1
|
Benard MF, Burke DJ, Carrino-Kyker SR, Krynak K, Relyea RA. Effects of amphibian genetic diversity on ecological communities. Oecologia 2024; 205:655-667. [PMID: 39078484 DOI: 10.1007/s00442-024-05599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
The amount of genetic diversity within a population can affect ecological processes at population, community, and ecosystem levels. However, the magnitude, consistency, and scope of these effects are largely unknown. To investigate these issues, we conducted two experiments manipulating the amount of genetic diversity and environmental factors in larval amphibians. The first experiment manipulated wood frog genetic diversity, the presence or absence of caged predators, and competition from leopard frogs to test whether these factors affected survival, growth, and morphology of wood frogs and leopard frogs. The second experiment manipulated wood frog genetic diversity, the presence or absence of uncaged predators, and resource abundance to test whether these factors affected wood frog traits (survival, morphology, growth, development, and behavior) and other components of the ecological community (zooplankton abundance, phytoplankton, periphyton, and bacterial community structure). Genetic diversity did not affect wood frog survival, growth, and development in either experiment. However, genetic diversity did affect the mean morphology of wood frog tadpoles in the first experiment and the abundance and distribution of zooplankton in the second experiment. It did not affect phytoplankton abundance, periphyton abundance, or bacterial community structure. While effect sizes (Cohen's d) of genetic diversity were approximately half those of environment treatments, the greatest effect sizes were for interaction effects between genetic diversity and environment. Our results indicate that genetic diversity can have a large effect on ecological processes, but the direction of those effects is highly dependent upon environmental conditions, and not easily predicted from simple measures of traits.
Collapse
Affiliation(s)
- Michael F Benard
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - David J Burke
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Holden Arboretum, 9500 Sperry Road, Kirtland, OH, 44094, USA
| | | | - Katherine Krynak
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biological and Allied Health Sciences, Ohio Northern University, Ada, OH, USA
| | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
2
|
Firmat C, Litrico I. Linking quantitative genetics with community-level performance: Are there operational models for plant breeding? FRONTIERS IN PLANT SCIENCE 2022; 13:733996. [PMID: 36340376 PMCID: PMC9627035 DOI: 10.3389/fpls.2022.733996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Plant breeding is focused on the genotype and population levels while targeting effects at higher levels of biodiversity, from crop covers to agroecosystems. Making predictions across nested levels of biodiversity is therefore a major challenge for the development of intercropping practices. New prediction tools and concepts are required to design breeding strategies with desirable outcomes at the crop community level. We reviewed theoretical advances in the field of evolutionary ecology to identify potentially operational ways of predicting the effects of artificial selection on community-level performances. We identified three main types of approaches differing in the way they model interspecific indirect genetic effects (IIGEs) at the community level: (1) The community heritability approach estimates the variance for IIGE induced by a focal species at the community level; (2) the joint phenotype approach quantifies genetic constraints between direct genetic effects and IIGE for a set of interacting species; (3) the community-trait genetic gradient approach decomposes the IIGE for a focal species across a multivariate set of its functional traits. We discuss the potential operational capacities of these approaches and stress that each is a special case of a general multitrait and multispecies selection index. Choosing one therefore involves assumptions and goals regarding the breeding target and strategy. Obtaining reliable quantitative, community-level predictions at the genetic level is constrained by the size and complexity of the experimental designs usually required. Breeding strategies should instead be compared using theoretically informed qualitative predictions. The need to estimate genetic covariances between traits measured both within and among species (for IIGE) is another obstacle, as the two are not determined by the exact same biological processes. We suggest future research directions and strategies to overcome these limits. Our synthesis offers an integrative theoretical framework for breeders interested in the genetic improvement of crop communities but also for scientists interested in the genetic bases of plant community functioning.
Collapse
Affiliation(s)
- Cyril Firmat
- AGIR, INRAE, University of Toulouse, Castanet-Tolosan, France
- P3F UR 004, INRAE, Le Chêne RD150, Lusignan, France
| | | |
Collapse
|
3
|
What Drives Caterpillar Guilds on a Tree: Enemy Pressure, Leaf or Tree Growth, Genetic Traits, or Phylogenetic Neighbourhood? INSECTS 2022; 13:insects13040367. [PMID: 35447809 PMCID: PMC9029432 DOI: 10.3390/insects13040367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Communities of herbivorous insects on individual host trees may be driven by processes ranging from ongoing development via recent microevolution to ancient phylogeny, but the relative importance of these processes and whether they operate via trophic interactions or herbivore movement remains unknown. We determined the leaf phenology, trunk diameter, genotype, and neighbourhood of sessile oak trees (Quercus petraea), and sampled their caterpillar communities. We found that leaf development across a time period of days related to free-living caterpillars, which disappeared with leaf age. Tree growth across decades is related to increased parasitism rate and diversity of herbivores. The microevolution of oak trees across millennia is related to the abundance of leaf-mining casebearers, which is higher on more homozygous oaks. However, oak genome size was not important for any guild. In contrast to most previous studies, the phylogenetic distance of oaks from their neighbours measured in millions of years was associated with higher abundances of entire caterpillar guilds. Furthermore, on trees surrounded by only distantly related tree species, parasitism tended to be lower. Lower parasitism, in turn, was associated with higher abundances of codominant caterpillar species. Neighbourhoods and traits of trees were also related to community composition and diversity, but not to the average wingspans or specialization of species, consistent with the assembly of herbivore communities being driven by leaf traits and parasitism pressure on trees rather than by insect movement among trees. However, movement in rarer species may be responsible for concentration effects in more phylogenetically distant neighbourhoods. Overall, we suggest that the assembly of insects on a tree is mostly driven by trophic interactions controlled by a mosaic of processes playing out over very different time scales. Comparisons with the literature further suggest that, for oak trees, the consequences of growing amongst distantly related tree species may depend on factors such as geographic region and tree age.
Collapse
|
4
|
Reddy K, Stander MA, Stafford GI, Makunga NP. Mass Spectrometry Metabolomics and Feature-Based Molecular Networking Reveals Population-Specific Chemistry in Some Species of the Sceletium Genus. Front Nutr 2022; 9:819753. [PMID: 35425789 PMCID: PMC9001948 DOI: 10.3389/fnut.2022.819753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
The Sceletium genus has been of medicinal importance in southern Africa for millennia and Sceletium tortuosum (Aizoaceae), one of eight species in the genus has gained pharmaceutical importance as an anxiolytic and anti-depressant due to the presence of mesembrine alkaloids. S. tortuosum is used for the manufacture of herbal teas, dietary supplements and other phytopharmaceutical products. This study aimed to provide a metabolomic characterization of S. tortuosum and its sister species as these are not easy to distinguish using morphology alone. Plant samples were thus collected from various locations in the succulent Karoo (South Africa) and analyzed through liquid chromatography-mass spectrometry (LC-MS), using MSE fragmentation as a putative tool for chemical identities. Metabolomics-based analyses in combination with molecular networking were able to distinguish between the four species of Sceletium based on the presence of 4-(3,4-dimethyoxyphenyl)-4-[2-acetylmethlamino)ethyl]cyclohexanone (m/z 334.2020; RT 6.60 min), mesembrine (m/z 290.1757; RT 5.10 min) and 4'-O-demethylmesembrenol (m/z 276.1597; RT 4.17 min). Metabolomic profiles varied according to the different localities and metabolites occurred at variable quantitative levels in Sceletium ecotypes. Molecular networking provided the added advantage of being able to observe mesembrine alkaloid isomers and coeluting metabolites (from the joubertiamine group) that were difficult to discern without this application. By combining high-throughput metabolomics together with global and feature based-molecular networking, a powerful metabolite profiling platform that is able to discern chemical patterns within and between populations was established. These techniques were able to reveal chemotaxonomic relationships and allowed for the discovery of chemical markers that may be used as part of monitoring protocols during the manufacture of phytopharmaceutical and dietary products based on Sceletium.
Collapse
Affiliation(s)
- Kaylan Reddy
- Department of Botany and Zoology, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Marietjie A. Stander
- Department of Biochemistry, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Gary I. Stafford
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Nokwanda P. Makunga
| |
Collapse
|
5
|
Bertić M, Schroeder H, Kersten B, Fladung M, Orgel F, Buegger F, Schnitzler JP, Ghirardo A. European oak chemical diversity - from ecotypes to herbivore resistance. THE NEW PHYTOLOGIST 2021; 232:818-834. [PMID: 34240433 DOI: 10.1111/nph.17608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Climate change is increasing insect pressure and forcing plants to adapt. Although chemotypic differentiation and phenotypic plasticity in spatially separated tree populations are known for decades, understanding their importance in herbivory resistance across forests remains challenging. We studied four oak forest stands in Germany using nontarget metabolomics, elemental analysis, and chemometrics and mapped the leaf metabolome of herbivore-resistant (T-) and herbivore-susceptible (S-) European oaks (Quercus robur) to Tortrix viridana, an oak pest that causes severe forest defoliation. Among the detected metabolites, we identified reliable metabolic biomarkers to distinguish S- and T-oak trees. Chemotypic differentiation resulted in metabolic shifts of primary and secondary leaf metabolism. Across forests, T-oaks allocate resources towards constitutive chemical defense enriched of polyphenolic compounds, e.g. the flavonoids kaempferol, kaempferol and quercetin glucosides, while S-oaks towards growth-promoting substances such as carbohydrates and amino-acid derivatives. This extensive work across natural forests shows that oaks' resistance and susceptibility to herbivory are linked to growth-defense trade-offs of leaf metabolism. The discovery of biomarkers and the developed predictive model pave the way to understand Quercus robur's susceptibility to herbivore attack and to support forest management, contributing to the preservation of oak forests in Europe.
Collapse
Affiliation(s)
- Marko Bertić
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Hilke Schroeder
- Thünen-Institute of Forest Genetics, Sieker Landstrasse 2, 22927, Grosshansdorf, Germany
| | - Birgit Kersten
- Thünen-Institute of Forest Genetics, Sieker Landstrasse 2, 22927, Grosshansdorf, Germany
| | - Matthias Fladung
- Thünen-Institute of Forest Genetics, Sieker Landstrasse 2, 22927, Grosshansdorf, Germany
| | - Franziska Orgel
- Thünen-Institute of Forest Genetics, Sieker Landstrasse 2, 22927, Grosshansdorf, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology (BIOP), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
6
|
Faticov M, Abdelfattah A, Roslin T, Vacher C, Hambäck P, Blanchet FG, Lindahl BD, Tack AJM. Climate warming dominates over plant genotype in shaping the seasonal trajectory of foliar fungal communities on oak. THE NEW PHYTOLOGIST 2021; 231:1770-1783. [PMID: 33960441 DOI: 10.1111/nph.17434] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/15/2021] [Indexed: 05/13/2023]
Abstract
Leaves interact with a wealth of microorganisms. Among these, fungi are highly diverse and are known to contribute to plant health, leaf senescence and early decomposition. However, patterns and drivers of the seasonal dynamics of foliar fungal communities are poorly understood. We used a multifactorial experiment to investigate the influence of warming and tree genotype on the foliar fungal community on the pedunculate oak Quercus robur across one growing season. Fungal species richness increased, evenness tended to decrease, and community composition strongly shifted during the growing season. Yeasts increased in relative abundance as the season progressed, while putative fungal pathogens decreased. Warming decreased species richness, reduced evenness and changed community composition, especially at the end of the growing season. Warming also negatively affected putative fungal pathogens. We only detected a minor imprint of tree genotype and warming × genotype interactions on species richness and community composition. Overall, our findings demonstrate that warming plays a larger role than plant genotype in shaping the seasonal dynamics of the foliar fungal community on oak. These warming-induced shifts in the foliar fungal community may have a pronounced impact on plant health, plant-fungal interactions and ecosystem functions.
Collapse
Affiliation(s)
- Maria Faticov
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, A-8010, Austria
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, Uppsala, SE-756 51, Sweden
| | | | - Peter Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - F Guillaume Blanchet
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K 2R1, Canada
- Département de Mathématique, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K 2R1, Canada
- Département des Sciences de la Santé Communautaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, PO Box 7014, Uppsala, SE-750 07, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| |
Collapse
|
7
|
Potts AS, Hunter MD. Unraveling the roles of genotype and environment in the expression of plant defense phenotypes. Ecol Evol 2021; 11:8542-8561. [PMID: 34257915 PMCID: PMC8258211 DOI: 10.1002/ece3.7639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
Phenotypic variability results from interactions between genotype and environment and is a major driver of ecological and evolutionary interactions. Measuring the relative contributions of genetic variation, the environment, and their interaction to phenotypic variation remains a fundamental goal of evolutionary ecology.In this study, we assess the question: How do genetic variation and local environmental conditions interact to influence phenotype within a single population? We explored this question using seed from a single population of common milkweed, Asclepias syriaca, in northern Michigan. We first measured resistance and resistance traits of 14 maternal lines in two common garden experiments (field and greenhouse) to detect genetic variation within the population. We carried out a reciprocal transplant experiment with three of these maternal lines to assess effects of local environment on phenotype. Finally, we compared the phenotypic traits measured in our experiments with the phenotypic traits of the naturally growing maternal genets to be able to compare relative effect of genetic and environmental variation on naturally occurring phenotypic variation. We measured defoliation levels, arthropod abundances, foliar cardenolide concentrations, foliar latex exudation, foliar carbon and nitrogen concentrations, and plant growth.We found a striking lack of correlation in trait expression of the maternal lines between the common gardens, or between the common gardens and the naturally growing maternal genets, suggesting that environment plays a larger role in phenotypic trait variation of this population. We found evidence of significant genotype-by-environment interactions for all traits except foliar concentrations of nitrogen and cardenolide. Milkweed resistance to chewing herbivores was associated more strongly with the growing environment. We observed no variation in foliar cardenolide concentrations among maternal lines but did observe variation among maternal lines in foliar latex exudation.Overall, our data reveal powerful genotype-by-environment interactions on the expression of most resistance traits in milkweed.
Collapse
Affiliation(s)
- Abigail S. Potts
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| | - Mark D. Hunter
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
8
|
Consistent community genetic effects in the context of strong environmental and temporal variation in Eucalyptus. Oecologia 2021; 195:367-382. [PMID: 33471200 DOI: 10.1007/s00442-020-04835-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Provenance translocations of tree species are promoted in forestry, conservation, and restoration in response to global climate change. While this option is driven by adaptive considerations, less is known of the effects translocations can have on dependent communities. We investigated the relative importance and consistency of extended genetic effects in Eucalyptus using two species-E. globulus and E. pauciflora. In E. globulus, the dependent arthropod and pathogen canopy communities were quantified based on the abundance of 49 symptoms from 722 progeny from 13 geographic sub-races across 2 common gardens. For E. pauciflora, 6 symptoms were quantified over 2 years from 238 progeny from 16 provenances across 2 common gardens. Genetic effects significantly influenced communities in both species. However, site and year effects outweighed genetic effects with site explaining approximately 3 times the variation in community traits in E. globulus and site and year explaining approximately 6 times the variation in E. pauciflora. While the genetic effect interaction terms were significant in some community traits, broad trends in community traits associated with variation in home-site latitude for E. globulus and home-site altitude for E. pauciflora were evident. These broad-scale trends were consistent with patterns of adaptive differentiation within each species, suggesting there may be extended consequences of local adaptation. While small in comparison to site and year, the consistency of genetic effects highlights the importance of provenance choice in tree species, such as Eucalyptus, as adaptive divergence among provenances may have significant long-term effects on biotic communities.
Collapse
|
9
|
Hoffman AM, Smith MD. Nonlinear drought plasticity reveals intraspecific diversity in a dominant grass species. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ava M. Hoffman
- Department of Biology and Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
- Department of Earth and Planetary Sciences Johns Hopkins University Baltimore MD USA
| | - Melinda D. Smith
- Department of Biology and Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| |
Collapse
|
10
|
Faticov M, Ekholm A, Roslin T, Tack AJM. Climate and host genotype jointly shape tree phenology, disease levels and insect attacks. OIKOS 2019. [DOI: 10.1111/oik.06707] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maria Faticov
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| | - Adam Ekholm
- Dept of Ecology, Swedish Univ. of Agricultural Sciences Uppsala Sweden
| | - Tomas Roslin
- Dept of Ecology, Swedish Univ. of Agricultural Sciences Uppsala Sweden
| | - Ayco J. M. Tack
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| |
Collapse
|
11
|
Krueger-Hadfield SA, Blakeslee AMH, Fowler AE. Incorporating Ploidy Diversity into Ecological and Community Genetics. JOURNAL OF PHYCOLOGY 2019; 55:1198-1207. [PMID: 31349373 DOI: 10.1111/jpy.12906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Studies in ecological and community genetics have advanced our understanding of the role of intraspecific diversity in structuring communities and ecosystems. However, in near-shore marine communities, these studies have mostly been restricted to seagrasses, marsh plants, and oysters. Yet, macroalgae are critically important ecosystem engineers in these communities. Greater intraspecific diversity in a macroalgal ecosystem engineer should result in higher primary and secondary production and community resilience. The paucity of studies investigating the consequences of macroalgal intraspecific genetic variation might be due, in part, to the complexity of macroalgal life cycles. The majority of macroalgae have seemingly subtle, but in actuality, profoundly different life cycles than the more typical animal and angiosperm models. Here, we develop a novel genetic diversity metric, PHD , that incorporates the ratio of gametophytic to sporophytic thalli in natural populations. This metric scales from 0 to 1 like many common genetic diversity metrics, such as genotypic richness, enabling comparisons among metrics. We discuss PHD and examples from the literature, with specific reference to the widespread, red seaweed Agarophyton vermiculophyllum. We also discuss a sex diversity metric, PFM , which also scales from 0 to 1, but fewer studies have identified males and females in natural populations. Nevertheless, by incorporating these novel metrics into the repertoire of diversity metrics, we can explore the role of genetic diversity in community and ecosystem dynamics with an emphasis on the unique biology of many macroalgae, as well as other haplodiplontic taxa such as ferns, foraminiferans, and some fungi.
Collapse
Affiliation(s)
- Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd CH464, Birmingham, Alabama, 35294, USA
| | - April M H Blakeslee
- Department of Biology, East Carolina University, E 10th Street, Greenville, North Carolina, 27858, USA
| | - Amy E Fowler
- Department of Environmental Science and Policy, George Mason University, 4400 University Dr, Fairfax, Virginia, 22030, USA
| |
Collapse
|
12
|
Allevato DM, Kiyota E, Mazzafera P, Nixon KC. Ecometabolomic Analysis of Wild Populations of Pilocarpus pennatifolius (Rutaceae) Using Unimodal Analyses. FRONTIERS IN PLANT SCIENCE 2019; 10:258. [PMID: 30894869 PMCID: PMC6414451 DOI: 10.3389/fpls.2019.00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Studies examining the diversity of plant specialized metabolites suggest that biotic and abiotic pressures greatly influence the qualitative and quantitative diversity found in a species. Large geographic distributions expose a species to a great variety of environmental pressures, thus providing an enormous opportunity for expression of environmental plasticity. Pilocarpus, a neotropical genus of Rutaceae, is rich in alkaloids, terpenoids, and coumarins, and is the only commercial source of the alkaloid pilocarpine for the treatment of glaucoma. Overharvesting of species in this genus for pilocarpine, has threatened natural populations of the species. The aim of this research was to understand how adaptation to environmental variation shapes the metabolome in multiple populations of the widespread species Pilocarpus pennatifolius. LCMS data from alkaloid and phenolic extracts of leaf tissue were analyzed with environmental predictors using unimodal unconstrained and constrained ordination methods for an untargeted metabolomics analysis. PLS-DA was used to further confirm the chemoecotypes of each site. The most important variables contributing to the alkaloid variation between the sites: mean temperature of wettest quarter, as well as the soil content of phosphorus, magnesium, and base saturation (V%). The most important contributing to the phenolic variation between the sites: mean temperature of the wettest quarter, temperature seasonality, calcium and soil electrical conductivity. This research will have broad implications in a variety of areas including biocontrol for pests, environmental and ecological plant physiology, and strategies for species conservation maximizing phytochemical diversity.
Collapse
Affiliation(s)
- Daniella M. Allevato
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Eduardo Kiyota
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Produção Vegetal, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Kevin C. Nixon
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
13
|
Affiliation(s)
- Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill University Montreal Quebec Canada
| |
Collapse
|
14
|
Barker HL, Holeski LM, Lindroth RL. Independent and interactive effects of plant genotype and environment on plant traits and insect herbivore performance: A meta‐analysis with Salicaceae. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hilary L. Barker
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin
| | - Liza M. Holeski
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona
| | - Richard L. Lindroth
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin
| |
Collapse
|
15
|
Koricheva J, Hayes D. The relative importance of plant intraspecific diversity in structuring arthropod communities: A meta‐analysis. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13062] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Julia Koricheva
- School of Biological SciencesRoyal Holloway University of London Egham Surrey UK
| | - Dexter Hayes
- School of Biological SciencesRoyal Holloway University of London Egham Surrey UK
| |
Collapse
|
16
|
Valencia-Cuevas L, Mussali-Galante P, Cano-Santana Z, Pujade-Villar J, Equihua-Martínez A, Tovar-Sánchez E. Genetic variation in foundation species governs the dynamics of trophic interactions. Curr Zool 2018; 64:13-22. [PMID: 29492034 PMCID: PMC5809035 DOI: 10.1093/cz/zox015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 10/11/2016] [Accepted: 02/27/2017] [Indexed: 11/25/2022] Open
Abstract
Various studies have demonstrated that the foundation species genetic diversity can have direct effects that extend beyond the individual or population level, affecting the dependent communities. Additionally, these effects may be indirectly extended to higher trophic levels throughout the entire community. Quercus castanea is an oak species with characteristics of foundation species beyond presenting a wide geographical distribution and being a dominant element of Mexican temperate forests. In this study, we analyzed the influence of population (He) and individual (HL) genetic diversity of Q. castanea on its canopy endophagous insect community and associated parasitoids. Specifically, we studied the composition, richness (S) and density of leaf-mining moths (Lepidoptera: Tischeridae, Citheraniidae), gall-forming wasps (Hymenoptera: Cynipidae), and canopy parasitoids of Q. castanea. We sampled 120 trees belonging to six populations (20/site) through the previously recognized gradient of genetic diversity. In total, 22 endophagous insect species belonging to three orders (Hymenoptera, Lepidoptera, and Diptera) and 20 parasitoid species belonging to 13 families were identified. In general, we observed that the individual genetic diversity of the host plant (HL) has a significant positive effect on the S and density of the canopy endophagous insect communities. In contrast, He has a significant negative effect on the S of endophagous insects. Additionally, indirect effects of HL were observed, affecting the S and density of parasitoid insects. Our results suggest that genetic variation in foundation species can be one of the most important factors governing the dynamics of tritrophic interactions that involve oaks, herbivores, and parasitoids.
Collapse
Affiliation(s)
- Leticia Valencia-Cuevas
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México
| | - Patricia Mussali-Galante
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México
| | - Zenón Cano-Santana
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Delegación Coyoacán, DF 04510, México
| | - Juli Pujade-Villar
- Departamento de Biología Animal, Universitat de Barcelona, Facultat de Biología, Av. Diagonal, 645, Barcelona 08028, España
| | | | - Efraín Tovar-Sánchez
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México
| |
Collapse
|
17
|
Nell CS, Meza-Lopez MM, Croy JR, Nelson AS, Moreira X, Pratt JD, Mooney KA. Relative effects of genetic variation sensu lato and sexual dimorphism on plant traits and associated arthropod communities. Oecologia 2018; 187:389-400. [PMID: 29354878 DOI: 10.1007/s00442-018-4065-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/08/2018] [Indexed: 11/28/2022]
Abstract
Intraspecific plant trait variation can have cascading effects on plant-associated biotic communities. Sexual dimorphism is an important axis of genetic variation in dioecious plants, but the strength of such effects and the underlying mechanisms relative to genetic variation are unknown. We established a common garden with 39 genotypes of Baccharis salicifolia sampled from a single population that included male and female genotypes and measured plant traits and quantified associated arthropod communities. Genetic variation sensu lato (genotypic variation) had strong effects on most plant traits (flower number, relative growth rate, specific leaf area, percent water content, carbon-nitrogen ratio, monoterpene but not sesquiterpene concentrations) and on herbivore and predator density, and on arthropod community composition (relative abundance of 14 orders). In contrast, sexual dimorphism had weaker effects on only a few plant traits (flower number and relative growth rate), on predator density, and on arthropod community composition, but had no effect on herbivore density. Variation in flower number drove genetic variation sensu lato and sex dimorphism in predator density and arthropod community composition. There was unique genetic variation sensu lato in herbivore density (positively) associated with monoterpene concentration and in arthropod community composition associated with specific leaf area and carbon-nitrogen ratio. There was unique sexual dimorphism in arthropod community composition associated with plant relative growth rate. Together, these results demonstrate that genetic variation sensu lato and sexual dimorphism can shape plant-associated arthropod communities via both parallel and unique mechanisms, with greater overall effects of the former.
Collapse
Affiliation(s)
- Colleen S Nell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Maria M Meza-Lopez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Jordan R Croy
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Annika S Nelson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Xoaquín Moreira
- Biological Mission of Galicia (MBG-CSIC), Apdo. 28, 36080, Pontevedra, Galicia, Spain
| | - Jessica D Pratt
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA.
| |
Collapse
|
18
|
Hoffman AM, Smith MD. Thinking inside the Box: Tissue Culture for Plant Propagation in a Key Ecological Species, <i>Andropogon gerardii</i>. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ajps.2018.910144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Abdala-Roberts L, Pratt R, Pratt JD, Mooney KA. Traits underlying community consequences of plant intra-specific diversity. PLoS One 2017; 12:e0183493. [PMID: 28886028 PMCID: PMC5590834 DOI: 10.1371/journal.pone.0183493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/05/2017] [Indexed: 11/19/2022] Open
Abstract
A plant's performance and interactions with other trophic levels are recorgnized to be contingent upon plant diversity and underlying associational dynamics, but far less is known about the plant traits driving such phenomena. We manipulated diversity in plant traits using pairs of plant and a substitutive design to elucidate the mechanisms underlying diversity effects operating at a fine spatial scale. Specifically, we measured the effects of diversity in sex (sexual monocultures vs. male and female genotypes together) and growth rate (growth rate monocultures vs. fast- and slow-growing genotypes together) on growth of the shrub Baccharis salicifolia and on above- and belowground consumers associated with this plant. We compared effects on associate abundance (# associates per plant) vs. density (# associates per kg plant biomass) to elucidate the mechanisms underlying diversity effects; effects on abundance but not density suggest diversity effects are mediated by resource abundance (i.e. plant biomass) alone, whereas effects on density suggest diversity effects are mediated by plant-based heterogeneity or quality. Sexual diversity increased root growth but reduced the density (but not abundance) of the dietary generalist aphid Aphis gossypii and its associated aphid-tending ants, suggesting sex mixtures were of lower quality to this herbivore (e.g. via reduced plant quality), and that this effect indirectly influenced ants. Sexual diversity had no effect on the abundance or density of parasitoids attacking A. gossypii, the dietary specialist aphid Uroleucon macolai, or mycorrhizae. In contrast, growth rate diversity did not influence plant growth or any associates except for the dietary specialist aphid U. macolai, which increased in both abundance and density at high diversity, suggesting growth rate mixtures were of higher quality to this herbivore. These results highlight that plant associational and diversity effects on consumers are contingent upon the source of plant trait variation, and that the nature of such dynamics may vary both within and among trophic levels.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Riley Pratt
- University of California, Irvine, Department of Ecology and Evolutionary Biology, Irvine, California, United States of America
- Irvine Ranch Conservancy, Irvine, California, United States of America
| | - Jessica D. Pratt
- University of California, Irvine, Department of Ecology and Evolutionary Biology, Irvine, California, United States of America
| | - Kailen A. Mooney
- University of California, Irvine, Department of Ecology and Evolutionary Biology, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Tuckett QM, Simon KS, Kinnison MT. Cultural Eutrophication Mediates Context-Dependent Eco-Evolutionary Feedbacks of a Fish Invader. COPEIA 2017. [DOI: 10.1643/ot-16-540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Holopainen JK, Kivimäenpää M, Nizkorodov SA. Plant-derived Secondary Organic Material in the Air and Ecosystems. TRENDS IN PLANT SCIENCE 2017; 22:744-753. [PMID: 28789922 DOI: 10.1016/j.tplants.2017.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/25/2017] [Accepted: 07/07/2017] [Indexed: 05/24/2023]
Abstract
Biogenic secondary organic aerosol (SOA) and deposited secondary organic material (SOM) are formed by oxidation of volatile organic compounds (VOCs) emitted by plants. Many SOA compounds have much longer chemical lifetimes than the original VOC, and may accumulate on plant surfaces and in soil as SOM because of their low volatility. This suggests that they may have important and presently unrecognized roles in plant adaptation. Using reactive plant terpenoids as a model we propose a three-tier (atmosphere-vegetation-soil) framework to better understand the ecological and evolutionary functions of SOM. In this framework, SOA in the atmosphere is known to affect solar radiation, SOM on the plant surfaces influences the interactive organisms, and wet and dry deposition of SOM on soil affects soil organisms.
Collapse
Affiliation(s)
- J K Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - M Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - S A Nizkorodov
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, CA 92697-2025, USA; Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
22
|
Stevenson CR, Davies C, Rowntree JK. Biodiversity in agricultural landscapes: The effect of apple cultivar on epiphyte diversity. Ecol Evol 2017; 7:1250-1258. [PMID: 28303193 PMCID: PMC5306003 DOI: 10.1002/ece3.2683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/19/2016] [Accepted: 11/20/2016] [Indexed: 12/04/2022] Open
Abstract
In natural systems, extended phenotypes of trees can be important in determining the species composition and diversity of associated communities. Orchards are productive systems where trees dominate, and can be highly biodiverse, but few studies have considered the importance of tree genetic background in promoting associated biodiversity. We tested the effect of apple cultivar (plant genetic background) on the diversity and composition of the associated epiphytic bryophyte community across a total of seven cultivars in five productive East Anglian orchards where each orchard contained two cultivars. Data were collected from 617 individual trees, over 5 years. Species richness and community composition were significantly influenced by both orchard and cultivar. Differences among orchards explained 16% of the variation in bryophyte community data, while cultivar explained 4%. For 13 of the 41 bryophyte species recorded, apple cultivar was an important factor in explaining their distribution. While the effects of cultivar were small, we were able to detect them at multiple levels of analysis. We provide evidence that extended phenotypes act in productive as well as natural systems. With issues of food security ranking high on the international agenda, it is important to understand the impact of production regimes on associated biodiversity. Our results can inform mitigation of this potential conflict.
Collapse
Affiliation(s)
| | | | - Jennifer K Rowntree
- Centre for the Genetics of Ecosystem Services Faculty of Life Sciences University of Manchester Manchester UK
| |
Collapse
|
23
|
Slinn HL, Barbour MA, Crawford KM, Rodriguez-Cabal MA, Crutsinger GM. Genetic variation in resistance to leaf fungus indirectly affects spider density. Ecology 2017; 98:875-881. [DOI: 10.1002/ecy.1708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Heather L. Slinn
- Department of Biology; University of Nevada; 1664 N Virginia street Reno Nevada 89557 USA
| | - Matthew A. Barbour
- Department of Zoology; University of British Columbia; Vancouver British Columbia V6T 1Z4 Canada
| | - Kerri M. Crawford
- Department of Biology and Biochemistry; University of Houston; Houston Texas 77204 USA
| | - Mariano A. Rodriguez-Cabal
- Grupo de Ecologia de Invasiones; INIBIOMA - CONICET; Universidad Nacional del Comahue; CP. 8400 San Carlos de Bariloche Argentina
| | | |
Collapse
|
24
|
Fernandez-Conradi P, Jactel H, Hampe A, Leiva MJ, Castagneyrol B. The effect of tree genetic diversity on insect herbivory varies with insect abundance. Ecosphere 2017. [DOI: 10.1002/ecs2.1637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Pilar Fernandez-Conradi
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
- Departamento de Biología Vegetal y Ecología; Universidad de Sevilla; Apdo, 1095 41080 Sevilla Spain
| | - Hervé Jactel
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
| | - Arndt Hampe
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
| | - Maria José Leiva
- Departamento de Biología Vegetal y Ecología; Universidad de Sevilla; Apdo, 1095 41080 Sevilla Spain
| | | |
Collapse
|
25
|
Pratt JD, Datu A, Tran T, Sheng DC, Mooney KA. Genetically based latitudinal clines in Artemisia californica drive parallel clines in arthropod communities. Ecology 2016; 98:79-91. [PMID: 27935026 DOI: 10.1002/ecy.1620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 06/25/2016] [Accepted: 08/31/2016] [Indexed: 11/08/2022]
Abstract
Intraspecific variation in plant traits has been clearly shown to drive the structure of associated arthropod communities at the spatial scale of individual plant populations. Nevertheless, it is largely unknown whether plant trait variation among populations drives landscape-scale variation in arthropod communities, and how the strength of such plant genetic effects compares to, and interacts with, those of environmental variation. We documented the structure of arthropod communities on Artemisia californica for two consecutive years in a common garden of plants sourced from five populations along a 5° latitudinal gradient and grown under precipitation treatments approximating the four-fold difference between the north and south range margins for this species. Previous study of plant traits from this garden documented clinal genetic variation, suggesting local adaptation to this environmental gradient, as well as effects of precipitation manipulation that were consistent among populations (i.e., no genotype-by-environment interaction). Within the common garden, arthropod density, evenness, and diversity increased clinally with population source latitude, and arthropod community composition (i.e., species relative abundance) showed a north-south divide. The 2.6-fold cline of northward increase in arthropod density in the common garden was mirrored by a 6.4-fold increase in arthropod density on wild plants sampled along the species range. In contrast to the strong influence of plant genotype, the precipitation manipulation only influenced arthropod community composition, and plant genetic effects on arthropods operated independently of precipitation regime (no genotype-by-environment interaction). Accordingly, we conclude that the strongest driver of landscape-level variation in arthropod communities in this foundational plant species is not variation in the abiotic environment itself, but rather variation in plant traits underlain by the evolutionary process of plant local adaptation.
Collapse
Affiliation(s)
- Jessica D Pratt
- Department of Ecology and Evolutionary Biology and Center for Environmental Biology, University of California, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Andrew Datu
- Department of Ecology and Evolutionary Biology and Center for Environmental Biology, University of California, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Thi Tran
- Department of Ecology and Evolutionary Biology and Center for Environmental Biology, University of California, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Daniel C Sheng
- Department of Ecology and Evolutionary Biology and Center for Environmental Biology, University of California, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology and Center for Environmental Biology, University of California, 321 Steinhaus Hall, Irvine, California, 92697, USA
| |
Collapse
|
26
|
Abdala-Roberts L, Hernández-Cumplido J, Chel-Guerrero L, Betancur-Ancona D, Benrey B, Moreira X. Effects of plant intraspecific diversity across three trophic levels: Underlying mechanisms and plant traits. AMERICAN JOURNAL OF BOTANY 2016; 103:1810-1818. [PMID: 27756730 DOI: 10.3732/ajb.1600234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF STUDY Although there is increasing recognition of the effects of plant intraspecific diversity on consumers, the mechanisms by which such effects cascade-up to higher trophic levels remain elusive. METHODS We evaluated the effects of plant (lima bean, Phaseolus lunatus) intraspecific diversity on a suite of insect herbivores (leaf-chewers, aphids, and seed-eating beetles) and their third trophic-level associates (parasitoids and aphid-tending ants). We established plots of three plants, classified as monocultures of one population source or polycultures with mixtures of three of the four population sources (N = 16 plots per level of diversity). Within each plot, plants were individually placed in pots and canopy contact was prevented, therefore eliminating diversity effects on consumers arising from changes in plant traits due to plant physical interactions. KEY RESULTS Plant diversity reduced damage by leaf-chewers as well as aphid abundance, and the latter effect in turn reduced ant abundance. In contrast, plant diversity increased the abundance of seed-eating beetles, but did not influence their associated parasitoids. There were no effects of diversity on seed traits potentially associated with seed predation, suggesting that differences in early season herbivory between monocultures and polycultures (a likely mechanism of diversity effects on plants since plant interactions were prevented) did not drive concomitant changes in plant traits. CONCLUSIONS This study emphasizes that effects of plant intraspecific diversity on consumers are contingent upon differences in associate responses within and among higher trophic levels and suggests possible mechanisms by which such effects propagate up this food web.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán. Km. 15.5 Carretera Mérida-Xmatkuil. 97000. Mérida, Yucatán, México
| | | | - Luis Chel-Guerrero
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán. Periférico Norte, Km. 33.5, Colonia Chuburná de Hidalgo Inn. 97203. Mérida, Yucatán, México
| | - David Betancur-Ancona
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán. Periférico Norte, Km. 33.5, Colonia Chuburná de Hidalgo Inn. 97203. Mérida, Yucatán, México
| | - Betty Benrey
- Institute of Biology, Laboratory of Evolutionary Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28 36080 Pontevedra, Galicia, Spain
| |
Collapse
|
27
|
Fischer DG, Wimp GM, Hersch‐Green E, Bangert RK, LeRoy CJ, Bailey JK, Schweitzer JA, Dirks C, Hart SC, Allan GJ, Whitham TG. Tree genetics strongly affect forest productivity, but intraspecific diversity–productivity relationships do not. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12733] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dylan G. Fischer
- The Evergreen State College 2700 Evergreen Parkway NW Olympia WA98505 USA
| | - Gina M. Wimp
- Biology Department Georgetown University Reiss Science Building, 37th and O Streets NW Washington DC20057 USA
| | - Erika Hersch‐Green
- Department of Biological Sciences Michigan Technological University 1400 Townsend Drive Houghton MI49931‐1295 USA
| | - Randy K. Bangert
- Department of Biological Sciences Northern Arizona University PO Box 5460 Flagstaff AZ86001 USA
- School of Earth Sciences and Environmental Sustainability Northern Arizona University PO Box 5694 Flagstaff AZ86011 USA
| | - Carri J. LeRoy
- The Evergreen State College 2700 Evergreen Parkway NW Olympia WA98505 USA
| | - Joseph K. Bailey
- Department of Ecology and Evolutionary Biology University of Tennessee 569 Dabney Hall Knoxville TN37996 USA
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee 569 Dabney Hall Knoxville TN37996 USA
| | - Clarissa Dirks
- The Evergreen State College 2700 Evergreen Parkway NW Olympia WA98505 USA
| | - Stephen C. Hart
- Life & Environmental Sciences and Sierra Nevada Research Institute University of California Merced CA95344 USA
| | - Gerard J. Allan
- Department of Biological Sciences Northern Arizona University PO Box 5460 Flagstaff AZ86001 USA
| | - Thomas G. Whitham
- Department of Biological Sciences Northern Arizona University PO Box 5460 Flagstaff AZ86001 USA
| |
Collapse
|
28
|
Abdala-Roberts L, Pratt JD, Pratt R, Schreck TK, Hanna V, Mooney KA. Multi-trophic consequences of plant genetic variation in sex and growth. Ecology 2016; 97:743-53. [PMID: 27197400 DOI: 10.1890/15-0444.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is growing evidence for the influence of plant intraspecific variation on associated multi-trophic communities, but the traits driving such effects are largely unknown. We conducted a field experiment with selected genetic lines of the dioecious shrub Baceharis salicifolia to investigate the effects of plant growth rate (two-fold variation) and gender (males vs. females of the same growth rate) on above- and belowground insect and fungal associates. We documented variation in associate density to test for effects occurring through plant-based habitat quality (controlling for effects of plant size) as well as variation in associate abundance to test for effects occurring through both habitat quality and abundance (including effects of plant size). Whereas the dietary specialist aphid Uroleucon macaolai was unaffected by plant sex and growth rate, the generalist aphid Aphis gossypii and its tending ants (Linepithema humile) had higher abundances and densities on male (vs. female) plants, suggesting males provide greater habitat quality. In contrast, Aphis and ant abundance and density were unaffected by plant growth rate, while Aphis parasitoids were unaffected by either plant sex or growth rate. Arbuscular mycorrhizal fungi had higher abundance and density (both marginally significant) on females (vs. males), suggesting females provide greater habitat quality, but lower abundances (marginally significant) and higher densities on slow- (vs. fast-) growing genotypes, suggesting slow-growing genotypes provided lower resource abundance but greater habitat quality. Overall, plant sex and growth rate effects on associates acted independently (i.e., no interactive effects), and these effects were of a greater magnitude than those coming from other axes of plant genetic variation. These findings thus demonstrate that plant genetic effects on associated communities may be driven by a small number of trait-specific mechanisms.
Collapse
|
29
|
Affiliation(s)
- Karin T. Burghardt
- Department of Ecology and Evolutionary Biology Yale University 165 Prospect Street New Haven Connecticut 06511 USA
| |
Collapse
|
30
|
Crutsinger GM. A community genetics perspective: opportunities for the coming decade. THE NEW PHYTOLOGIST 2016; 210:65-70. [PMID: 26171846 DOI: 10.1111/nph.13537] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
Community genetics was originally proposed as a novel approach to identifying links between genes and ecosystems, and merging ecological and evolutional perspectives. The dozen years since the birth of community genetics have seen many empirical studies and common garden experiments, as well as the rise of eco-evolutionary dynamics research and a general shift in ecology to incorporate intraspecific variation. So what have we learned from community genetics? Can individual genes affect entire ecosystems? Are there interesting questions left to be answered, or has community genetics run its course? This perspective makes a series of key points about the general patterns that have emerged and calls attention to gaps in our understanding to be addressed in the coming years.
Collapse
Affiliation(s)
- Gregory M Crutsinger
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC, V6T1Z4, Canada
| |
Collapse
|
31
|
Moritz KK, Björkman C, Parachnowitsch AL, Stenberg JA. Female Salix viminalis are more severely infected by Melampsora spp. but neither sex experiences associational effects. Ecol Evol 2016; 6:1154-62. [PMID: 26839685 PMCID: PMC4725332 DOI: 10.1002/ece3.1923] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 11/25/2022] Open
Abstract
Associational effects of plant genotype or species on plant biotic interactions are common, not least for disease spread, but associational effects of plant sex on interactions have largely been ignored. Sex in dioecious plants can affect biotic interactions with herbivores and pollinators; however, its effects on plant-pathogen interactions are understudied and associational effects are unknown. In a replicated field experiment, we assessed Melampsora spp. leaf rust infection in monosexual and mixed sex plots of dioecious Salix viminalis L. to determine whether plant sex has either direct or associational effects on infection severity. We found no differences in Melampsora spp. infection severity among sexual monocultures and mixtures in our field experiment. However, female plants were overall more severely infected. In addition, we surveyed previous studies of infection in S. viminalis clones and reevaluated the studies after we assigned sex to the clones. We found that females were generally more severely infected, as in our field study. Similarly, in a survey of studies on sex-biased infection in dioecious plants, we found more female-biased infections in plant-pathogen pairs. We conclude that there was no evidence for associational plant sex effects of neighboring conspecifics for either females or males on infection severity. Instead, plant sex effects on infection act at an individual plant level. Our findings also suggest that female plants may in general be more severely affected by fungal pathogens than males.
Collapse
Affiliation(s)
- Kim K. Moritz
- Department of EcologySwedish University of Agricultural SciencesP.O. Box 7044SE‐750 07UppsalaSweden
| | - Christer Björkman
- Department of EcologySwedish University of Agricultural SciencesP.O. Box 7044SE‐750 07UppsalaSweden
| | - Amy L. Parachnowitsch
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityNorbyvägen 18 DSE‐752 36UppsalaSweden
| | - Johan A. Stenberg
- Department of EcologySwedish University of Agricultural SciencesP.O. Box 7044SE‐750 07UppsalaSweden
- Department of Plant Protection BiologySwedish University of Agricultural SciencesP.O. Box 102SE‐230 53AlnarpSweden
| |
Collapse
|
32
|
Fitzpatrick CR, Agrawal AA, Basiliko N, Hastings AP, Isaac ME, Preston M, Johnson MTJ. The importance of plant genotype and contemporary evolution for terrestrial ecosystem processes. Ecology 2016; 96:2632-42. [PMID: 26649385 DOI: 10.1890/14-2333.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Plant genetic variation and evolutionary dynamics are predicted to impact ecosystem processes but these effects are poorly understood. Here we test the hypothesis that plant genotype and contemporary evolution influence the flux of energy and nutrients through soil, which then feedback to affect seedling performance in subsequent generations. We conducted a multiyear field evolution experiment using the native biennial plant Oenothera biennis. This experiment was coupled with experimental assays to address our hypothesis and quantify the relative importance of evolutionary and ecological factors on multiple ecosystem processes. Plant genotype, contemporary evolution, spatial variation, and herbivory affected ecosystem processes (e.g., leaf decay, soil respiration, seedling performance, N cycling), but their relative importance varied between specific ecosystem variables. Insect herbivory and evolution also contributed to a feedback that affected seedling biomass of O. biennis in the next generation. Our results show that heritable variation among plant genotypes can be an important factor affecting local ecosystem processes, and while effects of contemporary evolution were detectable and sometimes strong, they were often contingent on other ecological, factors.
Collapse
|
33
|
Axelsson EP, Iason GR, Julkunen-Tiitto R, Whitham TG. Host Genetics and Environment Drive Divergent Responses of Two Resource Sharing Gall-Formers on Norway Spruce: A Common Garden Analysis. PLoS One 2015; 10:e0142257. [PMID: 26554587 PMCID: PMC4640599 DOI: 10.1371/journal.pone.0142257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/20/2015] [Indexed: 11/18/2022] Open
Abstract
A central issue in the field of community genetics is the expectation that trait variation among genotypes play a defining role in structuring associated species and in forming community phenotypes. Quantifying the existence of such community phenotypes in two common garden environments also has important consequences for our understanding of gene-by-environment interactions at the community level. The existence of community phenotypes has not been evaluated in the crowns of boreal forest trees. In this study we address the influence of tree genetics on needle chemistry and genetic x environment interactions on two gall-inducing adelgid aphids (Adelges spp. and Sacchiphantes spp.) that share the same elongating bud/shoot niche. We examine the hypothesis that the canopies of different genotypes of Norway spruce (Picea abies L.) support different community phenotypes. Three patterns emerged. First, the two gallers show clear differences in their response to host genetics and environment. Whereas genetics significantly affected the abundance of Adelges spp. galls, Sacchiphantes spp. was predominately affected by the environment suggesting that the genetic influence is stronger in Adelges spp. Second, the among family variation in genetically controlled resistance was large, i.e. fullsib families differed as much as 10 fold in susceptibility towards Adelges spp. (0.57 to 6.2 galls/branch). Also, the distribution of chemical profiles was continuous, showing both overlap as well as examples of significant differences among fullsib families. Third, despite the predicted effects of host chemistry on galls, principal component analyses using 31 different phenolic substances showed only limited association with galls and a similarity test showed that trees with similar phenolic chemical characteristics, did not host more similar communities of gallers. Nonetheless, the large genetic variation in trait expression and clear differences in how community members respond to host genetics supports our hypothesis that the canopies of Norway spruce differ in their community phenotypes.
Collapse
Affiliation(s)
- E. Petter Axelsson
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- * E-mail:
| | - Glenn R. Iason
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland
| | - Riitta Julkunen-Tiitto
- Department of Biology, University of Eastern Finland, PO Box 111, Joensuu 80101, Finland
| | - Thomas G. Whitham
- Merriam-Powell Center for Environmental Research & Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
34
|
Lamit LJ, Lau MK, Naesborg RR, Wojtowicz T, Whitham TG, Gehring CA. Genotype variation in bark texture drives lichen community assembly across multiple environments. Ecology 2015; 96:960-71. [PMID: 26230017 DOI: 10.1890/14-1007.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A major goal of community genetics is to understand the influence of genetic variation within a species on ecological communities. Although well-documented for some organisms, additional research is necessary to understand the relative and interactive effects of genotype and environment on biodiversity, identify mechanisms through which tree genotype influences communities, and connect this emerging field with existing themes in ecology. We employ an underutilized but ecologically significant group of organisms, epiphytic bark lichens, to understand the relative importance of Populus angustifolia (narrowleaf cottonwood) genotype and environment on associated organisms within the context of community assembly and host ontogeny. Several key findings emerged. (1) In a single common garden, tree genotype explained 18-33% and 51% of the variation in lichen community variables and rough bark cover, respectively. (2) Across replicated common gardens, tree genotype affected lichen species richness, total lichen cover, lichen species composition, and rough bark cover, whereas environment only influenced composition and there were no genotype by environment interactions. (3) Rough bark cover was positively correlated with total lichen cover and richness, and was associated with a shift in species composition; these patterns occurred with variation in rough bark cover among tree genotypes of the same age in common gardens and with increasing rough bark cover along a -40 year tree age gradient in a natural riparian stand. (4) In a common garden, 20-year-old parent trees with smooth bark had poorly developed lichen communities, similar to their 10-year-old ramets (root suckers) growing in close proximity, while parent trees with high rough bark cover had more developed communities than their ramets. These findings indicate that epiphytic lichens are influenced by host genotype, an effect that is robust across divergent environments. Furthermore, the response to tree genotype is likely the result of genetic variation in the timing of the ontogenetic shift from smooth to rough bark allowing communities on some genotypes to assemble faster than those on other genotypes. Organisms outside the typical sphere of community genetics, such as lichens, can help address critical issues and connect plant genotype effects to long-established streams of biological research, such as ontogeny and community assembly.
Collapse
|
35
|
Pohjanmies T, Tack AJM, Pulkkinen P, Elshibli S, Vakkari P, Roslin T. Genetic diversity and connectivity shape herbivore load within an oak population at its range limit. Ecosphere 2015. [DOI: 10.1890/es14-00549.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Tovar-Sánchez E, Valencia-Cuevas L, Mussali-Galante P, Ramírez-Rodríguez R, Castillo-Mendoza E. Effect of host-plant genetic diversity on oak canopy arthropod community structure in central Mexico. REVISTA CHILENA DE HISTORIA NATURAL 2015. [DOI: 10.1186/s40693-015-0042-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Barbour MA, Rodriguez‐Cabal MA, Wu ET, Julkunen‐Tiitto R, Ritland CE, Miscampbell AE, Jules ES, Crutsinger GM. Multiple plant traits shape the genetic basis of herbivore community assembly. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12409] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew A. Barbour
- Department of Zoology University of British Columbia 2212 Main Mall, Vancouver British Columbia V6T 1Z4Canada
| | - Mariano A. Rodriguez‐Cabal
- Department of Zoology University of British Columbia 2212 Main Mall, Vancouver British Columbia V6T 1Z4Canada
- INIBIOMA CONICET Universidad Nacional del Comahue, Quintral 1250 Bariloche Rio Negro, Argentina
| | - Elizabeth T. Wu
- Department of Biological Sciences Humboldt State University 1 Harpst St., Arcata CA 95521USA
| | - Riitta Julkunen‐Tiitto
- Department of Biology University of Eastern Finland P.O. Box 111, FIN‐80101 Joensuu Finland
| | - Carol E. Ritland
- Department of Forest and Conservation Sciences University of British Columbia 2424 Main Mall, Vancouver British ColumbiaV6T 1Z4 Canada
| | - Allyson E. Miscampbell
- Department of Forest and Conservation Sciences University of British Columbia 2424 Main Mall, Vancouver British ColumbiaV6T 1Z4 Canada
| | - Erik S. Jules
- Department of Biological Sciences Humboldt State University 1 Harpst St., Arcata CA 95521USA
| | - Gregory M. Crutsinger
- Department of Zoology University of British Columbia 2212 Main Mall, Vancouver British Columbia V6T 1Z4Canada
| |
Collapse
|
38
|
Where is the extended phenotype in the wild? The community composition of arthropods on mature oak trees does not depend on the oak genotype. PLoS One 2015; 10:e0115733. [PMID: 25635387 PMCID: PMC4321774 DOI: 10.1371/journal.pone.0115733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 12/01/2014] [Indexed: 12/03/2022] Open
Abstract
Through a series of common garden experiments, it has been shown that heritable
phenotypic differences between individual trees can affect arthropod communities.
However, field studies under heterogeneous environmental conditions remain rare. In
the present study, we investigated the genetic constitution of 121 mature oak host
trees at different trophic levels from 10 sites across Bavaria, southern Germany and
their associated insect communities. A total of 23,576 individuals representing 395
species of beetles and true bugs were evaluated. In particular, we determined whether
the composition of arthropod communities is related to the oak genotype and whether
the strength of the relationships decreases from lower to higher trophic levels, such
as for phytophagous, xylophagous, zoophagous, and mycetophagous species. The genetic
differentiation of oaks was assessed using eight microsatellite markers. We found no
significant influence of the oak genotype on neither the full beetle and true bug
community nor on any of the analyzed trophic guilds. In contrast, the community
composition of the insects was highly related to the space and climate, such that the
community similarity decreased with increases in spatial distance and climatic
differences. The relationship with space and climate was much stronger in beetles
than in true bugs, particularly in mycetophagous species. Our results suggest that
spatial processes override the genetic effects of the host plant in structuring
arthropod communities on oak trees. Because we used neutral markers, we cannot
exclude the possibility that trait-specific markers may reveal a genetic imprint of
the foundation tree species on the composition of the arthropod community. However,
based on the strength of the spatial patterns in our data set, we assume that genetic
differences among oaks are less important in the structuring of arthropod
communities. Future whole-genome studies are required to draw a final conclusion.
Collapse
|
39
|
Silfver T, Paaso U, Rasehorn M, Rousi M, Mikola J. Genotype × herbivore effect on leaf litter decomposition in Betula Pendula saplings: ecological and evolutionary consequences and the role of secondary metabolites. PLoS One 2015; 10:e0116806. [PMID: 25622034 PMCID: PMC4306545 DOI: 10.1371/journal.pone.0116806] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 12/15/2014] [Indexed: 01/22/2023] Open
Abstract
Plant genetic variation and herbivores can both influence ecosystem functioning by affecting the quantity and quality of leaf litter. Few studies have, however, investigated the effects of herbivore load on litter decomposition at plant genotype level. We reduced insect herbivory using an insecticide on one half of field-grown Betula Pendula saplings of 17 genotypes, representing random intrapopulation genetic variation, and allowed insects to naturally colonize the other half. We hypothesized that due to induced herbivore defence, saplings under natural herbivory produce litter of higher concentrations of secondary metabolites (terpenes and soluble phenolics) and have slower litter decomposition rate than saplings under reduced herbivory. We found that leaf damage was 89 and 53% lower in the insecticide treated saplings in the summer and autumn surveys, respectively, which led to 73% higher litter production. Litter decomposition rate was also affected by herbivore load, but the effect varied from positive to negative among genotypes and added up to an insignificant net effect at the population level. In contrast to our hypothesis, concentrations of terpenes and soluble phenolics were higher under reduced than natural herbivory. Those genotypes, whose leaves were most injured by herbivores, produced litter of lowest mass loss, but unlike we expected, the concentrations of terpenes and soluble phenolics were not linked to either leaf damage or litter decomposition. Our results show that (1) the genetic and herbivore effects on B. pendula litter decomposition are not mediated through variation in terpene or soluble phenolic concentrations and suggest that (2) the presumably higher insect herbivore pressure in the future warmer climate will not, at the ecological time scale, affect the mean decomposition rate in genetically diverse B. pendula populations. However, (3) due to the significant genetic variation in the response of decomposition to herbivory, evolutionary changes in mean decomposition rate are possible.
Collapse
Affiliation(s)
- Tarja Silfver
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Ulla Paaso
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Mira Rasehorn
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Matti Rousi
- The Finnish Forest Research Institute, Vantaa Research Unit, FI-01301 Vantaa, Finland
| | - Juha Mikola
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| |
Collapse
|
40
|
Gosney BJ, O′Reilly-Wapstra JM, Forster LG, Barbour RC, Iason GR, Potts BM. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities. PLoS One 2014; 9:e114132. [PMID: 25469641 PMCID: PMC4254790 DOI: 10.1371/journal.pone.0114132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/15/2014] [Indexed: 11/21/2022] Open
Abstract
Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.
Collapse
Affiliation(s)
- Benjamin J. Gosney
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
- National Center of Future Forest Industries (NCFFI), University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - Julianne M. O′Reilly-Wapstra
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
- National Center of Future Forest Industries (NCFFI), University of Tasmania, Hobart, Tasmania, Australia
| | - Lynne G. Forster
- School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert C. Barbour
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Glenn R. Iason
- The James Hutton Institute, Craigibuckler, Aberdeen, Scotland, United Kingdom
| | - Brad M. Potts
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
- National Center of Future Forest Industries (NCFFI), University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
41
|
Kabir MF, Moritz KK, Stenberg JA. Plant-sex-biased tritrophic interactions on dioecious willow. Ecosphere 2014. [DOI: 10.1890/es14-00356.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Barton KE, Valkama E, Vehviläinen H, Ruohomäki K, Knight TM, Koricheva J. Additive and non-additive effects of birch genotypic diversity on arthropod herbivory in a long-term field experiment. OIKOS 2014. [DOI: 10.1111/oik.01663] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kasey E. Barton
- Dept of Botany; Univ. of Hawai'i at Mānoa; Honolulu HI 96822 USA
| | - Elena Valkama
- MTT Agrifood Research Finland; FI-31600 Jokioinen Finland
| | | | - Kai Ruohomäki
- Section of Ecology, Dept of Biology; Univ. of Turku; FI-20014 Turku Finland
| | - Tiffany M. Knight
- Dept of Biology; Washington Univ. in St. Louis; 1 Brookings Drive, Box 1137 St. Louis MO 63130 USA
| | - Julia Koricheva
- School of Biological Sciences, Royal Holloway Univ. of London; Egham, Surrey TW20 0EX UK
| |
Collapse
|
43
|
Crutsinger GM, Rudman SM, Rodriguez-Cabal MA, McKown AD, Sato T, MacDonald AM, Heavyside J, Geraldes A, Hart EM, LeRoy CJ, El-Sabaawi RW. Testing a ‘genes-to-ecosystems’ approach to understanding aquatic-terrestrial linkages. Mol Ecol 2014; 23:5888-903. [DOI: 10.1111/mec.12931] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 09/04/2014] [Accepted: 09/12/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Gregory M. Crutsinger
- Department of Zoology; University of British Columbia; 4200-6270 University Blvd. Vancouver BC V6T1Z4 Canada
| | - Seth M. Rudman
- Department of Zoology; University of British Columbia; 4200-6270 University Blvd. Vancouver BC V6T1Z4 Canada
| | - Mariano A. Rodriguez-Cabal
- Department of Zoology; University of British Columbia; 4200-6270 University Blvd. Vancouver BC V6T1Z4 Canada
| | - Athena D. McKown
- Department of Forest and Conservation Sciences; University of British Columbia; 2424 Main Mall Vancouver BC V6T 1Z4 Canada
| | - Takuya Sato
- Department of Biology; Graduate school of Science; Kobe University; 1-1 Rokkodai Nada-ku Kobe 657-8501 Japan
| | - Andrew M. MacDonald
- Department of Zoology; University of British Columbia; 4200-6270 University Blvd. Vancouver BC V6T1Z4 Canada
| | - Julian Heavyside
- Department of Zoology; University of British Columbia; 4200-6270 University Blvd. Vancouver BC V6T1Z4 Canada
| | - Armando Geraldes
- Department of Botany; University of British Columbia; 3529-6270 University Blvd. Vancouver BC V6T 1Z4 Canada
| | - Edmund M. Hart
- Department of Zoology; University of British Columbia; 4200-6270 University Blvd. Vancouver BC V6T1Z4 Canada
| | - Carri J. LeRoy
- Environmental Studies Program; The Evergreen State College; 2700 Evergreen Parkway NW Olympia WA 98505 USA
| | - Rana W. El-Sabaawi
- Department of Biology; University of Victoria; Cunningham 202, 3800 Finnerty Rd. Victoria BC V8P 5C2 Canada
| |
Collapse
|
44
|
Abdala-Roberts L, Mooney KA. Ecological and evolutionary consequences of plant genotype diversity in a tri-trophic system. Ecology 2014. [DOI: 10.1890/13-2029.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Wojtowicz T, Compson ZG, Lamit LJ, Whitham TG, Gehring CA. Plant genetic identity of foundation tree species and their hybrids affects a litter-dwelling generalist predator. Oecologia 2014; 176:799-810. [PMID: 25205028 DOI: 10.1007/s00442-014-2998-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/09/2014] [Indexed: 12/01/2022]
Abstract
The effects of plant genetics on predators, especially those not living on the plant itself, are rarely studied and poorly understood. Therefore, we investigated the effect of plant hybridization and genotype on litter-dwelling spiders. Using an 18-year-old cottonwood common garden, we recorded agelenid sheet-web density associated with the litter layers of replicated genotypes of three tree cross types: Populus fremontii, Populus angustifolia, and their F1 hybrids. We surveyed 118 trees for agelenid litter webs at two distances from the trees (0-100 and 100-200 cm from trunk) and measured litter depth as a potential mechanism of web density patterns. Five major results emerged: web density within a 1-m radius of P. angustifolia was approximately three times higher than within a 1-m radius of P. fremontii, with F1 hybrids having intermediate densities; web density responded to P. angustifolia and F1 hybrid genotypes as indicated by a significant genotype × distance interaction, with some genotypes exhibiting a strong decline in web density with distance, while others did not; P. angustifolia litter layers were deeper than those of P. fremontii at both distance classes, and litter depth among P. angustifolia genotypes differed up to 300%; cross type and genotype influenced web density via their effects on litter depth, and these effects were influenced by distance; web density was more sensitive to the effects of tree cross type than genotype. By influencing generalist predators, plant hybridization and genotype may indirectly impact trophic interactions such as intraguild predation, possibly affecting trophic cascades and ecosystem processes.
Collapse
Affiliation(s)
- Todd Wojtowicz
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA,
| | | | | | | | | |
Collapse
|
46
|
Neighbours matter: natural selection on plant size depends on the identity and diversity of the surrounding community. Evol Ecol 2014. [DOI: 10.1007/s10682-014-9727-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Talluto L, Benkman CW. Conflicting selection from fire and seed predation drives fine-scaled phenotypic variation in a widespread North American conifer. Proc Natl Acad Sci U S A 2014; 111:9543-8. [PMID: 24979772 PMCID: PMC4084486 DOI: 10.1073/pnas.1400944111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent work has demonstrated that evolutionary processes shape ecological dynamics on relatively short timescales (eco-evolutionary dynamics), but demonstrating these effects at large spatial scales in natural landscapes has proven difficult. We used empirical studies and modeling to investigate how selective pressures from fire and predispersal seed predation affect the evolution of serotiny, an ecologically important trait. Serotiny is a highly heritable key reproductive trait in Rocky Mountain lodgepole pine (Pinus contorta subsp. latifolia), a conifer that dominates millions of hectares in western North America. In these forests, the frequency of serotiny determines postfire seedling density with corresponding community- and ecosystem-level effects. We found that serotinous individuals have a selective advantage at high fire frequencies and low predation pressure; however, very high seed predation shifted the selective advantage to nonserotinous individuals even at high fire frequencies. Simulation modeling suggests that spatial variation in the frequency of serotiny results from heterogeneity in these two selective agents. These results, combined with previous findings showing a negative association between the density of seed predators and the frequency of serotiny at both landscape and continental scales, demonstrate that contemporary patterns in serotiny reflect an evolutionary response to conflicting selection pressures from fire and seed predation. Thus, we show that variation in the frequency of a heritable polygenic trait depends on spatial variation in two dominant selective agents, and, importantly, the effects of the local trait variation propagate with profound consequences to the structure and function of communities and ecosystems across a large landscape.
Collapse
Affiliation(s)
- Lauren Talluto
- Département de Biologie, Université du Québec à Rimouski, Rimouski, QC, Canada G5L 3A1; andProgram in Ecology andDepartment of Zoology and Physiology, University of Wyoming, Laramie, WY 82071
| | - Craig W Benkman
- Program in Ecology andDepartment of Zoology and Physiology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
48
|
Whitlock R. Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis. THE JOURNAL OF ECOLOGY 2014; 102:857-872. [PMID: 25210204 PMCID: PMC4142011 DOI: 10.1111/1365-2745.12240] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/20/2014] [Indexed: 05/20/2023]
Abstract
Understanding the effects of intraspecific genetic diversity on the structure and functioning of ecological communities is a fundamentally important part of evolutionary ecology and may also have conservation relevance in identifying the situations in which genetic diversity coincides with species-level diversity.Early studies within this field documented positive relationships between genetic diversity and ecological structure, but recent studies have challenged these findings. Conceptual synthesis has been hampered because studies have used different measures of intraspecific variation (phenotypically adaptive vs. neutral) and have considered different measures of ecological structure in different ecological and spatial contexts. The aim of this study is to strengthen conceptual understanding by providing an empirical synthesis quantifying the relationship between genetic diversity and ecological structure.Here, I present a meta-analysis of the relationship between genetic diversity within plant populations and the structure and functioning of associated ecological communities (including 423 effect sizes from 70 studies). I used Bayesian meta-analyses to examine (i) the strength and direction of this relationship, (ii) the extent to which phenotypically adaptive and neutral (molecular) measures of diversity differ in their association with ecological structure and (iii) variation in outcomes among different measures of ecological structure and in different ecological contexts.Effect sizes measuring the relationship between adaptive diversity (genotypic richness) and both community- and ecosystem-level ecological responses were small, but significantly positive. These associations were supported by genetic effects on species richness and productivity, respectively.There was no overall association between neutral genetic diversity and measures of ecological structure, but a positive correlation was observed under a limited set of demographic conditions. These results suggest that adaptive and neutral genetic diversity should not be treated as ecologically equivalent measures of intraspecific variation.Synthesis. This study advances the debate over whether relationships between genetic diversity and ecological structure are either simply positive or negative, by showing how the strength and direction of these relationships changes with different measures of diversity and in different ecological contexts. The results provide a solid foundation for assessing when and where an expanded synthesis between ecology and genetics will be most fruitful.
Collapse
Affiliation(s)
- Raj Whitlock
- Institute of Integrative Biology, University of LiverpoolLiverpool, L69 7ZB, UK
| |
Collapse
|
49
|
Davies C, Ellis CJ, Iason GR, Ennos RA. Genotypic variation in a foundation tree (Populus tremula L.) explains community structure of associated epiphytes. Biol Lett 2014; 10:20140190. [PMID: 24789141 PMCID: PMC4013706 DOI: 10.1098/rsbl.2014.0190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Community genetics hypothesizes that within a foundation species, the genotype of an individual significantly influences the assemblage of dependent organisms. To assess whether these intra-specific genetic effects are ecologically important, it is required to compare their impact on dependent organisms with that attributable to environmental variation experienced over relevant spatial scales. We assessed bark epiphytes on 27 aspen (Populus tremula L.) genotypes grown in a randomized experimental array at two contrasting sites spanning the environmental conditions from which the aspen genotypes were collected. We found that variation in aspen genotype significantly influenced bark epiphyte community composition, and to the same degree as environmental variation between the test sites. We conclude that maintaining genotypic diversity of foundation species may be crucial for conservation of associated biodiversity.
Collapse
Affiliation(s)
- Chantel Davies
- Institute of Evolutionary Biology, University of Edinburgh, , Mayfield Road, EH9 3JT, UK
| | | | | | | |
Collapse
|
50
|
Effects of genotypic diversity of Phragmites australis on primary productivity and water quality in an experimental wetland. Oecologia 2014; 175:163-72. [PMID: 24522547 DOI: 10.1007/s00442-014-2896-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
An increasing number of studies have shown that genetic diversity within plant species can influence important ecological processes. Here, we report a two-year wetland mesocosm experiment in which genotypic richness of Phragmites australis was manipulated to examine its effects on primary productivity and nitrogen removal from water. We used six genotypes of P. australis, and compared primary productivity and nitrogen concentration in the outflow water of the mesocosms between monocultures and polycultures of all six genotypes. We also quantified the abundance of denitrifying bacteria, as denitrification is a primary mechanism of nitrogen removal in addition to the biotic uptake by P. australis. Plant productivity was significantly greater in genotypic polycultures compared to what was expected based on monocultures. This richness effect on productivity was driven by both complementary and competitive interactions among genotypes. In addition, nitrogen removal rates of mesocosms were generally greater in genotypic polycultures compared to those expected based on monocultures. This effect, particularly pronounced in autumn, may largely be attributable to the enhanced uptake of nitrogen by P. australis, as the abundance of nitrite reducers did not increase with plant genotypic diversity. Although our effect sizes were relatively small compared to previous experiments, our study emphasizes the effect of genotypic interactions in regulating multiple ecological processes.
Collapse
|