]) into microdomains on the plasma membrane. In this study, we investigated another ligand-receptor interaction (CD58-CD2) that facilities T cell activation using a model system consisting of Jurkat T cells interacting with a planar lipid bilayer that mimics an APC. We show that the binding of CD58 to CD2, in the absence of TCR activation, also induces signaling through the actin-dependent coalescence of signaling molecules (including TCR-zeta chain, Lck, and LAT) into microdomains. When simultaneously activated, TCR and CD2 initially colocalize in small microdomains but then partition into separate zones; this spatial segregation may enable the two receptors to enhance signaling synergistically. Our results show that two structurally distinct receptors both induce a rapid spatial reorganization of molecules in the plasma membrane, suggesting a model for how local increases in the concentration of signaling molecules can trigger T cell signaling.
Collapse
Affiliation(s)
- Yoshihisa Kaizuka
- Department of Cellular and Molecular Pharmacology, The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
30
|
A simple detection method for low-affinity membrane protein interactions by baculoviral display. PLoS One 2008; 3:e4024. [PMID: 19107192 PMCID: PMC2602974 DOI: 10.1371/journal.pone.0004024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 11/20/2008] [Indexed: 11/19/2022] Open
Abstract
Background Membrane protein interactions play an important role in cell-to-cell recognition in various biological activities such as in the immune or neural system. Nevertheless, there has remained the major obstacle of expression of the membrane proteins in their active form. Recently, we and other investigators found that functional membrane proteins express on baculovirus particles (budded virus, BV). In this study, we applied this BV display system to detect interaction between membrane proteins important for cell-to-cell interaction in immune system. Methodology/Principal Findings We infected Sf9 cells with recombinant baculovirus encoding the T cell membrane protein CD2 or its ligand CD58 and recovered the BV. We detected specific interaction between CD2-displaying BV and CD58-displaying BV by an enzyme-linked immunosorbent assay (ELISA). Using this system, we also detected specific interaction between two other membrane receptor-ligand pairs, CD40-CD40 ligand (CD40L), and glucocorticoid-induced TNFR family-related protein (GITR)-GITR ligand (GITRL). Furthermore, we observed specific binding of BV displaying CD58, CD40L, or GITRL to cells naturally expressing their respective receptors by flowcytometric analysis using anti-baculoviral gp64 antibody. Finally we isolated CD2 cDNA from a cDNA expression library by magnetic separation using CD58-displayng BV and anti-gp64 antibody. Conclusions We found the BV display system worked effectively in the detection of the interaction of membrane proteins. Since various membrane proteins and their oligomeric complexes can be displayed on BV in the native form, this BV display system should prove highly useful in the search for natural ligands or to develop screening systems for therapeutic antibodies and/or compounds.
Collapse
|
31
|
The crystal structure of the heparin-binding reelin-N domain of f-spondin. J Mol Biol 2008; 381:1213-23. [PMID: 18602404 PMCID: PMC2561254 DOI: 10.1016/j.jmb.2008.06.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/10/2008] [Accepted: 06/18/2008] [Indexed: 01/07/2023]
Abstract
The extracellular matrix protein F-spondin mediates axon guidance during neuronal development. Its N-terminal domain, termed the reelin-N domain, is conserved in F-spondins, reelins, and other extracellular matrix proteins. In this study, a recombinant human reelin-N domain has been expressed, purified, and shown to bind heparin. The crystal structure of the reelin-N domain resolved to 2.0 A reveals a variant immunoglobulin-like fold and potential heparin-binding sites. Substantial conformational variations even in secondary structure are observed between the two chemically identical reelin-N domains in one crystallographic asymmetric unit. The variations may result from extensive, highly specific interactions across the interface of the two reelin-N domains. The calculated values of buried surface area and the interface's shape complementarity are consistent with the formation of a weak dimer. The homophilic asymmetric dimer can potentially offer advantages in binding to ligands such as glycosaminoglycans, which may, in turn, bridge the two reelin-N domains and stabilize the dimer.
Collapse
|
32
|
Wang L, Gilbert RJC, Atilano ML, Filipe SR, Gay NJ, Ligoxygakis P. Peptidoglycan recognition protein-SD provides versatility of receptor formation in Drosophila immunity. Proc Natl Acad Sci U S A 2008; 105:11881-6. [PMID: 18697931 PMCID: PMC2575254 DOI: 10.1073/pnas.0710092105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Indexed: 12/11/2022] Open
Abstract
In Drosophila, the enzymatic activity of the glucan binding protein GNBP1 is needed to present Gram-positive peptidoglycan (PG) to peptidoglycan recognition protein SA (PGRP-SA). However, an additional PGRP (PGRP-SD) has been proposed to play a partially redundant role with GNBP1 and PGRP-SA. To reconcile the genetic results with events at the molecular level, we investigated how PGRP-SD participates in the sensing of Gram-positive bacteria. PGRP-SD enhanced the binding of GNBP1 to Gram-positive PG. PGRP-SD interacted with GNBP1 and enhanced the interaction between GNBP1 and PGRP-SA. A complex containing all three proteins could be detected in native gels in the presence of PG. In solution, addition of a highly purified PG fragment induced the occurrence not only of the ternary complex but also of dimeric subcomplexes. These results indicate that the interplay between the binding affinities of different PGRPs provides sufficient flexibility for the recognition of the highly diverse Gram-positive PG.
Collapse
Affiliation(s)
- Lihui Wang
- *Genetics Unit, Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robert J. C. Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Magda L. Atilano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal; and
| | - Sergio R. Filipe
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal; and
| | - Nicholas J. Gay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Petros Ligoxygakis
- *Genetics Unit, Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
33
|
Aricescu AR, Jones EY. Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Curr Opin Cell Biol 2007; 19:543-50. [PMID: 17935964 DOI: 10.1016/j.ceb.2007.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/14/2007] [Accepted: 09/14/2007] [Indexed: 11/17/2022]
Abstract
The latest structural studies of immunoglobulin superfamily cell adhesion molecules are driving a shift in perspective; increasingly the view is not focused solely on the individual molecule but rather is on the molecular assembly. Two common themes are emerging, revealing mechanisms for ectodomain-dependent regulation of cell surface receptors' signalling abilities. The first is the propensity of many such molecules to arrange in zipper-type or array-type assemblies driven by a network of highly specific cis and trans interactions. The second is the use of the extracellular dimensions of a molecule or adhesion complex as properties which, in combination with characteristic intercellular spacings, can determine the co-localisation or exclusion of particular protein populations at cell interfaces and junctions.
Collapse
Affiliation(s)
- A Radu Aricescu
- Cancer Research UK Receptor Structure Research Group, Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | | |
Collapse
|
34
|
Clarkson NG, Simmonds SJ, Puklavec MJ, Brown MH. Direct and indirect interactions of the cytoplasmic region of CD244 (2B4) in mice and humans with FYN kinase. J Biol Chem 2007; 282:25385-94. [PMID: 17599905 DOI: 10.1074/jbc.m704483200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Engagement of the receptor CD244 (2B4) by its ligand CD48 has inhibitory and activating potential, and this differs depending on experimental systems in mouse and human. We show that, in both mouse and human upon engagement of its ligand CD48, CD244 can give a negative signal to natural killer cells, implying conservation of function between the two species. The signaling mechanisms used by CD244 in both human and mouse are conserved as shown by quantitative analyses of the direct molecular interactions of the SH2 domains of the adaptors SLAM-associated protein (SAP) and EAT-2 and of FYN kinase with CD244 together with the indirect interactions of the FYN SH2 domain with EAT-2. Functional experiments support the biochemical hierarchy of interactions and show that EAT-2 is not inhibitory per se. The data are consistent with a model in which the mechanism of signal transduction by CD244 is to regulate FYN kinase recruitment and/or activity and the outcome of CD48/CD244 interactions is determined by which other receptors are engaged.
Collapse
Affiliation(s)
- Nicholas G Clarkson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
35
|
Uvebrant K, da Graça Thrige D, Rosén A, Akesson M, Berg H, Walse B, Björk P. Discovery of Selective Small-Molecule CD80 Inhibitors. ACTA ACUST UNITED AC 2007; 12:464-72. [PMID: 17435172 DOI: 10.1177/1087057107300464] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Protein-protein interactions are widely found in biological systems controlling diverse cellular events. Because these interactions are implicated in many diseases such as autoimmunity and cancer, regulation of protein-protein interactions provides ideal targets for drug intervention. The CD80-CD28 costimulatory pathway plays a critical role in regulation of the immune response and thus constitutes an attractive target for therapeutic manipulation of autoimmune diseases. The objective of this study is to identify small compounds disrupting these pivotal protein-protein interactions. Compounds that specifically blocked binding of CD80 to CD28 were identified using a strategy involving a cell-based scintillation proximity assay as the initial step. Secondary screening (e.g., by analyzing the direct binding of these compounds to the target immobilized on a biosensor surface) revealed that these compounds are highly selective CD80 binders. Screening of structurally related derivatives led to the identification of the chemical features required for inhibition of the CD80-CD28 interaction. In addition, the optimization process led to a 10-fold increase in binding affinity of the CD80 inhibitors. Using this approach, the authors identify low-molecular-weight compounds that specifically and with high potency inhibit the interaction between CD80 and CD28. These compounds serve as promising starting points for further development of CD80 inhibitors as potential immunomodulatory drugs. ( Journal of Biomolecular Screening 2007:464-472)
Collapse
|
36
|
Kearney A, Avramovic A, Castro MAA, Carmo AM, Davis SJ, van der Merwe PA. The contribution of conformational adjustments and long-range electrostatic forces to the CD2/CD58 interaction. J Biol Chem 2007; 282:13160-6. [PMID: 17344209 PMCID: PMC2771598 DOI: 10.1074/jbc.m700829200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD2 is a T cell surface molecule that enhances T and natural killer cell function by binding its ligands CD58 (humans) and CD48 (rodents) on antigen-presenting or target cells. Here we show that the CD2/CD58 interaction is enthalpically driven and accompanied by unfavorable entropic changes. Taken together with structural studies, this indicates that binding is accompanied by energetically significant conformational adjustments. Despite having a highly charged binding interface, neither the affinity nor the rate constants of the CD2/CD58 interaction were affected by changes in ionic strength, indicating that long-range electrostatic forces make no net contribution to binding.
Collapse
Affiliation(s)
- Alice Kearney
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Bayas MV, Kearney A, Avramovic A, van der Merwe PA, Leckband DE. Impact of salt bridges on the equilibrium binding and adhesion of human CD2 and CD58. J Biol Chem 2006; 282:5589-96. [PMID: 17172599 DOI: 10.1074/jbc.m607968200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study describes quantitative investigations of the impact of single charge mutations on equilibrium binding, kinetics, and the adhesion strength of the CD2-CD58 interaction. Previously steered molecular dynamics simulations guided the selection of the charge mutants investigated, which include the CD2 mutants D31A, K41A, K51A, and K91A. This set includes mutations in which the previous cell aggregation and binding data either agreed or disagreed with the steered molecular dynamics predictions. Surface plasmon resonance measurements quantified the solution binding properties. Adhesion was quantified with the surface force apparatus, which was used previously to study the closely related CD2-CD48 interaction. The results reveal roles that these salt bridges play in equilibrium binding and adhesion. We discuss both the molecular basis of this behavior and its implications for cell adhesion.
Collapse
Affiliation(s)
- Marco V Bayas
- Department of Chemistry and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
38
|
Zhu DM, Dustin ML, Cairo CW, Thatte HS, Golan DE. Mechanisms of Cellular Avidity Regulation in CD2-CD58-Mediated T Cell Adhesion. ACS Chem Biol 2006; 1:649-58. [PMID: 17168569 DOI: 10.1021/cb6002515] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The CD2 receptor on T lymphocytes is essential for T cell adhesion and stimulation by antigen presenting cells (APCs). Blockade of CD2 function is immunosuppressive in both model systems and humans, indicating the importance of CD2 for the cellular immune response. Although the affinity of the molecular interaction between CD2 and its counter-receptor, CD58, is relatively low when measured in solution, this interaction mediates tight adhesion within the 2D cell-cell interface. To understand the mechanisms responsible for regulating the avidity of the CD2-CD58 interaction, we measured the number, affinity, and lateral mobility of CD2 molecules on resting and activated T cells. Cell activation caused a 1.5-fold increase in the number of CD2 sites on the cell surface, and the 2D affinity of CD2 for CD58 increased by 2.5-fold. The combination of T cell activation and CD2 ligation to CD58 decreased the laterally mobile fraction of the ligated CD2. Together, these changes would substantially enhance CD2 avidity and strengthen T cell-APC adhesion. The change in CD2 mobile fraction suggests that the cell uses cytoskeletal regulators to immobilize the receptor selectively at the site of contact with surfaces expressing CD58. Our observations are consistent with a model in which T cell activation initially induces increased CD2 2D affinity, cell surface receptor expression, and lateral mobility, allowing the CD2 molecules to diffuse to sites of contact with CD58-bearing APCs. Subsequently, T cell activation causes the CD58-bound CD2 to be recognized and immobilized at sites of cell-cell contact, thereby strengthening T cell-APC adhesion.
Collapse
Affiliation(s)
- De-Min Zhu
- Departments of Biological Chemistry and Molecular Pharmacology, Surgery, and Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
39
|
Zhu DM, Dustin ML, Cairo CW, Golan DE. Analysis of two-dimensional dissociation constant of laterally mobile cell adhesion molecules. Biophys J 2006; 92:1022-34. [PMID: 17085486 PMCID: PMC1779959 DOI: 10.1529/biophysj.106.089649] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We formulate a general analysis to determine the two-dimensional dissociation constant (2D Kd), and use this method to study the interaction of CD2-expressing T cells with glass-supported planar bilayers containing fluorescently labeled CD58, a CD2 counter-receptor. Both CD2 and CD58 are laterally mobile in their respective membranes. Adhesion is indicated by accumulation of CD2 and CD58 in the cell-bilayer contact area; adhesion molecule density and contact area size attain equilibrium within 40 min. The standard (Scatchard) analysis of solution-phase binding is not applicable to the case of laterally mobile adhesion molecules due to the dynamic nature of the interaction. We derive a new binding equation, B/F=[(Ntxf)/(KdxScell)]-[(Bxp)/Kd], where B and F are bound and free CD58 density in the contact area, respectively; Nt is CD2 molecule number per cell; f is CD2 fractional mobility; Scell is cell surface area; and p is the ratio of contact area at equilibrium to Scell. We use this analysis to determine that the 2D Kd for CD2-CD58 is 5.4-7.6 molecules/microm2. 2D Kd analysis provides a general and quantitative measure of the mechanisms regulating cell-cell adhesion.
Collapse
Affiliation(s)
- De-Min Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Hematology Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Measles virus (MV) is a member of the genus Morbillivirus in the family Paramyxoviridae. Clinical isolates of MV use signaling lymphocyte activating molecule (SLAM) as a cellular receptor. SLAM is mainly expressed on immune cells such as immature thymocytes, activated lymphocytes and mature dendritic cells. This distribution of SLAM can account for the lymphotropism of MV. On the other hand, laboratory strains of MV use CD46 as an alternative receptor, through amino acid change(s) in the receptor binding hemagglutinin protein. Recently, several reports imply the existence of the cellular receptor(s) other than SLAM and CD46. In this review, we discuss the receptor usage of MV and its adaptation to cultured cells.
Collapse
Affiliation(s)
- Shinji Ohno
- Department of Virology, Faculty of Medicine, Kyushu University, Japan.
| | | |
Collapse
|
41
|
Kitao A, Wagner G. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44 Spec No:S130-42. [PMID: 16823895 DOI: 10.1002/mrc.1839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A method has been developed for characterizing dynamic structures of proteins in solution by using nuclear magnetic resonance (NMR) restraints and 15N relaxation data. This method is based on the concept of the jumping-among-minima (JAM) model. In this model we assume that protein dynamics can be described on the basis of conformational substates, and involves intra- and inter-substate motion. A set of substates is created by picking energy-minimized conformations from the conformational space consistent with the geometric NMR restraints. Intra-substate motions, which occur on the timescale of approximately 10 ps, are simulated with molecular dynamics (MD) calculations with force-field energy terms. Statistical weights of the conformational substates are determined to reproduce the NMR relaxation parameters. The refinement procedure consists of four stages: (i) determination of the ensemble of structures that satisfy NMR restraints, (ii) determination of intra-substate fluctuation, (iii) determination of statistical weights of conformational substates to reproduce model-free relaxation parameters, and (iv) analysis of the resulting dynamic structure to determine amplitudes and directions of internal protein motions. This method was employed to investigate structure and dynamics of the adhesion domain of human CD2 (hCD2) in solution. Two major collective modes, whose contributions to atomic mean-square fluctuations are 77.1% in total, are identified by the refinement. The first mode is interpreted as a rigid-body motion of a protein segment consisting of a part of the B--C loop, a part of the F strand, and the F--G loop. Another type of smaller-amplitude mode is indicated for the C'--C'' loop. The motions affect primarily the curvature of the slightly concave counterreceptor-binding site and represent transitions between a concave (closed) and flat (open) binding face. By comparing the ensemble of structures in solution to the complex structure with counterreceptor CD58, we found that these two types of motions resemble the change upon counterreceptor binding.
Collapse
Affiliation(s)
- Akio Kitao
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | | |
Collapse
|
42
|
Evans EJ, Castro MAA, O'Brien R, Kearney A, Walsh H, Sparks LM, Tucknott MG, Davies EA, Carmo AM, van der Merwe PA, Stuart DI, Jones EY, Ladbury JE, Ikemizu S, Davis SJ. Crystal structure and binding properties of the CD2 and CD244 (2B4)-binding protein, CD48. J Biol Chem 2006; 281:29309-20. [PMID: 16803907 DOI: 10.1074/jbc.m601314200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural analysis of surface proteins belonging to the CD2 subset of the immunoglobulin superfamily has yielded important insights into transient cellular interactions. In mice and rats, CD2 and CD244 (2B4), which are expressed predominantly on T cells and natural killer cells, respectively, bind the same, broadly expressed ligand, CD48. Structures of CD2 and CD244 have been solved previously, and we now present the structure of the receptor-binding domain of rat CD48. The receptor-binding surface of CD48 is unusually flat, as in the case of rat CD2, and shares a high degree of electrostatic complementarity with the equivalent surface of CD2. The relatively simple arrangement of charged residues and this flat topology explain why CD48 cross-reacts with CD2 and CD244 and, in rats, with the CD244-related protein, 2B4R. Comparisons of modeled complexes of CD2 and CD48 with the complex of human CD2 and CD58 are suggestive of there being substantial plasticity in the topology of ligand binding by CD2. Thermodynamic analysis of the native CD48-CD2 interaction indicates that binding is driven by equivalent, weak enthalpic and entropic effects, in contrast to the human CD2-CD58 interaction, for which there is a large entropic barrier. Overall, the structural and biophysical comparisons of the CD2 homologues suggest that the evolutionary diversification of interacting cell surface proteins is rapid and constrained only by the requirement that binding remains weak and specific.
Collapse
Affiliation(s)
- Edward J Evans
- Nuffield Department of Clinical Medicine, The University of Oxford and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Maniccia AW, Yang W, Li SY, Johnson JA, Yang JJ. Using Protein Design To Dissect the Effect of Charged Residues on Metal Binding and Protein Stability. Biochemistry 2006; 45:5848-56. [PMID: 16669627 DOI: 10.1021/bi052508q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+ controls biological processes by interacting with proteins with different affinities, which are largely influenced by the electrostatic interaction from the local negatively charged ligand residues in the coordination sphere. We have developed a general strategy for rationally designing stable Ca2+- and Ln3+-binding proteins that retain the native folding of the host protein. Domain 1 of cluster differentiation 2 (CD2) is the host for the two designed proteins in this study. We investigate the effect of local charge on Ca2+-binding affinity based on the folding properties and metal-binding affinities of the two proteins that have similarly located Ca2+-binding sites with two shared ligand positions. While mutation and Ca2+ binding do not alter the native structure of the protein, Ca2+ binding specifically induced changes around the designed Ca2+-binding site. The designed protein with a -5 charge at the binding sphere displays a 14-, 20-, and 12-fold increase in the binding affinity for Ca2+, Tb3+, and La3+, respectively, compared to the designed protein with a -3 charge, which suggests that higher local charges are preferred for both Ca2+ and Ln3+ binding. The localized charged residues significantly decrease the thermal stability of the designed protein with a -5 charge, which has a T(m) of 41 degrees C. Wild-type CD2 has a T(m) of 61 degrees C, which is similar to the designed protein with a -3 charge. This decrease is partially restored by Ca2+ binding. The effect on the protein stability is modulated by the environment and the secondary structure locations of the charged mutations. Our study demonstrates the capability and power of protein design in unveiling key determinants to Ca2+-binding affinity without the complexities of the global conformational changes, cooperativity, and multibinding process found in most natural Ca2+-binding proteins.
Collapse
Affiliation(s)
- Anna Wilkins Maniccia
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
44
|
McNerney ME, Kumar V. The CD2 family of natural killer cell receptors. Curr Top Microbiol Immunol 2006; 298:91-120. [PMID: 16323413 DOI: 10.1007/3-540-27743-9_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The CD2 family of receptors is evolutionarily conserved and widely expressed on cells within the hematopoietic compartment. In recent years several new members have been identified with important roles in the immune system. CD2 family members regulate natural killer (NK) cell lytic activity and inflammatory cytokine production when engaged by ligands on tumor cells. Furthermore, a subfamily of CD2 receptors, the CD 150-like molecules, has been implicated in the pathogenesis of X-linked lymphoproliferative disease (XLP). Many of these receptors have now been shown to bind homophilically or heterophilically to other molecules within the family. With these discoveries a novel mechanism for lymphocyte regulation has emerged: CD2 family members on NK cells engage ligands on neighboring NK cells, leading to NK cell stimulation. Moreover, heterotypic stimulatory interactions between NK cells and other leukocytes also occur. In this manner, CD2 family members may provide interlymphocyte communication that maintains organization within the hematopoietic compartment and amplifies immune responses. This review discusses these multiple roles for CD2 family members, focusing specifically on the regulation of NK cells.
Collapse
Affiliation(s)
- M E McNerney
- Department of Pathology, Committee on Immunology, University of Chicago, 5841 S. Maryland Ave., S-315 MC3083, Chicago, IL 60637, USA
| | | |
Collapse
|
45
|
Periz J, Gill AC, Knott V, Handford PA, Tomley FM. Calcium binding activity of the epidermal growth factor-like domains of the apicomplexan microneme protein EtMIC4. Mol Biochem Parasitol 2005; 143:192-9. [PMID: 16024103 DOI: 10.1016/j.molbiopara.2005.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 06/02/2005] [Indexed: 11/17/2022]
Abstract
Microneme proteins are secreted from apicomplexan parasites during invasion of host cells and they play crucial roles in parasite-host cell adhesion. EtMIC4 is a 240 kDa transmembrane protein from Eimeria tenella that contains 31 tandemly arranged epidermal growth factor (EGF), like repeats within its extracellular domain. The majority of these repeats have calcium binding (cb) consensus sequences. Little is known about cbEGFs in apicomplexan parasites but their presence in microneme proteins suggests that they may contribute to parasite-host interactions. To investigate the potential role of cbEGFs we have expressed and correctly refolded a cbEGF triplet from EtMIC4 (cbEGF7-9) and demonstrated that this triplet binds calcium. Circular dichroism spectroscopic analysis of cbEGF7-9 demonstrates that the molecule undergoes a gradual change in conformation with increasing levels of calcium. In the presence of calcium, the triplet becomes resistant to proteolytic degradation by a variety of proteases, a characteristic feature of cbEGF repeats from higher eukaryotic proteins, such as fibrillin, suggesting that calcium binding induces the formation of a rigid conformation. Moreover, mass spectrometric mapping of the cleavage sites that are protected by calcium shows that these sites are located both close to and distant from the calcium binding sites, indicating that protection is not due to steric hindrance by calcium ions, but rather due to the overall conformation adopted by the triplet in the presence of calcium. Thus, the tandemly-arranged cbEGF repeats within EtMIC4 provide a mechanism whereby, in the calcium-rich extracellular environment, the molecule could adopt a protease-resistant, rigid structure that could favour its interaction with host cell ligands.
Collapse
Affiliation(s)
- Javier Periz
- Institute for Animal Health, Division of Molecular Biology, Compton, Newbury, Berkshire RG20 7NN, UK
| | | | | | | | | |
Collapse
|
46
|
Mathew SO, Kumaresan PR, Lee JK, Huynh VT, Mathew PA. Mutational Analysis of the Human 2B4 (CD244)/CD48 Interaction: Lys68 and Glu70 in the V Domain of 2B4 Are Critical for CD48 Binding and Functional Activation of NK Cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:1005-13. [PMID: 16002700 DOI: 10.4049/jimmunol.175.2.1005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interaction between receptors and ligands plays a critical role in the generation of immune responses. The 2B4 (CD244), a member of the CD2 subset of the Ig superfamily, is the high affinity ligand for CD48. It is expressed on NK cells, T cells, monocytes, and basophils. Recent data indicate that 2B4/CD48 interactions regulate NK and T lymphocyte functions. In human NK cells, 2B4/CD48 interaction induces activation signals, whereas in murine NK cells it sends inhibitory signals. To determine the structural basis for 2B4/CD48 interaction, selected amino acid residues in the V domain of the human 2B4 (h2B4) were mutated to alanine by site-directed mutagenesis. Following transient expression of these mutants in B16F10 melanoma cells, their interaction with soluble CD48-Fc fusion protein was assessed by flow cytometry. We identified amino acid residues in the extracellular domain of h2B4 that are involved in interacting with CD48. Binding of CD48-Fc fusion protein to RNK-16 cells stably transfected with wild-type and a double-mutant Lys(68)Ala-Glu(70)Ala h2B4 further demonstrated that Lys(68) and Glu(70) in the V domain of h2B4 are essential for 2B4/CD48 interaction. Functional analysis indicated that Lys(68) and Glu(70) in the extracellular domain of h2B4 play a key role in the activation of human NK cells through 2B4/CD48 interaction.
Collapse
MESH Headings
- Alanine/genetics
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Surface/chemistry
- Antigens, Surface/metabolism
- Antigens, Surface/physiology
- CD48 Antigen
- Cytotoxicity, Immunologic/genetics
- DNA Mutational Analysis
- Dimerization
- Down-Regulation/genetics
- Down-Regulation/immunology
- Glutamic Acid/genetics
- Glutamic Acid/metabolism
- Humans
- Immunosuppressive Agents/antagonists & inhibitors
- Immunosuppressive Agents/chemistry
- Immunosuppressive Agents/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lysine/genetics
- Lysine/metabolism
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Molecular Sequence Data
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Structure, Tertiary/genetics
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Signaling Lymphocytic Activation Molecule Family
Collapse
Affiliation(s)
- Stephen O Mathew
- Department of Molecular Biology and Immunology and Institute for Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | | | | | | | | |
Collapse
|
47
|
Ames JB, Vyas V, Lusin JD, Mariuzza R. NMR structure of the natural killer cell receptor 2B4 (CD244): implications for ligand recognition. Biochemistry 2005; 44:6416-23. [PMID: 15850375 PMCID: PMC2519616 DOI: 10.1021/bi050139s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2B4, a transmembrane receptor expressed primarily on natural killer (NK) cells and on a subset of CD8(+) T cells, plays an important role in activating NK-mediated cytotoxicity through its interaction with CD48 on target cells. We report here the atomic-resolution structure of the ligand-binding (D1) domain of 2B4 in solution determined by nuclear magnetic resonance (NMR) spectroscopy. The overall main chain structure resembles an immunoglobulin variable (V) domain fold, very similar to that seen previously for domain 1 of CD2 and CD4. The structure contains nine beta-strands assembled into two beta-sheets conventionally labeled DEB and AGFCC'C' '. The six-stranded sheet (AGFCC'C' ') contains structural features that may have implications for ligand recognition and receptor function. A noncanonical disulfide bridge between Cys2 and Cys99 stabilizes a long and parallel beta-structure between strand A (residues 3-12) and strand G (residues 100-108). A beta-bulge at residues Glu45 and Ile46 places a bend in the middle of strand C' that orients two conserved and adjacent hydrophobic residues (Ile46 and Leu47) inside the beta-sandwich as seen in other V domains. Finally, the FG-loop (implicated in ligand recognition in the CD2-CD58 complex) is dynamically disordered in 2B4 in the absence of a ligand. We propose that ligand binding to 2B4 might stabilize the structure of the FG-loop in the ligand complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- CD48 Antigen
- Crystallography, X-Ray
- Immunoglobulin Variable Region/chemistry
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Ligands
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular/methods
- Protein Folding
- Protein Structure, Tertiary
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/metabolism
- Signaling Lymphocytic Activation Molecule Family
- Structural Homology, Protein
- Thermodynamics
Collapse
Affiliation(s)
- James B Ames
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA.
| | | | | | | |
Collapse
|
48
|
Vorup-Jensen T, Carman CV, Shimaoka M, Schuck P, Svitel J, Springer TA. Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin alphaXbeta2. Proc Natl Acad Sci U S A 2005; 102:1614-9. [PMID: 15665082 PMCID: PMC547869 DOI: 10.1073/pnas.0409057102] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The structural integrity of tissue proteins is damaged in processes ranging from remodeling of the extracellular matrix to destruction by microbial pathogens. Leukocytes play a prominent role in tissue surveillance and repair. However, it remains enigmatic what features of structurally decayed proteins prompt recognition by leukocyte cell-surface receptors. Here, we report that adhesion of human neutrophil granulocytes to fibrinogen is greatly increased by plasmin digestion in a mode where alphaXbeta2 dominates the integrin-dependent binding. The bacterial protease subtilisin also enhances binding by alphaXbeta2. The alphaX ligand binding domain has an unusually high affinity for carboxyl groups, with KD at approximately 100 microM. Our findings implicate enhanced accessibility of negatively charged residues in structurally decayed proteins as a pattern recognition motif for alphaXbeta2 integrin. Comparisons among integrins show relevance of these findings to the large number of ligands recognized by alphaMbeta2 and alphaXbeta2 but not alphaLbeta2. The observations suggest that the pericellular proteolysis at the leading edge of neutrophils not only facilitates passage through the extracellular matrix but also manufactures binding sites for alphaXbeta2.
Collapse
Affiliation(s)
- Thomas Vorup-Jensen
- Center for Blood Research Institute for Biomedical Research, and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
49
|
Liu J, Chow VTK, Jois SDS. A novel, rapid and sensitive heterotypic cell adhesion assay for CD2-CD58 interaction, and its application for testing inhibitory peptides. J Immunol Methods 2004; 291:39-49. [PMID: 15345303 DOI: 10.1016/j.jim.2004.04.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 04/24/2004] [Indexed: 11/16/2022]
Abstract
The immunoglobulin CD2 is a cell adhesion molecule that mediates T-cell activation by binding to its receptor CD58 on antigen-presenting cells (APCs). Modulation or inhibition of this interaction has been shown to be therapeutically useful. E-rosetting assay is usually applied in the study of the modulation of CD2-CD58 interaction. In this study, we demonstrated a novel, rapid and sensitive heterotypic cell adhesion assay for CD2-CD58 interaction. The CD2 expression on the surface of Jurkat cells and the CD58 expression on the Caco-2 cells were confirmed by flow cytometry and ELISA studies, respectively. Then Jurkat cells were fluorescent-labeled with 2 microM of BCECF-AM for 45 min at 37 degrees C before adding to confluent Caco-2 monolayers cultured in 96-well culture dishes. After 30 min, non-adherent Jurkat cells were removed by washing with PBS, while the monolayer-associated Jurkat cells were lysed with 0.5 ml of 2% Triton X-100 in 0.1 M NaOH. Fluorescence (FL) was quantitated using a microplate fluorescence analyzer with BCECF's excitation maximum of 485 nm and emission maximum of 535 nm. This method was successfully applied for testing inhibitory peptides to CD2-CD58 interaction.
Collapse
Affiliation(s)
- Jining Liu
- Department of Pharmacy, 18 Science Drive 4, National University of Singapore, Singapore 117543, Singapore
| | | | | |
Collapse
|
50
|
Schuck P, Boyd LF, Andersen PS. Measuring Protein Interactions by Optical Biosensors. ACTA ACUST UNITED AC 2004; Chapter 17:Unit 17.6. [DOI: 10.1002/0471143030.cb1706s22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|