1
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Sun Q, Han X, Meng L, Li H, Chen Y, Yin L, Wang C, Wang J, Li M, Gao X, Li W, Wei L, Ma C. TRIM38 Induced in Respiratory Syncytial Virus-infected Cells Downregulates Type I Interferon Expression by Competing with TRIM25 to Bind RIG-I. Inflammation 2024; 47:1328-1343. [PMID: 38630167 DOI: 10.1007/s10753-024-01979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 08/24/2024]
Abstract
Innate immune response is the first line of defense for the host against virus invasion. One important response is the synthesis and secretion of type I interferon (IFN-I) in the virus-infected host cells. Here, we found that respiratory syncytial virus (RSV) infection induced high expression of TRIM25, which belongs to the tripartite motif-containing (TRIM) family of proteins. TRIM25 bound and activated retinoic acid-inducible gene I (RIG-I) by K63-linked ubiquitination. Accordingly, RIG-I mediated the production of IFN-I mainly through the nuclear factor kappa-B (NF-κB) pathway in respiratory epithelial cells. Interestingly, IFN-I, in turn, promoted a high expression of TRIM38 which downregulated the expression of IFN-I by reducing the protein level of RIG-I by K48-linked ubiquitination. More importantly, the binding site of TRIM25 to RIG-I was found in the narrow 25th-43rd amino acid (aa) region of RIG-I N-terminus. In contrast, the binding sites of TRIM38 to RIG-I were found in a much wider amino acid region, which included the binding site of TRIM25 on RIG-I. As a result, TRIM38 inhibits the production of IFN-I by competing with TRIM25 for RIG-I binding. Thus, TRIM38 negatively regulates RIG-I activation to, in turn, downregulate IFN-I expression, thus interfering with host immune response. A negative feedback loop effectively "puts the brakes" on the reaction once host immune response is overactivated and homeostasis is unbalanced. We also discovered that TRIM25 bound RIG-I by a new K63-linked ubiquitination located at K-45 of the first caspase recruitment domain (CARD). Collectively, these results confirm an antagonism between TRIM38 and TRIM25 in regulating IFN-I production by affecting RIG-I activity following RNA virus infection.
Collapse
Affiliation(s)
- Qingqing Sun
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei, China
- Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Xiao Han
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Lingtong Meng
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongru Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yijia Chen
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lizheng Yin
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chang Wang
- Department of Anatomy, Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Miao Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xue Gao
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenjian Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Wei
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Zhou CJ, Zhang C, Lu LF, Li S. Fish ubiquitin-specific protease 8 (USP8) inhibits IFN production through autophagy-lysosomal dependent degradation of IRF7. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105181. [PMID: 38636698 DOI: 10.1016/j.dci.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.
Collapse
Affiliation(s)
- Chu-Jing Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Shun Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Song Q, Fan Y, Zhang H, Wang N. Z-DNA binding protein 1 orchestrates innate immunity and inflammatory cell death. Cytokine Growth Factor Rev 2024; 77:15-29. [PMID: 38548490 DOI: 10.1016/j.cytogfr.2024.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 06/22/2024]
Abstract
Innate immunity is not only the first line of host defense against microbial infections but is also crucial for the host responses against a variety of noxious stimuli. Z-DNA binding protein 1 (ZBP1) is a cytosolic nucleic acid sensor that can induce inflammatory cell death in both immune and nonimmune cells upon sensing of incursive virus-derived Z-form nucleic acids and self-nucleic acids via its Zα domain. Mechanistically, aberrantly expressed or activated ZBP1 induced by pathogens or noxious stimuli enables recruitment of TANK binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 to drive type I interferon (IFN-I) responses and activation of nuclear factor kappa B (NF-κB) signaling. Meanwhile, ZBP1 promotes the assembly of ZBP1- and absent in melanoma 2 (AIM2)-PANoptosome, which ultimately triggers PANoptosis through caspase 3-mediated apoptosis, mixed lineage kinase domain like pseudokinase (MLKL)-mediated necroptosis, and gasdermin D (GSDMD)-mediated pyroptosis. In response to damaged mitochondrial DNA, ZBP1 can interact with cyclic GMP-AMP synthase to augment IFN-I responses but inhibits toll like receptor 9-mediated inflammatory responses. This review summarizes the structure and expression pattern of ZBP1, discusses its roles in human diseases through immune-dependent (e.g., the production of IFN-I and pro-inflammatory cytokines) and -independent (e.g., the activation of cell death) functions, and highlights the attractive prospect of manipulating ZBP1 as a promising therapeutic target in diseases.
Collapse
Affiliation(s)
- Qixiang Song
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Yuhang Fan
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| |
Collapse
|
5
|
Sharma P, Hoorn D, Aitha A, Breier D, Peer D. The immunostimulatory nature of mRNA lipid nanoparticles. Adv Drug Deliv Rev 2024; 205:115175. [PMID: 38218350 DOI: 10.1016/j.addr.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
mRNA-Lipid nanoparticles (LNPs) are at the forefront of global medical research. With the development of mRNA-LNP vaccines to combat the COVID-19 pandemic, the clinical potential of this platform was unleashed. Upon administering 16 billion doses that protected billions of people, it became clear that a fraction of them witnessed mild and in some cases even severe adverse effects. Therefore, it is paramount to define the safety along with the therapeutic efficacy of the mRNA-LNP platform for the successful translation of new genetic medicines based on this technology. While mRNA was the effector molecule of this platform, the ionizable lipid component of the LNPs played an indispensable role in its success. However, both of these components possess the ability to induce undesired immunostimulation, which is an area that needs to be addressed systematically. The immune cell agitation caused by this platform is a two-edged sword as it may prove beneficial for vaccination but detrimental to other applications. Therefore, a key challenge in advancing the mRNA-LNP drug delivery platform from bench to bedside is understanding the immunostimulatory behavior of these components. Herein, we provide a detailed overview of the structural modifications and immunogenicity of synthetic mRNA. We discuss the effect of ionizable lipid structure on LNP functionality and offer a mechanistic overview of the ability of LNPs to elicit an immune response. Finally, we shed some light on the current status of this technology in clinical trials and discuss a few challenges to be addressed to advance the field.
Collapse
Affiliation(s)
- Preeti Sharma
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Daniek Hoorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anjaiah Aitha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dor Breier
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Cai X, Wang R, Zhu J, Li X, Liu X, Ouyang G, Wang J, Li Z, Zhu C, Deng H, Xiao W. Factor inhibiting HIF negatively regulates antiviral innate immunity via hydroxylation of IKKϵ. Cell Rep 2024; 43:113606. [PMID: 38127621 DOI: 10.1016/j.celrep.2023.113606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Activation of type I interferon (IFN-1) signaling is essential to protect host cells from viral infection. The full spectrum of IFN-I induction requires the activation of a number of cellular factors, including IκB kinase epsilon (IKKϵ). However, the regulation of IKKϵ activation in response to viral infection remains largely unknown. Here, we show that factor inhibiting hypoxia-inducible factor (HIF) (FIH), an asparaginyl hydroxylase, interacts with IKKϵ and catalyzes asparagine hydroxylation of IKKϵ at Asn-254, Asn-700, and Asn-701, resulting in the suppression of IKKϵ activation. FIH-mediated hydroxylation of IKKϵ prevents IKKϵ binding to TBK1 and TRAF3 and attenuates the cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex-catalyzed K63-linked polyubiquitination of IKKϵ at Lys-416. In addition, Fih-deficient mice and zebrafish are more resistant to viral infection. This work uncovers a previously unrecognized role of FIH in suppressing IKKϵ activation for IFN signaling and antiviral immune responses.
Collapse
Affiliation(s)
- Xiaolian Cai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Rui Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, P.R. China
| | - Junji Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Xiong Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gang Ouyang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Jing Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunchun Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Hongyan Deng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; Hubei Hongshan Laboratory, Wuhan 430070, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
7
|
Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Front Immunol 2023; 14:1275408. [PMID: 37915571 PMCID: PMC10616885 DOI: 10.3389/fimmu.2023.1275408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic stroke, a primary cause of disability and the second leading cause of mortality, has emerged as an urgent public health issue. Growing evidence suggests that the Cyclic GMP-AMP synthase (cGAS)- Stimulator of interferon genes (STING) pathway, a component of innate immunity, is closely associated with microglia activation, neuroinflammation, and regulated cell death in ischemic stroke. However, the mechanisms underlying this pathway remain inadequately understood. This article comprehensively reviews the existing literature on the cGAS-STING pathway and its multifaceted relationship with ischemic stroke. Initially, it examines how various risk factors and pre-disease mechanisms such as metabolic dysfunction and senescence (e.g., hypertension, hyperglycemia, hyperlipidemia) affect the cGAS-STING pathway in relation to ischemic stroke. Subsequently, we explore in depth the potential pathophysiological relationship between this pathway and oxidative stress, endoplasmic reticulum stress, neuroinflammation as well as regulated cell death including ferroptosis and PANoptosis following cerebral ischemia injury. Finally, it suggests that intervention targeting the cGAS-STING pathway may serve as promising therapeutic strategies for addressing neuroinflammation associated with ischemic stroke. Taken together, this review concludes that targeting the microglia cGAS-STING pathway may shed light on the exploration of new therapeutic strategies against ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Xin
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
8
|
Murao A, Jha A, Ma G, Chaung W, Aziz M, Wang P. A Synthetic Poly(A) Tail Targeting Extracellular CIRP Inhibits Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1144-1153. [PMID: 37585248 PMCID: PMC10528014 DOI: 10.4049/jimmunol.2300228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
Sepsis is an infectious inflammatory disease that often results in acute lung injury (ALI). Cold-inducible RNA-binding protein (CIRP) is an intracellular RNA chaperon that binds to mRNA's poly(A) tail. However, CIRP can be released in sepsis, and extracellular CIRP (eCIRP) is a damage-associated molecular pattern, exaggerating inflammation, ALI, and mortality. In this study, we developed an engineered poly(A) mRNA mimic, AAAAAAAAAAAA, named A12, with 2'-O-methyl ribose modification and terminal phosphorothioate linkages to protect it from RNase degradation, exhibiting an increased half-life. A12 selectively and strongly interacted with the RNA-binding motif of eCIRP, thereby preventing eCIRP's binding to its receptor, TLR4. In vitro treatment with A12 significantly decreased eCIRP-induced macrophage MAPK and NF-κB activation and inflammatory transcription factor upregulation. A12 also attenuated proinflammatory cytokine production induced by eCIRP in vitro and in vivo in macrophages and mice, respectively. We revealed that treating cecal ligation and puncture-induced sepsis with A12 significantly reduced serum organ injury markers and cytokine levels and ALI, and it decreased bacterial loads in the blood and peritoneal fluid, ultimately improving their survival. Thus, A12's ability to attenuate the clinical models of sepsis sheds lights on inflammatory disease pathophysiology and prevention of the disease progress.
Collapse
Affiliation(s)
- Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Alok Jha
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Gaifeng Ma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Wayne Chaung
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
9
|
Alexander S, Moghadam MG, Rothenbroker M, Y T Chou L. Addressing the in vivo delivery of nucleic-acid nanostructure therapeutics. Adv Drug Deliv Rev 2023; 199:114898. [PMID: 37230305 DOI: 10.1016/j.addr.2023.114898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
DNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities. Although existing studies have offered encouraging in vitro or pre-clinical proof-of-concepts, establishing mechanisms of in vivo delivery is the new frontier for nucleic-acid nanotechnologies. In this review, we first provide a summary of existing literature on the in vivo uses of DNA and RNA nanostructures. Based on their application areas, we discuss current models of nanoparticle delivery, and thereby highlight knowledge gaps on the in vivo interactions of nucleic-acid nanostructures. Finally, we describe techniques and strategies for investigating and engineering these interactions. Together, we propose a framework to establish in vivo design principles and advance the in vivo translation of nucleic-acid nanotechnologies.
Collapse
Affiliation(s)
- Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
10
|
Li M, Peng D, Cao H, Yang X, Li S, Qiu HJ, Li LF. The Host Cytoskeleton Functions as a Pleiotropic Scaffold: Orchestrating Regulation of the Viral Life Cycle and Mediating Host Antiviral Innate Immune Responses. Viruses 2023; 15:1354. [PMID: 37376653 PMCID: PMC10301361 DOI: 10.3390/v15061354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Viruses are obligate intracellular parasites that critically depend on their hosts to initiate infection, complete replication cycles, and generate new progeny virions. To achieve these goals, viruses have evolved numerous elegant strategies to subvert and utilize different cellular machinery. The cytoskeleton is often one of the first components to be hijacked as it provides a convenient transport system for viruses to enter the cell and reach the site of replication. The cytoskeleton is an intricate network involved in controlling the cell shape, cargo transport, signal transduction, and cell division. The host cytoskeleton has complex interactions with viruses during the viral life cycle, as well as cell-to-cell transmission once the life cycle is completed. Additionally, the host also develops unique, cytoskeleton-mediated antiviral innate immune responses. These processes are also involved in pathological damages, although the comprehensive mechanisms remain elusive. In this review, we briefly summarize the functions of some prominent viruses in inducing or hijacking cytoskeletal structures and the related antiviral responses in order to provide new insights into the crosstalk between the cytoskeleton and viruses, which may contribute to the design of novel antivirals targeting the cytoskeleton.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
11
|
ADP-Ribosylation in Antiviral Innate Immune Response. Pathogens 2023; 12:pathogens12020303. [PMID: 36839575 PMCID: PMC9964302 DOI: 10.3390/pathogens12020303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Adenosine diphosphate (ADP)-ribosylation is a reversible post-translational modification catalyzed by ADP-ribosyltransferases (ARTs). ARTs transfer one or more ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to the target substrate and release the nicotinamide (Nam). Accordingly, it comes in two forms: mono-ADP-ribosylation (MARylation) and poly-ADP-ribosylation (PARylation). ADP-ribosylation plays important roles in many biological processes, such as DNA damage repair, gene regulation, and energy metabolism. Emerging evidence demonstrates that ADP-ribosylation is implicated in host antiviral immune activity. Here, we summarize and discuss ADP-ribosylation modifications that occur on both host and viral proteins and their roles in host antiviral response.
Collapse
|
12
|
House JS, Gray S, Owen JR, Jima DD, Smart RC, Hall JR. C/EBPβ deficiency enhances the keratinocyte innate immune response to direct activators of cytosolic pattern recognition receptors. Innate Immun 2023; 29:14-24. [PMID: 37094088 PMCID: PMC10164275 DOI: 10.1177/17534259231162192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 04/26/2023] Open
Abstract
The skin is the first line of defense to cutaneous microbes and viruses, and epidermal keratinocytes play a critical role in preventing infection by viruses and pathogens through activation of the type I interferon (IFN) response. Using RNAseq analysis, here we report that the conditional deletion of C/EBPβ transcription factor in mouse epidermis (CKOβ mice) resulted in the upregulation of IFNβ and numerous keratinocyte interferon-stimulated genes (ISGs). The expression of cytosolic pattern recognition receptors (cPRRs), that recognize viral RNA and DNA, were significantly increased, and enriched in the RNAseq data set. cPRRs stimulate a type I IFN response that can trigger cell death to eliminate infected cells. To determine if the observed increases in cPRRs had functional consequences, we transfected CKOβ primary keratinocytes with the pathogen and viral mimics poly(I:C) (dsRNA) or poly(dA:dT) (synthetic B-DNA) that directly activate PRRs. Transfected CKOβ primary keratinocytes displayed an amplified type I IFN response which was accompanied by increased activation of IRF3, enhanced ISG expression, enhanced activation of caspase-8, caspase-3 and increased apoptosis. Our results identify C/EBPβ as a critical repressor of the keratinocyte type I IFN response, and demonstrates that the loss of C/EBPβ primes keratinocytes to the activation of cytosolic PRRs by pathogen RNA and DNA to induce cell death mediated by caspase-8 and caspase-3.
Collapse
Affiliation(s)
- John S. House
- Center of Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Toxicology Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC 27709, USA
| | - Sophia Gray
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jennifer R. Owen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dereje D. Jima
- Center of Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Robert C. Smart
- Center of Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Toxicology Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jonathan R. Hall
- Center of Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Toxicology Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
13
|
Afrashteh Nour M, Ghorbaninezhad F, Asadzadeh Z, Baghbanzadeh A, Hassanian H, Leone P, Jafarlou M, Alizadeh N, Racanelli V, Baradaran B. The emerging role of noncoding RNAs in systemic lupus erythematosus: new insights into the master regulators of disease pathogenesis. Ther Adv Chronic Dis 2023; 14:20406223231153572. [PMID: 37035097 PMCID: PMC10074641 DOI: 10.1177/20406223231153572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/11/2023] [Indexed: 04/11/2023] Open
Abstract
Auto-immune diseases are a form of chronic disorders in which the immune system destroys the body's cells due to a loss of tolerance to self-antigens. Systemic lupus erythematosus (SLE), identified by the production of autoantibodies in different body parts, is one of the most well-known examples of these diseases. Although the etiology of SLE is unclear, the disease's progression may be affected by genetic and environmental factors. As studies in twins provide adequate evidence for genetic involvement in the SLE, other phenomena such as metallization, histone modifications, and alterations in the expression of noncoding RNAs (ncRNAs) also indicate the involvement of epigenetic factors in this disease. Among all the epigenetic alterations, ncRNAs appear to have the most crucial contribution to the pathogenesis of SLE. The ncRNAs' length and size are divided into three main classes: micro RNAs, long noncoding RNAs (LncRNA), and circular RNAs (circRNAs). Accumulating evidence suggests that dysregulations in these ncRNAs contributed to the pathogenesis of SLE. Hence, clarifying the function of these groups of ncRNAs in the pathophysiology of SLE provides a deeper understanding of the disease. It also opens up new opportunities to develop targeted therapies for this disease.
Collapse
Affiliation(s)
- Mina Afrashteh Nour
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine,
Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Student Research Committee, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Patrizia Leone
- Department of Interdisciplinary Medicine,
University of Bari ‘Aldo Moro’, Bari, Italy
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
14
|
Vimentin inhibits type I interferon production by disrupting the TBK1-IKKε-IRF3 axis. Cell Rep 2022; 41:111469. [DOI: 10.1016/j.celrep.2022.111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/20/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
|
15
|
Chen X, Fan S, Zhu C, Liao Q, Tang J, Yu G, Cai X, Ouyang G, Xiao W, Liu X. Zebrafish sirt5 Negatively Regulates Antiviral Innate Immunity by Attenuating Phosphorylation and Ubiquitination of mavs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1165-1172. [PMID: 36002231 DOI: 10.4049/jimmunol.2100983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/09/2022] [Indexed: 12/06/2024]
Abstract
The signaling adaptor MAVS is a critical determinant in retinoic acid-inducible gene 1-like receptor signaling, and its activation is tightly controlled by multiple mechanisms in response to viral infection, including phosphorylation and ubiquitination. In this article, we demonstrate that zebrafish sirt5, one of the sirtuin family proteins, negatively regulates mavs-mediated antiviral innate immunity. Sirt5 is induced by spring viremia of carp virus (SVCV) infection and binds to mavs, resulting in attenuating phosphorylation and ubiquitination of mavs. Disruption of sirt5 in zebrafish promotes survival ratio after challenge with SVCV. Consistently, the antiviral responsive genes are enhanced, and the replication of SVCV is diminished in sirt5-dificient zebrafish. Therefore, we reveal a function of zebrafish sirt5 in the negative regulation of antiviral innate immunity by targeting mavs.
Collapse
Affiliation(s)
- Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Sijia Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jinhua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, People's Republic of China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, People's Republic of China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China;
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, People's Republic of China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China;
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, People's Republic of China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and
| |
Collapse
|
16
|
Ji X, Li Q, Song H, Fan C. Protein-Mimicking Nanoparticles in Biosystems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201562. [PMID: 35576606 DOI: 10.1002/adma.202201562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Proteins are essential elements for almost all life activities. The emergence of nanotechnology offers innovative strategies to create a diversity of nanoparticles (NPs) with intrinsic capacities of mimicking the functions of proteins. These artificial mimics are produced in a cost-efficient and controllable manner, with their protein-mimicking performances comparable or superior to those of natural proteins. Moreover, they can be endowed with additional functionalities that are absent in natural proteins, such as cargo loading, active targeting, membrane penetrating, and multistimuli responding. Therefore, protein-mimicking NPs have been utilized more and more often in biosystems for a wide range of applications including detection, imaging, diagnosis, and therapy. To highlight recent progress in this broad field, herein, representative protein-mimicking NPs that fall into one of the four distinct categories are summarized: mimics of enzymes (nanozymes), mimics of fluorescent proteins, NPs with high affinity binding to specific proteins or DNA sequences, and mimics of protein scaffolds. This review covers their subclassifications, characteristic features, functioning mechanisms, as well as the extensive exploitation of their great potential for biological and biomedical purposes. Finally, the challenges and prospects in future development of protein-mimicking NPs are discussed.
Collapse
Affiliation(s)
- Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
17
|
Prognostic Value of Pretreatment Neutrophil-to-Lymphocyte Ratio in HER2-Positive Metastatic Breast Cancer. Curr Oncol 2022; 29:6154-6166. [PMID: 36135052 PMCID: PMC9498194 DOI: 10.3390/curroncol29090483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
This study aimed to examine the prognostic value of the neutrophil-to-lymphocyte ratio (NLR) and other clinicopathological features in HER2+ MBC patients who received first-line anti-HER2 therapy. A total of 129 patients were assigned to NLR-low and NLR-high groups based on a cutoff value of 3.0 at baseline. Peripheral blood lymphocyte subsets and gene mutations in circulating tumor DNA were analyzed by flow cytometry and Next-generation sequencing, respectively. Survival was evaluated by the Kaplan−Meier method and Cox regression analysis. Of the 129 patients, 77 and 52 were assigned to the NLR-low (≤3) and NLR-high (>3) groups, respectively. Compared with NLR-high patients, the NLR-low patients had significantly longer median progression-free survival (PFS) (11.7 vs. 7.7 months) (p = 0.001, HR = 2.703 95% CI 1.543−4.736 and overall survival (OS) (37.4 vs. 28.7 months) (p = 0.044, HR = 2.254 95% CI 1.024−4.924). Furthermore, this association was independent of metastatic sites or estrogen receptor status. Peripheral blood CD3+ (p = 0.034) and CD4+ (p = 0.010) T cell numbers were significantly higher in the NLR-low group than the NLR-high group. The mutational profile of MBC was generally similar between the two groups. Baseline NLR was a prognostic factor of PFS and OS for patients with HER2+ MBC in the first-line setting. These results may facilitate the selection of patients who will benefit most from anti-HER2 treatment.
Collapse
|
18
|
Mo Y, Ma J, Zhang H, Shen J, Chen J, Hong J, Xu Y, Qian C. Prophylactic and Therapeutic HPV Vaccines: Current Scenario and Perspectives. Front Cell Infect Microbiol 2022; 12:909223. [PMID: 35860379 PMCID: PMC9289603 DOI: 10.3389/fcimb.2022.909223] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 12/20/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection is recognized as the main cause of cervical cancer and other malignant cancers. Although early detection and treatment can be achieved by effective HPV screening methods and surgical procedures, the disease load has not been adequately mitigated yet, especially in the underdeveloped areas. Vaccine, being regarded as a more effective solution, is expected to prevent virus infection and the consequent diseases in the phases of both prevention and treatment. Currently, there are three licensed prophylactic vaccines for L1-VLPs, namely bivalent, quadrivalent and nonavalent vaccine. About 90% of HPV infections have been effectively prevented with the implementation of vaccines worldwide. However, no significant therapeutic effect has been observed on the already existed infections and lesions. Therapeutic vaccine designed for oncoprotein E6/E7 activates cellular immunity rather than focuses on neutralizing antibodies, which is considered as an ideal immune method to eliminate infection. In this review, we elaborate on the classification, mechanism, and clinical effects of HPV vaccines for disease prevention and treatment, in order to make improvements to the current situation of HPV vaccines by provoking new ideas.
Collapse
Affiliation(s)
- Yicheng Mo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiabing Ma
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Hongtao Zhang
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Junjie Shen
- IND Center, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Jun Chen
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Juan Hong
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Yanmin Xu
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
- *Correspondence: Yanmin Xu, ; Cheng Qian,
| | - Cheng Qian
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Yanmin Xu, ; Cheng Qian,
| |
Collapse
|
19
|
Ouyang W, Wang S, Hu J, Liu Z. Can the cGAS-STING Pathway Play a Role in the Dry Eye? Front Immunol 2022; 13:929230. [PMID: 35812407 PMCID: PMC9263829 DOI: 10.3389/fimmu.2022.929230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
Dry eye is one of the most common ocular surface diseases in the world and seriously affects the quality of life of patients. As an immune-related disease, the mechanism of dry eye has still not been fully elucidated. The cGAS-STING pathway is a recently discovered pathway that plays an important role in autoimmune and inflammatory diseases by recognizing dsDNA. As an important signal to initiate inflammation, the release of dsDNA is associated with dry eye. Herein, we focused on the pathophysiology of the immune-inflammatory response in the pathogenesis of dry eye, attempted to gain insight into the involvement of dsDNA in the dry eye immune response, and investigated the mechanism of the cGAS-STING pathway involved in the immune-inflammatory response. We further proposed that the cGAS-STING pathway may participate in dry eye as a new mechanism linking dry eye and the immune-inflammatory response, thus providing a new direction for the mechanistic exploration of dry eye.
Collapse
Affiliation(s)
- Weijie Ouyang
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Shoubi Wang
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Xiamen University, Xiamen, China
- Xiamen Clinical Medical Center for Endocrine and Metabolic Diseases, Xiamen University, Xiamen, China
- Xiamen Diabetes Prevention and Treatment Center, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Diabetes Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiaoyue Hu
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
- *Correspondence: Zuguo Liu, ; Jiaoyue Hu,
| | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, China
- *Correspondence: Zuguo Liu, ; Jiaoyue Hu,
| |
Collapse
|
20
|
Deng Y, Wang Y, Li L, Miao EA, Liu P. Post-Translational Modifications of Proteins in Cytosolic Nucleic Acid Sensing Signaling Pathways. Front Immunol 2022; 13:898724. [PMID: 35795661 PMCID: PMC9250978 DOI: 10.3389/fimmu.2022.898724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
The innate immune response is the first-line host defense against pathogens. Cytosolic nucleic acids, including both DNA and RNA, represent a special type of danger signal to initiate an innate immune response. Activation of cytosolic nucleic acid sensors is tightly controlled in order to achieve the high sensitivity needed to combat infection while simultaneously preventing false activation that leads to pathologic inflammatory diseases. In this review, we focus on post-translational modifications of key cytosolic nucleic acid sensors that can reversibly or irreversibly control these sensor functions. We will describe phosphorylation, ubiquitination, SUMOylation, neddylation, acetylation, methylation, succinylation, glutamylation, amidation, palmitoylation, and oxidation modifications events (including modified residues, modifying enzymes, and modification function). Together, these post-translational regulatory modifications on key cytosolic DNA/RNA sensing pathway members reveal a complicated yet elegantly controlled multilayer regulator network to govern innate immune activation.
Collapse
Affiliation(s)
- Yu Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ying Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lupeng Li
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Edward A. Miao
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Pengda Liu,
| |
Collapse
|
21
|
Zhang Q, Liu W, Wang H, Zhou H, Bulek K, Chen X, Zhang CJ, Zhao J, Zhang R, Liu C, Kang Z, Bermel RA, Dubyak G, Abbott DW, Xiao TS, Nagy LE, Li X. TH17 cells promote CNS inflammation by sensing danger signals via Mincle. Nat Commun 2022; 13:2406. [PMID: 35504893 PMCID: PMC9064974 DOI: 10.1038/s41467-022-30174-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/20/2022] [Indexed: 01/21/2023] Open
Abstract
The C-type lectin receptor Mincle is known for its important role in innate immune cells in recognizing pathogen and damage associated molecular patterns. Here we report a T cell-intrinsic role for Mincle in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). Genomic deletion of Mincle in T cells impairs TH17, but not TH1 cell-mediated EAE, in alignment with significantly higher expression of Mincle in TH17 cells than in TH1 cells. Mechanistically, dying cells release β-glucosylceramide during inflammation, which serves as natural ligand for Mincle. Ligand engagement induces activation of the ASC-NLRP3 inflammasome, which leads to Caspase8-dependent IL-1β production and consequentially TH17 cell proliferation via an autocrine regulatory loop. Chemical inhibition of β-glucosylceramide synthesis greatly reduces inflammatory CD4+ T cells in the central nervous system and inhibits EAE progression in mice. Taken together, this study indicates that sensing of danger signals by Mincle on TH17 cells plays a critical role in promoting CNS inflammation.
Collapse
Affiliation(s)
- Quanri Zhang
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Weiwei Liu
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Han Wang
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Hao Zhou
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Katarzyna Bulek
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Xing Chen
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Cun-Jin Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
| | - Junjie Zhao
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Renliang Zhang
- Proteomics and Metabolomics Core, Department of Research Core Services, Lerner Research Institute, Cleveland, OH, USA
| | - Caini Liu
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Zizhen Kang
- Department of Pathology, University of Iowa, Iowa, IA, USA
| | - Robert A Bermel
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA
| | - George Dubyak
- Department of Physiology and Biophysics, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, United States.
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States.
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
22
|
Abstract
Inflammation plays indispensable roles in building the immune responses such as acquired immunity against harmful pathogens. Furthermore, it is essential for maintaining biological homeostasis in ever-changing conditions. Pattern-recognition receptors (PRRs) reside in cell membranes, endosomes or cytoplasm, and function as triggers for inflammatory responses. Binding of pathogen- or self-derived components, such as DNA, to PRRs activates downstream signaling cascades, resulting in the production of a series of pro-inflammatory cytokines and type I interferons (IFNs). While these series of responses are essential for host defense, the unexpected release of DNA from the nucleus or mitochondria of host cells can lead to autoimmune and autoinflammatory diseases. In this review, we focus on DNA-sensing mechanisms via PRRs and the disorders and extraordinary conditions caused by self-derived DNA.
Collapse
Affiliation(s)
- Daisuke Ori
- Division of Biological Science, Graduate School of Science and Technology, Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Division of Biological Science, Graduate School of Science and Technology, Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
23
|
Li N, Zheng X, Chen M, Huang L, Chen L, Huo R, Li X, Huang Y, Sun M, Mai S, Wu Z, Zhang H, Liu J, Yang CT. Deficient DNASE1L3 facilitates neutrophil extracellular traps-induced invasion via cyclic GMP-AMP synthase and the non-canonical NF-κB pathway in diabetic hepatocellular carcinoma. Clin Transl Immunology 2022; 11:e1386. [PMID: 35474906 PMCID: PMC9021716 DOI: 10.1002/cti2.1386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 02/28/2022] [Accepted: 03/26/2022] [Indexed: 11/11/2022] Open
Abstract
Objective Diabetic hepatocellular carcinoma (HCC) patients have high mortality and metastasis rates. Diabetic conditions promote neutrophil extracellular traps (NETs) generation, which mediates HCC metastasis and invasion. However, whether and how diabetes-induced NETs trigger HCC invasion is largely unknown. Here, we aimed to observe the effects of diabetes-induced NETs on HCC invasion and investigate mechanisms relevant to a DNA sensor cyclic GMP-AMP synthase (cGAS). Methods Serum from diabetic patients and healthy individuals was collected. Human neutrophil-derived NETs were isolated for stimulating HCC cell invasion. Data from the SEER and TCGA databases were used for bioinformatics analysis. In HCC cells and allograft models, NETs-triggered invasion was observed. Results Diabetic HCC patients had poorer survival than non-diabetic ones. Either diabetic serum or extracted NETs caused HCC invasion. Induction of diabetes or NETosis elicited HCC allograft invasion in nude mice. HCC cell invasion was attenuated by the treatment with DNase1. In TCGA_LIHC, an extracellular DNase DNASE1L3 was downregulated in tumor tissues, while function terms (the endocytic vesicle membrane, the NF-κB pathway and extracellular matrix disassembly) were enriched. DNASE1L3 knockdown in LO2 hepatocytes or H22 cell-derived allografts facilitated HCC invasion in NETotic or diabetic nude mice. Moreover, exposure of HCC cells to NETs upregulated cGAS and the non-canonical NF-κB pathway and induced expression of metastasis genes (MMP9 and SPP1). Both cGAS inhibitor and NF-κB RELB knockdown diminished HCC invasion caused by NETs DNA. Also, cGAS inhibitor was able to retard translocation of NF-κB RELB. Conclusion Defective DNASE1L3 aggravates NETs DNA-triggered HCC invasion on diabetic conditions via cGAS and the non-canonical NF-κB pathway.
Collapse
Affiliation(s)
- Na Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China.,Department of Pathology Yue Bei People's Hospital Shaoguan China
| | - Xue Zheng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Mianrong Chen
- Department of Radiology The Second Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Li Huang
- Department of Pancreatobiliary Surgery The First Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Li Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Rui Huo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Xiaotong Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Yucan Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Mingwen Sun
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Suiqing Mai
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Zhuoyi Wu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Chun-Tao Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| |
Collapse
|
24
|
Scanu A, Lorenzin M, Luisetto R, Galozzi P, Ortolan A, Oliviero F, Doria A, Ramonda R. Identification in synovial fluid of a new potential pathogenic player in arthropathies. Exp Biol Med (Maywood) 2022; 247:1061-1066. [PMID: 35470716 DOI: 10.1177/15353702221087966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
STING (stimulator of interferon genes) has been recognized as an important signaling molecule in the innate immune response to cytosolic nucleic acids. Although it has been proposed that STING signaling pathway may play a pathogenic role in developing autoimmune and autoinflammatory diseases, its involvement in rheumatic disease processes remains to be elucidated. Here, we evaluated STING protein levels, expression and relationship with inflammatory parameters in synovial fluid (SF) of patients with psoriatic arthritis (PsA), rheumatoid arthritis (RA), gout, calcium pyrophosphate crystal-induced arthritis (CPP-IA), osteoarthritis (OA), and OA with CPP crystals (OA + CPP). The correlation with its negative regulator, nuclear factor erythroid 2-related factor 2 (Nrf2), was also investigated. SFs from 72 patients were analyzed for white blood cell (WBC) count, polymorphonuclear cell percentage (PMN%), and IL-1β, IL-6, IL-8, extra- and intracellular STING levels. STING and Nrf2 expression was also determined. WBC count and PMN% were greater in SF from inflammatory arthritis, while they were lower in OA groups. RA and gouty SFs have the highest levels of IL-1β, IL-8, and IL-6; while OA and OA + CPP showed the lowest concentrations. Gout and RA had the highest intracellular STING levels, while extracellular STING was greater in CPP-IA and OA SFs. STING was not detectable in PsA. STING mRNA was lower in PsA than other arthritides. Nrf2 mRNA was not detectable in OA. This study determines the presence of STING in SF of different arthritides, except for PsA, and suggests that it may be involved in pathogenesis and progression of arthropathies.
Collapse
Affiliation(s)
- Anna Scanu
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Mariagrazia Lorenzin
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova 35128, Italy
| | - Paola Galozzi
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Augusta Ortolan
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| |
Collapse
|
25
|
Soponpong S, Amparyup P, Kawai T, Tassanakajon A. Penaeus monodon Interferon Regulatory Factor ( PmIRF) Activates IFNs and Antimicrobial Peptide Expression via a STING-Dependent DNA Sensing Pathway. Front Immunol 2022; 12:818267. [PMID: 35082798 PMCID: PMC8784814 DOI: 10.3389/fimmu.2021.818267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022] Open
Abstract
Interferon regulatory factors (IRFs) are transcription factors found in both vertebrates and invertebrates that were recently identified and found to play an important role in antiviral immunity in black tiger shrimp Penaeus monodon. In this study, we investigated the mechanism by which P. monodon IRF (PmIRF) regulates the immune-related genes downstream of the cytosolic DNA sensing pathway. Depletion of PmIRF by double-stranded RNA-mediated gene silencing significantly reduced the mRNA expression levels of the IFN-like factors PmVago1, PmVago4, and PmVago5 and antilipopolysaccharide factor 6 (ALFPm6) in shrimp. In human embryonic kidney (HEK293T) cells transfected with PmIRF or co-transfected with DEAD-box polypeptide (PmDDX41) and simulator of IFN genes (PmSTING) expression plasmids, the promoter activity of IFN-β, nuclear factor (NF-κB), and ALFPm6 was synergistically enhanced following stimulation with the nucleic acid mimics deoxyadenylic–deoxythymidylic acid sodium salt [poly(dA:dT)] and high molecular weight (HMW) polyinosinic–polycytidylic acid [poly(I:C)]. Both nucleic acid mimics also significantly induced PmSTING, PmIRF, and ALFPm6 gene expression. Co-immunoprecipitation experiments showed that PmIRF interacted with PmSTING in cells stimulated with poly(dA:dT). PmSTING, PmIRF, and PmDDX41 were localized in the cytoplasm of unstimulated HEK293T cells and PmIRF and PmDDX41 were translocated to the nucleus upon stimulation with the nucleic acid mimics while PmSTING remained in the cytoplasm. These results indicate that PmIRF transduces the pathogen signal via the PmDDX41–PmSTING DNA sensing pathway to induce downstream production of interferon-like molecules and antimicrobial peptides.
Collapse
Affiliation(s)
- Suthinee Soponpong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand.,Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
26
|
Wang W, Yue C, Gao S, Li S, Zhou J, Chen J, Fu J, Sun W, Hua C. Promising Roles of Exosomal microRNAs in Systemic Lupus Erythematosus. Front Immunol 2021; 12:757096. [PMID: 34966383 PMCID: PMC8710456 DOI: 10.3389/fimmu.2021.757096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by the loss of immune tolerance. Lupus nephritis (LN) is still a major cause of the morbidity and mortality of SLE. In clinical practice, diagnosis, and therapy of SLE is complicated and challenging due to lack of ideal biomarkers. Exosomes could be detected from numerous kinds of biological fluids and their specific contents are considered as hallmarks of autoimmune diseases. The exosomal miRNA profiles of SLE/LN patients significantly differ from those of the healthy controls making them as attractive biomarkers for renal injury. Exosomes are considered as optimal delivery vehicles owing to their higher stable, minimal toxicity, lower immunogenicity features and specific target effects. Endogenous miRNAs can be functionally transferred by exosomes from donor cells to recipient cells, displaying their immunomodulatory effects. In addition, it has been confirmed that exosomal miRNAs could directly interact with Toll-like receptors (TLRs) signaling pathways to regulate NF-κB activation and the secretion of inflammatory cytokines. The present Review mainly focuses on the immunomodulatory effects of exosomal-miRNAs, the complex interplay between exosomes, miRNAs and TLR signaling pathways, and how the exosomal-miRNAs can become non-invasive diagnostic molecules and potential therapeutic strategies for the management of SLE.
Collapse
Affiliation(s)
- Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenran Yue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianan Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiaqing Chen
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiahong Fu
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Liang B, Su J. Advances in aquatic animal RIG-I-like receptors. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100012. [DOI: 10.1016/j.fsirep.2021.100012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 01/12/2023] Open
|
28
|
Zhu J, Li X, Sun X, Zhou Z, Cai X, Liu X, Wang J, Xiao W. Zebrafish prmt2 Attenuates Antiviral Innate Immunity by Targeting traf6. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2570-2580. [PMID: 34654690 DOI: 10.4049/jimmunol.2100627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
TNFR-associated factor 6 (TRAF6) not only recruits TBK1/IKKε to MAVS upon virus infection but also catalyzes K63-linked polyubiquitination on substrate or itself, which is critical for NEMO-dependent and -independent TBK1/IKKε activation, leading to the production of type I IFNs. The regulation at the TRAF6 level could affect the activation of antiviral innate immunity. In this study, we demonstrate that zebrafish prmt2, a type I arginine methyltransferase, attenuates traf6-mediated antiviral response. Prmt2 binds to the C terminus of traf6 to catalyze arginine asymmetric dimethylation of traf6 at arginine 100, preventing its K63-linked autoubiquitination, which results in the suppression of traf6 activation. In addition, it seems that the N terminus of prmt2 competes with mavs for traf6 binding and prevents the recruitment of tbk1/ikkε to mavs. By zebrafish model, we show that loss of prmt2 promotes the survival ratio of zebrafish larvae after challenge with spring viremia of carp virus. Therefore, we reveal, to our knowledge, a novel function of prmt2 in the negative regulation of antiviral innate immunity by targeting traf6.
Collapse
Affiliation(s)
- Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, People's Republic of China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, People's Republic of China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China; .,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, People's Republic of China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and.,Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| |
Collapse
|
29
|
So T. The immunological significance of tumor necrosis factor receptor-associated factors (TRAFs). Int Immunol 2021; 34:7-20. [PMID: 34453532 DOI: 10.1093/intimm/dxab058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023] Open
Abstract
The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular signaling adaptors and control diverse signaling pathways mediated not only by the TNFR superfamily and the Toll-like receptor/interleukin-1 receptor superfamily but also by unconventional cytokine receptors such as IL-6 and IL-17 receptors. There are seven family members, TRAF1 to TRAF7, in mammals. Exaggerated immune responses induced through TRAF signaling downstream of these receptors often lead to inflammatory and autoimmune diseases including rheumatoid arthritis, inflammatory bowel disease, psoriasis and autoinflammatory syndromes, and thus those signals are major targets for therapeutic intervention. For this reason, it has been very important to understand signaling mechanisms regulated by TRAFs that greatly impact on life/death decisions and the activation, differentiation and survival of cells of the innate and adaptive immune systems. Accumulating evidence suggests that dysregulated cellular expression and/or signaling of TRAFs causes overproduction of proinflammatory cytokines, which facilitates aberrant activation of immune cells. In this review, I will explain the structural and functional aspects that are responsible for the cellular activity and disease outcomes of TRAFs, and summarize the findings of recent studies on TRAFs in terms of how individual TRAF family molecules regulates biological and disease processes in the body in both positive and negative ways. This review also discusses how TRAF mutations contribute to human disease.
Collapse
Affiliation(s)
- Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
30
|
Zhu J, Li X, Cai X, Zha H, Zhou Z, Sun X, Rong F, Tang J, Zhu C, Liu X, Fan S, Wang J, Liao Q, Ouyang G, Xiao W. Arginine monomethylation by PRMT7 controls MAVS-mediated antiviral innate immunity. Mol Cell 2021; 81:3171-3186.e8. [PMID: 34171297 DOI: 10.1016/j.molcel.2021.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation. Upon virus infection, aggregated PRMT7 is disabled in a timely manner due to automethylation at arginine residue 32 (R32), and SMURF1 is recruited to PRMT7 by MAVS to induce proteasomal degradation of PRMT7, resulting in the relief of PRMT7 suppression of MAVS activation. Therefore, we not only reveal that arginine monomethylation by PRMT7 negatively regulates MAVS-mediated antiviral signaling in vitro and in vivo but also uncover a mechanism by which PRMT7 is tightly controlled to ensure the timely activation of antiviral defense.
Collapse
Affiliation(s)
- Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jinghua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Sijia Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China; Hubei Hongshan Laboratory, Wuhan 430070, P.R. China.
| |
Collapse
|
31
|
Hsu L, Wisplinghoff H, Kossow A, Hurraß J, Wiesmüller GA, Grüne B, Hoffmann D, Lüsebrink J, Demuth S, Schildgen O, Schildgen V. Limited protection against SARS-CoV-2 infection and virus transmission after mRNA vaccination. J Infect 2021; 84:94-118. [PMID: 34214517 PMCID: PMC8240461 DOI: 10.1016/j.jinf.2021.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Lea Hsu
- Gesundheitsamt der Stadt Köln, Infektions- und Umwelthygiene, Neumarkt 15- 21, Köln 50667, Germany
| | - Hilmar Wisplinghoff
- LaborDr.Wisplinghoff, Horbeller Str. 20, Köln 50858, Germany; InstitutfürVirologie und Mikrobiologie, Universität Witten/Herdecke, StockumerStr. 10, Witten 58453, Germany
| | - Annelene Kossow
- Gesundheitsamt der Stadt Köln, Infektions- und Umwelthygiene, Neumarkt 15- 21, Köln 50667, Germany; Institute of Hygiene, University Hospital Muenster, Germany
| | - Julia Hurraß
- Gesundheitsamt der Stadt Köln, Infektions- und Umwelthygiene, Neumarkt 15- 21, Köln 50667, Germany
| | - Gerhard A Wiesmüller
- Gesundheitsamt der Stadt Köln, Infektions- und Umwelthygiene, Neumarkt 15- 21, Köln 50667, Germany
| | - Barbara Grüne
- Gesundheitsamt der Stadt Köln, Infektions- und Umwelthygiene, Neumarkt 15- 21, Köln 50667, Germany
| | - Dennis Hoffmann
- LaborDr.Wisplinghoff, Horbeller Str. 20, Köln 50858, Germany
| | - Jessica Lüsebrink
- Klinikum der PrivatenUniversität Witten/Herdecke, InstitutfürPathologie, Ostmerheimer Str. 200, Köln (Cologne) D-51109, Germany
| | - Sabrina Demuth
- Klinikum der PrivatenUniversität Witten/Herdecke, InstitutfürPathologie, Ostmerheimer Str. 200, Köln (Cologne) D-51109, Germany
| | - Oliver Schildgen
- InstitutfürVirologie und Mikrobiologie, Universität Witten/Herdecke, StockumerStr. 10, Witten 58453, Germany; Klinikum der PrivatenUniversität Witten/Herdecke, InstitutfürPathologie, Ostmerheimer Str. 200, Köln (Cologne) D-51109, Germany
| | - Verena Schildgen
- Klinikum der PrivatenUniversität Witten/Herdecke, InstitutfürPathologie, Ostmerheimer Str. 200, Köln (Cologne) D-51109, Germany.
| |
Collapse
|
32
|
Liu D, Tan Q, Zhu J, Zhang Y, Xue Y, Song Y, Liu Y, Wang Q, Lai L. MicroRNA-33/33* inhibit the activation of MAVS through AMPK in antiviral innate immunity. Cell Mol Immunol 2021; 18:1450-1462. [PMID: 31767975 PMCID: PMC8167167 DOI: 10.1038/s41423-019-0326-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023] Open
Abstract
Innate immunity plays a prominent role in the host defense against pathogens and must be precisely regulated. As vital orchestrators in cholesterol homeostasis, microRNA-33/33* have been widely investigated in cellular metabolism. However, their role in antiviral innate immunity is largely unknown. Here, we report that VSV stimulation decreased the expression of miR-33/33* through an IFNAR-dependent manner in macrophages. Overexpression of miR-33/33* resulted in impaired RIG-I signaling, enhancing viral load and lethality whereas attenuating type I interferon production both in vitro and in vivo. In addition, miR-33/33* specifically prevented the mitochondrial adaptor mitochondrial antiviral-signaling protein (MAVS) from forming activated aggregates by targeting adenosine monophosphate activated protein kinase (AMPK), subsequently impeding the mitophagy-mediated elimination of damaged mitochondria and disturbing mitochondrial homeostasis which is indispensable for efficient MAVS activation. Our findings establish miR-33/33* as negative modulators of the RNA virus-triggered innate immune response and identify a previously unknown regulatory mechanism linking mitochondrial homeostasis with antiviral signaling pathways.
Collapse
Affiliation(s)
- Danhui Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qinchun Tan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jie Zhu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, 310030, China
| | - Yuanyuan Zhang
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yue Xue
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yinjing Song
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
33
|
Qelliny MR, Shimizu T, Elsadek NE, Emam SE, Takata H, Fathalla ZMA, Hussein AK, Khaled KA, Ando H, Ishima Y, Ishida T. Incorporating Gangliosides into PEGylated Cationic Liposomes that Complexed DNA Attenuates Anti-PEG Antibody Production but Not Anti-DNA Antibody Production in Mice. Mol Pharm 2021; 18:2406-2415. [PMID: 33896187 DOI: 10.1021/acs.molpharmaceut.1c00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gangliosides (glycosphingolipids) reduce antibody production by inhibiting B-cell receptor (BCR) signaling. We have shown that a copresentation of gangliosides and polyethylene glycol (PEG) on the same liposomes suppresses anti-PEG IgM production in mice. In addition, we recently observed that pDNA incorporated in PEGylated cationic liposomes (PCLs) induces anti-DNA IgM, which could be a hurdle to the development of efficient gene delivery systems. Therefore, the focus of this study was to determine if the copresentation of gangliosides and DNA on the same PCL would suppress antibody production against DNA. PCLs including DNA induced both anti-PEG IgM production and anti-DNA IgM production. The extent of anti-PEG and anti-DNA IgM production was likely dependent on the immunogenicity of the complexed DNA. Treatment of clodronate-containing liposomes, which causes a depletion of phagocytic cells, suppressed anti-PEG IgM production from PCLs that did not include DNA but failed to suppress anti-PEG IgM production from PCLs that complexed DNA (PCLD). Both anti-PEG IgM and anti-DNA IgM was induced in T-cell-deficient nude mice as well as in normal mice following treatment with PCLs and PCLD, respectively. These results indicate that phagocytic cells contribute to anti-PEG IgM production but not to anti-DNA IgM production, while T-cells do not contribute to any form of antibody production. The copresentation of gangliosides and DNA significantly reduced anti-PEG IgM production but unfortunately did not reduce anti-DNA IgM production. It appears that the immunosuppressive effect of gangliosides, presumably via the CD22 signaling pathway, is limited only to anti-PEG immunity.
Collapse
Affiliation(s)
- Milad Reda Qelliny
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Nehal E Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Zeinab M A Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
34
|
Circular RNA circPIKfyve acts as a sponge of miR-21-3p to enhance antiviral immunity through regulating MAVS in teleost fish. J Virol 2021; 95:JVI.02296-20. [PMID: 33536171 PMCID: PMC8103680 DOI: 10.1128/jvi.02296-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of widespread and diverse covalently closed circular endogenous RNAs that exert crucial functions in regulating gene expression in mammals. However, the function and regulation mechanism of circRNAs in lower vertebrates are still unknown. Here, we discovered a novel circRNA derived from PIKfyve, named circPIKfyve, that is related to the antiviral responses in teleost fish. The results showed that circPIKfyve plays essential roles in host antiviral immunity and inhibition of SCRV replication. Moreover, we also found that the antiviral effect inhibited by miR-21-3p could be reversed with the addition of circPIKfyve. In mechanism, our data revealed that circPIKfyve is a competitive endogenous RNA (ceRNA) of MAVS by sponging miR-21-3p, leading to activation of NF-κB/IRF3 pathway, which then enhance the innate antiviral responses. In addition, we firstly found that RNA binding protein QKI is involved in the formation and regulation of circPIKfyve. Our results provided a strong basis that circRNAs to play a regulatory role in antiviral immune responses in teleost fish.Importance: Here, we identified a novel circRNA, namely, circPIKfyve, that can act as a key regulator of the innate immune response in teleost fish. circPIKfyve acts as a molecular sponge by competitive adsorbing of miR-21-3p, thereby increasing the abundance of MAVS and activating the downstream NF-κB/IRF3 pathway to enhance the antiviral response. In addition, this study was the first to find that QKI protein is involved in regulating the formation of circPIKfyve in fish. The overall results of this study suggest that circPIKfyve plays an active regulatory role in the antiviral immune response of teleost fish.
Collapse
|
35
|
Extracellular DNA in blood products and its potential effects on transfusion. Biosci Rep 2021; 40:222322. [PMID: 32150264 PMCID: PMC7098128 DOI: 10.1042/bsr20192770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/18/2020] [Accepted: 03/03/2020] [Indexed: 02/05/2023] Open
Abstract
Blood transfusions are sometimes necessary after a high loss of blood due to injury or surgery. Some people need regular transfusions due to medical conditions such as haemophilia or cancer. Studies have suggested that extracellular DNA including mitochondrial DNA present in the extracellular milieu of transfused blood products has biological actions that are capable of activating the innate immune systems and potentially contribute to some adverse reactions in transfusion. From the present work, it becomes increasingly clear that extracellular DNA encompassed mitochondrial DNA is far from being biologically inert in blood products. It has been demonstrated to be present in eligible blood products and thus can be transfused to blood recipients. Although the presence of extracellular DNA in human plasma was initially detected in 1948, some aspects have not been fully elucidated. In this review, we summarize the potential origins, clearance mechanisms, relevant structures, and potential role of extracellular DNA in the innate immune responses and its relationship with individual adverse reactions in transfusion.
Collapse
|
36
|
Sadeq S, Al-Hashimi S, Cusack CM, Werner A. Endogenous Double-Stranded RNA. Noncoding RNA 2021; 7:15. [PMID: 33669629 PMCID: PMC7930956 DOI: 10.3390/ncrna7010015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
The birth of long non-coding RNAs (lncRNAs) is closely associated with the presence and activation of repetitive elements in the genome. The transcription of endogenous retroviruses as well as long and short interspersed elements is not only essential for evolving lncRNAs but is also a significant source of double-stranded RNA (dsRNA). From an lncRNA-centric point of view, the latter is a minor source of bother in the context of the entire cell; however, dsRNA is an essential threat. A viral infection is associated with cytoplasmic dsRNA, and endogenous RNA hybrids only differ from viral dsRNA by the 5' cap structure. Hence, a multi-layered defense network is in place to protect cells from viral infections but tolerates endogenous dsRNA structures. A first line of defense is established with compartmentalization; whereas endogenous dsRNA is found predominantly confined to the nucleus and the mitochondria, exogenous dsRNA reaches the cytoplasm. Here, various sensor proteins recognize features of dsRNA including the 5' phosphate group of viral RNAs or hybrids with a particular length but not specific nucleotide sequences. The sensors trigger cellular stress pathways and innate immunity via interferon signaling but also induce apoptosis via caspase activation. Because of its central role in viral recognition and immune activation, dsRNA sensing is implicated in autoimmune diseases and used to treat cancer.
Collapse
Affiliation(s)
| | | | | | - Andreas Werner
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (S.A.-H.); (C.M.C.)
| |
Collapse
|
37
|
Okude H, Ori D, Kawai T. Signaling Through Nucleic Acid Sensors and Their Roles in Inflammatory Diseases. Front Immunol 2021; 11:625833. [PMID: 33633744 PMCID: PMC7902034 DOI: 10.3389/fimmu.2020.625833] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by pattern-recognition receptors (PRRs) is essential for eliciting antiviral immune responses by inducing the production of type I interferons (IFNs) and proinflammatory cytokines. Such responses are a prerequisite for mounting innate and pathogen-specific adaptive immune responses. However, host cells also use nucleic acids as carriers of genetic information, and the aberrant recognition of self-nucleic acids by PRRs is associated with the onset of autoimmune or autoinflammatory diseases. In this review, we describe the mechanisms of nucleic acid sensing by PRRs, including Toll-like receptors, RIG-I-like receptors, and DNA sensor molecules, and their signaling pathways as well as the disorders caused by uncontrolled or unnecessary activation of these PRRs.
Collapse
Affiliation(s)
- Haruna Okude
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
38
|
Saito-Tarashima N. [Chemical Approaches for RNAi Drug Development]. YAKUGAKU ZASSHI 2020; 140:1259-1268. [PMID: 32999205 DOI: 10.1248/yakushi.20-00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi) is the standard method of suppressing gene expression because of its target specificity, potency, and ability to silence the expression of virtually any gene. Using 21-mer small interfering RNA (siRNA) is the general approach for inducing RNAi, as siRNA can be easily prepared using a DNA/RNA synthesizer. Synthetic siRNA can be chemically modified to increase the potency of RNAi activity and abrogate innate immune stimulation. However, designing chemically modified siRNA requires substantial experimentation. A practical method for understanding the interaction of siRNA and RNAi-related proteins and how modifications affect RNA-protein interactions is therefore needed. Plasmid DNA (pDNA) expressing short hairpin RNA (shRNA) can also be used to induce RNAi. pDNA produces numerous shRNAs that induce RNAi with potent and longterm RNAi activity, even if only one pDNA molecule is delivered to the nucleus. However, this approach has some drawbacks with regard to its therapeutic application, such as a low pDNA transfection efficiency due to its huge molecular size and innate immune responses induced by extra genes, such as CpG motifs. To overcome these issues with RNAi inducers (siRNA and pDNA), our group developed some chemical approaches using chemically modified oligonucleotides. This article focuses on our two original approaches. The first involves the groove modification of siRNA duplexes to understand siRNA-protein interactions using 7-bromo-7-deazaadenosine and 3-bromo-3-deazaadenosine as chemical probes, while the second involves the generation of RNAi medicine using chemically modified DNA, known as an intelligent shRNA expression device (iRed).
Collapse
|
39
|
Cytosolic Sensors for Pathogenic Viral and Bacterial Nucleic Acids in Fish. Int J Mol Sci 2020; 21:ijms21197289. [PMID: 33023222 PMCID: PMC7582293 DOI: 10.3390/ijms21197289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recognition of the non-self signature of invading pathogens is a crucial step for the initiation of the innate immune mechanisms of the host. The host response to viral and bacterial infection involves sets of pattern recognition receptors (PRRs), which bind evolutionarily conserved pathogen structures, known as pathogen-associated molecular patterns (PAMPs). Recent advances in the identification of different types of PRRs in teleost fish revealed a number of cytosolic sensors for recognition of viral and bacterial nucleic acids. These are DExD/H-box RNA helicases including a group of well-characterized retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) and non-RLR DExD/H-box RNA helicases (e.g., DDX1, DDX3, DHX9, DDX21, DHX36 and DDX41) both involved in recognition of viral RNAs. Another group of PRRs includes cytosolic DNA sensors (CDSs), such as cGAS and LSm14A involved in recognition of viral and intracellular bacterial dsDNAs. Moreover, dsRNA-sensing protein kinase R (PKR), which has a role in antiviral immune responses in higher vertebrates, has been identified in fish. Additionally, fish possess a novel PKR-like protein kinase containing Z-DNA binding domain, known as PKZ. Here, we review the current knowledge concerning cytosolic sensors for recognition of viral and bacterial nucleic acids in teleosts.
Collapse
|
40
|
Mojzesz M, Klak K, Wojtal P, Adamek M, Podlasz P, Chmielewska-Krzesinska M, Matras M, Reichert M, Chadzinska M, Rakus K. Viral infection-induced changes in the expression profile of non-RLR DExD/H-box RNA helicases (DDX1, DDX3, DHX9, DDX21 and DHX36) in zebrafish and common carp. FISH & SHELLFISH IMMUNOLOGY 2020; 104:62-73. [PMID: 32526283 DOI: 10.1016/j.fsi.2020.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
In mammals, several non-RLR DExD/H-box RNA helicases are involve in sensing of viral nucleic acids and activation of antiviral immune response, however their role in the immune defense of fish is much less known. In this study, the expression profile of non-RLR DExD/H-box RNA helicase genes: ddx1, ddx3, dhx9, ddx21 and dhx36, was studied in zebrafish (Danio rerio) and common carp (Cyprinus carpio L.) during infection with two RNA viruses: spring viremia of carp virus (SVCV) and Chum salmon reovirus (CSV). Bioinformatic analysis of the amino acid sequences of the core helicase of DDX1, DDX3, DHX9, DDX21 and DHX36 in zebrafish and common carp revealed presence of all conserved motifs found amongst all other species, with the exception of common carp DHX9 which do not possess motif V. The transcripts of studied DExD/H-box RNA helicases were found in zebrafish ZF4 cell line as well as in all studied organs from zebrafish and common carp. The expression study demonstrated the up-regulation of the expression of selected non-RLR DExD/H-box RNA helicases during viral infections in ZF4 cell line (in vitro study) and in zebrafish and common carp organs (in vivo study). DDX1 was the only DExD/H-box RNA helicase which expression was repetitively up-regulated during in vivo infections with SVCV and CSV in zebrafish and SVCV in common carp. In ZF4 cells and kidney of common carp, viral infection-induced up-regulation of DExD/H-box RNA helicases preceded the up-regulation of type I IFN gene. Our results suggest that studied non-RLR DExD/H-box RNA helicases might be involved in antiviral immune response in fish.
Collapse
Affiliation(s)
- Miriam Mojzesz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Katarzyna Klak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Paulina Wojtal
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Michała Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Malgorzata Chmielewska-Krzesinska
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Michała Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Marek Matras
- Department of Fish Diseases, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Michal Reichert
- Department of Fish Diseases, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
41
|
Zhang Z, Fang X, Wu X, Ling L, Chu F, Li J, Wang S, Zang J, Zhang B, Ye S, Zhang L, Yang B, Lin S, Huang H, Wang A, Zhou F. Acetylation-Dependent Deubiquitinase OTUD3 Controls MAVS Activation in Innate Antiviral Immunity. Mol Cell 2020; 79:304-319.e7. [PMID: 32679077 DOI: 10.1016/j.molcel.2020.06.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
Accurate regulation of innate immunity is necessary for the host to efficiently respond to invading pathogens and avoid excessive harmful immune pathology. Here we identified OTUD3 as an acetylation-dependent deubiquitinase that restricts innate antiviral immune signaling. OTUD3 deficiency in mice results in enhanced innate immunity, a diminished viral load, and morbidity. OTUD3 directly hydrolyzes lysine 63 (Lys63)-linked polyubiquitination of MAVS and thus shuts off innate antiviral immune response. Notably, the catalytic activity of OTUD3 relies on acetylation of its Lys129 residue. In response to virus infection, the acetylated Lys129 is removed by SIRT1, which promptly inactivates OTUD3 and thus allows timely induction of innate antiviral immunity. Importantly, acetyl-OTUD3 levels are inversely correlated with IFN-β expression in influenza patients. These findings establish OTUD3 as a repressor of MAVS and uncover a previously unknown regulatory mechanism by which the catalytic activity of OTUD3 is tightly controlled to ensure timely activation of antiviral defense.
Collapse
Affiliation(s)
- Zhengkui Zhang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Xiuwu Fang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Xiaojin Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Ling
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Feng Chu
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Jingxian Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Shuai Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Jia Zang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Bo Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Sheng Ye
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Bing Yang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China; Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Shixian Lin
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Huizhe Huang
- Faculty of Basic Medical Sciences, Chonqing Medical University, Medical College Road 1, 400016 Chongqing, China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California, Davis, CA 95817, USA
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
42
|
Ni G, Ma Z, Wong JP, Zhang Z, Cousins E, Major MB, Damania B. PPP6C Negatively Regulates STING-Dependent Innate Immune Responses. mBio 2020; 11:e01728-20. [PMID: 32753499 PMCID: PMC7407089 DOI: 10.1128/mbio.01728-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Stimulator of interferon genes (STING) is an essential adaptor protein of the innate DNA-sensing signaling pathway, which recognizes genomic DNA from invading pathogens to establish antiviral responses in host cells. STING activity is tightly regulated by several posttranslational modifications, including phosphorylation. However, specifically how the phosphorylation status of STING is modulated by kinases and phosphatases remains to be fully elucidated. In this study, we identified protein phosphatase 6 catalytic subunit (PPP6C) as a binding partner of Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 48 (ORF48), which is a negative regulator of the cyclic GMP-AMP synthase (cGAS)-STING pathway. PPP6C depletion enhances double-stranded DNA (dsDNA)-induced and 5'ppp double-stranded RNA (dsRNA)-induced but not poly(I:C)-induced innate immune responses. PPP6C negatively regulates dsDNA-induced IRF3 activation but not NF-κB activation. Deficiency of PPP6C greatly inhibits the replication of herpes simplex virus 1 (HSV-1) and vesicular stomatitis virus (VSV) as well as the reactivation of KSHV, due to increased type I interferon production. We further demonstrated that PPP6C interacts with STING and that loss of PPP6C enhances STING phosphorylation. These data demonstrate the important role of PPP6C in regulating STING phosphorylation and activation, which provides an additional mechanism by which the host responds to viral infection.IMPORTANCE Cytosolic DNA, which usually comes from invading microbes, is a dangerous signal to the host. The cGAS-STING pathway is the major player that detects cytosolic DNA and then evokes the innate immune response. As an adaptor protein, STING plays a central role in controlling activation of the cGAS-STING pathway. Although transient activation of STING is essential to trigger the host defense during pathogen invasion, chronic STING activation has been shown to be associated with several autoinflammatory diseases. Here, we report that PPP6C negatively regulates the cGAS-STING pathway by removing STING phosphorylation, which is required for its activation. Dephosphorylation of STING by PPP6C helps prevent the sustained production of STING-dependent cytokines, which would otherwise lead to severe autoimmune disorders. This work provides additional mechanisms on the regulation of STING activity and might facilitate the development of novel therapeutics designed to prevent a variety of autoinflammatory disorders.
Collapse
Affiliation(s)
- Guoxin Ni
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhe Ma
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason P Wong
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhigang Zhang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emily Cousins
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - M Ben Major
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blossom Damania
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
43
|
He L, Liu Y, Lai W, Tian H, Chen L, Xie L, Liu Z. DNA sensors, crucial receptors to resist pathogens, are deregulated in colorectal cancer and associated with initiation and progression of the disease. J Cancer 2020; 11:893-905. [PMID: 31949493 PMCID: PMC6959017 DOI: 10.7150/jca.34188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 10/20/2019] [Indexed: 12/30/2022] Open
Abstract
Background: DNA sensors are innate immune receptors that detect intracellular endogenous or exogenous DNA. They are critical to trigger immune response against DNA viral and intracellular bacterial infection, and are involved in inflammatory diseases and tumorigenesis. Recent accumulating evidences indicated that DNA sensors are also crucial for controlling the development of colorectal cancer (CRC). However, a systematic study on the expression profile of DNA sensors in CRC and their clinical significance are still lacking. Methods: We investigated the expression profile of DNA sensors in CRC and their clinical significance by taking advantage of clinical CRC samples, mouse AOM/DSS treatment model, and Oncomine ® bioinformatics platform. Results: Our study identified that the expression of DNA sensors, including AIM2, DAI, as well as inflammasome molecules ASC/IL-18, TLR9 and adaptor MyD88, and DDX60 decreased in human CRC, whereas the expression of DHX9, DHX36, and DDX41 significantly increased. Among them, the expression of AIM2/ASC/IL-18, MyD88, DAI, DHX36, and DDX60 were associated with cancer stages. In addition, we also performed correlation analysis between DNA sensors and their main signaling molecules to explore the possible mechanisms. The results showed that there were positive correlations between AIM2 and ASC/IL-18, DHX9 and MAVS, and TLR9 and MyD88 expression. In addition, the gene expression patterns of some DNA sensors were confirmed by Western-blot analysis. Conclusions: Our study revealed that the expression of multiple DNA sensors was deregulated in CRC and might be involved in tumor development. More importantly, the study identified that, among all these DNA sensors, AIM2, DAI, and DDX60 could be potentially critical for diagnosis, prognosis, and therapy of CRC and deserve further investigation.
Collapse
Affiliation(s)
- Liangmei He
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University
| | - Yuxia Liu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University
| | | | | | - Lingxia Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000 China
| | - Lu Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000 China
| | - Zhiping Liu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University.,School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000 China
| |
Collapse
|
44
|
Martínez C, Juarranz Y, Gutiérrez-Cañas I, Carrión M, Pérez-García S, Villanueva-Romero R, Castro D, Lamana A, Mellado M, González-Álvaro I, Gomariz RP. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int J Mol Sci 2019; 21:E65. [PMID: 31861827 PMCID: PMC6982157 DOI: 10.3390/ijms21010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - David Castro
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB)/CSIC, 28049 Madrid, Spain;
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Médica, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| |
Collapse
|
45
|
HIV and HCV augments inflammatory responses through increased TREM-1 expression and signaling in Kupffer and Myeloid cells. PLoS Pathog 2019; 15:e1007883. [PMID: 31260499 PMCID: PMC6625740 DOI: 10.1371/journal.ppat.1007883] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/12/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic infection with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) affects an estimated 35 million and 75 million individuals worldwide, respectively. These viruses induce persistent inflammation which often drives the development or progression of organ-specific diseases and even cancer including Hepatocellular Carcinoma (HCC). In this study, we sought to examine inflammatory responses following HIV or HCV stimulation of macrophages or Kupffer cells (KCs), that may contribute to virus mediated inflammation and subsequent liver disease. KCs are liver-resident macrophages and reports have provided evidence that HIV can stimulate and infect them. In order to characterize HIV-intrinsic innate immune responses that may occur in the liver, we performed microarray analyses on KCs following HIV stimulation. Our data demonstrate that KCs upregulate several innate immune signaling pathways involved in inflammation, myeloid cell maturation, stellate cell activation, and Triggering Receptor Expressed on Myeloid cells 1 (TREM1) signaling. TREM1 is a member of the immunoglobulin superfamily of receptors and it is reported to be involved in systemic inflammatory responses due to its ability to amplify activation of host defense signaling pathways. Our data demonstrate that stimulation of KCs with HIV or HCV induces the upregulation of TREM1. Additionally, HIV viral proteins can upregulate expression of TREM1 mRNA through NF-кB signaling. Furthermore, activation of the TREM1 signaling pathway, with a targeted agonist, increased HIV or HCV-mediated inflammatory responses in macrophages due to enhanced activation of the ERK1/2 signaling cascade. Silencing TREM1 dampened inflammatory immune responses elicited by HIV or HCV stimulation. Finally, HIV and HCV infected patients exhibit higher expression and frequency of TREM1 and CD68 positive cells. Taken together, TREM1 induction by HIV contributes to chronic inflammation in the liver and targeting TREM1 signaling may be a therapeutic option to minimize HIV induced chronic inflammation. Although HIV antiviral therapy has limited the progression to AIDS in infected patients, there is still significant morbidity and mortality from HIV-driven diseases due to sustained inflammation. In this study, we sought to elucidate how HIV and HCV could impact inflammation in the liver and cause progressive liver disease that can eventually lead to cirrhosis and liver cancer. We found that HIV upregulates the inflammatory response amplifier, TREM1, in primary Kupffer Cells (KCs) that are liver-resident macrophages. Enhanced TREM1 expression subsequently is involved in augmented immune responses triggered by HIV or HCV. Additionally, our data demonstrates that blocking TREM1 expression reduces inflammatory responses mediated by HIV or HCV stimulation. Ultimately, our understanding of this mechanism may yield additional therapeutic strategies to help infected patients and give insight into inflammation driven liver cancer.
Collapse
|
46
|
Li R, Chen C, He J, Zhang L, Zhang L, Guo Y, Zhang W, Tan K, Huang J. E3 ligase ASB8 promotes porcine reproductive and respiratory syndrome virus proliferation by stabilizing the viral Nsp1α protein and degrading host IKKβ kinase. Virology 2019; 532:55-68. [DOI: 10.1016/j.virol.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
|
47
|
Li Y, Teague B, Zhang Y, Su Z, Porter E, Dobosh B, Wagner T, Irvine DJ, Weiss R. In vitro evolution of enhanced RNA replicons for immunotherapy. Sci Rep 2019; 9:6932. [PMID: 31061426 PMCID: PMC6502795 DOI: 10.1038/s41598-019-43422-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Self-replicating (replicon) RNA is a promising new platform for gene therapy, but applications are still limited by short persistence of expression in most cell types and low levels of transgene expression in vivo. To address these shortcomings, we developed an in vitro evolution strategy and identified six mutations in nonstructural proteins (nsPs) of Venezuelan equine encephalitis (VEE) replicon that promoted subgenome expression in cells. Two mutations in nsP2 and nsP3 enhanced transgene expression, while three mutations in nsP3 regulated this expression. Replicons containing the most effective mutation combinations showed enhanced duration and cargo gene expression in vivo. In comparison to wildtype replicon, mutants expressing IL-2 injected into murine B16F10 melanoma showed 5.5-fold increase in intratumoral IL-2 and 2.1-fold increase in infiltrating CD8 T cells, resulting in significantly slowed tumor growth. Thus, these mutant replicons may be useful for improving RNA therapeutics for vaccination, cancer immunotherapy, and gene therapy.
Collapse
Affiliation(s)
- Yingzhong Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brian Teague
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yuan Zhang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Zhijun Su
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ely Porter
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brian Dobosh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tyler Wagner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. .,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. .,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. .,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA. .,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
48
|
Kumar V. A STING to inflammation and autoimmunity. J Leukoc Biol 2019; 106:171-185. [PMID: 30990921 DOI: 10.1002/jlb.4mir1018-397rr] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
Various intracellular pattern recognition receptors (PRRs) recognize cytosolic pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Cyclic GMP-AMP synthase (cGAS), a cytosolic PRR, recognizes cytosolic nucleic acids including dsDNAs. The recognition of dsDNA by cGAS generates cyclic GMP-AMP (GAMP). The cGAMP is then recognized by STING generating type 1 IFNs and NF-κB-mediated generation of pro-inflammatory cytokines and molecules. Thus, cGAS-STING signaling mediated recognition of cytosolic dsDNA causing the induction of type 1 IFNs plays a crucial role in innate immunity against cytosolic pathogens, PAMPs, and DAMPs. The overactivation of this system may lead to the development of autoinflammation and autoimmune diseases. The article opens with the introduction of different PRRs involved in the intracellular recognition of dsDNA and gives a brief introduction of cGAS-STING signaling. The second section briefly describes cGAS as intracellular PRR required to recognize intracellular nucleic acids (dsDNA and CDNs) and the formation of cGAMP. The cGAMP acts as a second messenger to activate STING- and TANK-binding kinase 1-mediated generation of type 1 IFNs and the activation of NF-κB. The third section of the article describes the role of cGAS-STING signaling in the induction of autoinflammation and various autoimmune diseases. The subsequent fourth section describes both chemical compounds developed and the endogenous negative regulators of cGAS-STING signaling required for its regulation. Therapeutic targeting of cGAS-STING signaling could offer new ways to treat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
49
|
Wang Y, Shen Y, Liu H, Yin J, Zhang XT, Gong AY, Chen X, Chen S, Mathy NW, Cao J, Chen XM. Induction of Inflammatory Responses in Splenocytes by Exosomes Released from Intestinal Epithelial Cells following Cryptosporidium parvum Infection. Infect Immun 2019; 87:e00705-18. [PMID: 30642905 PMCID: PMC6434132 DOI: 10.1128/iai.00705-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022] Open
Abstract
Cryptosporidium, a protozoan parasite that infects the gastrointestinal epithelium and other mucosal surfaces in humans and animals, is an important opportunistic pathogen in AIDS patients and one of the most common enteric pathogens affecting young children in developing regions. This parasite is referred to as a "minimally invasive" mucosal pathogen, and epithelial cells play a central role in activating and orchestrating host immune responses. We previously demonstrated that Cryptosporidium parvum infection stimulates host epithelial cells to release exosomes, and these released exosomes shuttle several antimicrobial peptides to carry out anti-C. parvum activity. In this study, we detected the upregulation of inflammatory genes in the liver and spleen following C. parvum intestinal infection in neonatal mice. Interestingly, exosomes released from intestinal epithelial cells following C. parvum infection could activate the nuclear factor kappa B signaling pathway and trigger inflammatory gene transcription in isolated primary splenocytes. Several epithelial cell-derived proteins and a subset of parasite RNAs were detected in the exosomes released from C. parvum-infected intestinal epithelial cells. Shuttling of these effector molecules, including the high mobility group box 1 protein, was involved in the induction of inflammatory responses in splenocytes induced by the exosomes released from infected cells. Our data indicate that exosomes released from intestinal epithelial cells upon C. parvum infection can activate immune cells by shuttling various effector molecules, a process that may be relevant to host systemic responses to Cryptosporidium infection.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Xin-Tian Zhang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Xiqiang Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Siyi Chen
- Creighton University School of Pharmacy and Health Professions, Omaha, Nebraska, USA
| | - Nicholas W Mathy
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| |
Collapse
|
50
|
The role of ERAP1 in autoinflammation and autoimmunity. Hum Immunol 2019; 80:302-309. [PMID: 30817945 DOI: 10.1016/j.humimm.2019.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune and autoinflammatory diseases affect millions worldwide. These classes of disease involve abnormal immune activation of both the innate and adaptive immune systems. While both classes of disease represent a spectrum of aberrant immune activation, excessive activation of the innate immune system has been considered causal for the inflammation and tissue damage found in autoinflammatory diseases, while excessive activation of the adaptive immune system has been thought to primarily contribute to end-organ symptoms noted in autoimmune diseases. Interestingly, the endoplasmic reticulum aminopeptidase 1 (ERAP1) protein, well known for its aminopeptidase function as a "molecular ruler", trimming peptides prior to their loading onto MHC-I molecules for antigen presentation in the ER, has also been shown to be genetically associated with both autoinflammatory and autoimmune diseases. Indeed, this multifaceted protein has been found to have many functions that affect both the innate and adaptive immune responses. In this review, we summarize these findings, with an attempt to identify the possible ERAP1 dependent mechanisms responsible for the pathogenesis of multiple, ERAP1 associated diseases.
Collapse
|