1
|
Yang S, Wahab S, Almoyad MAA, Chen Y, Kalam N, Khalid M. Discovery of promising B lymphocyte kinase inhibitors using structure-guided virtual screening. J Biomol Struct Dyn 2024; 42:7054-7064. [PMID: 37688373 DOI: 10.1080/07391102.2023.2256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/12/2023] [Indexed: 09/10/2023]
Abstract
Tyrosine-protein kinase BLK, also known as B-cell lymphocyte kinase (BLK), is a non-receptor tyrosine kinase that is primarily expressed in B-cells. BLK plays a key role in B-cell signaling, particularly in B-cell development and maturation. The increased expression of BLK has been linked to various complex diseases, including autoimmune disorders, and specific malignancies of B cells, such as lymphomas and leukemias. Due to its significant involvement in B-cell signaling, BLK has emerged as a promising target for drug development, offering the potential for developing novel therapeutics to combat these diseases. Small molecule inhibitors of BLK hold great potential for therapeutic intervention; however, discovering potent and selective inhibitors remains challenging. Within this context, natural compounds hold significant potential as a valuable resource for discovering novel inhibitors of BLK. In the current study, a structure-based virtual screening of the IMPPAT 2 library was employed to identify promising candidates with potential as inhibitors of BLK. The control molecule for this study was the known BLK inhibitor, Dasatinib. After a multi-step filtering process, two molecules (Withanolide I and Mexogenin) demonstrated potential against BLK based on their superior binding affinity, ligand efficiency, and specific interaction. Interaction analysis of these compounds revealed several significant interactions with the active site residues of BLK. Both proposed molecules remained bound to the binding pocket of BLK, as indicated by the molecular dynamics (MD) simulation study. Taken together, these findings provide valuable insights for guiding future research endeavors and translational efforts in developing therapeutics for different complex diseases, such as autoimmune disorders, lymphomas, and leukemias.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Song Yang
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Yanxin Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Nida Kalam
- School of Pharmaceutical Education and Research (SPER), New Delhi, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
2
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
3
|
Song W, Li X, Cao H, Wang T, Sun Y, Fan Q, Zahid D, Li M, Li W. Taurine promotes B-cell activation by interaction with the V H /V L framework regions of B-cell receptor. Immunology 2023; 169:141-156. [PMID: 36510675 DOI: 10.1111/imm.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Taurine (Tau) is a special sulphur-containing amino acid and has been widely used as a dietary supplement. Although Tau exists in lymphocytes in large quantities, the physiological significance of Tau to modulate human immunity is unknown. In the present study, we first found that Tau regulates the B-cell receptor (BCR)-mediated signal transduction and induces the B cells activation. The IgG production of mice after ovalbumin immunization was also increased by Tau administration. Moreover, the isothermal titration calorimetry and surface plasmon resonance analysis have shown that Tau specifically bound to the IgG2a-BCR. The Tau could bind to IgG F(ab')2 regions via fluorescence spectroscopy analysis. In the molecular docking analysis, Tau bound to the framework regions (FRs) of variable region of the heavy chains (VH ) and in the light chains (VL ) of IgG2a-BCR. Our results suggested that Tau could improve the activation of B cells by interaction with the VH /VL FRs of BCR.
Collapse
Affiliation(s)
- Wanli Song
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Xueying Li
- Research Institute for Microbial Diseases and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hongyu Cao
- School of Life Science and Biotechnology, Liaoning Key Lab of Bio-Organic Chemistry, Dalian University, Dalian, Liaoning, China
| | - Tiantong Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yuhan Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Qingjie Fan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Danish Zahid
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Wenzhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Long-term safety profile of tirabrutinib: final results of a Japanese Phase I study in patients with relapsed or refractory B-cell malignancies. Int J Hematol 2022; 117:553-562. [PMID: 36576659 PMCID: PMC10063512 DOI: 10.1007/s12185-022-03514-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Tirabrutinib is a Bruton's tyrosine kinase inhibitor for treating B-cell malignancies. We report the final results of a Phase I study of tirabrutinib in 17 Japanese patients with B-cell malignancies. Patients were administered tirabrutinib at a dose of 160 mg, 320 mg, or 480 mg once daily, or 300 mg twice daily (N = 3, 3, 4, and 7, respectively). Three patients continued tirabrutinib until study completion (November 30, 2020). Adverse events (AEs) occurred in all 17 patients, with Grade 3-4 AEs in 8 (47.1%), serious AEs in 7 (41.2%), drug-related AEs in 16 (94.1%), and Grade 3-4 drug-related AEs in 6 (35.3%). Drug-related AEs reported in 3 or more patients were rash, vomiting, neutropenia, arthralgia, and malaise. One additional serious AE (benign neoplasm of the lung, unrelated to tirabrutinib) occurred after the previous data cutoff (January 4, 2018). Tirabrutinib administration and response assessment were continued for over 4 years in 4 patients. The overall response rate was 76.5% (13/17 patients). The median (range) time to response and duration of response were 0.9 (0.9-5.9) months and 2.59 (0.08-5.45) years, respectively. These findings demonstrate the long-term safety and efficacy of tirabrutinib in Japanese patients with B-cell malignancies.Clinical trial registration: JapicCTI-142682 ( http://www.clinicaltrials.jp/ ).
Collapse
|
5
|
Reversible follicular lymphoid hyperplasia related with dasatinib: first case report from Turkey. J Hematop 2022. [DOI: 10.1007/s12308-022-00498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Provan D, Newland AC. Investigational drugs for immune thrombocytopenia. Expert Opin Investig Drugs 2022; 31:715-727. [DOI: 10.1080/13543784.2022.2075340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Drew Provan
- Centre for Immunology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London UK
| | - Adrian C Newland
- Centre for Immunology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London UK
| |
Collapse
|
7
|
García-Merino A. Bruton's Tyrosine Kinase Inhibitors: A New Generation of Promising Agents for Multiple Sclerosis Therapy. Cells 2021; 10:2560. [PMID: 34685540 PMCID: PMC8534278 DOI: 10.3390/cells10102560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
B cells play a central role in the pathogenesis of multiple sclerosis (MS), as demonstrated through the success of various B cell-depleting monoclonal antibodies. Bruton's tyrosine kinase (BTK) is a critical molecule in intracellular signaling from the receptor of B cells and receptors expressed in the cells of the innate immune system. BTK inhibitors may be a non-cell-depleting alternative to B cell modulation. In this review, the structure, signaling, and roles of BTK are reviewed among the different inhibitors assayed in animal models of MS and clinical trials.
Collapse
Affiliation(s)
- Antonio García-Merino
- Neuroimmunology Unit, Foundation for Biomedical Research, Puerta de Hierro University Hospital, Universidad Autónoma de Madrid, Majadahonda, 28222 Madrid, Spain
| |
Collapse
|
8
|
Bame E, Tang H, Burns JC, Arefayene M, Michelsen K, Ma B, Marx I, Prince R, Roach AM, Poreci U, Donaldson D, Cullen P, Casey F, Zhu J, Carlile TM, Sangurdekar D, Zhang B, Trapa P, Santoro J, Muragan P, Pellerin A, Rubino S, Gianni D, Bajrami B, Peng X, Coppell A, Riester K, Belachew S, Mehta D, Palte M, Hopkins BT, Scaramozza M, Franchimont N, Mingueneau M. Next-generation Bruton's tyrosine kinase inhibitor BIIB091 selectively and potently inhibits B cell and Fc receptor signaling and downstream functions in B cells and myeloid cells. Clin Transl Immunology 2021; 10:e1295. [PMID: 34141433 PMCID: PMC8204096 DOI: 10.1002/cti2.1295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives Bruton's tyrosine kinase (BTK) plays a non-redundant signaling role downstream of the B-cell receptor (BCR) in B cells and the receptors for the Fc region of immunoglobulins (FcR) in myeloid cells. Here, we characterise BIIB091, a novel, potent, selective and reversible small-molecule inhibitor of BTK. Methods BIIB091 was evaluated in vitro and in vivo in preclinical models and in phase 1 clinical trial. Results In vitro, BIIB091 potently inhibited BTK-dependent proximal signaling and distal functional responses in both B cells and myeloid cells with IC50s ranging from 3 to 106 nm, including antigen presentation to T cells, a key mechanism of action thought to be underlying the efficacy of B cell-targeted therapeutics in multiple sclerosis. BIIB091 effectively sequestered tyrosine 551 in the kinase pocket by forming long-lived complexes with BTK with t 1/2 of more than 40 min, thereby preventing its phosphorylation by upstream kinases. As a key differentiating feature of BIIB091, this property explains the very potent whole blood IC50s of 87 and 106 nm observed with stimulated B cells and myeloid cells, respectively. In vivo, BIIB091 blocked B-cell activation, antibody production and germinal center differentiation. In phase 1 healthy volunteer trial, BIIB091 inhibited naïve and unswitched memory B-cell activation, with an in vivo IC50 of 55 nm and without significant impact on lymphoid or myeloid cell survival after 14 days of dosing. Conclusion Pharmacodynamic results obtained in preclinical and early clinical settings support the advancement of BIIB091 in phase 2 clinical trials.
Collapse
Affiliation(s)
- Eris Bame
- Clinical Sciences Biogen Cambridge MA USA
| | - Hao Tang
- Biogen Research Biogen Cambridge MA USA
| | | | | | - Klaus Michelsen
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA.,Present address: Relay Therapeutics Cambridge MA USA
| | - Bin Ma
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Isaac Marx
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Robin Prince
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Allie M Roach
- Biogen Research Biogen Cambridge MA USA.,Present address: Gilead Sciences Seattle WA USA
| | - Urjana Poreci
- Clinical Sciences Biogen Cambridge MA USA.,Present address: Pandion Therapeutics Watertown MA USA
| | - Douglas Donaldson
- Clinical Sciences Biogen Cambridge MA USA.,Present address: Giner Labs Newton MA USA
| | | | | | - Jing Zhu
- Biogen Research Biogen Cambridge MA USA
| | | | - Dipen Sangurdekar
- Biogen Research Biogen Cambridge MA USA.,Present address: Takeda Cambridge MA USA
| | | | - Patrick Trapa
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Joseph Santoro
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Param Muragan
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | | | | | - Davide Gianni
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Bekim Bajrami
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Xiaomei Peng
- Global Safety and Regulatory Sciences Biogen Cambridge MA USA
| | | | | | | | - Devangi Mehta
- Clinical Sciences Biogen Cambridge MA USA.,Present address: Immunologix Laboratories Cambridge MA USA
| | - Mike Palte
- MS Development Unit Biogen Cambridge MA USA
| | - Brian T Hopkins
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | | | | | | |
Collapse
|
9
|
Pilalas D, Koletsa T, Arsos G, Panselinas G, Exadaktylou P, Polychronopoulos G, Savopoulos C, Kaiafa GD. Dasatinib associated lymphadenopathy in a chronic myeloid leukemia patient: A case report. Medicine (Baltimore) 2020; 99:e22791. [PMID: 33157925 PMCID: PMC7647569 DOI: 10.1097/md.0000000000022791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Dasatinib associated lymphadenopathy (DAL) is a rare adverse event in chronic myeloid leukemia patients (CML). A case of voluminous lymphadenopathy in the context of DAL is presented. PATIENT CONCERNS A 40-year-old male patient was diagnosed with BCR-ABL1 positive chronic stage CML 2 years ago and achieved complete molecular response on nilotinib, which was switched to dasatinib due to nilotinib intolerance. After 5 months on dasatinib, the patient presented with a large mass in the axillary region. DIAGNOSIS Common infectious and autoimmune etiologies of lymphadenopathy were ruled out. The positron emission tomography/computed tomography (PET/CT) demonstrated a hypermetabolic lymphadenopathy highly suspicious of lymphoma. The subsequent biopsy excluded lymphoma or extramedullary blastic transformation of CML and revealed reactive lymphadenopathy with mixed (cortical and paracortical) pattern. Clinical history and clinicopathological correlation suggested the diagnosis of DAL. INTERVENTION Dasatinib was discontinued and the patient remained in close follow-up. TKI treatment with nilotinib was reinitiated. OUTCOMES Lymphadenopathy resolved clinically at 4 weeks and normalization of PET/CT findings was documented at 9 weeks after cessation of the drug. TKI treatment with nilotinib was reinitiated with good tolerance. LESSONS DAL may present with voluminous lymphadenopathy consistent with malignancy in clinical and imaging workup. We describe the spectrum of lesions associated with DAL and identify common features with drug-induced lymphadenopathy.
Collapse
Affiliation(s)
- Dimitrios Pilalas
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Medical School
| | | | - Georgios Arsos
- 3rd Department of Nuclear Medicine, Papageorgiou Hospital, Medical School, Aristotle University of Thessaloniki, Greece
| | | | - Paraskevi Exadaktylou
- 3rd Department of Nuclear Medicine, Papageorgiou Hospital, Medical School, Aristotle University of Thessaloniki, Greece
| | - George Polychronopoulos
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Medical School
| | - Christos Savopoulos
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Medical School
| | - Georgia D. Kaiafa
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Medical School
| |
Collapse
|
10
|
Beauchamp E, Yap MC, Iyer A, Perinpanayagam MA, Gamma JM, Vincent KM, Lakshmanan M, Raju A, Tergaonkar V, Tan SY, Lim ST, Dong WF, Postovit LM, Read KD, Gray DW, Wyatt PG, Mackey JR, Berthiaume LG. Targeting N-myristoylation for therapy of B-cell lymphomas. Nat Commun 2020; 11:5348. [PMID: 33093447 PMCID: PMC7582192 DOI: 10.1038/s41467-020-18998-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
Myristoylation, the N-terminal modification of proteins with the fatty acid myristate, is critical for membrane targeting and cell signaling. Because cancer cells often have increased N-myristoyltransferase (NMT) expression, NMTs were proposed as anti-cancer targets. To systematically investigate this, we performed robotic cancer cell line screens and discovered a marked sensitivity of hematological cancer cell lines, including B-cell lymphomas, to the potent pan-NMT inhibitor PCLX-001. PCLX-001 treatment impacts the global myristoylation of lymphoma cell proteins and inhibits early B-cell receptor (BCR) signaling events critical for survival. In addition to abrogating myristoylation of Src family kinases, PCLX-001 also promotes their degradation and, unexpectedly, that of numerous non-myristoylated BCR effectors including c-Myc, NFκB and P-ERK, leading to cancer cell death in vitro and in xenograft models. Because some treated lymphoma patients experience relapse and die, targeting B-cell lymphomas with a NMT inhibitor potentially provides an additional much needed treatment option for lymphoma.
Collapse
Affiliation(s)
- Erwan Beauchamp
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada.,Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada
| | - Megan C Yap
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada.,Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada
| | - Aishwarya Iyer
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Maneka A Perinpanayagam
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada.,Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada
| | - Jay M Gamma
- Departments of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Krista M Vincent
- Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Manikandan Lakshmanan
- Mouse Models of Human Cancer Unit, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Anandhkumar Raju
- Advanced Molecular Pathology Lab, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673.,Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Advanced Molecular Pathology Lab, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673.,Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Soo Yong Tan
- Advanced Molecular Pathology Lab, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673.,Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Soon Thye Lim
- Department of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Outram Road, Singapore, 169610, Singapore
| | - Wei-Feng Dong
- Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Lynne M Postovit
- Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Kevin D Read
- Drug Discovery Unit, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - David W Gray
- Drug Discovery Unit, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - Paul G Wyatt
- Drug Discovery Unit, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - John R Mackey
- Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada.,Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Luc G Berthiaume
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada. .,Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada.
| |
Collapse
|
11
|
Src Family Protein Kinase Controls the Fate of B Cells in Autoimmune Diseases. Inflammation 2020; 44:423-433. [PMID: 33037966 DOI: 10.1007/s10753-020-01355-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/07/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
There are more than 80 kinds of autoimmune diseases known at present, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), inflammatory bowel disease (IBD), as well as other disorders. Autoimmune diseases have a characteristic of immune responses directly attacking own tissues, leading to systematic inflammation and subsequent tissue damage. B cells play a vital role in the development of autoimmune diseases and differentiate into plasma cells or memory B cells to secrete high-affinity antibody or provide long-lasting function. Drugs targeting B cells show good therapeutic effects for the treatment of autoimmune diseases, such as rituximab (anti-CD20 antibody). Src family protein kinases (SFKs) are believed to play important roles in a variety of cellular functions such as growth, proliferation, and differentiation of B cell via B cell antigen receptor (BCR). Lck/Yes-related novel protein tyrosine kinase (LYN), BLK (B lymphocyte kinase), and Fyn are three different kinds of SFKs mainly expressed in B cells. LYN has a dual role in the BCR signal. On the one hand, positive signals are beneficial to the development and maturation of B cells. On the other hand, LYN can also inhibit excessively activated B cells. BLK is involved in the proliferation, differentiation, and immune tolerance of B lymphocytes, and further affects the function of B cells, which may lead to autoreactive or regulatory cellular responses, increasing the risk of autoimmune diseases. Fyn may affect the development of autoimmune disorders via the differentiation of B cells in the early stage of B cell development. This article reviews the recent advances of SFKs in B lymphocytes in autoimmune diseases.
Collapse
|
12
|
Sekiguchi N, Rai S, Munakata W, Suzuki K, Handa H, Shibayama H, Endo T, Terui Y, Iwaki N, Fukuhara N, Tatetsu H, Iida S, Ishikawa T, Shiibashi R, Izutsu K. A multicenter, open-label, phase II study of tirabrutinib (ONO/GS-4059) in patients with Waldenström's macroglobulinemia. Cancer Sci 2020; 111:3327-3337. [PMID: 32639651 PMCID: PMC7469793 DOI: 10.1111/cas.14561] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Tirabrutinib is a second-generation Bruton's tyrosine kinase inhibitor with greater selectivity than ibrutinib. Here, we conducted a multicenter, phase II study of tirabrutinib in patients with treatment-naïve (Cohort A) or with relapsed/refractory (Cohort B) Waldenström's macroglobulinemia (WM). Patients were treated with tirabrutinib 480 mg once daily. The primary endpoint was major response rate (MRR; ≥ partial response). Secondary endpoints included overall response rate (ORR; ≥ minor response), time to major response (TTMR), progression-free survival (PFS), overall survival (OS), and safety. In total, 27 patients (18 in Cohort A; 9 in Cohort B) were enrolled. The median age was 71 y, and the median serum immunoglobulin M level was 3600 mg/dL. Among the patients, 96.2% had the MYD88L265P mutation. MRR and ORR were 88.9% and 96.3%, respectively (Cohort A: MRR, 88.9%; ORR, 94.4%; Cohort B: MRR, 88.9%; ORR, 100%). Median TTMR was 1.87 mo. PFS and OS were not reached with a median follow-up of 6.5 and 8.3 mo for Cohorts A and B, respectively. The most common adverse events (AEs) were rash (44.4%), neutropenia (25.9%), and leukopenia (22.2%), with most AEs classified as grade 1 or 2. Grade ≥ 3 AEs included neutropenia (11.1%), lymphopenia (11.1%), and leukopenia (7.4%). No grade 5 AEs were noted. All bleeding events were grade 1; none were associated with drug-related atrial fibrillation or hypertension. Although the follow-up duration was relatively short, the study met the primary endpoint. Therefore, tirabrutinib monotherapy is considered to be highly effective for both untreated and relapsed/refractory WM with a manageable safety profile. (JapicCTI-173646).
Collapse
Affiliation(s)
- Naohiro Sekiguchi
- Department of HematologyNational Hospital Organization Disaster Medical CenterTachikawaJapan
| | - Shinya Rai
- Department of Hematology and RheumatologyFaculty of MedicineKindai UniversityOsakasayamaJapan
| | - Wataru Munakata
- Department of HematologyNational Cancer Center HospitalTokyoJapan
| | - Kenshi Suzuki
- Department of HematologyJapanese Red Cross Medical CenterTokyoJapan
| | - Hiroshi Handa
- Department of HematologyGunma University Graduate School of MedicineMaebashiJapan
| | - Hirohiko Shibayama
- Department of Hematology and OncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Tomoyuki Endo
- Department of HematologyHokkaido University HospitalSapporoJapan
| | - Yasuhito Terui
- Department of Hematology OncologyThe Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Noriko Iwaki
- Department of HematologyKanazawa University HospitalKanazawaJapan
| | - Noriko Fukuhara
- Department of Hematology and RheumatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Hiro Tatetsu
- Department of HematologyKumamoto University HospitalKumamotoJapan
| | - Shinsuke Iida
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takayuki Ishikawa
- Department of HematologyKobe City Medical Center General HospitalKobeJapan
| | - Ryota Shiibashi
- Department of Clinical DevelopmentOno Pharmaceutical Co., LTD.OsakaJapan
| | - Koji Izutsu
- Department of HematologyNational Cancer Center HospitalTokyoJapan
| |
Collapse
|
13
|
Lue JK, O’Connor OA, Bertoni F. Targeting pathogenic mechanisms in marginal zone lymphoma: from concepts and beyond. ANNALS OF LYMPHOMA 2020; 4:7. [PMID: 34667996 PMCID: PMC7611845 DOI: 10.21037/aol-20-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marginal zone lymphoma (MZL) represents a group of three distinct though overlapping lymphoid malignancies that includes extranodal, nodal and splenic marginal lymphoma. MZL patients usually present an indolent clinical course, although the disease remains largely incurable, save early stage disease that might be irradiated. Therapeutic advances have been limited due to the small patient population, and have largely been adapted from other indolent lymphomas. Here, we discuss the numerous targets and pathways which may offer the prospect of directly inhibiting the mechanisms identified promoting and sustaining marginal zone lymphomagenesis. In particular, we focus on the agents that may have at least a theoretical application in the disease. Various dysregulated pathways converge to produce an overarching stimulation of nuclear factor κB (NF-κB) and the MYD88-IRAK4 axis, which can be thus leveraged or targeting B-cell receptor signaling through BTK inhibitors (such as ibrutinib, zanubrutinib, acalabrutinib) and PI3K inhibitors (such as idelalisib, copanlisib, duvelisib umbralisib) or via more novel agents in development such as MALT1 inhibitors, SMAC mimetics, NIK inhibitors, IRAK4 or MYD88 inhibitors. NOTCH signaling is also crucial for marginal zone cells, but no clinical data are available with NOTCH inhibitors such as the γ-secretase inhibitor PF-03084014 or the NICD inhibitor CB-103. The hypermethylation phenotype, the overexpression of the PRC2-complex or the presence of TET2 mutations reported in MZL subsets make epigenetic agents (demethylating agents, EZH2 inhibitors, HDAC inhibitors) also potential therapeutic tools for MZL patients.
Collapse
Affiliation(s)
- Jennifer K. Lue
- Division of Hematology-Oncology, Department of Medicine, Columbia University Medical Center, Center for Lymphoid Malignancies, New York, NY, USA
| | - Owen A. O’Connor
- Division of Hematology and Oncology, Program for T-Cell Lymphoma Research, University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Francesco Bertoni
- institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
14
|
Potent, non-covalent reversible BTK inhibitors with 8-amino-imidazo[1,5-a]pyrazine core featuring 3-position bicyclic ring substitutes. Bioorg Med Chem Lett 2020; 30:127390. [DOI: 10.1016/j.bmcl.2020.127390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022]
|
15
|
Zhang T, Sun J, Cheng J, Yin W, Li J, Miller H, Herrada AA, Gu H, Song H, Chen Y, Gong Q, Liu C. The role of ubiquitinase in B cell development and function. J Leukoc Biol 2020; 109:395-405. [PMID: 32816356 DOI: 10.1002/jlb.1mr0720-185rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 11/10/2022] Open
Abstract
Ubiquitinases are a select group of enzymes that modify target proteins through ubiquitination, which plays a crucial role in the regulation of protein degradation, location, and function. B lymphocytes that originated from bone marrow hematopoietic stem cells (HSC), exert humoral immune functions by differentiating into plasma cells and producing antibodies. Previous studies have shown that ubiquitination is involved in the regulation of the cell cycle and signal transduction important for B lymphocyte development and function. In this review, how ubiquitinases regulate B cell development, activation, apoptosis, and proliferation is discussed, which could help in understanding the physiological processes and diseases related to B cells and also provides potential new targets for further studies.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Cheng
- Department of hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Li
- Department of hematology, Wuhan Union Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrés A Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Heng Gu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 1, Shuaifuyuan, Dongcheng District, Beijing, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Kanamoto R, Aoki H, Furusho A, Otsuka H, Shintani Y, Tobinaga S, Hiromatsu S, Fukumoto Y, Tanaka H. The Role of Syk in Inflammatory Response of Human Abdominal Aortic Aneurysm Tissue. Ann Vasc Dis 2020; 13:151-157. [PMID: 32595791 PMCID: PMC7315237 DOI: 10.3400/avd.oa.20-00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective: Inflammatory response is central to pathogenesis of abdominal aortic aneurysm (AAA). Recently, we reported that Syk, a signaling molecule in inflammatory cells, promotes AAA development in a mouse model. In this study, we aimed to investigate the role of Syk in human AAA pathogenesis. Materials and Methods: We obtained human AAA wall samples during open surgical aortic repair at Kurume University Hospital. Immunohistochemical analyses of AAA samples were performed for Syk activation and cell type markers. Ex vivo culture of human AAA tissue was utilized to evaluate the effect of P505-15, a Syk inhibitor, on secretions of interleukin-6 (IL-6) and matrix metalloproteinases (MMPs). Results: Immunohistochemical analysis showed infiltration of B cells, T cells, and macrophages in AAA samples. Syk activation was localized mainly in B cells and part of macrophages. AAA tissue in culture secreted IL-6, MMP-9, and MMP-2 without any stimulation. The unstimulated secretions of IL-6, MMP-9, and MMP-2 were insensitive to P505-15. Secretions of IL-6 and MMP-9 were enhanced by exogenous normal human immunoglobulin G (IgG), which was suppressed by P505-15, whereas secretion of MMP-2 was insensitive to IgG or P505-15. Conclusion: These results demonstrate an important role of Syk for IgG-dependent inflammatory response in human AAA.
Collapse
Affiliation(s)
- Ryo Kanamoto
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Aya Furusho
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroyuki Otsuka
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yusuke Shintani
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Satoru Tobinaga
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Shinichi Hiromatsu
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroyuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
17
|
Carrasco YR. Molecular cues involved in the regulation of B cell dynamics: Assistants of antigen hunting. J Leukoc Biol 2020; 107:1107-1113. [PMID: 32293062 DOI: 10.1002/jlb.1mr0220-276r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 11/09/2022] Open
Abstract
The ability of a cell to migrate, adhere, and change its morphology is determinant in developing its functions; these capacities reach their maximum relevance in immune cells. For an efficient immune response, immune cells must localize in the right place at the right time; that implies crossing tissue barriers and migrating in the interstitial space of the tissues at high velocities. The dependency on trafficking abilities is even higher for B cells, one of the arms of the adaptive immune system, considering that they must encounter specific antigens for their clonal receptor in the enormous tissue volume of the secondary lymphoid organs (spleen, lymph nodes, Peyer patches). The regulated interplay between cell motility and cell adhesion allows B cells to reach distinct lymphoid tissues and, within them, to explore the stromal cell networks where antigen might be exposed. In this meeting-invited review, I summarize the current knowledge on the molecular cues and mechanisms that shapes B cell dynamics at the initial phase of the humoral immune response, including homeostatic chemoattractants and innate/inflammatory stimuli. I also revised the B cell behavior alterations caused by BCR recognition of antigen and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Yolanda R Carrasco
- B Cell Dynamics Laboratory, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin, Madrid, Spain
| |
Collapse
|
18
|
de Groen RAL, Schrader AMR, Kersten MJ, Pals ST, Vermaat JSP. MYD88 in the driver's seat of B-cell lymphomagenesis: from molecular mechanisms to clinical implications. Haematologica 2019; 104:2337-2348. [PMID: 31699794 PMCID: PMC6959184 DOI: 10.3324/haematol.2019.227272] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
More than 50 subtypes of B-cell non-Hodgkin lymphoma (B-NHL) are recognized in the most recent World Health Organization classification of 2016. The current treatment paradigm, however, is largely based on 'one-size-fits-all' immune-chemotherapy. Unfortunately, this therapeutic strategy is inadequate for a significant number of patients. As such, there is an indisputable need for novel, preferably targeted, therapies based on a biologically driven classification and risk stratification. Sequencing studies identified mutations in the MYD88 gene as an important oncogenic driver in B-cell lymphomas. MYD88 mutations constitutively activate NF-κB and its associated signaling pathways, thereby promoting B-cell proliferation and survival. High frequencies of the hotspot MYD88(L265P) mutation are observed in extranodal diffuse large B-cell lymphoma and Waldenström macroglobulinemia, thereby demonstrating this mutation's potential as a disease marker. In addition, the presence of mutant MYD88 predicts survival outcome in B-NHL subtypes and it provides a therapeutic target. Early clinical trials targeting MYD88 have shown encouraging results in relapsed/refractory B-NHL. Patients with these disorders can benefit from analysis for the MYD88 hotspot mutation in liquid biopsies, as a minimally invasive method to demonstrate treatment response or resistance. Given these clear clinical implications and the crucial role of MYD88 in lymphomagenesis, we expect that analysis of this gene will increasingly be used in routine clinical practice, not only as a diagnostic classifier, but also as a prognostic and therapeutic biomarker directing precision medicine. This review focuses on the pivotal mechanistic role of mutated MYD88 and its clinical implications in B-NHL.
Collapse
Affiliation(s)
| | | | - Marie José Kersten
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam.,Lymphoma and Myeloma Center Amsterdam-LYMMCARE, Amsterdam.,Cancer Center Amsterdam, Amsterdam
| | - Steven T Pals
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam.,Cancer Center Amsterdam, Amsterdam.,Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
19
|
Makhoul S, Trabold K, Gambaryan S, Tenzer S, Pillitteri D, Walter U, Jurk K. cAMP- and cGMP-elevating agents inhibit GPIbα-mediated aggregation but not GPIbα-stimulated Syk activation in human platelets. Cell Commun Signal 2019; 17:122. [PMID: 31519182 PMCID: PMC6743169 DOI: 10.1186/s12964-019-0428-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022] Open
Abstract
Background The glycoprotein (GP) Ib-IX-V complex is a unique platelet plasma membrane receptor, which is essential for platelet adhesion and thrombus formation. GPIbα, part of the GPIb-IX-V complex, has several physiological ligands such as von Willebrand factor (vWF), thrombospondin and distinct coagulation factors, which trigger platelet activation. Despite having an important role, intracellular GPIb-IX-V signaling and its regulation by other pathways are not well defined. Our aim was to establish the intracellular signaling response of selective GPIbα activation in human platelets, in particular the role of the tyrosine kinase Syk and its regulation by cAMP/PKA and cGMP/PKG pathways, respectively. We addressed this using echicetin beads (EB), which selectively bind to GPIbα and induce platelet aggregation. Methods Purified echicetin from snake Echis carinatus venom was validated by mass spectrometry. Washed human platelets were incubated with EB, in the presence or absence of echicetin monomers (EM), Src family kinase (SFK) inhibitors, Syk inhibitors and the cAMP- and cGMP-elevating agents iloprost and riociguat, respectively. Platelet aggregation was analyzed by light transmission aggregometry, protein phosphorylation by immunoblotting. Intracellular messengers inositolmonophosphate (InsP1) and Ca2+i were measured by ELISA and Fluo-3 AM/FACS, respectively. Results EB-induced platelet aggregation was dependent on integrin αIIbβ3 and secondary mediators ADP and TxA2, and was antagonized by EM. EB stimulated Syk tyrosine phosphorylation at Y352, which was SFK-dependent and Syk-independent, whereas Y525/526 phosphorylation was SFK-dependent and partially Syk-dependent. Furthermore, phosphorylation of both Syk Y352 and Y525/526 was completely integrin αIIbβ3-independent but, in the case of Y525/526, was partially ADP/TxA2-dependent. Syk activation, observed as Y352/ Y525/Y526 phosphorylation, led to the phosphorylation of direct substrates (LAT Y191, PLCγ2 Y759) and additional targets (Akt S473). PKA/PKG pathways inhibited EB-induced platelet aggregation and Akt phosphorylation but, surprisingly, enhanced Syk and LAT/PLCγ2 tyrosine phosphorylation. A similar PKA/PKG effect was confirmed with convulxin−/GPVI-stimulated platelets. EB-induced InsP1 accumulation/InsP3 production and Ca2+-release were Syk-dependent, but only partially inhibited by PKA/PKG pathways. Conclusion EB and EM are specific agonists and antagonists, respectively, of GPIbα-mediated Syk activation leading to platelet aggregation. The cAMP/PKA and cGMP/PKG pathways do not inhibit but enhance GPIbα−/GPVI-initiated, SFK-dependent Syk activation, but strongly inhibit further downstream responses including aggregation. These data establish an important intracellular regulatory network induced by GPIbα. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0428-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie Makhoul
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Trabold
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stepan Gambaryan
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute for Immunology, University Medical Center Mainz, Mainz, Germany
| | | | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
20
|
Feng YY, Tang M, Suzuki M, Gunasekara C, Anbe Y, Hiraoka Y, Liu J, Grasberger H, Ohkita M, Matsumura Y, Wang JY, Tsubata T. Essential Role of NADPH Oxidase–Dependent Production of Reactive Oxygen Species in Maintenance of Sustained B Cell Receptor Signaling and B Cell Proliferation. THE JOURNAL OF IMMUNOLOGY 2019; 202:2546-2557. [DOI: 10.4049/jimmunol.1800443] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 02/25/2019] [Indexed: 12/30/2022]
|
21
|
Li J, Yin W, Jing Y, Kang D, Yang L, Cheng J, Yu Z, Peng Z, Li X, Wen Y, Sun X, Ren B, Liu C. The Coordination Between B Cell Receptor Signaling and the Actin Cytoskeleton During B Cell Activation. Front Immunol 2019; 9:3096. [PMID: 30687315 PMCID: PMC6333714 DOI: 10.3389/fimmu.2018.03096] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/13/2018] [Indexed: 01/27/2023] Open
Abstract
B-cell activation plays a crucial part in the immune system and is initiated via interaction between the B cell receptor (BCR) and specific antigens. In recent years with the help of modern imaging techniques, it was found that the cortical actin cytoskeleton changes dramatically during B-cell activation. In this review, we discuss how actin-cytoskeleton reorganization regulates BCR signaling in different stages of B-cell activation, specifically when stimulated by antigens, and also how this reorganization is mediated by BCR signaling molecules. Abnormal BCR signaling is associated with the progression of lymphoma and immunological diseases including autoimmune disorders, and recent studies have proved that impaired actin cytoskeleton can devastate the normal activation of B cells. Therefore, to figure out the coordination between the actin cytoskeleton and BCR signaling may reveal an underlying mechanism of B-cell activation, which has potential for new treatments for B-cell associated diseases.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Cheng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Yu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zican Peng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingbo Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wen
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xizi Sun
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boxu Ren
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Abstract
Bone is a crucial element of the skeletal-locomotor system, but also functions as an immunological organ that harbors hematopoietic stem cells (HSCs) and immune progenitor cells. Additionally, the skeletal and immune systems share a number of regulatory molecules, including cytokines and signaling molecules. Osteoimmunology was created as an interdisciplinary field to explore the shared molecules and interactions between the skeletal and immune systems. In particular, the importance of an inseparable link between the two systems has been highlighted by studies on the pathogenesis of rheumatoid arthritis (RA), in which pathogenic helper T cells induce the progressive destruction of multiple joints through aberrant expression of receptor activator of nuclear factor (NF)-κB ligand (RANKL). The conceptual bridge of osteoimmunology provides not only a novel framework for understanding these biological systems but also a molecular basis for the development of therapeutic approaches for diseases of bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Roman-Garcia S, Merino-Cortes SV, Gardeta SR, de Bruijn MJW, Hendriks RW, Carrasco YR. Distinct Roles for Bruton's Tyrosine Kinase in B Cell Immune Synapse Formation. Front Immunol 2018; 9:2027. [PMID: 30237801 PMCID: PMC6136277 DOI: 10.3389/fimmu.2018.02027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022] Open
Abstract
Bruton's tyrosine kinase (Btk) has a key role in the signaling pathways of receptors essential for the B lymphocyte response. Given its implication in B cell-related immunodeficiencies, leukemias/lymphomas and autoimmunity, Btk is studied intensely and is a target for therapy. Here, using primary B cells from distinct mouse models and the pharmacological inhibitors ibrutinib and acalabrutinib, we report distinct roles for Btk in antigen-triggered immune synapse (IS) formation. Btk recruitment to the plasma membrane regulates the B cell ability to trigger IS formation as well as its appropriate molecular assembly; Btk shuttling/scaffold activities seem more relevant than the kinase function on that. Btk-kinase activity controls antigen accumulation at the IS through the PLCγ2/Ca2+ axis. Impaired Btk membrane-recruitment or kinase function likewise alters antigen-triggered microtubule-organizing center (MTOC) polarization to the IS, B cell activation and proliferation. Data also show that, for B cell function, IS architecture is as important as the quantity of antigen that accumulates at the synapse.
Collapse
Affiliation(s)
- Sara Roman-Garcia
- B cell Dynamics Laboratory, Department on Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Sara V Merino-Cortes
- B cell Dynamics Laboratory, Department on Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Sofia R Gardeta
- B cell Dynamics Laboratory, Department on Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | | | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yolanda R Carrasco
- B cell Dynamics Laboratory, Department on Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| |
Collapse
|
24
|
Yu H, Truong H, Mitchell SA, Liclican A, Gosink JJ, Li W, Lin J, Feng JY, Jürgensmeier JM, Billin A, Xu R, Patterson S, Pagratis N. Homogeneous BTK Occupancy Assay for Pharmacodynamic Assessment of Tirabrutinib (GS-4059/ONO-4059) Target Engagement. SLAS DISCOVERY 2018; 23:919-929. [PMID: 30011241 PMCID: PMC6151956 DOI: 10.1177/2472555218786165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bruton’s tyrosine kinase (BTK) is a clinically validated target for B-cell
leukemias and lymphomas with FDA-approved small-molecule inhibitors ibrutinib
and acalabrutinib. Tirabrutinib (GS-4059/ONO-4059, Gilead Sciences, Inc., Foster
City, CA) is a second-generation, potent, selective, irreversible BTK inhibitor
in clinical development for lymphoid malignancies, including chronic lymphocytic
leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL). An accurate
pharmacodynamic assay to assess tirabrutinib target coverage in phase 1/2
clinical studies will inform dose and schedule selection for advanced clinical
evaluation. We developed a novel duplex homogeneous BTK occupancy assay based on
time-resolved fluorescence resonance energy transfer (TR-FRET) to measure free
and total BTK levels in a multiplexed format. The dual-wavelength emission
property of terbium-conjugated anti-BTK antibody served as the energy donor for
two fluorescent energy acceptors with distinct excitation and emission spectra.
The assay was characterized and qualified using full-length purified recombinant
human BTK protein and peripheral blood mononuclear cells derived from healthy
volunteers and patients with CLL. We demonstrated assay utility using cells
derived from lymph node and bone marrow samples from patients with CLL and
DLBCL. Our TR-FRET-based BTK occupancy assay provides accurate, quantitative
assessment of BTK occupancy in the clinical trial program for tirabrutinib and
is in use in ongoing clinical studies.
Collapse
Affiliation(s)
- Helen Yu
- 1 Gilead Sciences, Inc., Foster City, CA, USA
| | - Hoa Truong
- 1 Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | - Wanying Li
- 1 Gilead Sciences, Inc., Foster City, CA, USA
| | - Julie Lin
- 1 Gilead Sciences, Inc., Foster City, CA, USA
| | - Joy Y Feng
- 1 Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | - Ren Xu
- 1 Gilead Sciences, Inc., Foster City, CA, USA
| | | | | |
Collapse
|
25
|
Wang J, Xu L, Shaheen S, Liu S, Zheng W, Sun X, Li Z, Liu W. Growth of B Cell Receptor Microclusters Is Regulated by PIP 2 and PIP 3 Equilibrium and Dock2 Recruitment and Activation. Cell Rep 2018; 21:2541-2557. [PMID: 29186690 DOI: 10.1016/j.celrep.2017.10.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/18/2017] [Accepted: 10/29/2017] [Indexed: 01/24/2023] Open
Abstract
The growth of B cell receptor (BCR) microclusters upon antigen stimulation drives B cell activation. Here, we show that PI3K-mediated PIP3 production is required for the growth of BCR microclusters. This growth is likely inhibited by PTEN and dependent on its plasma membrane binding and lipid phosphatase activities. Mechanistically, we find that PIP3-dependent recruitment and activation of a guanine nucleotide exchange factor, Dock2, is required for the sustained growth of BCR microclusters through remodeling of the F-actin cytoskeleton. As a consequence, Dock2 deficiency significantly disrupts the structure of the B cell immunological synapse. Finally, we find that primary B cells from systemic lupus erythematosus (SLE) patients exhibit more prominent BCR and PI3K microclusters than B cells from healthy controls. These results demonstrate the importance of a PI3K- and PTEN-governed PIP2 and PIP3 equilibrium in regulating the activation of B cells through Dock2-controlled growth of BCR microclusters.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Liling Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Sichen Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Grondona P, Bucher P, Schulze-Osthoff K, Hailfinger S, Schmitt A. NF-κB Activation in Lymphoid Malignancies: Genetics, Signaling, and Targeted Therapy. Biomedicines 2018; 6:biomedicines6020038. [PMID: 29587428 PMCID: PMC6027339 DOI: 10.3390/biomedicines6020038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
The NF-κB transcription factor family plays a crucial role in lymphocyte proliferation and survival. Consequently, aberrant NF-κB activation has been described in a variety of lymphoid malignancies, including diffuse large B-cell lymphoma, Hodgkin lymphoma, and adult T-cell leukemia. Several factors, such as persistent infections (e.g., with Helicobacter pylori), the pro-inflammatory microenvironment of the cancer, self-reactive immune receptors as well as genetic lesions altering the function of key signaling effectors, contribute to constitutive NF-κB activity in these malignancies. In this review, we will discuss the molecular consequences of recurrent genetic lesions affecting key regulators of NF-κB signaling. We will particularly focus on the oncogenic mechanisms by which these alterations drive deregulated NF-κB activity and thus promote the growth and survival of the malignant cells. As the concept of a targeted therapy based on the mutational status of the malignancy has been supported by several recent preclinical and clinical studies, further insight in the function of NF-κB modulators and in the molecular mechanisms governing aberrant NF-κB activation observed in lymphoid malignancies might lead to the development of additional treatment strategies and thus improve lymphoma therapy.
Collapse
Affiliation(s)
- Paula Grondona
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Philip Bucher
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Klaus Schulze-Osthoff
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Anja Schmitt
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| |
Collapse
|
27
|
Furusho A, Aoki H, Ohno-Urabe S, Nishihara M, Hirakata S, Nishida N, Ito S, Hayashi M, Imaizumi T, Hiromatsu S, Akashi H, Tanaka H, Fukumoto Y. Involvement of B Cells, Immunoglobulins, and Syk in the Pathogenesis of Abdominal Aortic Aneurysm. J Am Heart Assoc 2018; 7:JAHA.117.007750. [PMID: 29545260 PMCID: PMC5907549 DOI: 10.1161/jaha.117.007750] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Abdominal aortic aneurysm (AAA) is a potentially life‐threatening disease that is common in older individuals. Currently, therapeutic options are limited to surgical interventions. Although it has long been known that AAA tissue is enriched in B cells and immunoglobulins, their involvement in AAA pathogenesis remains controversial. Methods and Results We investigated the role of B cells and immunoglobulins in a murine model of AAA, induced with a periaortic application of CaCl2, and in human AAA. Both human and mouse AAA tissue showed B‐cell infiltration. Mouse AAA tissue showed deposition of IgG and activation of Syk, a key molecule in B‐cell activation and immunoglobulin function, which were localized to infiltrating cells including B cells and macrophages. B‐cell–deficient muMT mice showed suppression of AAA development that was associated with reduced activation of Syk and less expression of matrix metalloproteinase‐9. Administration of exogenous immunoglobulins restored the blunted Syk activation and AAA development in muMT mice. Additionally, exogenous immunoglobulins induced interleukin‐6 and metalloproteinase‐9 secretions in human AAA tissue cultures. Furthermore, administration of R788, a specific Syk inhibitor, suppressed AAA expansion, reduced inflammatory response, and reduced immunoglobulin deposition in AAA tissue. Conclusions From these results, we concluded that B cells and immunoglobulins participated in AAA pathogenesis by promoting inflammatory and tissue‐destructive activities. Finally, we identified Syk as a potential therapeutic target.
Collapse
Affiliation(s)
- Aya Furusho
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
| | - Satoko Ohno-Urabe
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Michihide Nishihara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Saki Hirakata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Norifumi Nishida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sohei Ito
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Makiko Hayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | - Shinichi Hiromatsu
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Hidetoshi Akashi
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Hiroyuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
28
|
|
29
|
Yasuda S, Zhou Y, Wang Y, Yamamura M, Wang JY. A model integrating tonic and antigen-triggered BCR signals to predict the survival of primary B cells. Sci Rep 2017; 7:14888. [PMID: 29097663 PMCID: PMC5668375 DOI: 10.1038/s41598-017-13993-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022] Open
Abstract
The BCR constitutively transmits a “tonic” survival signal in the absence of exogenous antigen-binding. However, the strength of tonic BCR signal and its relationship with antigen-triggered survival signal are poorly understood. We found that primary B cells expressing high levels of BCR had elevated BCR tonic signal and increased survival compared with those expressing low levels of BCR. In addition, we found that crosslinking BCR with low doses of F(ab′)2 α-IgM antibodies did not enhance, but rather decreased, B cell survival and that only when most of the BCR were occupied by F(ab′)2 α-IgM antibodies was B cell survival enhanced. Based on these experimental results, we present a mathematical model integrating tonic and antigen-triggered BCR signals. Our model indicates that the signal generated from crosslinked BCR is 4.3 times as strong as the tonic signal generated from free BCR and that the threshold of B cell activation corresponds to the signal generated by crosslinking 61% of the surface BCR. This model also allows the prediction of the survival probability of a B cell based on its initial BCR level and the strength and duration of antigen stimulation, and fits with the mechanism of B cell tolerance.
Collapse
Affiliation(s)
- Shoya Yasuda
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Yang Zhou
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Masayuki Yamamura
- School of Computing, Tokyo Institute of Technology, Yokohama 226-8502, Japan.
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
30
|
Bouquet E, Jourdain A, Machet MC, Beau-Salinas F, Jonville-Béra AP. Dasatinib-associated follicular lymphoid hyperplasia: First pediatric case report and literature review. Pediatr Blood Cancer 2017; 64. [PMID: 28439970 DOI: 10.1002/pbc.26597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/15/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Emilie Bouquet
- Department of Clinical Pharmacology and Regional Pharmacovigilance Center, University Hospital, CHRU Tours, Tours, France
| | - Anne Jourdain
- Department of Pediatric Oncohematology, University Hospital, CHRU Tours, Tours, France
| | - Marie-Christine Machet
- Department of Pathology, University Hospital, CHRU Tours, Tours, France.,University Francois Rabelais, Tours, France
| | - Frédérique Beau-Salinas
- Department of Clinical Pharmacology and Regional Pharmacovigilance Center, University Hospital, CHRU Tours, Tours, France
| | - Annie-Pierre Jonville-Béra
- Department of Clinical Pharmacology and Regional Pharmacovigilance Center, University Hospital, CHRU Tours, Tours, France
| |
Collapse
|
31
|
Unperturbed Immune Function despite Mutation of C-Terminal Tyrosines in Syk Previously Implicated in Signaling and Activity Regulation. Mol Cell Biol 2017; 37:MCB.00216-17. [PMID: 28760774 DOI: 10.1128/mcb.00216-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/26/2017] [Indexed: 11/20/2022] Open
Abstract
The nonreceptor tyrosine kinase Syk, a central regulator of immune cell differentiation and activation, is a promising drug target for treatment of leukemia and allergic and inflammatory diseases. The clinical failure of Syk inhibitors underscores the importance of understanding the regulation of Syk function and activity. A series of previous studies emphasized the importance of three C-terminal tyrosines in Syk for kinase activity regulation, as docking sites for downstream effector molecules, and for Ca2+ mobilization. Here, we investigated the roles of these C-terminal tyrosines in the mouse. Surprisingly, expression of a triple tyrosine-to-phenylalanine human Syk mutant, SYK(Y3F), was not associated with discernible signaling defects either in reconstituted DT40 cells or in B or mast cells from mice expressing SYK(Y3F) instead of wild-type Syk. Remarkably, lymphocyte differentiation, calcium mobilization, and 2,4,6-trinitrophenyl (TNP)-specific immune responses were unperturbed in SYK(Y3F) mice. These results emphasize the capacity of immune cells to compensate for specific molecular defects, likely using redundant intermolecular interactions, and highlight the importance of in vivo analyses for understanding cellular signaling mechanisms.
Collapse
|
32
|
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev 2017; 97:1295-1349. [DOI: 10.1152/physrev.00036.2016] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression. We also focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Tomoki Nakashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masahiro Shinohara
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Noriko Komatsu
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Shinichiro Sawa
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takeshi Nitta
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
33
|
Taher TE, Bystrom J, Ong VH, Isenberg DA, Renaudineau Y, Abraham DJ, Mageed RA. Intracellular B Lymphocyte Signalling and the Regulation of Humoral Immunity and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:237-264. [PMID: 28456914 PMCID: PMC5597704 DOI: 10.1007/s12016-017-8609-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocytes are critical for effective immunity; they produce antibodies and cytokines, present antigens to T lymphocytes and regulate immune responses. However, because of the inherent randomness in the process of generating their vast repertoire of antigen-specific receptors, B cells can also cause diseases through recognizing and reacting to self. Therefore, B lymphocyte selection and responses require tight regulation at multiple levels and at all stages of their development and activation to avoid diseases. Indeed, newly generated B lymphocytes undergo rigorous tolerance mechanisms in the bone marrow and, subsequently, in the periphery after their migration. Furthermore, activation of mature B cells is regulated through controlled expression of co-stimulatory receptors and intracellular signalling thresholds. All these regulatory events determine whether and how B lymphocytes respond to antigens, by undergoing apoptosis or proliferation. However, defects that alter regulated co-stimulatory receptor expression or intracellular signalling thresholds can lead to diseases. For example, autoimmune diseases can result from altered regulation of B cell responses leading to the emergence of high-affinity autoreactive B cells, autoantibody production and tissue damage. The exact cause(s) of defective B cell responses in autoimmune diseases remains unknown. However, there is evidence that defects or mutations in genes that encode individual intracellular signalling proteins lead to autoimmune diseases, thus confirming that defects in intracellular pathways mediate autoimmune diseases. This review provides a synopsis of current knowledge of signalling proteins and pathways that regulate B lymphocyte responses and how defects in these could promote autoimmune diseases. Most of the evidence comes from studies of mouse models of disease and from genetically engineered mice. Some, however, also come from studying B lymphocytes from patients and from genome-wide association studies. Defining proteins and signalling pathways that underpin atypical B cell response in diseases will help in understanding disease mechanisms and provide new therapeutic avenues for precision therapy.
Collapse
Affiliation(s)
- Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | | | - Yves Renaudineau
- Immunology Laboratory, University of Brest Medical School, Brest, France
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
34
|
Gustafsson MO, Mohammad DK, Ylösmäki E, Choi H, Shrestha S, Wang Q, Nore BF, Saksela K, Smith CIE. ANKRD54 preferentially selects Bruton's Tyrosine Kinase (BTK) from a Human Src-Homology 3 (SH3) domain library. PLoS One 2017; 12:e0174909. [PMID: 28369144 PMCID: PMC5378395 DOI: 10.1371/journal.pone.0174909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/17/2017] [Indexed: 11/19/2022] Open
Abstract
Bruton's Tyrosine Kinase (BTK) is a cytoplasmic protein tyrosine kinase with a fundamental role in B-lymphocyte development and activation. The nucleocytoplasmic shuttling of BTK is specifically modulated by the Ankyrin Repeat Domain 54 (ANKRD54) protein and the interaction is known to be exclusively SH3-dependent. To identify the spectrum of the ANKRD54 SH3-interactome, we applied phage-display screening of a library containing all the 296 human SH3 domains. The BTK-SH3 domain was the prime interactor. Quantitative western blotting analysis demonstrated the accuracy of the screening procedure. Revealing the spectrum and specificity of ANKRD54-interactome is a critical step toward functional analysis in cells and tissues.
Collapse
Affiliation(s)
- Manuela O. Gustafsson
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
| | - Dara K. Mohammad
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region-Iraq
| | - Erkko Ylösmäki
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hyunseok Choi
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Subhash Shrestha
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Qing Wang
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
| | - Beston F. Nore
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
- Department of Biochemistry, School of Medicine, Faculty of Medical Sciences, University of Sulaimani, Sulaimani, Iraq
- Department of Health, Kurdistan Institution for Strategic Studies and Scientific Research (KISSSR), Sulaimani, Kurdistan-Iraq
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - C. I. Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
| |
Collapse
|
35
|
Khan M, Gibbons JL, Ferrajoli A. Spotlight on ibrutinib and its potential in frontline treatment of chronic lymphocytic leukemia. Onco Targets Ther 2017; 10:1909-1914. [PMID: 28408842 PMCID: PMC5384733 DOI: 10.2147/ott.s98689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent leukemia in the adult population. Current efforts are focused on better understanding the intricate pathophysiology of the disease to develop successful targeted therapies. Ibrutinib is emerging as an important agent in this new age of targeted treatment for CLL. As a Bruton’s tyrosine kinase inhibitor, it blocks the signaling pathway that malignant B-lymphocytes need for growth and maturation. Ibrutinib’s role in therapy was further expanded recently when the US Food and Drug Administration approved its use in both frontline and salvage treatment for patients with CLL. This review assesses the effectiveness of ibrutinib in the frontline setting, its efficacy in various types of patients with CLL, and its safety and tolerability.
Collapse
Affiliation(s)
- Maliha Khan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jamie L Gibbons
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
Distinct patterns of B-cell receptor signaling in non-Hodgkin lymphomas identified by single-cell profiling. Blood 2016; 129:759-770. [PMID: 28011673 DOI: 10.1182/blood-2016-05-718494] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022] Open
Abstract
Kinases downstream of B-cell antigen receptor (BCR) represent attractive targets for therapy in non-Hodgkin lymphoma (NHL). As clinical responses vary, improved knowledge regarding activation and regulation of BCR signaling in individual patients is needed. Here, using phosphospecific flow cytometry to obtain malignant B-cell signaling profiles from 95 patients representing 4 types of NHL revealed a striking contrast between chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) tumors. Lymphoma cells from diffuse large B-cell lymphoma patients had high basal phosphorylation levels of most measured signaling nodes, whereas follicular lymphoma cells represented the opposite pattern with no or very low basal levels. MCL showed large interpatient variability in basal levels, and elevated levels for the phosphorylated forms of AKT, extracellular signal-regulated kinase, p38, STAT1, and STAT5 were associated with poor outcome. CLL tumors had elevated basal levels for the phosphorylated forms of BCR-signaling nodes (Src family tyrosine kinase, spleen tyrosine kinase [SYK], phospholipase Cγ), but had low α-BCR-induced signaling. This contrasted MCL tumors, where α-BCR-induced signaling was variable, but significantly potentiated as compared with the other types. Overexpression of CD79B, combined with a gating strategy whereby signaling output was directly quantified per cell as a function of CD79B levels, confirmed a direct relationship between surface CD79B, immunoglobulin M (IgM), and IgM-induced signaling levels. Furthermore, α-BCR-induced signaling strength was variable across patient samples and correlated with BCR subunit CD79B expression, but was inversely correlated with susceptibility to Bruton tyrosine kinase (BTK) and SYK inhibitors in MCL. These individual differences in BCR levels and signaling might relate to differences in therapy responses to BCR-pathway inhibitors.
Collapse
|
37
|
Structure-based discovery of novel 4,5,6-trisubstituted pyrimidines as potent covalent Bruton’s tyrosine kinase inhibitors. Bioorg Med Chem Lett 2016; 26:3052-3059. [DOI: 10.1016/j.bmcl.2016.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 11/23/2022]
|
38
|
Vitale C, Burger JA. Chronic lymphocytic leukemia therapy: new targeted therapies on the way. Expert Opin Pharmacother 2016; 17:1077-89. [PMID: 26988407 PMCID: PMC4955400 DOI: 10.1517/14656566.2016.1168401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/10/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The critical role of the tissue microenvironment and B-cell receptor (BCR) signaling in chronic lymphocytic leukemia (CLL) pathogenesis, and the clinical success of targeted agents that disrupt BCR signaling are currently changing the CLL landscape. Three new drugs were recently approved for CLL therapy, and other agents are in late development. AREAS COVERED In this review, we summarize data on promising new targeted drugs for CLL. The heterogeneous mechanisms of actions of these molecules are described, such as the inhibition of BCR signaling, direct targeting of CD20 molecules on the CLL cell surface, and BCL-2 inhibition. We present preclinical and clinical data from phase I to III studies in order to describe efficacy and side effect profile of these new drugs. Data are derived from peer-reviewed articles indexed in PubMed and from abstracts presented at major international meetings. EXPERT OPINION Ibrutinib and idelalisib are challenging the role of chemo-immunotherapy in CLL therapy in the frontline and relapsed disease settings. High-risk CLL patients particularly benefit from these new agents. Venetoclax and obinutuzumab are other effective agents added to our therapeutic armamentarium. Studies to better define the optimal use of these drugs, alone, or rather in combination or sequenced are underway.
Collapse
Affiliation(s)
- Candida Vitale
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jan A Burger
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
39
|
Hall AP, Mitchard T, Rolf MG, Stewart J, Duffy P. Femoral Head Growth Plate Dysplasia and Fracture in Juvenile Rabbits Induced by Off-target Antiangiogenic Treatment. Toxicol Pathol 2016; 44:866-73. [PMID: 27162053 DOI: 10.1177/0192623316646483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epiphyseal growth plate dysplasia (chondrodysplasia) might be considered as the pathognomonic feature of antiangiogenic treatment in preclinical species as it is reliably and dose-responsively induced in rodents and monkeys with vascular endothelial growth factor receptor (VEGFR) inhibitors, fibroblast growth factor (FGF) receptor inhibitors, matrix metalloproteinase inhibitors, and vascular targeting agents. Here we report epiphyseal growth plate dysplasia in juvenile rabbits treated with an oral spleen tyrosine kinase inhibitor induced by off-target antiangiogenic inhibition of VEGF and FGF family kinase receptors. Epiphyseal growth plate dysplasia resulted in weakening and fracturing of the femoral head physis in 6 of 10 male and 1 of 10 female animals as well as microfracturing and dysplasia of the distal femoral articular cartilage in 1 male animal. Fracture lines ran through the zone of hypertrophic cartilage (as well as adjacent zones), were orientated parallel to the physeal plane, and often involved displacement of the femoral head. We would suggest that the high prevalence of growth plate fracture in the rabbit may represent a potential additional adverse risk to those already established for children treated with antiangiogenic therapy.
Collapse
Affiliation(s)
- A Peter Hall
- AstraZeneca, Drug Safety and Metabolism, Macclesfield, Cheshire, UK
| | - T Mitchard
- AstraZeneca, Drug Safety and Metabolism, Macclesfield, Cheshire, UK
| | - M G Rolf
- AstraZeneca, Drug Safety and Metabolism, Pepparedsleden, Gothenburg, Sweden
| | - J Stewart
- AstraZeneca, Drug Safety and Metabolism, Macclesfield, Cheshire, UK
| | - P Duffy
- AstraZeneca, Drug Safety and Metabolism, Macclesfield, Cheshire, UK
| |
Collapse
|
40
|
Hobeika E, Maity PC, Jumaa H. Control of B Cell Responsiveness by Isotype and Structural Elements of the Antigen Receptor. Trends Immunol 2016; 37:310-320. [PMID: 27052149 DOI: 10.1016/j.it.2016.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 01/08/2023]
Abstract
Expression of a functional B cell antigen receptor (BCR) plays a central role in regulating B cell development, maturation, and effector functions. Although IgM is solely expressed in immature B cell stages, the presence of both IgM- and IgD-BCR isotypes on mature naïve B cells raises the question of whether IgD has a unique role in B cell activation and function. While earlier studies suggested a broad functional redundancy between IgM and IgD, recent data point to an important immune regulatory role of IgD. Herein, we review these findings and discuss how the structural flexibility, mode of antigen binding, and co-receptor interactions, enable the IgD-BCR to act as a 'rheostat', regulating the activation and function of mature naïve B cells.
Collapse
Affiliation(s)
- Elias Hobeika
- Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Palash Chandra Maity
- Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Hassan Jumaa
- Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany; Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
41
|
Deng GM, Kyttaris VC, Tsokos GC. Targeting Syk in Autoimmune Rheumatic Diseases. Front Immunol 2016; 7:78. [PMID: 27014261 PMCID: PMC4779881 DOI: 10.3389/fimmu.2016.00078] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/16/2016] [Indexed: 02/03/2023] Open
Abstract
Spleen tyrosine kinase (Syk) is a member of the Src family of non-receptor tyrosine kinases, which associates directly with surface receptors, including B-cell receptor and Fcγ receptor, and is involved in a variety of signal transduction pathways. Rheumatoid arthritis (RA) and systemic lupus erythematosus are autoimmune diseases in which autoantibodies, immune complexes, and autoreactive T cells account for the expression of tissue inflammation and damage. Syk inhibitors efficiently suppress RA in patients albeit in the expression of unwanted side effects, including gastrointestinal effects, hypertension, and neutropenia. Syk inhibitors also inhibit clinical manifestations in lupus-prone mice. Here, we review the evidence that supports the use of Syk inhibitors to treat rheumatic and other autoimmune diseases.
Collapse
Affiliation(s)
- Guo-Min Deng
- Key Laboratory of Antibody Techniques of Ministry of Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | - George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
42
|
Ten Hacken E, Burger JA. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: Implications for disease pathogenesis and treatment. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:401-413. [PMID: 26193078 PMCID: PMC4715999 DOI: 10.1016/j.bbamcr.2015.07.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023]
Abstract
Chronic Lymphocytic Leukemia (CLL) is a malignancy of mature B lymphocytes which are highly dependent on interactions with the tissue microenvironment for their survival and proliferation. Critical components of the microenvironment are monocyte-derived nurselike cells (NLCs), mesenchymal stromal cells, T cells and NK cells, which communicate with CLL cells through a complex network of adhesion molecules, chemokine receptors, tumor necrosis factor (TNF) family members, and soluble factors. (Auto-) antigens and/or autonomous mechanisms activate the B-cell receptor (BCR) and its downstream signaling cascade in secondary lymphatic tissues, playing a central pathogenetic role in CLL. Novel small molecule inhibitors, including the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib and the phosphoinositide-3-kinase delta (PI3Kδ) inhibitor idelalisib, target BCR signaling and have become the most successful new therapeutics in this disease. We here review the cellular and molecular characteristics of CLL cells, and discuss the cellular components and key pathways involved in the cross-talk with their microenvironment. We also highlight the relevant novel treatment strategies, focusing on immunomodulatory agents and BCR signaling inhibitors and how these treatments disrupt CLL-microenvironment interactions. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Models, Biological
- Molecular Targeted Therapy
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinases/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Tumor Microenvironment
Collapse
Affiliation(s)
- Elisa Ten Hacken
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
43
|
The SLE variant Ala71Thr of BLK severely decreases protein abundance and binding to BANK1 through impairment of the SH3 domain function. Genes Immun 2016; 17:128-38. [PMID: 26821283 DOI: 10.1038/gene.2016.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 09/16/2015] [Accepted: 12/08/2015] [Indexed: 01/17/2023]
Abstract
The B-lymphocyte kinase (BLK) gene is associated genetically with several human autoimmune diseases including systemic lupus erythematosus. We recently described that the genetic risk is given by two haplotypes: one covering several strongly linked single-nucleotide polymorphisms within the promoter of the gene that correlated with low transcript levels, and a second haplotype that includes a rare nonsynonymous variant (Ala71Thr). Here we show that this variant, located within the BLK SH3 domain, is a major determinant of protein levels. In vitro analyses show that the 71Thr isoform is hyperphosphorylated and promotes kinase activation. As a consequence, BLK is ubiquitinated, its proteasomal degradation enhanced and the average life of the protein is reduced by half. Altogether, these findings suggest that an intrinsic autoregulatory mechanism previously unappreciated in BLK is disrupted by the 71Thr substitution. Because the SH3 domain is also involved in protein interactions, we sought for differences between the two isoforms in trafficking and binding to protein partners. We found that binding of the 71Thr variant to the adaptor protein BANK1 is severely reduced. Our study provides new insights on the intrinsic regulation of BLK activation and highlights the dominant role of its SH3 domain in BANK1 binding.
Collapse
|
44
|
Liu Q, Batt DG, Lippy JS, Surti N, Tebben AJ, Muckelbauer JK, Chen L, An Y, Chang C, Pokross M, Yang Z, Wang H, Burke JR, Carter PH, Tino JA. Design and synthesis of carbazole carboxamides as promising inhibitors of Bruton’s tyrosine kinase (BTK) and Janus kinase 2 (JAK2). Bioorg Med Chem Lett 2015; 25:4265-9. [DOI: 10.1016/j.bmcl.2015.07.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 11/30/2022]
|
45
|
Abstract
The fate of T and B lymphocytes, the key cells that direct the adaptive immune response, is regulated by a diverse network of signal transduction pathways. The T- and B-cell antigen receptors are coupled to intracellular tyrosine kinases and adaptor molecules to control the metabolism of inositol phospholipids and calcium release. The production of inositol polyphosphates and lipid second messengers directs the activity of downstream guanine-nucleotide-binding proteins and protein and lipid kinases/phosphatases that control lymphocyte transcriptional and metabolic programs. Lymphocyte activation is modulated by costimulatory molecules and cytokines that elicit intracellular signaling that is integrated with the antigen-receptor-controlled pathways.
Collapse
Affiliation(s)
- Doreen Cantrell
- College of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
46
|
Portugal S, Tipton CM, Sohn H, Kone Y, Wang J, Li S, Skinner J, Virtaneva K, Sturdevant DE, Porcella SF, Doumbo OK, Doumbo S, Kayentao K, Ongoiba A, Traore B, Sanz I, Pierce SK, Crompton PD. Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function. eLife 2015; 4. [PMID: 25955968 PMCID: PMC4444601 DOI: 10.7554/elife.07218] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/06/2015] [Indexed: 01/06/2023] Open
Abstract
Protective antibodies in Plasmodium falciparum malaria are only acquired after years of repeated infections. Chronic malaria exposure is associated with a large increase in atypical memory B cells (MBCs) that resemble B cells expanded in a variety of persistent viral infections. Understanding the function of atypical MBCs and their relationship to classical MBCs will be critical to developing effective vaccines for malaria and other chronic infections. We show that VH gene repertoires and somatic hypermutation rates of atypical and classical MBCs are indistinguishable indicating a common developmental history. Atypical MBCs express an array of inhibitory receptors and B cell receptor (BCR) signaling is stunted in atypical MBCs resulting in impaired B cell responses including proliferation, cytokine production and antibody secretion. Thus, in response to chronic malaria exposure, atypical MBCs appear to differentiate from classical MBCs becoming refractory to BCR-mediated activation and potentially interfering with the acquisition of malaria immunity. DOI:http://dx.doi.org/10.7554/eLife.07218.001 The human immune system works to protect individuals from harmful microbes, such as the parasites that cause malaria. One line of defense is to produce a large array of proteins called antibodies that specifically bind to microbes to mark them for destruction by the immune system. The immune system also produces long-lived memory B cells that are able to mount a quicker and more effective antibody response if the microbe enters the body again. This means that most people only become ill with a particular disease the first time they encounter the microbe that causes it. However, malaria is unusual in that it can take many years of exposure to the parasite that causes it before an individual produces enough antibodies and memory B cells to be protected from the disease. There is also no vaccine that provides effective and long-lasting protection against malaria. Vaccinations rely on stimulating the body's natural defenses, and so understanding more about antibodies and memory B cells in relation to malaria may aid future efforts to develop a vaccine. Researchers have discovered that many of the memory B cells that accumulate in people who have been exposed to the malaria parasite over long-periods of time are different from the normal memory B cells. But it was not clear what role these ‘atypical’ cells play in immunity to malaria. To address this question, Portugal et al. studied the genetics and activity of B cells collected from children and adults living in Mali who—by living in a region where malaria is common—had been repeatedly exposed to the parasite. The experiments indicate that atypical and normal memory B cells both develop from the same precursor cells. However, the genes that are active in each cell type are different, resulting in the atypical cells being less able to respond to the parasite than the normal memory B cells. Portugal et al.'s findings suggest that the atypical cells develop from normal memory B cells during long-term exposure to malaria, which may delay the development of immunity to this disease. Future challenges include understanding what drives the formation of the atypical memory B cells in malaria, and finding out why they are less active than the normal cells. This could aid the development of vaccines and/or therapies that restore their activity in patients. DOI:http://dx.doi.org/10.7554/eLife.07218.002
Collapse
Affiliation(s)
- Silvia Portugal
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Christopher M Tipton
- Departments of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, United States
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Younoussou Kone
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Jing Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Shanping Li
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Kimmo Virtaneva
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, United States
| | - Daniel E Sturdevant
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, United States
| | - Stephen F Porcella
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, United States
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Safiatou Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Inaki Sanz
- Departments of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, United States
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| |
Collapse
|
47
|
McGee RL, Krisenko MO, Geahlen RL, Rundell AE, Buzzard GT. A Computational Study of the Effects of Syk Activity on B Cell Receptor Signaling Dynamics. Processes (Basel) 2015; 3:75-97. [PMID: 26525178 PMCID: PMC4627698 DOI: 10.3390/pr3010075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The kinase Syk is intricately involved in early signaling events in B cells and is required for proper response when antigens bind to B cell receptors (BCRs). Experiments using an analog-sensitive version of Syk (Syk-AQL) have better elucidated its role, but have not completely characterized its behavior. We present a computational model for BCR signaling, using dynamical systems, which incorporates both wild-type Syk and Syk-AQL. Following the use of sensitivity analysis to identify significant reaction parameters, we screen for parameter vectors that produced graded responses to BCR stimulation as is observed experimentally. We demonstrate qualitative agreement between the model and dose response data for both mutant and wild-type kinases. Analysis of our model suggests that the level of NF-κB activation, which is reduced in Syk-AQL cells relative to wild-type, is more sensitive to small reductions in kinase activity than Erkp activation, which is essentially unchanged. Since this profile of high Erkp and reduced NF-κB is consistent with anergy, this implies that anergy is particularly sensitive to small changes in catalytic activity. Also, under a range of forward and reverse ligand binding rates, our model of Erkp and NF-κB activation displays a dependence on a power law affinity: the ratio of the forward rate to a non-unit power of the reverse rate. This dependence implies that B cells may respond to certain details of binding and unbinding rates for ligands rather than simple affinity alone.
Collapse
Affiliation(s)
- Reginald L. McGee
- Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN 47907, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-765–494–1901
| | - Mariya O. Krisenko
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University Street, West Lafayette, IN 47907, USA
| | - Robert L. Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University Street, West Lafayette, IN 47907, USA
| | - Ann E. Rundell
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Gregery T. Buzzard
- Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN 47907, USA
| |
Collapse
|
48
|
Bruton's TK inhibitors: structural insights and evolution of clinical candidates. Future Med Chem 2015; 6:675-95. [PMID: 24895895 DOI: 10.4155/fmc.14.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bruton's TK (BTK) is a promising biological target for therapeutic intervention of several diseases including inflammatory diseases and cancer/B cell malignancies. Numerous research groups are actively engaged in investigating the functions of BTK, and discovering potent and selective BTK inhibitors as drug candidates. Revealed by x-ray crystal structures with ligands of diverse chemical structures, the ability of BTK kinase domain to adopt various inactive conformations offers unique opportunities to identify highly potent and exquisitely selective inhibitors. Both reversible and covalent inhibitor approaches have yielded candidates demonstrating safety profiles and efficacies in multiple preclinical models of autoimmunity and oncology. Two BTK inhibitors have entered human clinical trials for oncology indications. Ibrutinib won the US FDA approval in November 2013 to become the first-in-class BTK inhibitor for treating mantle cell lymphoma. This encouraging outcome and the other on-going human studies could ultimately expand the utility of BTK inhibitors to broader autoimmune disease areas.
Collapse
|
49
|
Mitsuiki N, Yang X, Bartol SJW, Grosserichter-Wagener C, Kosaka Y, Takada H, Imai K, Kanegane H, Mizutani S, van der Burg M, van Zelm MC, Ohara O, Morio T. Mutations in Bruton’s tyrosine kinase impair IgA responses. Int J Hematol 2015; 101:305-13. [DOI: 10.1007/s12185-015-1732-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 01/28/2023]
|
50
|
Sasaki Y, Iwai K. Roles of the NF-κB Pathway in B-Lymphocyte Biology. Curr Top Microbiol Immunol 2015; 393:177-209. [PMID: 26275874 DOI: 10.1007/82_2015_479] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NF-κB was originally identified as a family of transcription factors that bind the enhancer of the immunoglobulin κ light-chain gene. Although its function in the regulation of immunoglobulin κ light-chain gene remains unclear, NF-κB plays critical roles in development, survival, and activation of B lymphocytes. In B cells, many receptors, including B-cell antigen receptor (BCR), activate NF-κB pathway, and the molecular mechanism of receptor-mediated activation of IκB kinase (IKK) complex has been partially revealed. In addition to normal B lymphocytes, NF-κB is also involved in the growth of some types of B-cell lymphomas, and many oncogenic mutations involved in constitutive activation of the NF-κB pathway were recently identified in such cancers. In this review, we first summarize the function of NF-κB in B-cell development and activation, and then describe recent progress in understanding the molecular mechanism of receptor-mediated activation of the IKK complex, focusing on the roles of the ubiquitin system. In the last section, we describe oncogenic mutations that induce NF-κB activation in B-cell lymphoma.
Collapse
Affiliation(s)
- Yoshiteru Sasaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|