1
|
Su XY, Li S, Fan YY, Wei T, Lu ZY, Ye P. Effect of Local Zoledronic Acid Application in Alveolar Bone Healing: An Experimental Study. J Craniofac Surg 2024:00001665-990000000-02089. [PMID: 39453761 DOI: 10.1097/scs.0000000000010807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024] Open
Abstract
BACKGROUND This experimental study aimed to assess the three-dimensional and histological changes of the alveolar socket with local application of ZA. METHODS Nine male New Zealand white rabbits were randomly allocated into 4-, 8-, and 12-week groups after the extraction of 4 incisor teeth. The upper and lower right sockets were filled with ZA + collagen sponge (ZA-CS group), while the left sockets were filled with collagen sponge alone (CS group) postoperatively. At 4, 8, and 12 weeks (T1, T2, and T3) after the extraction, radiographic and histomorphometric evaluations were conducted for both groups. RESULTS The increase in alveolar bone density of the ZA-CS group at T2 and T3 was significantly higher than the CS group (P<0.01). Three-dimensional evaluations demonstrated no statistically significant differences in ridge height and width between the 2 groups at T2 and T3. On histological evaluation, the ZA-CS group included significantly fewer TRAP-positive cells than the CS group at T1 (P<0.05). In ALP staining, all cases in both groups were classified as positive at each time point. Masson trichrome staining showed significantly higher mean red collagen volume fraction in the ZA-CS group (76.09%, 79.64%) than in the CS group (66.17%, 69.22%) at T2 and T3, respectively (P<0.05 and <0.01). CONCLUSIONS Although local ZA application with collagen sponge did not reduce alveolar ridge contraction, it improved the bone density and maturity of newly formed bone after tooth extraction.
Collapse
Affiliation(s)
- Xin-Yi Su
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences
| | - Shu Li
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences
| | - Ying-Ying Fan
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences
| | - Tai Wei
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhi-Yue Lu
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences
| | - Peng Ye
- Department of Stomatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences
| |
Collapse
|
2
|
Kim M, Choi M, Kwon YD, Ohe JY, Jung J. The Potential of Enamel Matrix Derivative in Countering Bisphosphonate-Induced Effects in Osteoblasts. Life (Basel) 2024; 14:1088. [PMID: 39337872 PMCID: PMC11432935 DOI: 10.3390/life14091088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The suppressive effect of bisphosphonates (BPs) on bone metabolism is considered to be a major cause of medication-related osteonecrosis of the jaw (MRONJ). Enamel matrix derivative (EMD) stimulates and activates growth factors, leading to the regeneration of periodontal tissues. In this study, we aimed to explore the potential of EMD in reversing the detrimental effects of BPs on human fetal osteoblasts (hFOBs) and osteosarcoma-derived immature osteoblasts (MG63s) by assessing cell viability, apoptosis, migration, gene expression, and protein synthesis. While the suppressive effect of zoledronate (Zol) on cell viability and migration was observed, the addition of EMD significantly mitigated this effect and enhanced cell viability and migration. Furthermore, an increased apoptosis rate induced by Zol was decreased with the addition of EMD. The decreased gene expression of alkaline phosphatase (ALP), osteocalcin (OC), and the receptor activator of nuclear factors kappa-B ligand (RANKL) caused by BP treatment was reversed by the co-addition of EMD to hFOB cells. This trend was also observed for ALP and bone sialoprotein (BSP) levels in MG63 cells. Furthermore, suppressed protein levels of OC, macrophage colony-stimulating factor (M-CSF), BSP, and type 1 collagen (COL1) were recovered following the addition of EMD. This finding suggests that EMD could mitigate the effects of BPs, resulting in the recovery of cell survival, migration, and gene and protein expression. However, the behavior of the osteoblasts was not fully restored, and further studies are necessary to confirm their effects at the cellular level and to assess their clinical usefulness in vivo for the prevention and treatment of MRONJ.
Collapse
Affiliation(s)
- Minah Kim
- Department of Oral & Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Saint Vincent's Hospital, The Catholic University of Korea, Suwon 16247, Republic of Korea
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minji Choi
- Clinical Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Yong-Dae Kwon
- Department of Oral & Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Joo-Young Ohe
- Department of Oral & Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Junho Jung
- Department of Oral & Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Costa de Sousa V, Nunes Sousa FR, Felipe Vasconcelos R, Angelino Barreto G, Martins CS, Romero Dias N, Costa S, Chaves Bernardino MJ, de Almeida Silva G, Linhares N, Gondim D, Marques M, Chaves H, Alves K, Leitão R, Brito GAC, Nobre Pinho Ribeiro ME, Goes P. Polysacharide of Agaricus blazei gel mitigates bone necrosis in model of the jaws related to bisphosphonate via Wnt signaling. Sci Rep 2024; 14:8215. [PMID: 38589479 PMCID: PMC11002000 DOI: 10.1038/s41598-024-58445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
To investigate de effect of PAb gel on the bone tissue of rats submitted to Bisphosphonate-related osteonecrosis of the jaws (BRONJ). Initially, 54 animals were submitted to BRONJ model by Zoledronic Acid (ZA) (0.1 mg/kg 3x/wk for 9 wk, ip), followed by the 1st upper left molar extraction at the 8th wk. After tooth removal, the animals were divided into 3 groups, ZA that received placebo gel or PAb gel that received 1% PAb gel, inside the dental alveolus. The control Group (CONTROL) received 0.1 mg/kg of 0.9% saline and then placebo gel. Three weeks after tooth extraction, the animals were euthanized, and maxillae were colleted for macroscopic, radiographic, histological and Raman spectomery assays. Additionally, GSK3b, beta-catenin, and Runx2 mRNA expressions were determined. Blood samples were collected for the analysis of Bone-specific alkaline phosphatase (BALP) levels. PAb gel improved mucosal healing, increased the number of viable osteocytes, while it reduced the number of empty lacunae, as well as the amount of bone sequestration. Furthermore, PAb gel positively influenced the number and functionality of osteoblasts by stimulating Wnt signaling, thereby inducing bone remodeling. Additionally, PAb gel contributed to improved bone quality, as evidenced by an increase in bone mineral content, a decrease in bone solubility, and an enhancement in the quality of collagen, particularly type I collagen. PAb gel mitigated bone necrosis by stimulating of bone remodeling through Wnt signaling and concurrently improved bone quality. PAb gel emerges as a promising pharmacological tool for aiding in BRONJ therapy or potentially preventing the development of BRONJ.
Collapse
Affiliation(s)
- Vanessa Costa de Sousa
- Post Graduation of Morphological Science, Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Gisele Angelino Barreto
- Post Graduation of Morphological Science, Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Conceição S Martins
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Nilson Romero Dias
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Sislana Costa
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Nadine Linhares
- Post Graduation of Dentistry, School of Dentistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Delane Gondim
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Mirna Marques
- Faculty of Medical School, Federal University of Ceará, Sobral, CE, Brazil
| | - Helliada Chaves
- School of Dentistry, Federal University of Ceará, Sobral, CE, Brazil
| | - Karuza Alves
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Renata Leitão
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Gerly A C Brito
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Paula Goes
- Department of Pathology and Legal Medicine, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil.
- Lab of Medical Immunology, Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil.
| |
Collapse
|
4
|
Manzano-Moreno FJ, de Luna-Bertos E, Toledano-Osorio M, Urbano-Arroyo P, Ruiz C, Toledano M, Osorio R. Biomimetic Collagen Membranes as Drug Carriers of Geranylgeraniol to Counteract the Effect of Zoledronate. Biomimetics (Basel) 2023; 9:4. [PMID: 38248578 PMCID: PMC10813297 DOI: 10.3390/biomimetics9010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
To counteract the effect of zoledronate and decrease the risk of osteonecrosis of the jaw (BRONJ) development in patients undergoing guided bone regeneration surgery, the use of geranylgeraniol (GGOH) has been proposed. Collagen membranes may act as biomimetical drug carriers. The objective of this study was to determine the capacity of collagen-based membranes doped with GGOH to revert the negative impact of zoledronate on the growth and differentiation of human osteoblasts. MG-63 cells were cultured on collagen membranes. Two groups were established: (1) undoped membranes and (2) membranes doped with geranylgeraniol. Osteoblasts were cultured with or without zoledronate (50 μM). Cell proliferation was evaluated at 48 h using the MTT colorimetric method. Differentiation was tested by staining mineralization nodules with alizarin red and by gene expression analysis of bone morphogenetic proteins 2 and 7, alkaline phosphatase (ALP), bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7), type I collagen (Col-I), osterix (OSX), osteocalcin (OSC), osteoprotegerin (OPG), receptor for RANK (RANKL), runt-related transcription factor 2 (Runx-2), TGF-β1 and TGF-β receptors (TGF-βR1, TGF-βR2, and TGF-βR3), and vascular endothelial growth factor (VEGF) with real-time PCR. One-way ANOVA or Kruskal-Wallis and post hoc Bonferroni tests were applied (p < 0.05). Scanning electron microscopy (SEM) observations were also performed. Treatment of osteoblasts with 50 μM zoledronate produced a significant decrease in cell proliferation, mineralization capacity, and gene expression of several differentiation markers if compared to the control (p < 0.001). When osteoblasts were treated with zoledronate and cultured on GGOH-doped membranes, these variables were, in general, similar to the control group (p > 0.05). GGOH applied on collagen membranes is able to reverse the negative impact of zoledronate on the proliferation, differentiation, and gene expression of different osteoblasts' markers.
Collapse
Affiliation(s)
- Francisco Javier Manzano-Moreno
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, 18071 Granada, Spain;
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
| | - Elvira de Luna-Bertos
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Manuel Toledano-Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (P.U.-A.)
| | - Paula Urbano-Arroyo
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (P.U.-A.)
| | - Concepción Ruiz
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM), Parque de Tecnológico de la Salud (PTS), 18071 Granada, Spain
| | - Manuel Toledano
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (P.U.-A.)
| | - Raquel Osorio
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (P.U.-A.)
| |
Collapse
|
5
|
Saginova D, Tashmetov E, Kamyshanskiy Y, Tuleubayev B, Rimashevskiy D. Evaluation of Bone Regenerative Capacity in Rabbit Femoral Defect Using Thermally Disinfected Bone Human Femoral Head Combined with Platelet-Rich Plasma, Recombinant Human Bone Morphogenetic Protein 2, and Zoledronic Acid. Biomedicines 2023; 11:1729. [PMID: 37371824 DOI: 10.3390/biomedicines11061729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
This research aimed to assess the effect of bone allograft combined with platelet-rich plasma (PRP), recombinant human bone morphogenetic protein-2 (rhBMP-2), and zoledronic acid (Zol) on bone formation. A total of 96 rabbits were used, and femoral bone defects (5 mm) were created. The rabbits were divided into four groups: (1) bone allograft with PRP (AG + PRP), (2) bone allograft with rhBMP-2 5 μg (AG + BMP-2), (3) bone allograft with Zol 5 μg (AG + Zol), and (4) bone allograft (AG). A histopathological examination was performed to evaluate bone defect healing after 14, 30, and 60 days. The new bone formation and neovascularization inside the bone allograft was significantly greater in the AG + PRP group compared to AG and AG + Zol groups after 14 and 30 days (p < 0.001). The use of bone allograft with rhBMP-2 induced higher bone formation compared to AG and AG + Zol groups on days 14 and 30 (p < 0.001), but excessive osteoclast activity was observed on day 60. The local co-administration of Zol with a heat-treated allograft inhibits allograft resorption as well as new bone formation at all periods. In conclusion, this study demonstrated that PRP and rhBMP-2, combined with a Marburg bone allograft, can significantly promote bone formation in the early stage of bone defect healing.
Collapse
Affiliation(s)
- Dina Saginova
- Center for Applied Scientific Research, National Scientific Center of Traumatology and Orthopaedics Named after Academician N.D. Batpenov, Astana 010000, Kazakhstan
| | - Elyarbek Tashmetov
- Department of Surgical Diseases, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Yevgeniy Kamyshanskiy
- Pathology Unit of the University Clinic, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Berik Tuleubayev
- Department of Surgical Diseases, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Denis Rimashevskiy
- Department of Traumatology and Orthopaedics, Peoples' Friendship University of Russia, Moscow 101000, Russia
| |
Collapse
|
6
|
Cardoso LM, Pansani TN, de Souza Costa CA, Basso FG. Naringenin and proanthocyanidins pre-treatment decreases synthesis and activity of gelatinases induced by zoledronic acid in a dental implant surface in vitro model. Arch Oral Biol 2023; 151:105703. [PMID: 37146390 DOI: 10.1016/j.archoralbio.2023.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023]
Abstract
OBJECTIVE To assess the effects of pre-treatment with proanthocyanidins (PA) flavonoids, from grape seed extract, and synthetic naringenin (NA) on the synthesis of matrix metalloproteinases (MMPs) gelatinases and their tissue inhibitors (TIMPs), as well as the gelatinolytic activity of MMPs by human gingival fibroblasts (HGF) and osteoblasts (Ob) exposed to zoledronic acid (ZA) in a dental implant surface in vitro model. DESIGN The highest non-cytotoxic concentrations of NA and PA were determined for HGF (10 μg/mL; defined by previous study) and Ob (0.5 μg/mL; defined by prestoBlue assay). Then, HFG and Ob were individually seeded onto titanium discs, and after 24 h, cells were pre-treated (or not) with NA or PA, followed (or not) by exposure to ZA. Next, MMP-2, MMP-9, TIMP-1, TIMP-2 synthesis (ELISA), and gelatinolytic activity (in situ zymography) was evaluated. Data were analyzed by one-way ANOVA and Tukey tests (α = 0.05). RESULTS ZA treatment increased the synthesis (p < 0.05) and activity of MMPs; flavonoids pre-treatment controlled ZA-induced gelatinolytic effects, down-regulating MMPs synthesis (p < 0.05) and activity by HGF and Ob. For HGF, NA and PA pre-treatment did not up-regulate TIMP synthesis after ZA exposure (p > 0.05); for Ob, TIMP-2 was up-regulated (p < 0.05) by flavonoids, followed by ZA. CONCLUSIONS NA and PA pre-treatment provides interesting results in the modulation of ZA deleterious effects, down-regulating MMP-2 and MMP-9 synthesis and activity by HGF and Ob and up-regulating TIMP-2 by Ob.
Collapse
Affiliation(s)
- Lais Medeiros Cardoso
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP) - School of Dentistry, 1680 Humaitá Street, Araraquara, São Paulo 14801-903, Brazil
| | - Taisa Nogueira Pansani
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP) - School of Dentistry, 1680 Humaitá Street, Araraquara, São Paulo 14801-903, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, São Paulo State University (UNESP) - School of Dentistry, 1680 Humaitá Street, Araraquara, São Paulo 14801-903, Brazil
| | - Fernanda Gonçalves Basso
- Department of Dentistry, Ribeirão Preto University (UNAERP), 2201 Costábile Romano Avenue, Ribeirão Preto, São Paulo 14096-900, Brazil.
| |
Collapse
|
7
|
Srivichit B, Thonusin C, Chattipakorn N, Chattipakorn SC. Impacts of bisphosphonates on the bone and its surrounding tissues: mechanistic insights into medication-related osteonecrosis of the jaw. Arch Toxicol 2022; 96:1227-1255. [PMID: 35199244 DOI: 10.1007/s00204-021-03220-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/23/2021] [Indexed: 01/20/2023]
Abstract
Bisphosphonates are widely used as anti-resorptive agents for the treatment of various bone and joint diseases, including advanced osteoporosis, multiple myeloma, bone metastatic cancers, Paget's disease of bone, and rheumatoid arthritis. Bisphosphonates act as an anti-osteoclast via the induction of osteoclast apoptosis, resulting in a decreased rate of bone resorption. Unfortunately, there is much evidence to demonstrate that the long-term use of bisphosphonates is associated with osteonecrosis. The pathogenesis of osteonecrosis includes the death of osteoblasts, osteoclasts, and osteocytes. In addition, the functions of endothelial cells, epithelial cells, and fibroblasts are impaired in osteonecrosis, leading to disruptive angiogenesis, and delayed wound healing. Osteonecrosis is most commonly found in the jawbone and the term medication-related osteonecrosis of the jaw (MRONJ) has become the condition of greatest clinical concern among patients receiving bisphosphonates. Although surgical treatment is an effective strategy for the treatment of MRONJ, several non-surgical interventions for the attenuation of MRONJ have also been investigated. With the aim of increasing understanding around MRONJ, we set out to summarize and discuss the holistic effects of bisphosphonates on the bone and its surrounding tissues. In addition, non-surgical interventions for the attenuation of bisphosphonate-induced osteonecrosis were reviewed and discussed.
Collapse
Affiliation(s)
- Bhumrapee Srivichit
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
8
|
Hofmann E, Eggers B, Heim N, Kramer FJ, Nokhbehsaim M, Götz W. Bevacizumab and sunitinib mediate osteogenic and pro-inflammatory molecular changes in primary human alveolar osteoblasts in vitro. Odontology 2022; 110:634-647. [PMID: 35171372 PMCID: PMC9463285 DOI: 10.1007/s10266-022-00691-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/04/2022] [Indexed: 12/03/2022]
Abstract
Antiangiogenic medications target the de novo blood vessel formation in tumorigenesis. However, these novel drugs have been linked to the onset of medication-related osteonecrosis of the jaw (MRONJ). The aim of this in vitro study was to examine the effects of the vascular endothelial growth factor A (VEGFA) antibody bevacizumab (BEV) and the receptor tyrosine kinase inhibitor (RTKI) sunitinib (SUN) on primary human osteoblasts derived from the alveolar bone. Primary human alveolar osteoblasts (HAOBs) were treated with BEV or SUN for 48 h. Cellular metabolic activity was examined by XTT assay. Differentially regulated genes were identified by screening of 22 selected osteogenic and angiogenic markers by quantitative real-time reverse transcriptase polymerase chain reaction (qRT2-PCR). Protein levels of alkaline phosphatase (ALP), collagen type 1, α1 (COL1A1) and secreted protein acidic and cysteine rich (SPARC) were examined by enzyme-linked immunoassay (ELISA). Treatment with BEV and SUN did not exhibit direct cytotoxic effects in HAOBs as confirmed by XTT assay. Of the 22 genes examined by qRT2-PCR, four genes were significantly regulated after BEV treatment and eight genes in the SUN group as compared to the control group. Gene expression levels of ALPL, COL1A1 and SPARC were significantly downregulated by both drugs. Further analysis by ELISA indicated the downregulation of protein levels of ALP, COL1A1 and SPARC in the BEV and SUN groups. The effects of BEV and SUN in HAOBs may be mediated by alterations to osteogenic and catabolic markers. Therapeutic or preventive strategies in MRONJ may address drug-induced depression of osteoblast differentiation.
Collapse
Affiliation(s)
- Elena Hofmann
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr 17, 53111, Bonn, Germany.
- Department of Oral and Maxillofacial Surgery, Charité- Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr 17, 53111, Bonn, Germany
| | - Nils Heim
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr 17, 53111, Bonn, Germany
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr 17, 53111, Bonn, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, 53111, Bonn, Germany
| | - Werner Götz
- Department of Orthodontics, University Hospital Bonn, 53111, Bonn, Germany
| |
Collapse
|
9
|
Singhatanadgit W, Hankamolsiri W, Janvikul W. Geranylgeraniol prevents zoledronic acid-mediated reduction of viable mesenchymal stem cells via induction of Rho-dependent YAP activation. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202066. [PMID: 34113452 PMCID: PMC8187992 DOI: 10.1098/rsos.202066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/23/2021] [Indexed: 05/03/2023]
Abstract
Long-term use of zoledronic acid (ZA) increases the risk of medication-related osteonecrosis of the jaw (MRONJ). This may be attributed to ZA-mediated reduction of viable mesenchymal stem cells (MSCs). ZA inhibits protein geranylgeranylation, thus suppressing cell viability and proliferation. Geranylgeraniol (GGOH), which is a naturally found intermediate compound in the mevalonate pathway, has positive effects against ZA. However, precise mechanisms by which GGOH may help preserve stem cell viability against ZA are not fully understood. The objective of this study was to investigate the cytoprotective mechanisms of GGOH against ZA. The results showed that while ZA dramatically decreased the number of viable MSCs, GGOH prevented this negative effect. GGOH-rescued ZA-exposed MSCs formed mineralization comparable to that produced by normal MSCs. Mechanistically, GGOH preserved the number of viable MSCs by its reversal of ZA-mediated Ki67+ MSC number reduction, cell cycle arrest and apoptosis. Moreover, GGOH prevented ZA-suppressed RhoA activity and YAP activation. The results also established the involvement of Rho-dependent YAP and YAP-mediated CDK6 in the cytoprotective ability of GGOH against ZA. In conclusion, GGOH preserves a pool of viable MSCs with osteogenic potency against ZA by rescuing the activity of Rho-dependent YAP activation, suggesting GGOH as a promising agent and YAP as a potential therapeutic target for MRONJ.
Collapse
Affiliation(s)
- Weerachai Singhatanadgit
- Faculty of Dentistry, Thammasat University, Pathumthani, 12121, Thailand
- Research Unit in Mineralized Tissue Reconstruction, Thammasat University, Pathumthani, 12121, Thailand
| | - Weerawan Hankamolsiri
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani 12120, Thailand
| | - Wanida Janvikul
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani 12120, Thailand
| |
Collapse
|
10
|
Lilakhunakon C, Suwanpateeb J, Patntirapong S. Inhibitory Effects of Alendronate on Adhesion and Viability of Preosteoblast Cells on Titanium Discs. Eur J Dent 2021; 15:502-508. [PMID: 34100275 PMCID: PMC8382445 DOI: 10.1055/s-0041-1726170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Objective
This study aimed to investigate the effects of alendronate (ALN; a bisphosphonate) on adhesion and viability of preosteoblasts using different cell passages on sandblasted and acid-etched (SLA) Ti surfaces.
Materials and Methods
Preosteoblast, MC3T3, cells (passage 42; P42 and passage 62; P62) were cultured with ALN (1 and 5 µM) on cell culture plate for 7 days. Cells were lifted, counted, and seeded on SLA Ti surfaces. Cells were incubated on the discs for 6 hours to examine cell adhesion by using confocal microscopy and for 24 hours to determine cell viability by using MTT assay.
Results
ALN interfered with cell adhesion on Ti surfaces by reducing the cell number in both cell passages. Nuclei of untreated cells showed oval shape, whereas some nuclei of ALN-treated cells demonstrated crescent and condensed appearance. ALN at 1 and 5 µM significantly decreased nuclear area and perimeter in P42, while ALN at 5 µM reduced nuclear area and perimeter in P62. After 24 hours, cells (P42) grown on Ti surfaces showed decreased cell viability when culturing with 5 µM ALN.
Conclusion
ALN reduced cell adhesion and viability of preosteoblasts on Ti surfaces. ALN treatment seemed to exert higher inhibitory effects on nuclear shape and size as well as cell viability in lower cell passage. This led to the reduction in cell to implant surface interaction after encountering bisphosphonate treatment.
Collapse
Affiliation(s)
- Charukrit Lilakhunakon
- Department of Implantology, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | - Jintamai Suwanpateeb
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Somying Patntirapong
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
11
|
Gao SY, Lin RB, Huang SH, Liang YJ, Li X, Zhang SE, Ouyang DQ, Li K, Zheng GS, Liao GQ. PDGF-BB exhibited therapeutic effects on rat model of bisphosphonate-related osteonecrosis of the jaw by enhancing angiogenesis and osteogenesis. Bone 2021; 144:115117. [PMID: 31676407 DOI: 10.1016/j.bone.2019.115117] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
The mechanism and effective treatment of bisphosphonate-related osteonecrosis of the jaw (BRONJ) are still uncertain. Our previous study revealed that zoledronate (ZOL) preferentially inhibited osteoclasts formation and platelet-derived growth factor-BB (PDGF-BB) secretion, causing suppression of angiogenesis and osteogenesis in vitro. The present study aimed to elucidate whether PDGF-BB had therapeutic effects on rat model of BRONJ by enhancing angiogenesis and angiogenesis. Firstly, rat model of BRONJ was established by ZOL and dexamethasone administration, followed by teeth extraction. The occurrence of BRONJ was confirmed and detected dead bone formation by maxillae examination, micro-CT scan and HE staining (10/10). Compared to control rats (0/10), both angiogenesis and mature bone formation were suppressed in BRONJ-like rats, evidenced by enzyme-linked immunosorbent assay (ELISA) for VEGF (P < 0.01), immunohistochemistry of CD31 (P < 0.05) and OCN (P < 0.01). Moreover, in the early stage of bone healing, the number of preosteoclasts (P < 0.001) and PDGF-BB secretion (P < 0.05) were significantly decreased in bisphosphonates-treated rats, along with the declined numbers of microvessels (P < 0.05) and osteoblasts (P < 0.05). In vitro study, CCK8 assay, alizarin red S staining and western blot assay showed that mandible-derived bone marrow mesenchymal stem cells (BMMSCs) in BRONJ-like rats presented suppressed functions of proliferation, osteogenesis and angiogenesis. Interestingly, recombinant PDGF-BB was able to rescue the impaired functions of BMMSCs derived from BRONJ-like rats at more than 10 ng/ml. Then fibrin sealant with or without recombinant PDGF-BB were tamped into the socket after debridement in BRONJ rats. After 8 weeks, fibrin sealant containing PDGF-BB showed significant therapeutic effects on BRONJ-like rats (bone healing: 8/10 vs 3/10, P < 0.05) with enhancing microvessels and mature bone formation. Our study suggested that the inhibition of angiogenesis and osteogenesis, the potential mechanisms of BRONJ, might partly result from suppression of PDGF-BB secretion in the early stage of bone healing. PDGF-BB local treatment after debridement might avail the healing of BRONJ by increasing angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Si-Yong Gao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Rui-Bang Lin
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Si-Hui Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Yu-Jie Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Si-En Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Dai-Qiao Ouyang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Kan Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Guang-Sen Zheng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China.
| | - Gui-Qing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Patntirapong S, Korjai N, Matchimapiro M, Sungkaruk P, Suthamporn Y. Geranylgeraniol reverses alendronate-induced MC3T3 cell cytotoxicity and alteration of osteoblast function via cell cytoskeletal maintenance. J Oral Pathol Med 2021; 50:191-199. [PMID: 33164239 DOI: 10.1111/jop.13120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alendronate (ALN) is a bisphosphonate, which is prescribed as an anti-osteoporotic drug. ALN has been shown to increase osteoblast cell death and decrease bone mineralization. ALN inhibits a key regulatory enzyme in the mevalonate pathway, consequently reducing geranylgeranyl pyrophosphate (GGPP). Geranylgeraniol (GGOH) can be converted to GGPP. The aim of this study was to investigate the effects of exogenous GGOH on MC3T3 cell viability, cell cycle, osteoblast function, and cell cytoskeleton under ALN treatment. METHODS MC3T3 cells and osteoblast precursors, were incubated with ALN (0-50 µmol/L) and GGOH (0-50 µmol/L). After treatment, cells were evaluated for cell viability, cell cycle, osteoblast function, and cell cytoskeleton by MTT, flow cytometry, alizarin red S assay, and fluorescent microscopy, respectively. RESULTS ALN reduced cell viability and bone nodule formation in a dose-dependent manner. GGOH partially inhibited the negative effects of ALN on cell viability and function. ALN increased the percentages of cell apoptosis and necrosis and arrested cells in G2M phase. Co-incubation with GGOH partially reduced late cell apoptosis and rescued cell cycle arrest. Furthermore, ALN altered MC3T3 morphology and decreased cell area, actin stress fiber density as well as nuclear area. GGOH abolished the effect of ALN on cell area, actin stress fiber density, and nuclear area. CONCLUSIONS GGOH partially inhibited negative effects of ALN on cell viability, cell cycle, function, and cell cytoskeleton. It might be an additional option for increasing osteoblast function and reducing apoptosis of osteoblasts in the condition treated with low bisphosphonate concentration.
Collapse
Affiliation(s)
| | - Nareerat Korjai
- Faculty of Dentistry, Thammasat University, Pathumthani, Thailand
| | | | | | | |
Collapse
|
13
|
Nagasaki M, Nakai K, Tanaka H, Ozaki M, Kato K, Koshi R, Maeno M, Nishikubo S, Kawato T, Tonogi M. Lipopolysaccharide and High Concentrations of Glucose Enhances Zoledronate-induced Increase in RANKL/OPG Ratio by Upregulating PGE 2 Production in Osteoblasts. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Kumiko Nakai
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Manami Ozaki
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Kengo Kato
- Nihon University Graduate School of Dentistry
| | - Ryosuke Koshi
- Department of Oral Health Sciences, Nihon University School of Dentistry
| | | | - Shuichi Nishikubo
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
- Division of Oral Structural and Functional Biology, Nihon University School of Dentistry
| | - Takayuki Kawato
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
- Division of Oral Structural and Functional Biology, Nihon University School of Dentistry
| |
Collapse
|
14
|
Patntirapong S, Chanruangvanit C, Lavanrattanakul K, Satravaha Y. Assessment of bisphosphonate treated-osteoblast behaviors by conventional assays and a simple digital image analysis. Acta Histochem 2021; 123:151659. [PMID: 33285364 DOI: 10.1016/j.acthis.2020.151659] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
The main objective of this study was to analyze the changes in osteoblast behaviors by two different methods, a simple digital image analysis method and conventional assays. Osteoblast progenitor cells and osteoblasts were treated with alendronate (ALN; a nitrogen-containing bisphosphonate). Osteoblast behaviors such as the uptake of ALN, cell proliferation, cell differentiation, and mineralized nodule formation were examined. Quantitative assessments were conducted using a publically available ImageJ software along with conventional methods. Furthermore, ImageJ method and conventional assay for mineralized nodule formation were performed simultaneously and were compared in order to demonstrate the reliability of ImageJ analysis. Osteoblast precursors and osteoblasts responded to ALN treatments. The software could identify various colors and allowed for the quantification of staining intensity and area coverage. Both image analysis and conventional assays detected the changes in cell behaviors between treated and untreated samples. For alizarin red S assay, the staining intensity calculated by ImageJ analysis was comparable to the absorbance measured by conventional assay. These findings showed that digital image analysis along with conventional assays could be used for quantitative assessment to evaluate osteoblast alteration by drug treatment. Image analysis method is practical and might be useful for other applications in the field of biology and medical sciences. It could also be employed in a combination with the conventional assays to strengthen the data.
Collapse
Affiliation(s)
- Somying Patntirapong
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Faculty of Dentistry, Thammasat University, Pathumthani, Thailand.
| | | | | | | |
Collapse
|
15
|
Wiziack Zago PM, Oliveira Sousa IM, Servat-Medina L, Jorge MP, Lima Neto LG, Hass V, Li X, Tasca Gois Ruiz AL, Saxena D, Foglio MA. Standardized Arrabidaea chica Extract Shows Cytoprotective Effects in Zoledronic Acid-Treated Fibroblasts and Osteoblasts. Clin Cosmet Investig Dent 2020; 12:327-333. [PMID: 32848479 PMCID: PMC7429228 DOI: 10.2147/ccide.s259158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/26/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Osteonecrosis of the jaw is a condition associated with intraoral ulceration and bone necrosis induced by antiresorptive medications, such as zoledronic acid, a bisphosphonate. Previous data on Arrabidaea chica (H&B.) Verlot wound healing activity prompted the study reported herein on A. chica standardized hydro alcoholic extract in vitro cytoprotective activity data on epithelial and osteoblastic cells exposed to zoledronic acid (ZA). METHODS Primary human gingival fibroblasts and murine pre-osteoblasts were treated with ZA 10 µM together with 5 or 10 µg.mL-1 A. chica extract for 24h and 48 h. At both times, cells were submitted to viability assay and caspase 3/7 activation evaluation. Statistical analysis used one-way ANOVA and p=0.05. RESULTS In cell viability assay, a drastic damage effect of ZA appeared after 48 h in both epithelial (55.8%) and pre-osteoblastic cells (39.7%). When treated with ZA in combination with A. chica extract, cells showed higher viability values: 74.1%-82.3% for fibroblasts and 66% for pre-osteoblasts. Furthermore, the combined treatment presented lower caspase 3/7 activation in fibroblasts and pre-osteoblasts. CONCLUSION At low concentrations, A. chica extract showed promising cytoprotective effects against ZA-induced damage actions; however, further in vitro and in vivo studies are required to establish the mechanism of action.
Collapse
Affiliation(s)
| | | | - Leila Servat-Medina
- Faculty of Pharmaceutical Sciences at University of Campinas, Campinas, São Paulo, Brazil
| | - Michelle Pedroza Jorge
- Faculty of Pharmaceutical Sciences at University of Campinas, Campinas, São Paulo, Brazil
| | | | - Viviane Hass
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Xin Li
- College of Dentistry, New York University, New York, NY, USA
| | | | - Deepak Saxena
- College of Dentistry, New York University, New York, NY, USA
| | - Mary Ann Foglio
- Faculty of Pharmaceutical Sciences at University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
16
|
Sadhasivam DR, Soundararajan S, Elumalai S, Karuppiah P, Abdullah AL-Dhabi N. Prophylactic supplementation of sinapic acid ameliorates zoledronic acid induced changes in osteoblast survival and differentiation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Boran G, Tavakoli S, Dierking I, Kamali AR, Ege D. Synergistic effect of graphene oxide and zoledronic acid for osteoporosis and cancer treatment. Sci Rep 2020; 10:7827. [PMID: 32385391 PMCID: PMC7211009 DOI: 10.1038/s41598-020-64760-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Zoledronic acid (ZOL) is a third generation bisphosphonate which can be used as a drug for the treatment of osteoporosis and metastasis. In this study, graphene oxide (GO) is conjugated with ZOL, and the nanostructured material is evaluated in terms viability, proliferation and differentiation. Furthermore, the associated morphological changes of bone marrow-derived mesenchymal stem cells (BM-MSC), and Michigan Cancer Foundation-7 (MCF-7) breast cancer cells, as well as the effect of the drugs on mineralization of BM-MSCs are investigated using a variety of characterization techniques including Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM) as well as alamar blue, acridine orange, and alizarin red assays. Nanostructured ZOL-GO with an optimum performance is synthesized using ZOL and GO suspensions with the concentration of 50 µM and 2.91 ng/ml, respectively. ZOL-GO nanostructures can facilitate the mineralization of BM-MSC cells, demonstrated by the formation of clusters around the cells. The results obtained confirm the performance of ZOL-GO nanostructures as promising drug complexes for the treatment of osteoporosis and metastasis.
Collapse
Affiliation(s)
- Gökçen Boran
- Boğaziçi University, Institute of Biomedical Engineering, İstanbul, Turkey, 34368
| | - Sepideh Tavakoli
- Boğaziçi University, Institute of Biomedical Engineering, İstanbul, Turkey, 34368
- Northeastern University, College of Engineering, Boston, Massachusetts USA 02115, Boğaziçi University, Institute of Biomedical Engineering, İstanbul, Turkey, 34368
| | - Ingo Dierking
- University of Manchester, Department of Physics and Astronomy, Manchester, M13 9PL, United Kingdom
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang, China, 110819
| | - Duygu Ege
- Boğaziçi University, Institute of Biomedical Engineering, İstanbul, Turkey, 34368.
| |
Collapse
|
18
|
Koyama C, Hirota M, Okamoto Y, Iwai T, Ogawa T, Hayakawa T, Mitsudo K. A nitrogen-containing bisphosphonate inhibits osteoblast attachment and impairs bone healing in bone-compatible scaffold. J Mech Behav Biomed Mater 2020; 104:103635. [PMID: 32174393 DOI: 10.1016/j.jmbbm.2020.103635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Compromised osteoblast attachment on hydroxyapatite could be involved in the development of bone healing failure. We developed a bone-compatible scaffold that mimics bone structure with sub-micron hydroxyapatite (HA) surfaces, so that we could evaluate the effects of nitrogen-containing bisphosphonate (N-BP) on osteoblast behavior and bone healing. Human osteoblasts were seeded onto the bone-compatible scaffold with or without N-BP, and cell attachment and spreading behavior were evaluated 4 and 24 h after seeding. Then, mineralization was evaluated at 7 and 14 days. The osteoconductive activity of the scaffold was evaluated by implantation for 3 and 6 weeks into a rat cranial bone defect. The numbers of osteoblasts and their diameters were significantly less in N-BP-binding scaffolds than in untreated scaffolds at 4 and 24 h. Mineralization were also significantly less in the N-BP-binding scaffolds than in controls at 7 and 14 days. In vivo study revealed bone formation in N-BP-binding scaffolds was significantly less than in untreated scaffolds at 3 and 6 weeks. These results suggest that N-BP-binding to HA inhibited osteoblast attachment and spreading, thereby compromising bone healing process in the injured bone defect site.
Collapse
Affiliation(s)
- Chika Koyama
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Makoto Hirota
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Yoshiyuki Okamoto
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takahiro Ogawa
- Laboratory for Bone and Implant Sciences, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Box 951668, Los Angeles, CA, 90095-1668, USA
| | - Tohru Hayakawa
- Department of Dental Engineering, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| |
Collapse
|
19
|
Brierly GI, Ren J, Baldwin J, Saifzadeh S, Theodoropoulos C, Tsurkan MV, Lynham A, Hsu E, Nikolarakos D, Werner C, Woodruff MA, Hutmacher DW, Bray LJ. Investigation of Sustained BMP Delivery in the Prevention of Medication-Related Osteonecrosis of the Jaw (MRONJ) in a Rat Model. Macromol Biosci 2019; 19:e1900226. [PMID: 31549786 DOI: 10.1002/mabi.201900226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/21/2019] [Indexed: 01/06/2023]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) poses an ongoing challenge for clinicians and researchers. Currently, there is a lack of preventative measures available for at-risk patients undergoing tooth extractions, especially those with prior bisphosphonate treatment due to osteoporosis or bone metastasis diagnoses. Here, these issues are addressed using a preventative tissue engineering strategy against MRONJ development. This study evaluates the efficacy of a poly(ethylene glycol)-heparin hydrogel as a tool for the delivery of arginylglycylaspartic acid (RGD) and recombinant human bone morphogenic protein-2 (rhBMP-2). Three groups of skeletally mature rats each receive two doses of intravenous zoledronic acid prior to surgery and undergo extraction of the right first mandibular molar with gingival closure. Experimental groups either have the sockets left empty, filled with hydrogel minus rhBMP-2, or filled with hydrogel plus rhBMP-2. Eight weeks postoperatively specimens are analyzed using radiological, histological, and scanning electron microscopy (SEM) techniques. µCT analysis shows increased bone formation with hydrogel/rhBMP-2 delivery compared to the empty socket. Hydrogel-treated groups display increased presence of osteocytes and increased osteoclastic action compared to the empty sockets. These results represent the first step toward improved delivery of rhBMP-2 and a potential MRONJ preventative for patients undergoing bisphosphonate treatment.
Collapse
Affiliation(s)
- Gary I Brierly
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia.,Royal Brisbane and Women's Hospital, Butterfield Street, Herston, Queensland, 4006, Australia
| | - Jiongyu Ren
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia
| | - Jeremy Baldwin
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia
| | - Siamak Saifzadeh
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia
| | - Christina Theodoropoulos
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia
| | - Mikhail V Tsurkan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia.,Leibniz Institute of Polymer Research Dresden e.V., Max Bergmann Center for Biomaterials, Hohe Straße 6, 01069, Dresden, Saxony, Germany
| | - Anthony Lynham
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia
| | - Edward Hsu
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia.,Royal Brisbane and Women's Hospital, Butterfield Street, Herston, Queensland, 4006, Australia
| | - Dimitrios Nikolarakos
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia.,Gold Coast University Hospital, 1 Hospital Boulevard, Southport, Queensland, 4215, Australia
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden e.V., Max Bergmann Center for Biomaterials, Hohe Straße 6, 01069, Dresden, Saxony, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Saxony, Germany
| | - Maria A Woodruff
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia
| | - Laura J Bray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia.,Leibniz Institute of Polymer Research Dresden e.V., Max Bergmann Center for Biomaterials, Hohe Straße 6, 01069, Dresden, Saxony, Germany
| |
Collapse
|
20
|
Liu H, Gu R, Li W, Zhou W, Cong Z, Xue J, Liu Y, Wei Q, Zhou Y. Lactobacillus rhamnosus GG attenuates tenofovir disoproxil fumarate-induced bone loss in male mice via gut-microbiota-dependent anti-inflammation. Ther Adv Chronic Dis 2019; 10:2040622319860653. [PMID: 31321013 PMCID: PMC6610433 DOI: 10.1177/2040622319860653] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Although antiretroviral agents trigger bone loss in human immunodeficiency
virus patients, tenofovir disoproxil fumarate (TDF) induces more severe bone
damage, such as osteoporosis. While, the mechanisms are unclear, probiotic
supplements may be effective against osteoporosis. Methods: C57BL6/J mice were administered with Lactobacillus rhamnosus
GG (LGG)+TDF, TDF, and zoledronic acid+TDF, respectively. Bone morphometry
and biomechanics were evaluated using microcomputed tomography, bone
slicing, and flexural tests. The lymphocyte, proinflammatory cytokines, and
intestinal permeability levels were detected using enzyme-linked
immunosorbent assays, quantitative real-time polymerase chain reaction, and
flow cytometry. The gut microbiota composition and metabolomics were
analyzed using 16S recombinant deoxyribonucleic acid pyrosequencing and
ultra-performance liquid-chromatography–quadrupole time-of-flight mass
spectrometry. Results: LGG administered orally induced marked increases in trabecular bone
microarchitecture, cortical bone volume, and biomechanical properties in the
LGG+TDF group compared with that in the TDF-only group. Moreover, LGG
treatment increased intestinal barrier integrity, expanded regulatory T
cells, decreased Th17 cells, and downregulated osteoclastogenesis-related
cytokines in the bone marrow, spleen, and gut. Furthermore, LGG
reconstructed the gut microbiota and changed the metabolite composition,
especially lysophosphatidylcholine levels. However, the amount of
N-acetyl-leukotriene E4 was the highest in the TDF-only group. Conclusion: LGG reconstructed the community structure of the gut microbiota, promoted the
expression of lysophosphatidylcholines, and improved intestinal integrity to
suppress the TDF-induced inflammatory response, which resulted in
attenuation of TDF-induced bone loss in mice. LGG probiotics may be a safe
and effective strategy to prevent and treat TDF-induced osteoporosis.
Collapse
Affiliation(s)
- Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wei Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wen Zhou
- The Central Laboratory, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zhe Cong
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - Qiang Wei
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5, Panjiayuan, Nanli, Chaoyang District, Beijing 100021, People's Republic of China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| |
Collapse
|
21
|
Giannasi C, Niada S, Farronato D, Lombardi G, Manfredi B, Farronato G, Brini AT. Nitrogen Containing Bisphosphonates Impair the Release of Bone Homeostasis Mediators and Matrix Production by Human Primary Pre-Osteoblasts. Int J Med Sci 2019; 16:23-32. [PMID: 30662325 PMCID: PMC6332484 DOI: 10.7150/ijms.27470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
Bisphosphonates (BPs) represent the first-line treatment for a wide array of bone disorders. Despite their well-known action on osteoclasts, the effects they induce on osteoblasts are still unclear. In order to shed light on this aspect we evaluated the impact of two nitrogen containing bisphosphonates, Alendronate (ALN) and Zoledronate (ZOL), on human primary pre-osteoblasts. At first, we showed an inhibitory effect on cell viability and alkaline phosphatase activity starting from µM concentrations of both drugs. In addition, an inhibitory trend on mineralized nodules deposition was observed. Then low doses of both ALN and ZOL rapidly increased the release of the pro-inflammatory mediators TNFα and IL-1β, while increased DKK-1 and Sclerostin, both inhibitors of osteoblastogenesis. Finally, ALN and 10-7M ZOL decreased the expression of type I Collagen and Osteopontin, while both drugs slightly stimulated SPARC production. With these results, we would like to suggest a direct inhibitory action on bone-forming cells by nitrogen containing bisphosphonates.
Collapse
Affiliation(s)
- Chiara Giannasi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Davide Farronato
- Department of Medicine and Surgery, Insubria University, Varese, Italy
| | | | - Barbara Manfredi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Giampietro Farronato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Teresa Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
22
|
Holtmann H, Lommen J, Kübler NR, Sproll C, Rana M, Karschuck P, Depprich R. Pathogenesis of medication-related osteonecrosis of the jaw: a comparative study of in vivo and in vitro trials. J Int Med Res 2018; 46:4277-4296. [PMID: 30091399 PMCID: PMC6166332 DOI: 10.1177/0300060518788987] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Objective This study was performed to determine whether the results of prevailing in vivo and in vitro studies offer a reliable model for investigation of medication-related osteonecrosis of the jaw (MRONJ). Methods Embase, Medline, and the Cochrane Library were searched for articles published from September 2003 to June 2017 involving experimental approaches to the pathogenesis of MRONJ. In vivo and in vitro trials were analyzed with respect to the scientific question, study design, methodology, and results. Results Of 139 studies, 87, 46, and 6 conducted in vivo, in vitro, and both in vivo and in vitro experiments, respectively. Rats, mice, dogs, minipigs, sheep, and rabbits were the preferred animal models used. Osteoblasts, osteoclasts, fibroblasts, keratinocytes, macrophages, and human umbilical vein endothelial cells were the preferred cell types. Zoledronate, alendronate, ibandronate, and risedronate were the most frequent bisphosphonates used. MRONJ was most reliably induced in minipigs because of the close relationship with human bone physiology. In vitro studies showed that reduced viability, growth, and migration of cells in the bone and soft tissues were causative for MRONJ. Other than exposed jawbone after tooth extraction, no reliable cofactors were found. Conclusion The minipig is the most suitable animal model for MRONJ.
Collapse
Affiliation(s)
- Henrik Holtmann
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| | - Julian Lommen
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| | - Norbert R. Kübler
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| | - Christoph Sproll
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| | - Majeed Rana
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| | - Patrick Karschuck
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| | - Rita Depprich
- Department of Oral and Maxillofacial Surgery,
Plastic Surgery of the Head and Neck, Heinrich-Heine-University, Düsseldorf,
Germany
| |
Collapse
|
23
|
Pons-Fuster López E, Seoane Leston J, López Jornet P. Epigallocatechin-3-gallate reduces damage to osteoblast-like cells treated with Zoledronic acid. Arch Oral Biol 2018; 94:27-32. [DOI: 10.1016/j.archoralbio.2018.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/10/2018] [Accepted: 06/19/2018] [Indexed: 01/14/2023]
|
24
|
Zhao B, Zhao W, Wang Y, Zhao Z, Zhao C, Wang S, Gao C. Prior administration of vitamin K2 improves the therapeutic effects of zoledronic acid in ovariectomized rats by antagonizing zoledronic acid-induced inhibition of osteoblasts proliferation and mineralization. PLoS One 2018; 13:e0202269. [PMID: 30125322 PMCID: PMC6101397 DOI: 10.1371/journal.pone.0202269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/17/2018] [Indexed: 01/19/2023] Open
Abstract
Zoledronic acid (ZA) exerts complex influence on bone by suppressing bone resorption, mostly due to the direct osteoclasts inhibition and uncertain influence on osteoblasts. Vitamin K2 (VK2, Menaquinone-4) as an anabolic agent stimulates bone formation via anti-apoptosis in osteoblasts and mild osteoclasts inhibition. Based on these knowledge, the therapeutic effect of the combined or sequential therapy of VK2 and ZA depends on the influence on the osteoblasts, since both cases exert similar inhibitory effect on osteoclasts. In a series of in vitro studies, we confirmed the protective effect of VK2 in osteoblasts culture, especially when followed by exposure to ZA, and the proliferation and mineralization inhibition induced by ZA towards osteoblasts. For mechanism study, expression of bcl-2/bax, Runx2 and Sost in cells were examined. For in vivo studies, an osteoporosis animal model was established in rats via ovariectomy (OVX) and subjected to sequential treatment, namely VK2 followed by ZA. Bone mineral density (BMD) was measured by Dual energy X-ray absorptionmetry (DEXA), morphology and mechanical parameters by micro-computed tomography (micro-CT), mechanical strength by an electro-hydraulic fatigue-testing machine. The bone calcium, hydroxyproline content, blood lipids were evaluated using microplate technique, and the bone surface turnover was evaluated using the fluorescence in corporation method. It was found that VK2 pretreatment partially prevented the inhibition of bone formation caused by ZA, which was reflected by indices like BMD, bone calcium content and bone strength. The underling mechanisms for protection of VK2 pretreatment, mainly demonstrated via in vitro studies, included inhibiting apoptosis and depressing Sost expression in osteoblasts, which in turn improved the osteoporosis therapeutic effects of ZA. These findings suggested that pretreatment with VK2 before ZA therapy might serve a new long-term therapy protocol for osteoporosis.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Orthopedics, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Orthopedics, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong, People’s Republic of China
| | - Wenqian Zhao
- Department of Traditional Chinese Medicine and Dermatology, People’s Hospital of Shouguang, Shouguang, Shandong, People’s Republic of China
| | - Yiqiang Wang
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Zhao Zhao
- Department of Cytology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Changfeng Zhao
- Department of Nutrition, Shandong University School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Shue Wang
- Department of Nutrition, Shandong University School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Chunzheng Gao
- Department of Orthopedics, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong, People’s Republic of China
- * E-mail:
| |
Collapse
|
25
|
Patntirapong S, Poolgesorn M. Alteration of macrophage viability, differentiation, and function by bisphosphonates. Oral Dis 2018; 24:1294-1302. [PMID: 29869362 DOI: 10.1111/odi.12908] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND A serious adverse effect of long-term bisphosphonate (BP) administration is bisphosphonate-related osteonecrosis of the jaw (BRONJ). Among different proposed pathogenesis, suppression of immune cells is gaining interest. Because monocytes/macrophages could get access to BP since residing in the blood and bone microenvironment, the aim of this study was to analyze the behaviors of macrophages after BP treatments in vitro. METHODS THP-1 cell, an established human monocytic cell model, was used in this study. The effects of BPs, alendronate (ALN) and zoledronic acid (ZA), on macrophage viability, differentiation, and function were investigated. MTT, morphological analysis, flow cytometry, quantitative PCR, and gelatin zymography assay were performed. RESULTS BPs impaired macrophage viability at almost all concentration tested (1-100 μM). Cell morphology was altered in the presence of 100 μM BPs. Furthermore, differentiating macrophage viability was also affected by both ALN and ZA at 100 and 10-100 μM, respectively. At high concentration (100 μM), ZA caused a reduction in cell differentiation. On the contrary, ALN and ZA increased matrix metalloproteinase mRNA expressions and activities at low doses (1-10 μM). CONCLUSION BPs directly acted on macrophage by reducing macrophage survival, inducing morphological alterations, impairing differentiation from monocytes to macrophages, and affecting macrophage function at both mRNA and activity levels.
Collapse
|
26
|
Zhang J, Park J, Lee JW, Kwon YD, Kim EC. Bisphosphonates hinder osteoblastic/osteoclastic differentiation in the maxillary sinus mucosa-derived stem cells. Clin Oral Investig 2018; 22:1933-1943. [PMID: 29188452 DOI: 10.1007/s00784-017-2291-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Although bisphosphonates (BPs) are known to be associated with osteonecrosis of the maxilla, the precise effects of BPs on bone metabolism in human maxillary sinus mucosal cells (HMSMCs) are not yet known. The purposes of this study were to examine the effects of the BPs zoledronate (ZOL) and alendronate (ALN) on osteoblastic and osteoclastic differentiation in HMSMCs and to investigate the signaling pathways involved. MATERIALS AND METHODS The effects of ZOL and ALN were assessed for osteoblast differentiation by alkaline phosphatase (ALP) activity, alizarin red staining, and RT-PCR for genes encoding Runx2 and osterix. Receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow macrophages (BMMs) was also examined. RESULTS ZOL and ALN both suppressed osteoblastic differentiation, as evidenced by their effects on ALP activity, mineralization nodule formation, and the mRNA expression levels of osteoblastic transcript factors. The RANKL/osteoprotegerin ratio in HMSMCs was increased by ALN, whereas ZOL had the opposite effect. Conditioned medium obtained from ALN-treated HMSMCs stimulated osteoclast formation and upregulated NFATc1 expression, whereas conditioned medium from ZOL-treated cells did not. ALN was more cytotoxic and stimulated apoptosis more strongly than ZOL. BPs decreased the protein levels of the non-canonical Wnt signaling protein Wnt5a and calmodulin-dependent kinase II. Moreover, recombinant human Wnt5a reversed the effects of BPs on osteoblastic and osteoclastic differentiation. CONCLUSION This study is the first demonstration that BPs exert negative effects on osteoblastic and osteoclastic processes via the non-canonical Wnt pathway in HMSMSCs. CLINICAL RELEVANCE It suggests that patients taking BPs during the period of maxillary sinus lifting and amentation should be given special attention.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jaesuh Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jung-Woo Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Yong-Dae Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447, South Korea.
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
27
|
Ogata K, Matsumura M, Moriyama M, Katagiri W, Hibi H, Nakamura S. Cytokine Mixtures Mimicking Secretomes From Mesenchymal Stem Cells Improve Medication-Related Osteonecrosis of the Jaw in a Rat Model. JBMR Plus 2018; 2:69-80. [PMID: 30283893 PMCID: PMC6124208 DOI: 10.1002/jbm4.10013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/02/2017] [Accepted: 06/25/2017] [Indexed: 01/06/2023] Open
Abstract
Recently, several studies have demonstrated that intravenous administration of mesenchymal stem cells (MSCs) improve medication-related osteonecrosis of the jaw (MRONJ), and paracrine effects of secretomes from MSCs have been hypothesized as the primary contributors. These secretomes in conditioned media from human MSCs (MSC-CM) were previously demonstrated to promote bone and tissue regeneration. Because MSC-CM contain cytokines monocyte chemoattractant protein (MCP)-1, insulin growth factor (IGF)-1, and vascular endothelial growth factor (VEGF) at relatively higher concentrations than other factors, these cytokines were considered as relevant active factors for tissue regeneration. By mixing the recombinant proteins of MCP-1, IGF-1, and VEGF, included at the same concentrations in MSC-CM, we prepared cytokine mixtures mimicking MSC-CM and then evaluated its therapeutic effects in a rat MRONJ model. In vitro, cytokine mixtures promoted osteogenic differentiation, migration, and proliferation of rat MSCs. In addition, these maintained osteoclastic function. In vivo, we used a rat MRONJ model to examine therapeutic effects of the cytokine mixtures through intravenous administration. In MSC-CM or cytokine mixture group, open alveolar sockets in 66% or 67% of the rats with MRONJ, respectively, healed with complete soft tissue coverage and socket bones, whereas in the other groups, the exposed necrotic bone with inflamed soft tissue remained. Histological analysis revealed new bone formation and the appearance of osteoclasts in MSC-CM or cytokine mixture group; however, osteoclasts were significantly reduced in the other groups. Thus, we concluded that intravenous administration of cytokine mixtures might be an effective therapeutic modality for treating patients with MRONJ.
Collapse
Affiliation(s)
- Kenichi Ogata
- Section of Oral and Maxillofacial OncologyDivision of Maxillofacial Diagnostic and Surgical SciencesFaculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Mayu Matsumura
- Section of Oral and Maxillofacial OncologyDivision of Maxillofacial Diagnostic and Surgical SciencesFaculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial OncologyDivision of Maxillofacial Diagnostic and Surgical SciencesFaculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Wataru Katagiri
- Division of Reconstructive Surgery for Oral and Maxillofacial RegionDepartment of Tissue Regeneration and ReconstructionNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial OncologyDivision of Maxillofacial Diagnostic and Surgical SciencesFaculty of Dental ScienceKyushu UniversityFukuokaJapan
| |
Collapse
|
28
|
Rossnagl S, Ghura H, Groth C, Altrock E, Jakob F, Schott S, Wimberger P, Link T, Kuhlmann JD, Stenzl A, Hennenlotter J, Todenhöfer T, Rojewski M, Bieback K, Nakchbandi IA. A Subpopulation of Stromal Cells Controls Cancer Cell Homing to the Bone Marrow. Cancer Res 2017; 78:129-142. [PMID: 29066511 DOI: 10.1158/0008-5472.can-16-3507] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/26/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022]
Abstract
Breast and prostate cancer cells home to the bone marrow, where they presumably hijack the hematopoietic stem cell niche. We characterize here the elusive premetastatic niche by examining the role of mesenchymal stromal cells (MSC) in cancer cell homing. Decreasing the number of MSC pharmacologically enhanced cancer cell homing to the bone marrow in mice. In contrast, increasing the number of these MSCs by various interventions including G-CSF administration diminished cancer cell homing. The MSC subpopulation that correlated best with cancer cells expressed stem, endothelial, and pericytic cell markers, suggesting these cells represent an undifferentiated component of the niche with vascular commitment. In humans, a MSC subpopulation carrying markers for endothelial and pericytic cells was lower in the presence of cytokeratin+ cells in bone marrow. Taken together, our data show that a subpopulation of MSC with both endothelial and pericytic cell surface markers suppresses the homing of cancer cells to the bone marrow. Similar to the presence of cytokeratin+ cells in the bone marrow, this MSC subpopulation could prove useful in determining the risk of metastatic disease, and its manipulation might offer a new possibility for diminishing bone metastasis formation.Significance: These findings establish an inverse relationship between a subpopulation of mesenchymal stromal cells and cancer cells in the bone marrow. Cancer Res; 78(1); 129-42. ©2017 AACR.
Collapse
Affiliation(s)
- Stephanie Rossnagl
- Max-Planck Institute for Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Hiba Ghura
- Max-Planck Institute for Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Christopher Groth
- Max-Planck Institute for Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Eva Altrock
- Max-Planck Institute for Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Sarah Schott
- Department of Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, University of Dresden, Dresden, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, University of Dresden, Dresden, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, University of Dresden, Dresden, Germany
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen, Tuebingen, Germany
| | | | | | - Markus Rojewski
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Mannheim, Germany
| | - Inaam A Nakchbandi
- Max-Planck Institute for Biochemistry, Martinsried, Germany. .,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Wu VM, Mickens J, Uskoković V. Bisphosphonate-Functionalized Hydroxyapatite Nanoparticles for the Delivery of the Bromodomain Inhibitor JQ1 in the Treatment of Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25887-25904. [PMID: 28731328 PMCID: PMC5794714 DOI: 10.1021/acsami.7b08108] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Osteosarcoma (OS) is one of the most common neoplasia among children, and its survival statistics have been stagnating since the combinatorial anticancer therapy triad was first introduced. Here, we report on the assessment of the effect of hydroxyapatite (HAp) nanoparticles loaded with medronate, the simplest bisphosphonate, as a bone-targeting agent and JQ1, a small-molecule bromodomain inhibitor, as a chemotherapeutic in different 2D and 3D K7M2 OS in vitro models. Both additives decreased the crystallinity of HAp, but the effect was more intense for medronate because of its higher affinity for HAp. As the result of PO43--NH+ binding, JQ1 shielded the surface phosphates of HAp and pushed its surface charge to more positive values, exhibiting the opposite effect from calcium-blocking medronate. In contrast to the faster and more exponential release of JQ1 from monetite, its release from HAp nanoparticles followed a zero-order kinetics, but 98% of the payload was released after 48 h. The apoptotic effect of HAp nanoparticles loaded with JQ1, with medronate and with both JQ1 and medronate, was selective in 2D culture: pronounced against the OS cells and nonexistent against the healthy fibroblasts. While OS cell invasion was significantly inhibited by all of the JQ1-containing HAp formulations, that is, with and without medronate, all of the combinations of the targeting compound, medronate, and the chemotherapeutic, JQ1, delivered using HAp, but not HAp alone, inhibited OS cell migration from the tumor spheroids. JQ1 delivered using HAp had an effect on tumor migration, invasion, and apoptosis even at extremely low, subnanomolar concentrations, at which no effect of JQ1 per se was observed, meaning that this form of delivery could help achieve a multifold increase of this drug's efficacy. More than 80% of OS cells internalized JQ1-loaded HAp nanoparticles after 24 h of coincubation, suggesting that this augmentation of the activity of JQ1 may be due to the intracellular delivery and sustained release of the drug enabled by HAp. In addition to the reduction of the OS cell viability, the reduction of the migration and invasion radii was observed in OS tumor spheroids challenged with even JQ1-free medronate-functionalized HAp nanoparticles, demonstrating a definite anticancer activity of medronate alone when combined with HAp. The effect of medronate-functionalized JQ1-loaded HAp nanoparticles was most noticeable against OS cells differentiated into an osteoblastic lineage, in which case they surpassed in effect pure JQ1 and medronate-free compositions. The activity of JQ1 was mediated through increased Ezrin expression and decreased RUNX2 expression and was MYC and FOSL1 independent, but these patterns of gene expression changed in cells challenged with the nanoparticulate form of delivery, having been accompanied by the upregulation of RUNX2 and downregulation of Ezrin in OS cells treated with medronate-functionalized JQ1-loaded HAp nanoparticles.
Collapse
Affiliation(s)
- Victoria M. Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, California 92618-1908, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
| | - Jarrett Mickens
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, California 92618-1908, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
- Corresponding Author:
| |
Collapse
|
30
|
Koivisto K, Järvinen J, Karppinen J, Haapea M, Paananen M, Kyllönen E, Tervonen O, Niinimäki J. The effect of zoledronic acid on type and volume of Modic changes among patients with low back pain. BMC Musculoskelet Disord 2017. [PMID: 28645291 PMCID: PMC5481864 DOI: 10.1186/s12891-017-1632-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Modic changes (MC) are associated with low back pain (LBP). In this study, we compared changes in size and type of MC, after a single intravenous infusion of 5 mg zoledronic acid (ZA) or placebo, among chronic LBP patients with MC on magnetic resonance imaging (MRI), and evaluated whether the MRI changes correlate with symptoms. Methods All patients (N = 19 in ZA, 20 in placebo) had MRI at baseline (0.23–1.5 T) and at one year (1.5-3 T). We evaluated the level, type and volume of all the MC. The MC were classified into M1 (M1 (100%)), predominating M1 (M1/2 (65:35%)) or predominating M2 (M1/2 (35:65%)), and M2 (M2 (100%)). The first two were considered M1-dominant, and the latter two M2-dominant. Volumes of M1 and M2 were calculated separately for the primary MC, which was assumed to cause the symptoms, and the other MC. We analysed the one-year treatment differences in M1 and M2 volumes using analysis of covariance with adjustments for age, sex, body mass index, and smoking. The correlations between the MRI changes and the changes in LBP symptoms were analysed using Pearson correlations. Results In the ZA group, 84.2% of patients had M1-dominant primary MC at baseline, compared to 50% in the placebo group (p = 0.041). The primary MC in the ZA group converted more likely to M2-dominant (42.1% ZA, 15% placebo; p = 0.0119). The other MC (15 ZA, 8 placebo) were on average 42% smaller and remained largely M2-dominant. The M1 volume of the primary MC decreased in the ZA group, but increased in the placebo group (−0.83 cm3 vs 0.91 cm3; p = 0.21). The adjusted treatment difference for M1 volume was −1.9 cm3 (95% CI -5.0 to 1.2; p = 0.22) and for M2 volume 0.23 cm3 (p = 0.86). In the MC that remained M1-dominant, volume change correlated positively with increased symptoms in the placebo group, whereas the correlations were negative and weak in the ZA group. Conclusions Zoledronic acid tended to speed up the conversion of M1-dominant into M2-dominant MC and decrease the volume of M1-dominant MC, although statistical significance was not demonstrated. Trial registration The registration number in ClinicalTrials.gov is NCT01330238 and the date of registration February 11, 2011.
Collapse
Affiliation(s)
- Katri Koivisto
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jyri Järvinen
- Institute of Diagnostics, Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Jaro Karppinen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland. .,Center for Life Course Health Research, University of Oulu, Oulu, Finland. .,Finnish Institute of Occupational Health, Oulu, Finland.
| | - Marianne Haapea
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Institute of Diagnostics, Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Markus Paananen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Eero Kyllönen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Osmo Tervonen
- Institute of Diagnostics, Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Jaakko Niinimäki
- Institute of Diagnostics, Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
31
|
Hu L, Wen Y, Xu J, Wu T, Zhang C, Wang J, Du J, Wang S. Pretreatment with Bisphosphonate Enhances Osteogenesis of Bone Marrow Mesenchymal Stem Cells. Stem Cells Dev 2016; 26:123-132. [PMID: 27736364 DOI: 10.1089/scd.2016.0173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cell (MSC)-mediated bone regeneration is used to replace lost bone. However, methods to accelerate the process and stabilize regenerated bone remain limited. Therefore, we investigated the effect of bisphosphonates (BPs) on the function of bone marrow mesenchymal stem cells (BMMSCs) to determine if they might enhance MSC-mediated bone regeneration. We isolated and cultured BMMSCs from BALB/c mice and treated the cells with 0.1, 0.5, 1, 5, or 10 μM zoledronic acid (ZA; Zometa, a commercially available BP). ZA had a dose-dependent effect on BMMSCs proliferation and osteogenesis. ZA at concentrations of 5 and 10 μM inhibited the proliferation and osteogenic differentiation of BMMSCs. By contrast, in addition to inducing the proliferation and osteogenesis of BMMSCs, 0.5 μM ZA upregulated expressions of the osteogenesis-related genes Alp, osterix (Osx), and bone sialoprotein (Bsp) and enhanced osteogenesis in vivo when ZA-treated BMMSCs were implanted subcutaneously in nude mice. In addition, 0.5 μM ZA increased expression of Opg in BMMSCs, decreased the Rankl/Opg ratio, and decreased the number of osteoclasts. However, it was not associated with adverse effects on numbers of regulatory T cells or levels of Th17, transforming growth factor-β1 (TGF-β1), and interleukin-17a (IL-17a) when cocultured with T cells. In conclusion, 0.5 μM ZA pretreatment enhanced the proliferation and osteogenesis of BMMSCs in vitro and in vivo and decreased the number of osteoclasts without impairment of BMMSCs immunomodulatory properties. In vitro pretreatment of BMMSCs with BP and subsequent implantation may be a safe and effective way of enhancing MSC-mediated bone regeneration.
Collapse
Affiliation(s)
- Lei Hu
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
| | - Ying Wen
- 2 Department of Prosthodontics, Capital Medical University School of Stomatology , Beijing, China
| | - Junji Xu
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
| | - Tingting Wu
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
| | - Chunmei Zhang
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
| | - Jinsong Wang
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
- 3 Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences , Beijing, China
| | - Jie Du
- 4 Department of Physiology and Pathophysiology, Beijing An Zhen Hospital, the Key Laboratory of Remodeling-Related Cardiovascular Diseases, School of Basic Medical Sciences, Capital Medical University , Beijing, China
| | - Songlin Wang
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
- 3 Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences , Beijing, China
| |
Collapse
|
32
|
Yang Y, Luo X, Yan F, Jiang Z, Li Y, Fang C, Shen J. Effect of zoledronic acid on vertebral marrow adiposity in postmenopausal osteoporosis assessed by MR spectroscopy. Skeletal Radiol 2015; 44:1499-505. [PMID: 26130070 DOI: 10.1007/s00256-015-2200-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/02/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Zoledronic acid (ZOL) has a suppressive effect on marrow adiposity in ovariectomized rats. Currently, however, data on the effect of ZOL on marrow fat in humans are unavailable. The purpose of this work was to determine the in vivo effect of ZOL on bone remodeling and marrow adipogenesis in postmenopausal osteoporosis. MATERIALS AND METHODS In a 12-month, randomized, double-blind, placebo-controlled trial, we studied 100 postmenopausal women with osteoporosis who were randomly given either a single dose of intravenous infusion of ZOL (5 mg) or placebo. All subjects received adequate dietary calcium and vitamin D3. Main outcome measures included bone mineral density by dual-energy X-ray absorptiometry, vertebral marrow fat content by proton MR spectroscopy, serum markers of bone turnover by biochemical analysis. RESULTS Ninety percent of the participants completed the 12-month follow-up. With respect to baselines, marrow fat content reduced by 8.1% in the ZOL-treated women and increased by 3.0% in the controls (all p < 0.05). In addition, there were significant increases of bone mineral density by 2.8, 2.0, and 1.7% in the lumbar spine, femoral neck, and total hip, respectively, in the ZOL group compared with the placebo group. Serum levels of bone resorption marker CTX and bone formation marker BALP decreased by 33 and 18% in postmenopausal women receiving ZOL. CONCLUSIONS In postmenopausal women with osteoporosis, a single dose of ZOL therapy significantly reduced marrow adiposity. MR spectroscopy of vertebral marrow fat may therefore serve as a novel tool for BMD-independent efficacy assessment.
Collapse
Affiliation(s)
- Yi Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Yoo JE, Kim MS, Kwon YD, Kim EC, Kim KC, Choi SC. Could zoledronic acid prevent root resorption in replanted rat molar? Dent Traumatol 2015; 31:465-70. [PMID: 26149469 DOI: 10.1111/edt.12202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND/AIM In this study, we evaluated whether zoledronate could suppress the progression of external root resorption in rat due to delayed replantation by inhibiting osteoclastic activity. Also, we estimated the optimal dosage of zoledronate in root treatment of the rat model for a maximum effect of zoledronate. MATERIAL AND METHODS Maxillary first molars in Sprague Dawley rats (N = 84) were extracted, dried for 60 min, and then replanted. The rats were divided into 6 groups (1 mM alendronate, and 1, 5, 10, 20, 40 μM zoledronate). At 4 and 8 weeks postreplantation, the animals were sacrificed and evaluated by radiographic and histological analysis. RESULTS AND CONCLUSION There were no significant differences at 4 weeks. However, at 8 weeks, 10, 20, and 40 μM ZOL showed more increased radiopaque and smaller periapical lesion in radiographic analysis. In histological analysis, all groups showed similar inflammatory root resorption rate at 4 weeks. However, at 8 weeks, 20 and 40 μM ZOL showed lower rate than those of other groups (P < 0.05). In concerning of replacement resorption, there were no significant differences statistically. In this animal experiment, zoledronate was capable of limiting the occurrence of root resorption in delayed replantation model. In particular, 20 μM dosage of zoledronate solution showed the most effective dose in long-term follow up and might be suitable for inhibition of root resorption in delayed tooth replantation.
Collapse
Affiliation(s)
- Jung Eun Yoo
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Mi Sun Kim
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Yong-Dae Kwon
- Department of Maxillofacial Surgery, School of dentistry, Kyung Hee University, Seoul, Korea
| | - Eun-Cheol Kim
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth & Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Kwang Chul Kim
- Department of Pediatric Dentistry, Kyung Hee University Dental Hospital, Gangdong, Kyung Hee University, Seoul, Korea
| | - Sung Chul Choi
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
34
|
Ogata K, Katagiri W, Osugi M, Kawai T, Sugimura Y, Hibi H, Nakamura S, Ueda M. Evaluation of the therapeutic effects of conditioned media from mesenchymal stem cells in a rat bisphosphonate-related osteonecrosis of the jaw-like model. Bone 2015; 74:95-105. [PMID: 25613174 DOI: 10.1016/j.bone.2015.01.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/06/2023]
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is defined as an exposed necrotic bone in the oral cavity that does not heal after appropriate intervention for >8weeks with present or previous bisphosphonate treatment in the absence of radiotherapy. Until now, although several risk factors, including invasive dental procedures, infection, mechanical trauma to the jawbone, and concomitant use of immunosuppressive and chemotherapy drugs have been implicated in the etiology of BRONJ, its underlying mechanisms and treatments remain largely unknown. A study recently showed that intravenous administration of mesenchymal stem cells (MSCs) improved BRONJ, and it was hypothesized that paracrine effects by secretomes from MSCs are the main constituent. Here we used rat BRONJ models to examine the therapeutic effects with serum-free conditioned media from human MSCs (MSC-CM), including various secretomes. We showed that MSC-CM has protected rat MSCs and rat osteoclasts. MSC-CM enhanced the expression of osteogenic-related genes and neovascularization-related genes by real-time reverse-transcriptase polymerase chain reaction analysis in in vitro study. In in vivo study, 5-week-old Wistar/ST male rats received zoledronate (35μg/kg/week) and dexamethasone (1mg/kg/day) subcutaneously for 2weeks. Unilateral maxillary molars were then extracted. Two weeks later, rats were divided into non-treatment, serum-free Dulbecco's modified Eagle's medium, and MSC-CM groups. In the MSC-CM group, the open alveolar sockets in 63% of the rats with BRONJ healed with complete soft tissue coverage and socket bones, whereas the exposed necrotic bone with inflamed soft tissue remained in the other groups. Histological analysis showed new bone formation and the appearance of osteoclasts in the MSC-CM group. Osteoclasts were significantly reduced in the non-treatment group. Thus, we concluded that the antiapoptotic and antiinflammatory effects of MSC-CM dramatically regulated the turnover of local bone and indicated therapeutic effects on BRONJ.
Collapse
Affiliation(s)
- Kenichi Ogata
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Aichi, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Wataru Katagiri
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Aichi, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Masashi Osugi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Aichi, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Takamasa Kawai
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Aichi, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Yukiko Sugimura
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Aichi, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Aichi, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Minoru Ueda
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Aichi, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
35
|
Hunter BG, Duesterdieck-Zellmer KF, Larson MK. Tiludronate concentrations and cytologic findings in synovial fluid after intravenous regional limb perfusion with tiludronate in horses. PeerJ 2015; 3:e889. [PMID: 25945303 PMCID: PMC4419440 DOI: 10.7717/peerj.889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/20/2015] [Indexed: 11/20/2022] Open
Abstract
Anecdotal accounts of tiludronate administration via intravenous regional limb perfusion (IVRLP) exist despite a lack of information regarding safety for synovial structures in the perfused area. The objective of this study was to determine whether tiludronate concentrations in synovial structures after IVRLP with low dose (0.5 mg, LDT) or high dose (50 mg, HDT) tiludronate remain below a value demonstrated in vitro to be safe for articular cartilage (<19,000 ng/ml), and to determine effects of tiludronate on synovial fluid cytology variables compared to saline perfused control limbs. Using a randomized controlled experimental study design, horses received IVRLP with LDT (n = 6) or HDT (n = 6) in one forelimb and IVRLP with saline in the contralateral limb. Synovial fluid cytology variables and tiludronate concentrations were evaluated in navicular bursae (NB), and distal interphalangeal (DIP) and metacarpophalangeal (MCP) joints one week before and 30-45 min after IVRLP, and in DIP and MCP joints 24 h after IVRLP. Data were analyzed with 2-way rmANOVA (p < 0.05). Highest measured synovial fluid tiludronate concentrations occurred 30-45 min post-perfusion. Mean tiludronate concentrations were lower in LDT limbs (MCP = 39.6 ± 14.3 ng/ml, DIP = 118.1 ± 66.6 ng/ml, NB = 82.1 ± 30.2 ng/ml) than in HDT limbs (MCP = 3,745.1 ± 1,536.6 ng/ml, DIP = 16,274.0 ± 5,460.2 ng/ml, NB = 6,049.3 ± 1,931.7 ng/ml). Tiludronate concentration was >19,000 ng/ml in DIP joints of two HDT limbs. Tiludronate was measurable only in synovial fluid from HDT limbs 24 h post-perfusion. There were no differences in synovial fluid cytology variables between control and treated limbs. Conclusions. In some horses, IVRLP with HDT may result in synovial fluid concentrations of tiludronate that may have adverse effects on articular cartilage, based on in vitro data. IVRLP with LDT is unlikely to promote articular cartilage degradation. Further studies to determine a safe and effective dose for IVRLP with tiludronate are needed.
Collapse
Affiliation(s)
- Barbara G Hunter
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University , Corvallis, OR , USA
| | | | - Maureen K Larson
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University , Corvallis, OR , USA
| |
Collapse
|
36
|
|
37
|
Li GW, Xu Z, Chang SX, Zhou L, Wang XY, Nian H, Shi X. Influence of early zoledronic acid administration on bone marrow fat in ovariectomized rats. Endocrinology 2014; 155:4731-8. [PMID: 25243855 DOI: 10.1210/en.2014-1359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the primary target cell of bisphosphonates is the osteoclast, increasing attention is being given to other effector cells influenced by bisphosphonates, such as osteoblasts and marrow adipocytes. Early zoledronic acid (ZA) treatment to ovariectomized (OVX) rats has been found to fully preserve bone microarchitecture over time. However, little is known regarding the influence of ZA on marrow adipogenesis. The purpose of this study was to monitor the ability of early administration of ZA in restoring marrow adiposity in an estrogen-deficient rat model. Thirty female Sprague-Dawley rats were randomly divided into sham-operated (SHAM), OVX + vehicle, and OVX + ZA groups (n=10/group). Dual-energy x-ray absorptiometry and water/fat magnetic resonance imaging were performed at baseline, 6 weeks, and 12 weeks after treatment to assess bone mineral density and marrow fat fraction. Serum biochemical markers, bone remodeling, and marrow adipocyte parameters were analyzed using biochemistry, histomorphometry, and histopathology, respectively. The expression levels of osteoblast, adipocyte, and osteoclast-related genes in bone marrow were assessed using RT-PCR. The OVX rats showed marked bone loss, first detected at 12 weeks, but estrogen deficiency resulted in a remarked increase in marrow fat fraction, first detected at 6 weeks compared with the SHAM rats (all P < .001). Similarly, the OVX rats had a substantially larger percent adipocyte area (+163.0%), mean diameter (+29.5%), and higher density (+57.3%) relative to the SHAM rats. Bone histomorphometry, levels of osteoclast-related gene expression, and a serum resorption marker confirmed that ZA significantly suppressed bone resorption activities. Furthermore, ZA treatment returned adipocyte-related gene expression and marrow adipocyte parameters toward SHAM levels. These data suggest that a single dose of early ZA treatment acts to reverse marrow adipogenesis occurring during estrogen deficiency, which may contribute to its capacity to reduce bone loss.
Collapse
Affiliation(s)
- Guan-Wu Li
- Departments of Radiology (G.-W.L., S.-X.C., L.Z., X.-Y.W.), Pharmacy (H.N.), and Gerontology (X.S.), Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; and Medico-Technical Department (Z.X.), Xin-Zhuang Community Health Service Center, Shanghai 201199, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Su J, Feng M, Han W, Zhao H. The effects of bisphosphonate on the remodeling of different irregular bones in mice. J Oral Pathol Med 2014; 44:638-48. [PMID: 25370709 DOI: 10.1111/jop.12281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND We aimed to compare the effects of bisphosphonate on the remodeling of irregular bones (the jaw and ilium) in mice after trauma. METHODS To verify the feasibility of modeling osteonecrosis, 20 mice were injected intraperitoneally with zoledronate and dexamethasone (ZOL&DEX group), dexamethasone (DEX group), or phosphate-buffered saline (PBS) [control (CTR) group]. Mice then underwent extraction of the right maxillary first molar and creation of an artificial bony cavity in the ilium. Bone sections were stained with H&E for morphological studies. To further compare differences between the maxilla and the ilium caused by similar traumas, 80 mice were injected intraperitoneally with ZOL&DEX or PBS. Pathological progression at the injury sites was assessed at 1 day and at 1, 3, and 8 weeks after trauma using micro-computed tomography (CT), H&E and immunohistochemistry analyses, high-performance liquid chromatography-mass spectrometry, and enzyme-linked immunosorbent assay. RESULTS Only the ZOL&DEX model group effectively developed osteonecrosis. Bony sequestra, osseous sclerosis, unhealed mucosa, and radiopaque alveolar bone were found in the maxilla. In the ilium, there was a lower frequency of osteonecrotic disease and osseous sclerosis, and less suppression of bone remodeling than in the maxilla following long-term bisphosphonate administration. Zoledronate levels were higher in the maxilla. ZOL&DEX treatment suppressed the levels of RANKL and IL-17, but induced an upregulation of osteoprotegerin and FAM20C in both bones. CONCLUSION Accumulation of bisphosphonate may increase the incidence of osteonecrosis. The RANKL/OPG pathway and IL-17 and FAM20C cytokines play key roles in the progression of pathologically abnormal bone remodeling.
Collapse
Affiliation(s)
- Jiansheng Su
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China
| | - Mu Feng
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China
| | - Wenfei Han
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China
| | - Hang Zhao
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
39
|
Lézot F, Chesneau J, Battaglia S, Brion R, Castaneda B, Farges JC, Heymann D, Rédini F. Preclinical evidence of potential craniofacial adverse effect of zoledronic acid in pediatric patients with bone malignancies. Bone 2014; 68:146-52. [PMID: 25193159 DOI: 10.1016/j.bone.2014.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/18/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022]
Abstract
High doses of zoledronic acid (ZOL), one of the most potent inhibitors of bone resorption, are currently evaluated in phase III clinical trials in Europe for the treatment of malignant pediatric primary bone tumors. The impact of such an intensive treatment on the craniofacial skeleton growth is a critical question in the context of patients with actively growing skeleton; in particular, in light of our previous studies evidencing that endochondral bone formation was transiently disturbed by high doses of ZOL. Two protocols adapted from pediatric treatments were developed for newborn mice (a total of 5 or 10 injections of ZOL 50μg/kg every two days). Their impact on skull bones and teeth growth was analyzed by X-rays, microCT and histology up to 3months after the last injection. ZOL administrations induced a transient delay of skull bone growth and an irreversible delay in incisor, first molar eruption and root elongation. Other teeth were affected, but most were erupted by 3months. Root histogenesis was severely impacted for all molars and massive odontogenic tumor-like structures were observed in all mandibular incisors. High doses of ZOL irreversibly disturbed teeth eruption and elongation, and delayed skull bone formation. These preclinical observations are essential for the follow-up of onco-pediatric patients treated with ZOL.
Collapse
Affiliation(s)
- Frédéric Lézot
- INSERM, UMR-957, Nantes, F-44035, France; Université de Nantes Nantes Atlantique Université, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Julie Chesneau
- INSERM, UMR-957, Nantes, F-44035, France; Université de Nantes Nantes Atlantique Université, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Séverine Battaglia
- INSERM, UMR-957, Nantes, F-44035, France; Université de Nantes Nantes Atlantique Université, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Régis Brion
- INSERM, UMR-957, Nantes, F-44035, France; Université de Nantes Nantes Atlantique Université, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | | | - Jean-Christophe Farges
- IGFL, CNRS UMR-5242, ENS de Lyon, Lyon F-69364, France; Université de Lyon 1, Faculté d'odontologie, Equipe odontoblastes et régénération du tissu dentaire, Lyon F-69372, France
| | - Dominique Heymann
- INSERM, UMR-957, Nantes, F-44035, France; Université de Nantes Nantes Atlantique Université, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Françoise Rédini
- INSERM, UMR-957, Nantes, F-44035, France; Université de Nantes Nantes Atlantique Université, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France.
| |
Collapse
|
40
|
Moe SM, Chen NX, Newman CL, Gattone VH, Organ JM, Chen X, Allen MR. A comparison of calcium to zoledronic acid for improvement of cortical bone in an animal model of CKD. J Bone Miner Res 2014; 29:902-10. [PMID: 24038306 PMCID: PMC3940692 DOI: 10.1002/jbmr.2089] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/06/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023]
Abstract
Patients with chronic kidney disease (CKD) have increased risk of fractures, yet the optimal treatment is unknown. In secondary analyses of large randomized trials, bisphosphonates have been shown to improve bone mineral density and reduce fractures. However, bisphosphonates are currently not recommended in patients with advanced kidney disease due to concern about oversuppressing bone remodeling, which may increase the risk of developing arterial calcification. In the present study we used a naturally occurring rat model of CKD with secondary hyperparathyroidism, the Cy/+ rat, and compared the efficacy of treatment with zoledronic acid, calcium given in water to simulate a phosphate binder, and the combination of calcium and zoledronic acid. Animals were treated beginning at 25 weeks of age (approximately 30% of normal renal function) and followed for 10 weeks. The results demonstrate that both zoledronic acid and calcium improved bone volume by micro-computed tomography (µCT) and both equally suppressed the mineral apposition rate, bone formation rate, and mineralizing surface of trabecular bone. In contrast, only calcium treatment with or without zoledronic acid improved cortical porosity and cortical biomechanical properties (ultimate load and stiffness) and lowered parathyroid hormone (PTH). However, only calcium treatment led to the adverse effects of increased arterial calcification and fibroblast growth factor 23 (FGF23). These results suggest zoledronic acid may improve trabecular bone volume in CKD in the presence of secondary hyperparathyroidism, but does not benefit extraskeletal calcification or cortical biomechanical properties. Calcium effectively reduces PTH and benefits both cortical and trabecular bone yet increases the degree of extra skeletal calcification. © 2014 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sharon M Moe
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, USA; Richard L. Roduebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Lau CPY, Huang L, Wong KC, Kumta SM. Comparison of the anti-tumor effects of denosumab and zoledronic acid on the neoplastic stromal cells of giant cell tumor of bone. Connect Tissue Res 2013; 54:439-49. [PMID: 24060052 DOI: 10.3109/03008207.2013.848202] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Denosumab and Zoledronic acid (ZOL) are two antiresorptive drugs currently in use for treating osteoporosis. They have different mechanisms of action but both have been shown to delay the onset of skeletal-related events in patients with giant cell tumor of bone (GCT). However, the anti-tumor mechanisms of denosumab on the neoplastic GCT stromal cells remain unknown. In this study, we focused on the direct effects of denosumab on the neoplastic GCT stromal cells and compared with ZOL. The microscopic view demonstrated a reduced cell growth in ZOL-treated but not in denosumab-treated GCT stromal cells. ZOL was found to exhibit a dose-dependent inhibition in cell growth in all GCT stromal cell lines tested and cause apoptosis in two out of three cell lines. In contrast, denosumab only exerted a minimal inhibitory effect in one cell line and did not induce any apoptosis. ZOL significantly inhibited the mRNA expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) in two GCT stromal cell lines whereas their protein levels remained unchanged. On the contrary, denosumab did not regulate RANKL and OPG expression at both mRNA and protein levels. Moreover, the protein expression of Macrophage Colony-Stimulating Factor (M-CSF), Alkaline Phosphatase (ALP), and Collagen α1 Type I were not regulated by denosumab and ZOL either. Our findings provide new insights in the anti-tumor effect of denosumab on GCT stromal cells and raise a concern that tumor recurrence may occur after the withdrawal of the drug.
Collapse
Affiliation(s)
- Carol P Y Lau
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong , Hong Kong, SAR , P. R. China and
| | | | | | | |
Collapse
|
42
|
Yang X, Lu Y, Li Z, Wang Y, Zhao F, Han J. Low concentrations of zoledronic acid are better at regulating bone formation and repair. Intractable Rare Dis Res 2013; 2:18-23. [PMID: 25343096 PMCID: PMC4204573 DOI: 10.5582/irdr.2013.v2.1.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/20/2013] [Accepted: 01/25/2013] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to investigate optimal concentrations of zoledronic acid (ZA) in terms of their effect on the proliferation, differentiation, and mineralization of primary osteoblasts (OBs) and fibroblasts (FBs). Primary OBs and FBs isolated from patients with clinical osteogenesis imperfecta (OI) and developmental dysplasia of the hip (DDH) were treated in vitro with serial concentrations of ZA ranging from 10(-3) M to 10(-13) M. An MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)) colorimetric assay, flow cytometry, alkaline phosphatase (ALP) determination activity, and alizarin red staining were used to measure the proliferation, differentiation, and mineralization of cells. The MTT assay indicated that high concentrations of ZA may be toxic to cultured cells. No obvious inhibition was observed with a ZA concentration of 10(-7) M to 10(-10) M. Proliferation was evident with a ZA concentration below 10(-11) M (p < 0.05). Flow cytometry analysis revealed that cell cycle was arrested at G1/G0 stage with a ZA concentration ranging from 10(-10) M to 10(-8) M. ZA did not enhance ALP activity at a concentration of 10(-8) M or 10(-10) M. Alizarin red staining indicated the mineralization of primary OBs with a low concentration of ZA (10(-12) M). In conclusion, this in vitro study indicated that ZA-mediated cell proliferation was dose-dependent and that ZA did not inhibit cell proliferation at concentrations below 10(-8) M. These findings suggest low concentrations of ZA have more of an effect on cell differentiation and mineralization, so low concentrations are better at regulating bone formation and repair.
Collapse
Affiliation(s)
- Xiaomeng Yang
- Shandong Medicinal Biotechnology Center, Key Laboratory for Biotech Drugs of the Ministry of Health, Key Laboratory for Rare Diseases of Shandong Province, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Ji'nan University Shandong Academy of Medical Sciences College of Life Science and Medicine, Ji'nan, Shandong, China
| | - Yanqin Lu
- Shandong Medicinal Biotechnology Center, Key Laboratory for Biotech Drugs of the Ministry of Health, Key Laboratory for Rare Diseases of Shandong Province, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | | | - Yanzhou Wang
- Pediatric Orthopedics, Shandong Provincial Hospital, Ji'nan, Shandong, China
| | - Fei Zhao
- Shandong Medicinal Biotechnology Center, Key Laboratory for Biotech Drugs of the Ministry of Health, Key Laboratory for Rare Diseases of Shandong Province, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Ji'nan University Shandong Academy of Medical Sciences College of Life Science and Medicine, Ji'nan, Shandong, China
| | - Jinxiang Han
- Shandong Medicinal Biotechnology Center, Key Laboratory for Biotech Drugs of the Ministry of Health, Key Laboratory for Rare Diseases of Shandong Province, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Address correspondence to: Dr. Jinxiang Han, Shandong Academy of Medical Sciences, No.18877 Jing-shi Road, Ji'nan, 250062, Shandong, China. E-mail:
| |
Collapse
|