1
|
Goltyaev MV, Varlamova EG. The Role of Selenium Nanoparticles in the Treatment of Liver Pathologies of Various Natures. Int J Mol Sci 2023; 24:10547. [PMID: 37445723 DOI: 10.3390/ijms241310547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The liver is the body's largest gland, and regulates a wide variety of physiological processes. The work of the liver can be disrupted in a variety of pathologies, the number of which is several hundred. It is extremely important to monitor the health of the liver and develop approaches to combat liver diseases. In recent decades, nanomedicine has become increasingly popular in the treatment of various liver pathologies, in which nanosized biomaterials, which are inorganic, polymeric, liposomal, albumin, and other nanoparticles, play an important role. Given the need to develop environmentally safe, inexpensive, simple, and high-performance biomedical agents for theragnostic purposes and showing few side effects, special attention is being paid to nanoparticles based on the important trace element selenium (Se). It is known that the metabolism of the microelement Se occurs in the liver, and its deficiency leads to the development of several serious diseases in this organ. In addition, the liver is the depot for most selenoproteins, which can reduce oxidative stress, inhibit tumor growth, and prevent other liver damage. This review is devoted to the description of the results of recent years, revealing the important role of selenium nanoparticles in the therapy and diagnosis of several liver pathologies, depending on the dose and physicochemical properties. The possibilities of selenium nanoparticles in the treatment of liver diseases, disclosed in the review, will not only reveal the advantages of their hepatoprotective properties but also significantly supplement the data on the role of the trace element selenium in the regulation of these diseases.
Collapse
Affiliation(s)
- Michael V Goltyaev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| | - Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| |
Collapse
|
2
|
An insight into biofabrication of selenium nanostructures and their biomedical application. 3 Biotech 2023; 13:79. [PMID: 36778767 PMCID: PMC9908812 DOI: 10.1007/s13205-023-03476-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023] Open
Abstract
Evidence shows that nanoparticles exert lower toxicity, improved targeting, and enhanced bioactivity, and provide versatile means to control the release profile of the encapsulated moiety. Among different NPs, inorganic nanoparticles (Ag, Au, Ce, Fe, Se, Te, Zn, etc.) possess a considerable place owing to their unique bioactivities in nanoforms. Selenium, an essential trace element, played a vital role in the growth and development of living organisms. It has attracted great interest as a therapeutic factor without significant adverse effects in medicine at recommended dose. Selenium nanoparticles can be fabricated by physical, biological, and chemical approaches. The biosynthesis of nanoparticles is shown an advance compared to other procedures, because it is environmentally friendly, relatively reproducible, easily accessible, biodegradable, and often results in more stable materials. The effect of size, shape, and synthesis methods on their applications in biological systems investigated by several studies. This review focused on the procedures for the synthesis of selenium nanoparticles, in particular the biogenesis of selenium nanoparticles and their biomedical characteristics, such as antibacterial, antiviral, antifungal, and antiparasitic properties. Eventually, a comprehensive future perspective of selenium nanoparticles was also presented.
Collapse
|
3
|
Impact of selenium nanoparticles in the regulation of inflammation. Arch Biochem Biophys 2022; 732:109466. [DOI: 10.1016/j.abb.2022.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|
4
|
Pumpkin Skin Polysaccharide–Zn(II) Complex: Preparation, Characterization, and Suppression of Inflammation in Zebrafish. Foods 2022; 11:foods11172610. [PMID: 36076796 PMCID: PMC9455613 DOI: 10.3390/foods11172610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, pumpkin (Cucurbita moschata) skin polysaccharide–zinc(II) (PSP−Zn) complex was successfully prepared. The structure and physicochemical properties of PSP and PSP−Zn were analyzed. The anti-inflammatory activity of PSP and PSP−Zn was investigated in zebrafish larvae induced by copper sulphate. PSP and PSP−Zn consisted of rhamnose, arabinose, galactose, glucose, and galacturonic acid. The molecular weight (Mw) of PSP and PSP−Zn were 3.034 × 106 and 3.222 × 106 Da, respectively. Fourier transform infrared spectrum (FT-IR) and circular dichroism (CD) analysis results suggested that the chemical modification of zinc might occur through hydroxyl groups of PSP. The PSP−Zn complex had lamellar texture, smooth surface morphology, and larger particle size. X-ray Diffraction (XRD) analysis revealed that both PSP and PSP−Zn were semi-crystalline substances. PSP−Zn solution showed superior stability in a weak acid and alkaline environment, especially at pH = 6.0. Moreover, PSP and PSP−Zn showed a good inhibitory effect on inflammation cells in zebrafish. Real-time quantitative polymerase chain reaction (RT-PCR) result suggested that the anti-inflammatory mechanism of PSP and PSP−Zn were through downregulation of the expression of nitric oxide synthase 2b (nos2b), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and nuclear factor-kappa B2 (NF-κB2). The present study indicated that PSP−Zn is expected to be a safe and efficient novel zinc supplement with anti-inflammatory activity.
Collapse
|
5
|
Bano I, Skalickova S, Arbab S, Urbankova L, Horky P. Toxicological effects of nanoselenium in animals. J Anim Sci Biotechnol 2022; 13:72. [PMID: 35710460 PMCID: PMC9204874 DOI: 10.1186/s40104-022-00722-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/14/2022] [Indexed: 01/28/2023] Open
Abstract
The productivity and sustainability of livestock production systems are heavily influenced by animal nutrition. To maintain homeostatic balance in the body of the animal at different phases of life, the percentage of organically active minerals in livestock feed must be optimized. Selenium (Se) is a crucial trace mineral that is required for the maintenance of many functions of the body. Se nanoparticles (SeNPs) attracted considerable interest from researchers for a variety of applications a decade ago, owing to their extraordinary properties. SeNPs offer significant advantages over larger-sized materials, by having a comparatively wider surface area, increased surface energy, and high volume. Despite its benefits, SeNP also has toxic effects, therefore safety concerns must be taken for a successful application. The toxicological effects of SeNPs in animals are characterized by weight loss, and increased mortality rate. A safe-by-strategy to certify animal, human and environmental safety will contribute to an early diagnosis of all risks associated with SeNPs. This review is aimed at describing the beneficial uses and potential toxicity of SeNPs in various animals. It will also serve as a summary of different levels of SeNPs which should be added in the feed of animals for better performance.
Collapse
Affiliation(s)
- Iqra Bano
- Department of Physiology and Biochemistry, Faculty of Bioscience, Shaheed Benazir Bhutto University of Veterinary & Animal Sciences, Sakrand, 67210, Pakistan
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Lenka Urbankova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Mirza-Aghazadeh-Attari M, Mihanfar A, Yousefi B, Majidinia M. Nanotechnology-based advances in the efficient delivery of melatonin. Cancer Cell Int 2022; 22:43. [PMID: 35093076 PMCID: PMC8800219 DOI: 10.1186/s12935-022-02472-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/16/2022] [Indexed: 01/09/2023] Open
Abstract
N-[2-(5-methoxy-1H-indol-3-yl) ethyl] or simply melatonin is a biogenic amine produced by pineal gland and recently recognized various other organs. Because of a broad range of biological function melatonin is considered as a therapeutic agent with high efficacy in the treatment of multiple disorders, such as cancer, degenerative disorders and immune disease. However, since melatonin can affect receptors on the cellular membrane, in the nucleus and can act as an anti-oxidant molecule, some unwanted effects may be observed after administration. Therefore, the entrapment of melatonin in biocompatible, biodegradable and safe nano-delivery systems can prevent its degradation in circulation; decrease its toxicity with increased half-life, enhanced pharmacokinetic profile leading to improved patient compliance. Because of this, nanoparticles have been used to deliver melatonin in multiple studies, and the present article aims to cumulatively illustrate their findings.
Collapse
Affiliation(s)
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Orjhans Street, Resalat Blvd, Urmia, Iran.
| |
Collapse
|
7
|
Zefferino R, Fortunato F, Arsa A, Di Gioia S, Tomei G, Conese M. Assessment of Stress Salivary Markers, Perceived Stress, and Shift Work in a Cohort of Fishermen: A Preliminary Work. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:699. [PMID: 35055521 PMCID: PMC8775760 DOI: 10.3390/ijerph19020699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
Due to work-related stress, today, work itself represents a daily challenge that must be faced in many occupations. While, in the past, the scientific community has focused on the helping professions, since, an increasing number of professions have since been investigated. Therefore, different approaches exist in order to assess this disorder, representing a scientific field wherein biological and psychological dimensions both need to be evaluated. In this paper, we consider three biological salivary markers: interleukin 1 beta (IL-1β), cortisol, and melatonin. The choice derives from recent contributions to the literature in which the interplay between these markers has been verified. Briefly, such interplay could explain how the central nervous, endocrine, and immune systems communicate with each other, supporting a holistic concept of person. In 30 marine fishermen from the Apulia region of Italy, perceived stress was measured using the Professional Stress Scale (PSS) and sleep disturbances were assessed through the Pittsburgh Sleep Quality Index (PSQI). Salivary markers were collected at 8:00 a.m. and 2:00 p.m. Those subjects reporting sleep disturbance and having altered scores in two PSS subclasses, home-work conflict and self-esteem, presented inverted salivary melatonin and cortisol nictemeral rhythms (with regard to melatonin levels at 8:00 a.m., those workers reporting values higher than the median showed 64.1% versus 48.6% home-work conflict with respect to cortisol levels, subjects having an inverted circadian rhythm showed 69.9% versus 52.5% home-work conflict, and these values resulted 47.7% versus 25.3% when the self-esteem was considered). As regards melatonin, PSQI score is statistically different in the two groups of subjects as identified by median melatonin at 8:00 a.m.; specifically, the subjects who had mean values higher than the median shared higher PSQI scores (10.8 versus 9.8). The same subjects reported more frequent home-work conflict and more sleep disorders. We found a negative correlation between IL-1β at 8:00 a.m. and Cortdiff (the difference between cortisol at 8:00 a.m.-cortisol at 2:00 p.m.), and that high IL-1β at 8:00 a.m. was associated with low Cortdiff. Based on our results we would like to propose this approach in health surveillance, in order to prevent mental and/or physical disorders, however our study is surely preliminary. The interesting perspectives and hypotheses cited in this paper, in which the roles of IL-1β and norepinephrine appear central and important, could remain hypothetical if not supported by more robust observation in order to produce, truly, new knowledge. In the future we will deepen this study with a larger sample, and if these results will be confirmed, this approach could allow preventing, not only mental and physical disorders, but also immuno-mediated diseases, and, perhaps, cancer.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, Faculty of Medicine and Surgery, University of Foggia, Via Napoli 121, 71122 Foggia, Italy; (F.F.); (A.A.); (S.D.G.); (M.C.)
| | - Francesca Fortunato
- Department of Medical and Surgical Sciences, Faculty of Medicine and Surgery, University of Foggia, Via Napoli 121, 71122 Foggia, Italy; (F.F.); (A.A.); (S.D.G.); (M.C.)
| | - Addolorata Arsa
- Department of Medical and Surgical Sciences, Faculty of Medicine and Surgery, University of Foggia, Via Napoli 121, 71122 Foggia, Italy; (F.F.); (A.A.); (S.D.G.); (M.C.)
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, Faculty of Medicine and Surgery, University of Foggia, Via Napoli 121, 71122 Foggia, Italy; (F.F.); (A.A.); (S.D.G.); (M.C.)
| | - Gianfranco Tomei
- Department of Human Neurosciences, Faculty of Medicine and Surgery, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Massimo Conese
- Department of Medical and Surgical Sciences, Faculty of Medicine and Surgery, University of Foggia, Via Napoli 121, 71122 Foggia, Italy; (F.F.); (A.A.); (S.D.G.); (M.C.)
| |
Collapse
|
8
|
Won E, Na KS, Kim YK. Associations between Melatonin, Neuroinflammation, and Brain Alterations in Depression. Int J Mol Sci 2021; 23:ijms23010305. [PMID: 35008730 PMCID: PMC8745430 DOI: 10.3390/ijms23010305] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022] Open
Abstract
Pro-inflammatory systemic conditions that can cause neuroinflammation and subsequent alterations in brain regions involved in emotional regulation have been suggested as an underlying mechanism for the pathophysiology of major depressive disorder (MDD). A prominent feature of MDD is disruption of circadian rhythms, of which melatonin is considered a key moderator, and alterations in the melatonin system have been implicated in MDD. Melatonin is involved in immune system regulation and has been shown to possess anti-inflammatory properties in inflammatory conditions, through both immunological and non-immunological actions. Melatonin has been suggested as a highly cytoprotective and neuroprotective substance and shown to stimulate all stages of neuroplasticity in animal models. The ability of melatonin to suppress inflammatory responses through immunological and non-immunological actions, thus influencing neuroinflammation and neurotoxicity, along with subsequent alterations in brain regions that are implicated in depression, can be demonstrated by the antidepressant-like effects of melatonin. Further studies that investigate the associations between melatonin, immune markers, and alterations in the brain structure and function in patients with depression could identify potential MDD biomarkers.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Chaum, Seoul 06062, Korea;
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon 21565, Korea;
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
- Correspondence:
| |
Collapse
|
9
|
Chen W, Liu Z, Zheng Y, Wei B, Shi J, Shao B, Wang D. Selenium donor restricts the intracellular growth of Mycobacterium tuberculosis through the induction of c-Jun-mediated both canonical autophagy and LC3-associated phagocytosis of alveolar macrophages. Microb Pathog 2021; 161:105269. [PMID: 34742891 DOI: 10.1016/j.micpath.2021.105269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 10/25/2022]
Abstract
The relationship between selenium and Mycobacterium tuberculosis (MTB) infection has been reported previously; however, the specific mechanism is still not clear. In this study, selenium levels decreased in the serum of patients with pulmonary tuberculosis (PTB) compared with the healthy controls; they were associated with the treatment outcome of such patients. The qRT-PCR assay revealed that selenium might function through proinflammatory and autophagy pathways. The treatment with methylseleninic acid (MSeA), a selenium donor, blocked the M1 polarization of MTB-infected macrophages through the induction of both canonical autophagy and LC3-associated phagocytosis (LAP). c-Jun is vital in mediating the MSeA-triggered canonical autophagy and LAP process, thus displaying a restricting function against intracellular MTB. An in vivo study confirmed that the activity of MSeA was shown through enhancing macrophage autophagy related pathway. The results showed that selenium had a restricting function against intracellular MTB by regulating autophagy in macrophages. The findings might provide a novel direction for PTB therapy in the future.
Collapse
Affiliation(s)
- Wenhui Chen
- Thoracic Surgery Department, Capital Medical University Beijing Tiantan Hospital, No.119 South Fourth Ring West Road, Fengtai District, Beijing,100070, China
| | - Zhen Liu
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China
| | - Ying Zheng
- Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Australia
| | - Bo Wei
- Thoracic Surgery Department, Capital Medical University Beijing Tiantan Hospital, No.119 South Fourth Ring West Road, Fengtai District, Beijing,100070, China
| | - Jingdong Shi
- Thoracic Surgery Department, Capital Medical University Beijing Tiantan Hospital, No.119 South Fourth Ring West Road, Fengtai District, Beijing,100070, China.
| | - Baowei Shao
- Department of Cardiac Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan, Shandong, 250013, China.
| | - Di Wang
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China; Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Australia.
| |
Collapse
|
10
|
Zhou L, Song Z, Zhang S, Li Y, Xu J, Guo Y. Construction and antitumor activity of selenium nanoparticles decorated with the polysaccharide extracted from Citrus limon (L.) Burm. f. (Rutaceae). Int J Biol Macromol 2021; 188:904-913. [PMID: 34331980 DOI: 10.1016/j.ijbiomac.2021.07.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/14/2023]
Abstract
Selenium nanoparticles (SeNPs), a potential cancer therapeutic agent, have attracted widespread attention owing to their high bioavailability and remarkable anticancer activity. Nevertheless, the poor water solubility and dispersibility of SeNPs seriously limit their applications. In the present study, we synthesized stable and individual spherical selenium nanoparticles (CL90-Tw-SeNP2) with an average diameter of approximately 79 nm using a polysaccharide extracted from Citrus limon (CL90) and Tween-80 as the decorator and stabilizers. The proportion of selenium in CL90-Tw-SeNP2 was 10.6%. CL90-Tw-SeNP2 possessed high stability and good dispersion in water for more than three months. The subsequent biological assay revealed that CL90-Tw-SeNP2 showed remarkable antitumor effects against HepG2 cells, with an IC50 value of 49.13 μg/mL, by inducing cell apoptosis. Furthermore, an in vivo zebrafish assay to explore possible applications indicated that CL90-Tw-SeNP2 could inhibit the proliferation and migration of tumors and the zebrafish angiogenesis. These results indicated that CL90-Tw-SeNP2 could be a potential agent for cancer treatment, especially against human liver hepatoma cancer.
Collapse
Affiliation(s)
- Linan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 3003350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 3003350, People's Republic of China
| | - Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 3003350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 3003350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 3003350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 3003350, People's Republic of China.
| |
Collapse
|
11
|
Mechanisms of the Cytotoxic Effect of Selenium Nanoparticles in Different Human Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms22157798. [PMID: 34360564 PMCID: PMC8346078 DOI: 10.3390/ijms22157798] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, studies on the functional features of Se nanoparticles (SeNP) have gained great popularity due to their high biocompatibility, stability, and pronounced selectivity. A large number of works prove the anticarcinogenic effect of SeNP. In this work, the molecular mechanisms regulating the cytotoxic effects of SeNP, obtained by laser ablation, were studied by the example of four human cancer cell lines: A-172 (glioblastoma), Caco-2, (colorectal adenocarcinoma), DU-145 (prostate carcinoma), MCF-7 (breast adenocarcinoma). It was found that SeNP had different concentration-dependent effects on cancer cells of the four studied human lines. SeNP at concentrations of less than 1 μg/mL had no cytotoxic effect on the studied cancer cells, with the exception of the A-172 cell line, for which 0.5 μg/mL SeNP was the minimum concentration affecting its metabolic activity. It was shown that SeNP concentration-dependently caused cancer cell apoptosis, but not necrosis. In addition, it was found that SeNP enhanced the expression of pro-apoptotic genes in almost all cancer cell lines, with the exception of Caco-2 and activated various pathways of adaptive and pro-apoptotic signaling pathways of UPR. Different effects of SeNP on the expression of ER-resident selenoproteins and selenium-containing glutathione peroxidases and thioredoxin reductases, depending on the cell line, were established. In addition, SeNP triggered Ca2+ signals in all investigated cancer cell lines. Different sensitivity of cancer cell lines to SeNP can determine the induction of the process of apoptosis in them through regulation of the Ca2+ signaling system, mechanisms of ER stress, and activation of various expression patterns of genes encoding pro-apoptotic proteins.
Collapse
|
12
|
Chuffa LGDA, Seiva FRF, Novais AA, Simão VA, Martín Giménez VM, Manucha W, Zuccari DAPDC, Reiter RJ. Melatonin-Loaded Nanocarriers: New Horizons for Therapeutic Applications. Molecules 2021; 26:molecules26123562. [PMID: 34200947 PMCID: PMC8230720 DOI: 10.3390/molecules26123562] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The use of nanosized particles has emerged to facilitate selective applications in medicine. Drug-delivery systems represent novel opportunities to provide stricter, focused, and fine-tuned therapy, enhancing the therapeutic efficacy of chemical agents at the molecular level while reducing their toxic effects. Melatonin (N-acetyl-5-methoxytriptamine) is a small indoleamine secreted essentially by the pineal gland during darkness, but also produced by most cells in a non-circadian manner from which it is not released into the blood. Although the therapeutic promise of melatonin is indisputable, aspects regarding optimal dosage, biotransformation and metabolism, route and time of administration, and targeted therapy remain to be examined for proper treatment results. Recently, prolonged release of melatonin has shown greater efficacy and safety when combined with a nanostructured formulation. This review summarizes the role of melatonin incorporated into different nanocarriers (e.g., lipid-based vesicles, polymeric vesicles, non-ionic surfactant-based vesicles, charge carriers in graphene, electro spun nanofibers, silica-based carriers, metallic and non-metallic nanocomposites) as drug delivery system platforms or multilevel determinations in various in vivo and in vitro experimental conditions. Melatonin incorporated into nanosized materials exhibits superior effectiveness in multiple diseases and pathological processes than does free melatonin; thus, such information has functional significance for clinical intervention.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP-São Paulo State University, Botucatu, São Paulo 18618-689, Brazil; (L.G.d.A.C.); (V.A.S.)
| | - Fábio Rodrigues Ferreira Seiva
- Biological Science Center, Department of Biology, Luiz Meneghel Campus, Universidade Estadual do Norte do Paraná-UENP, Bandeirantes 86360-000, PR, Brazil;
| | - Adriana Alonso Novais
- Health Sciences Institute, Federal University of Mato Grosso, UFMT, Sinop 78607-059, MG, Brazil;
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP-São Paulo State University, Botucatu, São Paulo 18618-689, Brazil; (L.G.d.A.C.); (V.A.S.)
| | - Virna Margarita Martín Giménez
- Facultad de Ciencias Químicas y Tecnológicas, Instituto de Investigaciones en Ciencias Químicas, Universidad Católica de Cuyo, Sede San Juan 5400, Argentina;
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina;
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza 5500, Argentina
| | | | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA
- Correspondence:
| |
Collapse
|
13
|
Zefferino R, Di Gioia S, Conese M. Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav 2021; 11:e01960. [PMID: 33295155 PMCID: PMC7882157 DOI: 10.1002/brb3.1960] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The stress response is different in various individuals, however, the mechanisms that could explain these distinct effects are not well known and the molecular correlates have been considered one at the time. Particular harmful conditions occur if the subject, instead to cope the stressful events, succumb to them, in this case, a cascade reaction happens that through different signaling causes a specific reaction named "sickness behaviour." The aim of this article is to review the complex relations among important molecules belonging to Central nervous system (CNS), immune system (IS), and endocrine system (ES) during the chronic stress response. METHODS After having verified the state of art concerning the function of cortisol, norepinephrine (NE), interleukin (IL)-1β and melatonin, we describe as they work together. RESULTS We propose a speculative hypothesis concerning the complex interplay of these signaling molecules during chronic stress, highlighting the role of IL-1β as main biomarker of this effects, indeed, during chronic stress its increment transforms this inflammatory signal into a nervous signal (NE), in turn, this uses the ES (melatonin and cortisol) to counterbalance again IL-1β. During cortisol resistance, a vicious loop occurs that increments all mediators, unbalancing IS, ES, and CNS networks. This IL-1β increase would occur above all when the individual succumbs to stressful events, showing the Sickness Behaviour Symptoms. IL-1β might, through melatonin and vice versa, determine sleep disorders too. CONCLUSION The molecular links here outlined could explain how stress plays a role in etiopathogenesis of several diseases through this complex interplay.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
14
|
He L, Zhao J, Wang L, Liu Q, Fan Y, Li B, Yu YL, Chen C, Li YF. Using nano-selenium to combat Coronavirus Disease 2019 (COVID-19)? NANO TODAY 2021; 36:101037. [PMID: 33250930 PMCID: PMC7683300 DOI: 10.1016/j.nantod.2020.101037] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 05/20/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic represents a severe global health threat. Selenium (Se), as one of the essential trace elements in human body, is well known for its antioxidant and immunity-boosting capabilities that induce a strong antiviral effect. In response to the global pandemic, we highlight here the current status of Se in combating different viruses, as well as the potential application of nano-selenium (nanoSe) in combating COVID-19.
Collapse
Affiliation(s)
- Lina He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Quancheng Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuqin Fan
- Shandong Provincial Maternal & Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, Shandong, China
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, & Beijing Metallomics Facility, National Centre for Nanoscience and Technology, Beijing 100191, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Malekifard F, Tavassoli M, Vaziri K. In Vitro Assessment Antiparasitic Effect of Selenium and Copper Nanoparticles on Giardia deodenalis Cyst. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:411-417. [PMID: 33082806 PMCID: PMC7548461 DOI: 10.18502/ijpa.v15i3.4206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: Application of chemotherapy to treatment of parasitic disease of man and animals can be problematic due to different adverse effects. As a result, there is an increasing interest in nanoparticles as new therapeutic tools against these diseases. This study was designed to evaluate the effect of selenium and copper oxide nanoparticles on Giardia deudenalis cysts in vitro, as well as comparing it to that of metronidazole. Methods: The cysts were taken from the stools of patients in Urmia, Iran, during 2017–2018. The cysts were taken from stool and were concentrated and isolated on 0.85 M-sucrose. Then, selenium and copper oxide nanoparticles were prepared at concentrations of 0.15, 0.3, and 0.6 mg/ml. The effect of nanoparticle’s various concentrations at 10, 15, 30, 60, and 180 min were evaluated and compared to control groups. Obtained data was recorded and statistically analyzed. Results: Copper oxide nanoparticles at a concentration of 0.6 mg/ml and selenium nanoparticles at a concentration of 0.3 mg/ml had the same effect as of metronidazole in killing of Giardia cysts. The cytotoxic effects of selenium and copper oxide nanoparticles, compared with metronidazole, on Giardia cysts, showed an increase of fatality rate due to extend exposure time and nanoparticle’s concentration (P<0.05). Conclusion: Selenium and copper oxide nanoparticles are as efficient as metronidazole, for killing Giardia cysts in vitro.
Collapse
Affiliation(s)
- Farnaz Malekifard
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mousa Tavassoli
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Kiana Vaziri
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
16
|
Liu L, Zhang L, Li L, Chen M, Wang Z, Shen Y, Huang J, Tang L. Sleep deprivation aggravated lipopolysaccharide/D-galactosamine-induced acute liver injury by suppressing melatonin production. Inflamm Res 2020; 69:1133-1142. [PMID: 32809047 DOI: 10.1007/s00011-020-01393-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/13/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Sleep loss is common in patients with liver injury, but the effects of sleep deprivation (SD) on liver injury remain unclear. In the present study, the potential effects of SD on acute liver injury and the underlying mechanisms have been investigated. METHODS The sleep of male BALB/c mice has been deprived by using a modified multiple platform water bath for 3 days and acute liver injury was induced by intraperitoneal injection of lipopolysaccharide (LPS) and D-galactosamine (D-Gal). The degree of liver injury was detected by aminotransferase determination, histopathology and survival rate analysis. Inflammatory response and melatonin (MT) were measured by enzyme-linked immunosorbent assay (ELISA). In addition, hepatocyte apoptosis was determined by caspase activity measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. RESULTS We observed that SD increased plasma aminotransferases, TUNEL-positive hepatocytes, histological abnormalities and mortality rates in mice with LPS/D-Gal treatment. SD also promoted LPS/D-Gal-induced production of TNF-α and upregulated hepatic caspase-8, caspase-9, and caspase-3 activities in LPS/D-Gal-exposed mice. In addition, SD significantly decreased MT contents in plasma of mice with acute liver injury, but supplementation with MT reversed these SD-promoted changes. CONCLUSION Our data suggested that SD exacerbated LPS/D-Gal-induced liver injury via decreasing melatonin production.
Collapse
Affiliation(s)
- Lu Liu
- Department of Rehabilitation Medicine and Physical Therapy, The Affiliated Rehabilitation Hospital of Chongqing Medical University, 50 Xiejiawan Cultural Seventh Village, Jiulongpo District, Chongqing, 400050, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Longjiang Li
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Mengting Chen
- Department of Neurology, The Affiliated Rehabilitation Hospital of Chongqing Medical University, 50 Xiejiawan Cultural Seventh Village, Jiulongpo District, Chongqing, 400050, China
| | - Zhe Wang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing, 401331, China
| | - Yi Shen
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Jiayi Huang
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Ling Tang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing, 401331, China.
| |
Collapse
|
17
|
Galić E, Ilić K, Hartl S, Tetyczka C, Kasemets K, Kurvet I, Milić M, Barbir R, Pem B, Erceg I, Dutour Sikirić M, Pavičić I, Roblegg E, Kahru A, Vinković Vrček I. Impact of surface functionalization on the toxicity and antimicrobial effects of selenium nanoparticles considering different routes of entry. Food Chem Toxicol 2020; 144:111621. [PMID: 32738372 DOI: 10.1016/j.fct.2020.111621] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 11/18/2022]
Abstract
Selenium nanoparticles (SeNPs) were first designed as nutritional supplements, but they are attractive also for use in diagnostic and therapeutic systems owing to their biocompatibility and protective effects. This study aimed to examine if different SeNPs stabilization strategies affect their (i) antimicrobial activity against bacteria Escherichia coli and Staphylococcus aureus and yeast Saccharomyces cerevisiae and (ii) toxicity to human cells of different biological barriers i.e., skin, oral and intestinal mucosa. For surface stabilization, polyvinylpyrrolidone (PVP), poly-L-lysine (PLL) and polyacrylic acid (PAA) were used rendering neutral, positively and negatively charged SeNPs, respectively. The SeNPs (primary size ~80 nm) showed toxic effects in human cells in vitro and in bacteria S. aureus, but not in E. coli and yeast S. cerevisiae. Toxicity of SeNPs (24 h IC50) ranged from 1.4 to >100 mg Se/L, depending on surface functionalization (PLL > PAA > PVP) and was not caused by ionic Se. At subtoxic concentrations, all SeNPs were taken up by all human cell types, induced oxidative stress response and demonstrated genotoxicity. As the safety profile of SeNPs was dependent not only on target cells (mammalian cells, bacteria, yeast), but also on surface functionalization, these aspects should be considered during development of novel SeNPs-based biomedical products.
Collapse
Affiliation(s)
- Emerik Galić
- University J.J. Strossmayer in Osijek, Faculty of Agrobiotechnical Sciences Osijek, Croatia
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Sonja Hartl
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Graz, Austria
| | - Carolin Tetyczka
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Graz, Austria
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ina Erceg
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Dutour Sikirić
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Eva Roblegg
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Graz, Austria
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia; Estonian Academy of Sciences, Kohtu 6, Tallinn, Estonia.
| | | |
Collapse
|
18
|
Pi J, Shen L, Yang E, Shen H, Huang D, Wang R, Hu C, Jin H, Cai H, Cai J, Zeng G, Chen ZW. Macrophage‐Targeted Isoniazid–Selenium Nanoparticles Promote Antimicrobial Immunity and Synergize Bactericidal Destruction of Tuberculosis Bacilli. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiang Pi
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
- Department of Microbiology Zhongshan School of Medicine Key Laboratory for Tropical Diseases Control of the Ministry of Education Sun Yat-sen University Guangzhou Guangdong 510080 China
| | - Ling Shen
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Enzhuo Yang
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 China
| | - Dan Huang
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Richard Wang
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Chunmiao Hu
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Hua Jin
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Huaihong Cai
- Department of Chemistry Jinan University Guangzhou Guangdong 510632 China
| | - Jiye Cai
- Department of Chemistry Jinan University Guangzhou Guangdong 510632 China
| | - Gucheng Zeng
- Department of Microbiology Zhongshan School of Medicine Key Laboratory for Tropical Diseases Control of the Ministry of Education Sun Yat-sen University Guangzhou Guangdong 510080 China
| | - Zheng W. Chen
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| |
Collapse
|
19
|
Pi J, Shen L, Yang E, Shen H, Huang D, Wang R, Hu C, Jin H, Cai H, Cai J, Zeng G, Chen ZW. Macrophage-Targeted Isoniazid-Selenium Nanoparticles Promote Antimicrobial Immunity and Synergize Bactericidal Destruction of Tuberculosis Bacilli. Angew Chem Int Ed Engl 2020; 59:3226-3234. [PMID: 31756258 DOI: 10.1002/anie.201912122] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Indexed: 12/16/2022]
Abstract
Pathogenesis hallmarks for tuberculosis (TB) are the Mycobacterium tuberculosis (Mtb) escape from phagolysosomal destruction and limited drug delivery into infected cells. Several nanomaterials can be entrapped in lysosomes, but the development of functional nanomaterials to promote phagolysosomal Mtb clearance remains a big challenge. Here, we report on the bactericidal effects of selenium nanoparticles (Se NPs) against Mtb and further introduce a novel nanomaterial-assisted anti-TB strategy manipulating Ison@Man-Se NPs for synergistic drug-induced and phagolysosomal destruction of Mtb. Ison@Man-Se NPs preferentially entered macrophages and accumulated in lysosomes releasing Isoniazid. Surprisingly, Ison@Man-Se/Man-Se NPs further promoted the fusion of Mtb into lysosomes for synergistic lysosomal and Isoniazid destruction of Mtb. Concurrently, Ison@Man-Se/Man-Se NPs also induced autophagy sequestration of Mtb, evolving into lysosome-associated autophagosomal Mtb degradation linked to ROS-mitochondrial and PI3K/Akt/mTOR signaling pathways. This novel nanomaterial-assisted anti-TB strategy manipulating antimicrobial immunity and Mtb clearance may potentially serve in more effective therapeutics against TB and drug-resistant TB.
Collapse
Affiliation(s)
- Jiang Pi
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA.,Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Enzhuo Yang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Richard Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Chunmiao Hu
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Hua Jin
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Huaihong Cai
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| |
Collapse
|
20
|
|
21
|
Li C, Wang Q, Gu X, Kang Y, Zhang Y, Hu Y, Li T, Jin H, Deng G, Wang Q. Porous Se@SiO 2 nanocomposite promotes migration and osteogenic differentiation of rat bone marrow mesenchymal stem cell to accelerate bone fracture healing in a rat model. Int J Nanomedicine 2019; 14:3845-3860. [PMID: 31213805 PMCID: PMC6539174 DOI: 10.2147/ijn.s202741] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Delay or failure of bone union is a significant clinical challenge all over the world, and it has been reported that bone marrow mesenchymal stem cells (BMSCs) offer a promising approach to accelerate bone fracture healing. Se can modulate the proliferation and differentiation of BMSCs. Se-treatment enhances the osteoblastic differentiation of BMSCs and inhibiting the differentiation and formation of mature osteoclasts. The purpose of this study was to assess the effects of porous Se@SiO2 nanocomposite on bone regeneration and the underlying biological mechanisms. Methods: We oxidized Se2- to develop Se quantum dots, then we used the Se quantum dots to form a solid Se@SiO2 nanocomposite which was then coated with polyvinylpyrrolidone (PVP) and etched in hot water to synthesize porous Se@SiO2 nanocomposite. We used XRD pattern to assess the phase structure of the solid Se@SiO2 nanocomposite. The morphology of porous Se@SiO2 nanocomposite were evaluated by scanning electron microscope (SEM) and the biocompatibility of porous Se@SiO2 nanocomposite were investigated by cell counting kit-8 (CCK-8) assays. Then, a release assay was also performed. We used a Transwell assay to determine cell mobility in response to the porous Se@SiO2 nanocomposite. For in vitro experiments, BMSCs were divided into four groups to detect reactive oxygen species (ROS) generation, cell apoptosis, alkaline phosphatase activity, calcium deposition, gene activation and protein expression. For in vivo experiments, femur fracture model of rats was constructed to assess the osteogenic effects of porous Se@SiO2 nanocomposite. Results: In vitro, intervention with porous Se@SiO2 nanocomposite can promote migration and osteogenic differentiation of BMSCs, and protect BMSCs against H2O2-induced inhibition of osteogenic differentiation. In vivo, we demonstrated that the porous Se@SiO2 nanocomposite accelerated bone fracture healing using a rat femur fracture model. Conclusion: Porous Se@SiO2 nanocomposite promotes migration and osteogenesis differentiation of rat BMSCs and accelerates bone fracture healing, and porous Se@SiO2 nanocomposite may provide clinic benefit for bone tissue engineering.
Collapse
Affiliation(s)
- Chunlin Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Qi Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, People's Republic of China.,Trauma Center, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, People's Republic of China
| | - Xiaohua Gu
- Department of Orthopedics, Shanghai Seventh People's Hospital, Shanghai, 200137, People's Republic of China
| | - Yingjie Kang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Yongxing Zhang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Yangyang Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Taixi Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Hansong Jin
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Qiugen Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, People's Republic of China
| |
Collapse
|
22
|
Pramanik SK, Pal U, Choudhary P, Singh H, Reiter RJ, Ethirajan A, Swarnakar S, Das A. Stimuli-Responsive Nanocapsules for the Spatiotemporal Release of Melatonin: Protection against Gastric Inflammation. ACS APPLIED BIO MATERIALS 2019; 2:5218-5226. [DOI: 10.1021/acsabm.9b00236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364 002, India
| | - Uttam Pal
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal 700 064, India
| | - Preety Choudhary
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700 032, India
| | - Harwinder Singh
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364 002, India
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Anitha Ethirajan
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, Diepenbeek 3590, Belgium
| | - Snehasikta Swarnakar
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700 032, India
| | - Amitava Das
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364 002, India
| |
Collapse
|
23
|
Li H, Liu D, Li S, Xue C. Synthesis and cytotoxicity of selenium nanoparticles stabilized by α-D-glucan from Castanea mollissima Blume. Int J Biol Macromol 2019; 129:818-826. [DOI: 10.1016/j.ijbiomac.2019.02.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 01/28/2023]
|
24
|
Kazemi M, Akbari A, Soleimanpour S, Feizi N, Darroudi M. The Role of Green Reducing Agents in Gelatin-Based Synthesis of Colloidal Selenium Nanoparticles and Investigation of Their Antimycobacterial and Photocatalytic Properties. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01537-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 2019; 111:802-812. [DOI: 10.1016/j.biopha.2018.12.146] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022] Open
|
26
|
Golomb BA. Diplomats' Mystery Illness and Pulsed Radiofrequency/Microwave Radiation. Neural Comput 2018; 30:2882-2985. [PMID: 30183509 DOI: 10.1162/neco_a_01133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance: A mystery illness striking U.S. and Canadian diplomats to Cuba (and now China) "has confounded the FBI, the State Department and US intelligence agencies" (Lederman, Weissenstein, & Lee, 2017). Sonic explanations for the so-called health attacks have long dominated media reports, propelled by peculiar sounds heard and auditory symptoms experienced. Sonic mediation was justly rejected by experts. We assessed whether pulsed radiofrequency/microwave radiation (RF/MW) exposure can accommodate reported facts in diplomats, including unusual ones. Observations: (1) Noises: Many diplomats heard chirping, ringing or grinding noises at night during episodes reportedly triggering health problems. Some reported that noises were localized with laser-like precision or said the sounds seemed to follow them (within the territory in which they were perceived). Pulsed RF/MW engenders just these apparent "sounds" via the Frey effect. Perceived "sounds" differ by head dimensions and pulse characteristics and can be perceived as located behind in or above the head. Ability to hear the "sounds" depends on high-frequency hearing and low ambient noise. (2) Signs/symptoms: Hearing loss and tinnitus are prominent in affected diplomats and in RF/MW-affected individuals. Each of the protean symptoms that diplomats report also affect persons reporting symptoms from RF/MW: sleep problems, headaches, and cognitive problems dominate in both groups. Sensations of pressure or vibration figure in each. Both encompass vision, balance, and speech problems and nosebleeds. Brain injury and brain swelling are reported in both. (3) Mechanisms: Oxidative stress provides a documented mechanism of RF/MW injury compatible with reported signs and symptoms; sequelae of endothelial dysfunction (yielding blood flow compromise), membrane damage, blood-brain barrier disruption, mitochondrial injury, apoptosis, and autoimmune triggering afford downstream mechanisms, of varying persistence, that merit investigation. (4) Of note, microwaving of the U.S. embassy in Moscow is historically documented. Conclusions and relevance: Reported facts appear consistent with pulsed RF/MW as the source of injury in affected diplomats. Nondiplomats citing symptoms from RF/MW, often with an inciting pulsed-RF/MW exposure, report compatible health conditions. Under the RF/MW hypothesis, lessons learned for diplomats and for RF/MW-affected civilians may each aid the other.
Collapse
|
27
|
Cai W, Hu T, Bakry AM, Zheng Z, Xiao Y, Huang Q. Effect of ultrasound on size, morphology, stability and antioxidant activity of selenium nanoparticles dispersed by a hyperbranched polysaccharide from Lignosus rhinocerotis. ULTRASONICS SONOCHEMISTRY 2018; 42:823-831. [PMID: 29429736 DOI: 10.1016/j.ultsonch.2017.12.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 06/08/2023]
Abstract
The differences between ultrasonic and non-ultrasonic approaches in synthesizing Lignosus rhinocerotis polysaccharide-selenium nanoparticles (LRP-SeNPs) were compared in terms of size, morphology, stability and antioxidant activity by UV-VIS, FT-IR, X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) with high resolution TEM. Results indicated that the SeNPs were associated with the LRP macromolecules in a physical adsorption pattern without breaking chemical bonds, and the ultrasonic treatment reduced the size of SeNPs, narrowed the size distribution as well as improved the stability. Due to the LRP compact coil structure loosed under ultrasonic cavitation, the SeNPs could be easily diffused into the LRP internal branches instead of gathering on the LRP surface and were well dispersed and eventually stabilized throughout the extended branches. After ultrasound treatment, the SeNPs had a minimum average diameter of ∼50 nm and the LRP-SeNPs could remain homogeneous and translucent for 16 days within 200 nm size. Furthermore, the ultrasound-treated LRP-SeNPs exhibited higher DPPH and ABTS radical-scavenging abilities than those untreated with ultrasound. This difference may be attributed to the reason that ultrasound can reduce the SeNPs size and increase the specific surface area, which provides sufficient active sites to react with the free radicals and suppress the oxidizing reactions. The integrated results demonstrated that ultrasound played a crucial role in the dispersion, size control, stabilization and antioxidant activity of SeNPs.
Collapse
Affiliation(s)
- Wenfei Cai
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Hu
- College of Life Sciences and Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
| | - Amr M Bakry
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; Department of Dairy Science, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Zhaomin Zheng
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidong Xiao
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
28
|
Bai K, Hong B, Hong Z, Sun J, Wang C. Selenium nanoparticles-loaded chitosan/citrate complex and its protection against oxidative stress in D-galactose-induced aging mice. J Nanobiotechnology 2017; 15:92. [PMID: 29262862 PMCID: PMC5738782 DOI: 10.1186/s12951-017-0324-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Selenium (Se) is an indispensable trace element required for animals and humans, and extra Se-supplement is necessary, especially for those having Se deficiency. Recently, selenium nanoparticles (SeNPs), as a special form of Se supplement, have attracted worldwide attention due to their distinguished properties and excellent bioactivities. In this present study, an eco-friendly and economic way to prepare stable SeNPs was introduced. SeNPs were synthesized in the presence of chitosan (CTS) and then embedded into chitosan/citrate gel, generating selenium nanoparticles-loaded chitosan/citrate complex (SeNPs-C/C). Additionally, the clinical potential of SeNPs-C/C was evaluated by using D-galactose (D-gal)-induced aging mice model. RESULTS SeNPs in high uniform with an average diameter of around 50 nm were synthesized in the presence of chitosan, and reversible ionic gelation between chitosan and citrate was utilized to load SeNPs. Subsphaeroidal SeNPs-C/C microspheres of 1-30 μm were obtained by spay-drying. Single SeNPs were physically separated and embedded inside SeNPs-C/C microparticles, with excellent stability and acceptable release. Acute fetal test showed SeNPs-C/C was safer than selenite, with a median lethal dose (LD50) of approximately 4-fold to 11-fold of that of selenite. Oral administration of SeNPs-C/C remarkably retarded the oxidative stress of D-gal in Kunming mice by enhancing the activity of antioxidase, as evidenced by its significant protection of the growth, liver, Se retention and antioxidant bio-markers of mice against D-gal. CONCLUSIONS The design of SeNPs-C/C opens a new path for oral delivery of SeNPs with excellent stability, energy-conservation and environment-friendliness. SeNPs-C/C, as a novel supplement of Se, could be further developed to defend the aging process induced by D-gal.
Collapse
Affiliation(s)
- Kaikai Bai
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China. .,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, State Oceanic Administration, Xiamen, 361005, People's Republic of China.
| | - Bihong Hong
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China.,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | - Zhuan Hong
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China.,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | - Jipeng Sun
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China.,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | - Changsen Wang
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| |
Collapse
|
29
|
Pi J, Jiang J, Cai H, Yang F, Jin H, Yang P, Cai J, Chen ZW. GE11 peptide conjugated selenium nanoparticles for EGFR targeted oridonin delivery to achieve enhanced anticancer efficacy by inhibiting EGFR-mediated PI3K/AKT and Ras/Raf/MEK/ERK pathways. Drug Deliv 2017; 24:1549-1564. [PMID: 29019267 PMCID: PMC6920706 DOI: 10.1080/10717544.2017.1386729] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/25/2023] Open
Abstract
Selenium nanoparticles (Se NPs) have attracted increasing interest in recent decades because of their anticancer, immunoregulation, and drug carrier functions. In this study, GE11 peptide-conjugated Se NPs (GE11-Se NPs), a nanosystem targeting EGFR over-expressed cancer cells, were synthesized for oridonin delivery to achieve enhanced anticancer efficacy. Oridonin loaded and GE11 peptide conjugated Se NPs (GE11-Ori-Se NPs) were found to show enhanced cellular uptake in cancer cells, which resulted in enhanced cancer inhibition against cancer cells and reduced toxicity against normal cells. After accumulation into the lysosomes of cancer cells and increase of oridonin release under acid condition, GE11-Ori-Se NPs were further transported into cytoplasm after the damage of lysosomal membrane integrity. GE11-Ori-Se NPs were found to induce cancer cell apoptosis by inducting reactive oxygen species (ROS) production, activating mitochondria-dependent pathway, inhibiting EGFR-mediated PI3K/AKT and inhibiting Ras/Raf/MEK/ERK pathways. GE11-Se NPs were also found to show active targeting effects against the tumor tissue in esophageal cancer bearing mice. And in nude mice xenograft model, GE11-Ori-Se NPs significantly inhibited the tumor growth via inhibition of tumor angiogenesis by reducing the angiogenesis-marker CD31 and activation of the immune system by enhancing IL-2 and TNF-α production. The selenium contents in mice were found to accumulate into liver, tumor, and kidney, but showed no significant toxicity against liver and kidney. This cancer-targeted design of Se NPs provides a new strategy for synergistic treating of cancer with higher efficacy and reduced side effects, introducing GE11-Ori-Se NPs as a candidate for further evaluation as a chemotherapeutic agent for EGFR over-expressed esophageal cancers.
Collapse
Affiliation(s)
- Jiang Pi
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, PR China
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jinhuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, PR China
| | - Huaihong Cai
- Department of Chemistry, Jinan University, Guangzhou, PR China
| | - Fen Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, PR China
| | - Hua Jin
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, PR China
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Peihui Yang
- Department of Chemistry, Jinan University, Guangzhou, PR China
| | - Jiye Cai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, PR China
- Department of Chemistry, Jinan University, Guangzhou, PR China
| | - Zheng W. Chen
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
30
|
Pansare AV, Shedge AA, Patil VR. Discrete SeNPs-Macromolecule Binding Manipulated by Hydrophilic Interaction. Int J Biol Macromol 2017; 107:1982-1987. [PMID: 29032211 DOI: 10.1016/j.ijbiomac.2017.10.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 11/17/2022]
Abstract
Nanoparticle-protein conjugates are promising probes for biological diagnostics and versatile building blocks for nanotechnology. Here we demonstrate the interaction of SeNPs with BSA macromolecule simply by physical adsorption method. The interaction between SeNPs and BSA has been investigated by UV-Vis, fluorescence, circular dichroism (CD) spectroscopic and thermal methods. The esterase-like activity of BSA towards PNPA was investigated in the presence of SeNPs. The effects of SeNPs on the stability and conformational changes of BSA were studied, which indicated that the binding of SeNPs with BSA induced relative changes in secondary structure of protein. SeNPs acted as a structure stabilizer for BSA which was further confirmed by thermal denaturation study. The hydrophilic bonding forces played important roles in the BSA-SeNPs complex formation. The putative binding site of SeNPs on BSA was near to Sudlow's site II. The hydrophilic interaction of SeNPs on the stability and structure of BSA would find promising application in drug delivery system.
Collapse
Affiliation(s)
- Amol V Pansare
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai, 400098, India
| | - Amol A Shedge
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai, 400098, India
| | - Vishwanath R Patil
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai, 400098, India.
| |
Collapse
|
31
|
Bai K, Hong B, He J, Hong Z, Tan R. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. Int J Nanomedicine 2017; 12:4527-4539. [PMID: 28684913 PMCID: PMC5485894 DOI: 10.2147/ijn.s129958] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Selenium nanoparticles (SeNPs), as a special form of selenium (Se) supplement, have attracted worldwide attention due to their favorable properties and unique bioactivities. Herein, an eco-friendly and economic way to prepare stable SeNPs is introduced. SeNPs were synthesized in aqueous chitosan (CTS) and then embedded into CTS microspheres by spray-drying, forming selenium nanoparticles-loaded chitosan microspheres (SeNPs-M). The physicochemical properties including morphology, elemental state, size distribution and surface potential were investigated. Institute of Cancer Research mice were used as model animal to evaluate the bioactivities of SeNPs-M. Trigonal-phase SeNPs of ~35 nm were synthesized, and SeNPs-M physically embedding those SeNPs were successfully prepared. Amazingly, acute toxicity test indicated that SeNPs-M were much safer than selenite in terms of Se dose, with a LD50 of around 18-fold of that of selenite. In addition, SeNPs-M possessed powerful antioxidant activities, as evidenced by a dramatic increase of both Se retention and the levels of glutathione peroxidase, superoxide dismutase and catalase. The design of SeNPs-M can offer a new way for further development of SeNPs with a higher efficacy and better biosafety. Thus, SeNPs-M may be a potential candidate for further evaluation as an Se supplement with antioxidant properties and be used against Se deficiency in animals and human beings.
Collapse
Affiliation(s)
- Kaikai Bai
- Third Institute of Oceanography.,Engineering Research Center of Marine Biological Resource, Comprehensive Utilization, State Oceanic Administration, Xiamen, People's Republic of China
| | - Bihong Hong
- Third Institute of Oceanography.,Engineering Research Center of Marine Biological Resource, Comprehensive Utilization, State Oceanic Administration, Xiamen, People's Republic of China
| | - Jianlin He
- Third Institute of Oceanography.,Engineering Research Center of Marine Biological Resource, Comprehensive Utilization, State Oceanic Administration, Xiamen, People's Republic of China
| | - Zhuan Hong
- Third Institute of Oceanography.,Engineering Research Center of Marine Biological Resource, Comprehensive Utilization, State Oceanic Administration, Xiamen, People's Republic of China
| | - Ran Tan
- Third Institute of Oceanography.,Engineering Research Center of Marine Biological Resource, Comprehensive Utilization, State Oceanic Administration, Xiamen, People's Republic of China
| |
Collapse
|
32
|
Hu W, Deng C, Ma Z, Wang D, Fan C, Li T, Di S, Gong B, Reiter RJ, Yang Y. Utilizing melatonin to combat bacterial infections and septic injury. Br J Pharmacol 2017; 174:754-768. [PMID: 28213968 PMCID: PMC5387000 DOI: 10.1111/bph.13751] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 12/11/2022] Open
Abstract
Melatonin, also known as N-acetyl-5-methoxytryptamine, is a ubiquitously acting molecule that is produced by the pineal gland and other organs of animals, including humans. As melatonin and its metabolites are potent antioxidants and free radical scavengers, they are protective against a variety of disorders. Moreover, multiple molecular targets of melatonin have been identified, and its actions are both receptor-mediated and receptor-independent. Recent studies have shown that melatonin may be useful in fighting against sepsis and septic injury due to its antioxidative and anti-inflammatory actions; the results generally indicate a promising therapeutic application for melatonin in the treatment of sepsis. To provide a comprehensive understanding regarding the protective effects of melatonin against septic injury, in the present review we have evaluated the published literature in which melatonin has been used to treat experimental and clinical sepsis. Firstly, we present the evidence from studies that have used melatonin to resist bacterial pathogens. Secondly, we illustrate the protective effect of melatonin against septic injury and discuss the possible mechanisms. Finally, the potential directions for future melatonin research against sepsis are summarized.
Collapse
Affiliation(s)
- Wei Hu
- Department of Thoracic and Cardiovascular SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing HospitalThe Fourth Military Medical UniversityXi'anChina
- Department of Thoracic Surgery, Tangdu HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Zhiqiang Ma
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Chongxi Fan
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Tian Li
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Shouyin Di
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Bing Gong
- Department of Thoracic and Cardiovascular SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Russel J Reiter
- Department of Cellular and Structural BiologyUT Health Science Center at San AntonioSan AntonioTXUSA
| | - Yang Yang
- Department of Thoracic and Cardiovascular SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
33
|
Long M, Yang S, Zhang W, Zhang Y, Li P, Guo Y, Wang Y, Chen X, He J. The Influence of Selenium Yeast on Hematological, Biochemical and Reproductive Hormone Level Changes in Kunming Mice Following Acute Exposure to Zearalenone. Biol Trace Elem Res 2016; 174:362-368. [PMID: 27147431 DOI: 10.1007/s12011-016-0725-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022]
Abstract
Healthy male Kunming mice received selenium yeast for 14 days prior to a single oral administration of zearalenone (ZEN). After 48 h, blood samples were collected for analysis and showed that mice in the ZEN-treated group has significantly decreased lymphocytes (P < 0.05) and platelets (P < 0.05) along with an increased white blood cell (WBC) count and other constituents (P < 0.05). The serum biochemistry analysis of the ZEN group indicated that glutamic pyruvic transaminase (ALT), glutamic oxaloacetic transaminase (AST), urea, and uric acid were significantly increased (P < 0.05), whilst total bilirubin (TB) and albumin (ALB) were decreased along with serum testosterone and estrogen (P < 0. 05). The level of malondialdehyde (MDA) in the serum of the ZEN group was significantly increased whilst glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) had significantly decreased (P < 0.05). Treatment with selenium yeast had a significant effect on response with most of the experimental parameters returning to levels similar to those observed in the untreated control mice. From these data, it can be concluded that ZEN is highly poisonous in Kunming mice with high levels of toxicity on the blood, liver, and kidneys. High levels of oxidative stress were observed in mice and pre-treatment with selenium yeast by oral gavage is effective in the ameliorated effects of ZEN-induced damage.
Collapse
Affiliation(s)
- Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Wenkui Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Yang Guo
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Yuan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Xinliang Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
34
|
Li MQ, Hasan MK, Li CX, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Xu MX, Zhou J. Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J Pineal Res 2016; 61:291-302. [PMID: 27264631 DOI: 10.1111/jpi.12346] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/03/2016] [Indexed: 02/06/2023]
Abstract
Both selenium (Se) and melatonin reduce cadmium (Cd) uptake and mitigate Cd toxicity in plants. However, the relationship between Se and melatonin in Cd detoxification remains unclear. In this study, we investigated the influence of three forms of Se (selenocysteine, sodium selenite, and sodium selenate) on the biosynthesis of melatonin and the tolerance against Cd in tomato plants. Pretreatment with different forms of Se significantly induced the biosynthesis of melatonin and its precursors (tryptophan, tryptamine, and serotonin); selenocysteine had the most marked effect on melatonin biosynthesis. Furthermore, Se and melatonin supplements significantly increased plant Cd tolerance as evidenced by decreased growth inhibition, photoinhibition, and electrolyte leakage (EL). Se-induced Cd tolerance was compromised in melatonin-deficient plants following tryptophan decarboxylase (TDC) gene silencing. Se treatment increased the levels of glutathione (GSH) and phytochelatins (PCs), as well as the expression of GSH and PC biosynthetic genes in nonsilenced plants, but the effects of Se were compromised in TDC-silenced plants under Cd stress. In addition, Se and melatonin supplements reduced Cd content in leaves of nonsilenced plants, but Se-induced reduction in Cd content was compromised in leaves of TDC-silenced plants. Taken together, our results indicate that melatonin is involved in Se-induced Cd tolerance via the regulation of Cd detoxification.
Collapse
Affiliation(s)
- Meng-Qi Li
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Md Kamrul Hasan
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Cai-Xia Li
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | | | - Xiao-Jian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Yan-Hong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jing-Quan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Ming-Xing Xu
- Geological Research Center for Agricultural Applications, China Geological Survey, Hangzhou, China
- Zhejiang Institute of Geological Survey, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China.
| |
Collapse
|
35
|
Zhang C, Zhai X, Zhao G, Ren F, Leng X. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights. Carbohydr Polym 2015; 134:158-66. [DOI: 10.1016/j.carbpol.2015.07.065] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/12/2015] [Accepted: 07/19/2015] [Indexed: 01/08/2023]
|
36
|
Liang N, Wang F, Peng X, Fang J, Cui H, Chen Z, Lai W, Zhou Y, Geng Y. Effect of Sodium Selenite on Pathological Changes and Renal Functions in Broilers Fed a Diet Containing Aflatoxin B₁. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11196-208. [PMID: 26371027 PMCID: PMC4586669 DOI: 10.3390/ijerph120911196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/03/2023]
Abstract
To evaluate the renal toxicity of dietary aflatoxin B₁ (AFB₁) and ameliorating effects of added dietary sodium selenite in broiler, renal histopathological changes, ultrastructural changes, and renal function parameters were monitored at 7, 14, and 21 days of age. Two hundred one-day-old healthy male Avian broilers were divided into four groups, namely control group, AFB₁ group (0.3 mg/kg AFB₁), +Se group (0.4 mg/kg Se), and AFB₁+Se group (0.3 mg/kg AFB₁+0.4 mg/kg Se). Compared with that of the control group, the relative weight of kidney was increased in the AFB₁ group. There were no significant differences between the AFB₁+Se group and the control group. By histopathological observation, the renal epithelia were swelling and necrosis at 7 and 21 days of age. Ultrastructurally, the lipid droplets and expanded endoplasmic reticulum appeared in the plasma of epithelia cells in the AFB₁ group. Enlarged mitochondria with degenerated cristae were observed in the +Se group. Compared with the control group, the contents of serum creatinine and serum uric acid in the AFB₁ group were increased, while the activity of renal Na⁺-K⁺ ATPase was decreased. When 0.4 mg/kg selenium was added into the diet containing 0.3 mg/kg AFB₁, there were no obvious histological changes in the AFB₁+Se group, and the contents of the serum creatinine and serum uric acid contents and the activity of renal Na⁺-K⁺ ATPase were close to those in the control group. In conclusion, sodium selenite exhibited protective effects on AFB₁-induced kidney toxicity in broilers.
Collapse
Affiliation(s)
- Na Liang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Fengyuan Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Xi Peng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Zhengli Chen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Weimin Lai
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Yi Zhou
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Yi Geng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| |
Collapse
|
37
|
Jiang W, Fu Y, Yang F, Yang Y, Liu T, Zheng W, Zeng L, Chen T. Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy. ACS APPLIED MATERIALS & INTERFACES 2014; 6:13738-48. [PMID: 25073123 DOI: 10.1021/am5031962] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The poor permeability of glioma parenchyma represents a major limit for antiglioblastoma drug delivery. Gracilaria lemaneiformis polysaccharide (GLP), which has a high binding affinity to αvβ3 integrin overexpressed in glioma cells, was employed in the present study to functionalize selenium nanoparticles (SeNPs) to achieve antiglioblastoma efficacy. GLP-SeNPs showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. In U87 glioma cell membrane, which has a high integrin expression level, GLP-SeNPs exhibited significantly higher cellular uptake than unmodified SeNPs. As expected, U87 cells exhibited a greater uptake of GLP-SeNPs than C6 cells with low integrin expression level. Furthermore, the internalization of GLP-SeNPs was inhibited by cyclo-(Arg-Gly-Asp-Phe-Lys) peptides, suggesting that cellular uptake into U87 cells and C6 cells occurred via αvβ3 integrin-mediated endocytosis. For U87 cells, the cytotoxicity of SeNPs decorated by GLP was enhanced significantly because of the induction of various apoptosis signaling pathways. Internalized GLP-SeNPs triggered intracellular reactive oxygen species downregulation. Therefore, p53, MAPKs, and AKT pathways were activated to advance cell apoptosis. These findings suggest that surface decoration of nanomaterials with GLP could be an efficient strategy for design and preparation of glioblastoma targeting nanodrugs.
Collapse
Affiliation(s)
- Wenting Jiang
- Department of Chemistry and ‡Institute of Hydrobiology, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu S, Sun K, Wang X, Wang D, Wan X, Zhang J. Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7268-7275. [PMID: 23822637 DOI: 10.1021/jf4000083] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The current results show that epigallocatechin-3-gallate (EGCG), in the form of phenolic anions at pH 8.0, can effectively disperse selenium nanoparticles. However, at gastric juice pH (1.0), the EGCG-dispersed selenium nanoparticles (referred to as E-Se) extensively aggregated, so that nano features largely disappeared. This demonstrates that deprotonated phenolic anions of EGCG play an important role in maintaining E-Se stability and suggests that E-Se would suffer from reduced oral bioavailability. To validate this conjecture, size-equivalent E-Se and bovine serum albumin (BSA)-dispersed selenium nanoparticles (B-Se), whose physicochemical properties were not altered at pH 1.0, were orally administered to selenium-deficient mice. In comparison to B-Se, the bioavailabilities of E-Se as indicated with hepatic and renal glutathione peroxidase activity and hepatic selenium levels were significantly (p < 0.01) reduced by 39, 32, and 31%, respectively. Therefore, the present study reveals that size-equivalent selenium nanoparticles prepared by different dispersers do not necessarily guarantee equivalent oral bioavailability.
Collapse
Affiliation(s)
- Shanshan Wu
- Key Laboratory of Tea Biochemistry and Biotechnology, School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Melatonin: buffering the immune system. Int J Mol Sci 2013; 14:8638-83. [PMID: 23609496 PMCID: PMC3645767 DOI: 10.3390/ijms14048638] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/06/2013] [Accepted: 04/07/2013] [Indexed: 12/29/2022] Open
Abstract
Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed.
Collapse
|
40
|
Ren Y, Zhao T, Mao G, Zhang M, Li F, Zou Y, Yang L, Wu X. Antitumor activity of hyaluronic acid-selenium nanoparticles in Heps tumor mice models. Int J Biol Macromol 2013; 57:57-62. [PMID: 23500433 DOI: 10.1016/j.ijbiomac.2013.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/31/2013] [Accepted: 03/02/2013] [Indexed: 11/18/2022]
Abstract
In this study, hyaluronic acid-selenium (HA-Se) nanoparticles as novel complexes were synthesized and their antitumor activities in vivo were investigated. The mice inoculated with Heps tumor were orally administered with HA-Se nanoparticles at 86.45 mg/kg (H) and 4.32 mg/kg (L) body weights as high and low doses respectively (2.20% selenium content in the HA-Se nanoparticles samples by ICP-AES) for 10 days. The transmission electron microscopy (TEM) results indicated that the HA-Se nanoparticles were spherical with mean size of 50-70 nm. The HA-Se nanoparticles could significantly reduce tumor weights at the tumor inhibition ratios of 46.92% (H) and 49.12% (L) respectively. However, in the 5-fluorouracil positive group (25 mg/kg), the tumor inhibition ratio was 61.71%. From the study, the HA-Se nanoparticles (4.32 mg/kg) significantly increased thymus and spleen relative weights, enhanced the activities of superoxide dismutase (SOD), reduced the formation of malondialdehyde (MDA) and the activities of aspartate transaminase, alanine transaminase and crea in Heps tumor mice. The results of the study indicated that the HA-Se nanoparticles are potential antitumor candidate for cancer treatment.
Collapse
Affiliation(s)
- Yuena Ren
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Soflaei S, Dalimi A, Abdoli A, Kamali M, Nasiri V, Shakibaie M, Tat M. Anti-leishmanial activities of selenium nanoparticles and selenium dioxide on Leishmania infantum. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s00580-012-1561-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Tran P, Webster T. Nanostructured selenium anti-cancer coatings for orthopedic applications. Nanomedicine (Lond) 2012. [DOI: 10.1533/9780857096449.2.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
Reddy LH, Couvreur P. Nanotechnology for therapy and imaging of liver diseases. J Hepatol 2011; 55:1461-6. [PMID: 21801699 DOI: 10.1016/j.jhep.2011.05.039] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/10/2011] [Accepted: 05/27/2011] [Indexed: 12/29/2022]
Abstract
Nanotechnology has been considered for the improved delivery of various therapeutic agents, including drugs and genes. Indeed, liposomes and nanoparticles equipped with homing devices for the targeting of receptors over-expressed on the hepatic tissue have improved the treatment of various liver diseases. In this review, various nanotechnology approaches employed for the treatment/imaging of liver disease, either in preclinical or in clinic are discussed.
Collapse
Affiliation(s)
- L Harivardhan Reddy
- Drug Delivery Technologies and Innovation, Pharmaceutical Sciences Department, Sanofi-aventis, 13 Quai Jules Guesde, 94403 Vitry-sur-Seine, France
| | | |
Collapse
|
44
|
Sun B, Wang R, Li J, Jiang Z, Xu S. Dietary selenium affects selenoprotein W gene expression in the liver of chicken. Biol Trace Elem Res 2011; 143:1516-23. [PMID: 21331563 DOI: 10.1007/s12011-011-8995-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
As selenium in the form of "Selenoprotein W (SelW)" is essential for the maintenance of normal liver function, the expression of SelW liver depends on the level of selenium supplied with the diet. Whereas this is well known to be the case in mammals, relatively little is known about the effect of dietary Se on the expression SelW in the livers of avian species. To investigate the effects of dietary Se levels on the SelW mRNA expression in the liver of bird, 1-day-old male chickens were fed either a commercial diet or a Se-supplemented diet containing 1.0, 2.0, 3.0, and 5.0 mg/kg sodium selenite (Na(2)SeO(3)) for 90 days. The livers were collected and examined for Se content and mRNA levels of SelW, Selenophosphate synthetase-1, and selenocysteine-synthase (SecS). The data indicate that, within a certain range, a Se-supplemented diet can increase the expression of SelW and the mRNA levels of SecS, and also, that the transcription of SelW is very sensitive to dietary Se.
Collapse
Affiliation(s)
- Bo Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Zhang NN, Huang NY, Zhou XK, Luo XL, Liu CY, Zhang Y, Qiu J, Zhang YB, Teng X, Luo C, Chen XC, Kan B, Mao YQ, Tong AP, Wei YQ, Li J. Protective effects of IL-4 on Bacillus Calmette-Guerin and lipopolysaccharide induced immunological liver injury in mice. Inflamm Res 2011; 61:17-26. [PMID: 21947361 DOI: 10.1007/s00011-011-0383-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/22/2011] [Accepted: 09/07/2011] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Mice injected with Bacillus Calmette-Guérin (BCG) were challenged with lipopolysaccharide (LPS) to induce inflammatory liver injury. This study was performed to explore the protective effects of interleukin (IL)-4 against liver injury induced by BCG and LPS in mice. MATERIALS AND METHODS Mice injected with BCG (125 mg/kg) were challenged with LPS (10 μg/kg) to induce the model of inflammatory liver injury. Half an hour after injection of LPS, mice were subcutaneously administered rmIL-4 at 5 and 0.5 μg/kg, respectively. Liver injury was evaluated by serum transaminase assay and H & E staining. Liver cytokine concentrations were determined by enzyme-linked immunosorbent assay, and intrahepatic cytokine and iNOS mRNA levels by reverse transcriptase polymerase chain reaction. Intrahepatic apoptosis was evaluated by terminal deoxynucleotidyl transferase mediated nick end labeling. NF-κB p65 and ERK signal pathway was detected by Western-blotting. NF-κB signal pathway was also detected by electrophoretic mobility shift assay. RESULTS IL-4 reduced the serum ALT, AST and LDH, alleviated the inflammatory cells infiltration, down regulated the expression of TNF-α, IL-1β, IFN-γ, IL-6 and iNOS mRNA in liver, and alleviated hepatic glutathione depletion (GSH). In addition, IL-4 displayed inhibition of extracellular signal-regulated kinase phosphorylation and NF-κB activation. CONCLUSION IL-4 may protect mice against BCG/LPS-induced immune liver injury, besides ERK and NF-κB signal pathways were involved in the effects.
Collapse
Affiliation(s)
- Nan N Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ali EH, Hashem M, Al-Salahy MB. Pathogenicity and oxidative stress in Nile tilapia caused by Aphanomyces laevis and Phoma herbarum isolated from farmed fish. DISEASES OF AQUATIC ORGANISMS 2011; 94:17-28. [PMID: 21553565 DOI: 10.3354/dao02290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Identified (n = 17) and unidentified (n = 1) fish-pathogenic fungal species from 10 genera of Oomycetes and soil fungi were isolated from 40 infected freshwater fish samples of the species Oreochromis niloticus niloticus (Nile tilapia) and Clarias gariepinus (African catfish). Samples were collected from various fish farms in the Nile Delta, Egypt. Nile tilapia were tested in aquaria for their susceptibility to the commonest Oomycetes species, Aphanomyces laevis and Achlya klebsiana, and also against the 2 most prevalent pathogenic soil fungi, Paecilomyces lilacinus and Phoma herbarum. Two techniques were used: water bath exposure and intramuscular (subcutaneous) injection. Water bath exposure to the 2 species of Oomycetes caused greater mortalities of O. niloticus niloticus than intramuscular injection, but the reverse was true of the soil fungal species. Regardless of the infection method, the 2 Oomycetes species were more potent pathogens than the soil fungal species. In both gills and mytomal muscles of fish infected by A. laevis and P. herbarum, we measured and compared with controls the oxidative stress parameters total peroxide (TP), lipid peroxidation (LPO) and nitric oxide (NO), as well as levels of the antioxidants vitamin E and glutathione (GSH), and superoxide dismutase (SOD) and catalase (CAT) activities. Infection by these 2 fungal species through either spore suspension or spore injection significantly increased oxidative damage in gills and induced marked decrease in most studied antioxidants. In addition, both routes showed similar effects and A. laevis depressed the antioxidants CAT, vitamin E and GSH more than P. herbarum.
Collapse
Affiliation(s)
- Esam H Ali
- Botany Department, Faculty of Science, Assiut University, Assiut, Egypt.
| | | | | |
Collapse
|
47
|
Tran PA, Sarin L, Hurt RH, Webster TJ. Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. J Biomed Mater Res A 2010; 93:1417-28. [PMID: 19918919 DOI: 10.1002/jbm.a.32631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Current orthopedic implants have several problems that include poor osseointegration for extended periods of time, stress shielding and wear debris-associated bone cell death. In addition, numerous patients receive orthopedic implants as a result of bone cancer resection, yet current orthopedic materials were not designed to prevent either the occurrence or reoccurrence of cancer. The objective of this in vitro study was to create a new biomaterial which can both restore bone and prevent cancer growth at the implant-tissue interface. Elemental selenium was chosen as the biologically active agent in this study because of its known chemopreventive and chemotherapeutic properties. It was found that when selenite salts were reduced by glutathione in the presence of an immersed titanium substrate, elemental selenium nucleated and grew into adherent, hemispherical nanoclusters that formed a nanostructured composite surface. Three types of surfaces with different selenium surface densities on titanium were fabricated and confirmed by SEM images, AFM, and XPS profiles. Compared to conventional untreated titanium, a high-density selenium-doped surface inhibited cancerous bone cell proliferation while promoting healthy bone cell functions (including adhesion, proliferation, alkaline phosphatase activity and calcium deposition). These findings showed for the first time the potential of selenium nanoclusters as a chemopreventive titanium orthopedic material coating that can also promote healthy bone cell functions.
Collapse
Affiliation(s)
- Phong A Tran
- Physics Department, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
48
|
Barathmanikanth S, Kalishwaralal K, Sriram M, Pandian SRK, Youn HS, Eom S, Gurunathan S. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnology 2010; 8:16. [PMID: 20630072 PMCID: PMC2914719 DOI: 10.1186/1477-3155-8-16] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 07/14/2010] [Indexed: 02/08/2023] Open
Abstract
Background Oxidative stress is imperative for its morbidity towards diabetic complications, where abnormal metabolic milieu as a result of hyperglycemia, leads to the onset of several complications. A biological antioxidant capable of inhibiting oxidative stress mediated diabetic progressions; during hyperglycemia is still the need of the era. The current study was performed to study the effect of biologically synthesized gold nanoparticles (AuNPs) to control the hyperglycemic conditions in streptozotocin induced diabetic mice. Results The profound control of AuNPs over the anti oxidant enzymes such as GSH, SOD, Catalase and GPx in diabetic mice to normal, by inhibition of lipid peroxidation and ROS generation during hyperglycemia evidence their anti-oxidant effect during hyperglycemia. The AuNPs exhibited an insistent control over the blood glucose level, lipids and serum biochemical profiles in diabetic mice near to the control mice provokes their effective role in controlling and increasing the organ functions for better utilization of blood glucose. Histopathological and hematological studies revealed the non-toxic and protective effect of the gold nanoparticles over the vital organs when administered at dosage of 2.5 mg/kilogram.body.weight/day. ICP-MS analysis revealed the biodistribution of gold nanoparticles in the vital organs showing accumulation of AuNPs in the spleen comparatively greater than other organs. Conclusion The results obtained disclose the effectual role of AuNPs as an anti-oxidative agent, by inhibiting the formation of ROS, scavenging free radicals; thus increasing the anti-oxidant defense enzymes and creating a sustained control over hyperglycemic conditions which consequently evoke the potential of AuNPs as an economic therapeutic remedy in diabetic treatments and its complications.
Collapse
Affiliation(s)
- Selvaraj Barathmanikanth
- Department of Biotechnology, Division of Molecular and Cellular Biology, Kalasalingam University, Anand Nagar, Krishnankoil-626190, Tamilnadu, India.
| | | | | | | | | | | | | |
Collapse
|
49
|
Jiménez A, Andrés S, Sánchez J. Effect of melatonin implants on somatic cell counts in dairy goats. Small Rumin Res 2009. [DOI: 10.1016/j.smallrumres.2009.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Qu XJ, Xia X, Wang YS, Song MJ, Liu LL, Xie YY, Cheng YN, Liu XJ, Qiu LL, Xiang L, Gao JJ, Zhang XF, Cui SX. Protective effects of Salvia plebeia compound homoplantaginin on hepatocyte injury. Food Chem Toxicol 2009; 47:1710-5. [PMID: 19406199 DOI: 10.1016/j.fct.2009.04.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 04/06/2009] [Accepted: 04/17/2009] [Indexed: 11/15/2022]
Abstract
Salvia plebeia R. Br is a traditional Chinese herb which has been considered as an inflammatory mediator used for treatment of many infectious diseases including hepatitis. Previously, the compound homoplantaginin was isolated in our group. Hence, we evaluated the protective effects of homoplantaginin on hepatocyte injury. Homoplantaginin displayed an antioxidant property in a cell-free system and showed IC(50) of reduction level of DPPH radical at 0.35 microg/ml. In human hepatocyte HL-7702 cells exposed to H(2)O(2), the addition of 0.1-100 microg/ml of homoplantaginin, which did not have a toxic effect on cell viability, significantly reduced lactate dehydrogenase (LDH) leakage, and increased glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in supernatant. In vivo assay, we employed the model of Bacillus Calmette-Guérin (BCG)/lipopolysaccharide (LPS)-induced hepatic injury mice to evaluate efficacy of homoplantaginin. Homoplantaginin (25-100mg/kg) significantly reduced the increase in serum alanine aminotranseferase (ALT) and aspartate aminotransferase (AST), decreased the levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1). The same treatment also reduced the content of thiobarbituric acid-reactive substances (TBARS), elevated the levels of GSH, GSH-Px and SOD in hepatic homogenate. The histopathological analysis showed that the grade of liver injury was ameliorated with reduction of inflammatory cells and necrosis of liver cells in homoplantaginin treatment mice. These results suggest that homoplantaginin has a protective and therapeutic effect on hepatocyte injury, which might be associated with its antioxidant properties.
Collapse
Affiliation(s)
- Xian-Jun Qu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|