1
|
Ghosh P, Dey T, Majumder R, Datta M, Chattopadhyay A, Bandyopadhyay D. Insights into the antioxidative mechanisms of melatonin in ameliorating chromium-induced oxidative stress-mediated hepatic and renal tissue injuries in male Wistar rats. Food Chem Toxicol 2023; 173:113630. [PMID: 36708861 DOI: 10.1016/j.fct.2023.113630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Chromium (Cr), a hazardous heavy metal, is toxic to human health and the environment. Severe detrimental effects of Cr on different physiological systems involve oxidative stress. In the current study, sodium dichromate di-hydrate was subcutaneously injected to male Wistar rats at a dose of 5 mg/kg b.w. and experimented up to 14 days to induce alterations in hepatic and renal tissues. Another group of rats was pre-treated with melatonin at three different doses (5, 10, and 20 mg/kg b.w.; orally) and 20 mg/kg b.w. dose was evidenced to provide maximal protection against Cr-induced alterations. The study demonstrated that melatonin efficiently preserved body weight, organ weight, intracellular antioxidant enzymes, and tissue morphology. Furthermore, melatonin was also found to protect organ damage markers, oxidative stress-biomarkers, activities of pro-oxidant enzymes, levels of reactive oxygen species (ROS), nitric oxide (NO), and collagen content through its antioxidative mechanisms. Moreover, melatonin effectively decreased tissue Cr content through its metal-chelating activity. Hence, the present study has established melatonin as a promising antioxidant for conserving the liver and kidney tissues from Cr-induced oxidative damage thereby strengthening the notion that this small indoleamine can act as a future therapeutic against Cr-induced oxidative stress-mediated tissue damage.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Romit Majumder
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Madhuri Datta
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| |
Collapse
|
2
|
Jiao L, Wang Y, Zhang S, Wang Y, Liu Z, Liu Z, Zhou Y, Zhou H, Xu X, Li Z, Liu Z, Yu Z, Nie L, Zhou L, Jiang H. Melatonin improves cardiac remodeling and brain-heart sympathetic hyperactivation aggravated by light disruption after myocardial infarction. J Pineal Res 2022; 73:e12829. [PMID: 36031757 DOI: 10.1111/jpi.12829] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022]
Abstract
Light in the external environment might affect cardiovascular function. The light disruption seems to be related to changes in cardiovascular physiological functions, and disturbing light may be a risk factor for cardiovascular diseases. Prior studies have found that light disruption after myocardial infarction (MI) exacerbates cardiac remodeling, and the brain-heart sympathetic nervous system may be one of the key mechanisms. However, how to improve light-disrupted cardiac remodeling remains unclear. Melatonin is an indoleamine secreted by the pineal gland and controlled by endogenous circadian oscillators within the suprachiasmatic nucleus, which is closely associated with light/dark cycle. This study aimed to explore whether melatonin could improve light-disrupted cardiac remodeling and modulate the brain-heart sympathetic nervous system. Our study revealed that light disruption reduced serum melatonin levels, aggravated cardiac sympathetic remodeling, caused overactivation of the brain-heart sympathetic nervous system, exacerbated cardiac dysfunction, and increased cardiac fibrosis after MI, while melatonin treatment improved light disruption-exacerbated cardiac remodeling and brain-heart sympathetic hyperactivation after MI. Furthermore, RNA-Seq results revealed the significant changes at the cardiac transcription level. In conclusion, melatonin may be a potential therapy for light-disrupted cardiac remodeling.
Collapse
Affiliation(s)
- Liying Jiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Song Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Zihan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Yuyang Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Huixin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Xiao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Zeyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Zhongyang Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Liqing Nie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| |
Collapse
|
3
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Vlachou M, Siamidi A, Anagnostopoulou D, Christodoulou E, Bikiaris ND. Modified Release of the Pineal Hormone Melatonin from Matrix Tablets Containing Poly(L-lactic Acid) and Its PLA-co-PEAd and PLA-co-PBAd Copolymers. Polymers (Basel) 2022; 14:polym14081504. [PMID: 35458252 PMCID: PMC9027688 DOI: 10.3390/polym14081504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/29/2022] Open
Abstract
In terms of drug delivery, the attractive properties of poly(L-lactic acid) (PLA) and its aliphatic polyesters, poly(ethylene adipate) (PEAd) and poly(butylene adipate) (PBAd), render them ideal co-formulants for the preparation of modified-release pharmaceutical formulations. Furthermore, we have previously demonstrated that by adding a “softer” aliphatic polyester onto the macromolecular chain of PLA, i.e., PEAd or PBAd, resulting in the formation of the PLA’s copolymers (PLA-co-PEAd and PLA-co-PBAd, in 95/5, 90/10, 75/25 and 50/50 weight ratios), the hydrolysis rate is also severely affected, leading to improved dissolution rates of the active pharmaceutical ingredients (API). In the present report, we communicate our findings on the in vitro modified release of the chronobiotic hormone melatonin (MLT), in aqueous media (pH 1.2 and 6.8), from poly(L-lactic acid) and the aforementioned copolymer matrix tablets, enriched with commonly used biopolymers, such as hydroxypropylmethylcellulose (HPMC K15), lactose monohydrate, and sodium alginate. It was found that, depending on the composition and the relevant content of these excipients in the matrix tablets, the release of MLT satisfied the sought targets for fast sleep onset and sleep maintenance. These findings constitute a useful background for pursuing relevant in vivo studies on melatonin in the future.
Collapse
Affiliation(s)
- Marilena Vlachou
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece; (A.S.); (D.A.)
- Correspondence: ; Tel.: +30-2107274674
| | - Angeliki Siamidi
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece; (A.S.); (D.A.)
| | - Dionysia Anagnostopoulou
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece; (A.S.); (D.A.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.C.); (N.D.B.)
| | - Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.C.); (N.D.B.)
| |
Collapse
|
5
|
Drapkina OM, Kontsevaya AV, Budnevsky AV, Ovsyannikov ES, Drobysheva ES, Bolotskih VI, Makeeva AV, Lushchik MV. Melatonin and cardiovascular disease: from mechanisms of action to potential clinical use (literature review). КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2021-2892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cardiovascular disease remains the most relevant public health problem. Most cardiovascular diseases are associated with an atherosclerosis, the development of which is associated with inflammation and endothelial dysfunction. Melatonin is a neurohormone that is synthesized mainly in the pineal gland and plays a central role in the regulation of sleep and some other body cyclic processes. For a long time, melatonin was perceived as a substance that is effective in the treatment of circadian cycle impairments. At the same time, a large number of studies have accumulated recently that demonstrate a wider range of its biological effects, including anti-inflammatory, antioxidant, antihypertensive and, possibly, hypolipidemic. The review includes current data from experimental and clinical studies demonstrating the cardioprotective effects of melatonin in atherosclerosis, myocardial ischemia, and heart failure.
Collapse
Affiliation(s)
- O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. V. Kontsevaya
- National Medical Research Center for Therapy and Preventive Medicine
| | | | | | | | | | | | | |
Collapse
|
6
|
Valenzuela-Melgarejo FJ, Lagunas C, Carmona-Pastén F, Jara-Medina K, Delgado G. Supraphysiological Role of Melatonin Over Vascular Dysfunction of Pregnancy, a New Therapeutic Agent? Front Physiol 2021; 12:767684. [PMID: 34867473 PMCID: PMC8635235 DOI: 10.3389/fphys.2021.767684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Hypertension can be induced by the disruption of factors in blood pressure regulation. This includes several systems such as Neurohumoral, Renin-angiotensin-aldosterone, the Circadian clock, and melatonin production, which can induce elevation and non-dipping blood pressure. Melatonin has a supraphysiological role as a chronobiotic agent and modulates vascular system processes via pro/antiangiogenic factors, inflammation, the immune system, and oxidative stress regulation. An elevation of melatonin production is observed during pregnancy, modulating the placenta and fetus’s physiological functions. Their impairment production can induce temporal desynchronization of cell proliferation, differentiation, or invasion from trophoblast cells results in vascular insufficiencies, elevating the risk of poor fetal/placental development. Several genes are associated with vascular disease and hypertension during pregnancy via impaired inflammatory response, hypoxia, and oxidative stress, such as cytokines/chemokines IL-1β, IL-6, IL-8, and impairment expression in endothelial cells/VSMCs of HIF1α and eNOS genes. Pathological placentas showed differentially expressed genes (DEG), including vascular genes as CITED2, VEGF, PL-II, PIGF, sFLT-1, and sENG, oncogene JUNB, scaffolding protein CUL7, GPER1, and the pathways of SIRT/AMPK and MAPK/ERK. Additionally, we observed modification of subunits of NADPH oxidase and extracellular matrix elements, i.e., Glypican and Heparanase and KCa channel. Mothers with a low level of melatonin showed low production of proangiogenic factor VEGF, increasing the risk of preeclampsia, premature birth, and abortion. In contrast, melatonin supplementation can reduce systolic pressure, prevent oxidative stress, induce the activation of the antioxidants system, and lessen proteinuria and serum level of sFlt-1. Moreover, melatonin can repair the endothelial damage from preeclampsia at the placenta level, increasing PIGF, Nrf-2, HO-1 production and reducing critical markers of vascular injury during the pregnancy. Melatonin also restores the umbilical and uterine blood flow after oxidative stress and inhibits vascular inflammation and VCAM-1, Activin-A, and sEng production. The beneficial effects of melatonin over pathological pregnancies can be partially observed in normal pregnancies, suggesting the dual role of/over placental physiology could contribute to protection and have therapeutic applications in vascular pathologies of pregnancies in the future.
Collapse
Affiliation(s)
- Francisco J Valenzuela-Melgarejo
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Constanza Lagunas
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Fabiola Carmona-Pastén
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Kevins Jara-Medina
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Gustavo Delgado
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| |
Collapse
|
7
|
Bazyar H, Zare Javid A, Bavi Behbahani H, Moradi F, Moradi Poode B, Amiri P. Consumption of melatonin supplement improves cardiovascular disease risk factors and anthropometric indices in type 2 diabetes mellitus patients: a double-blind, randomized, placebo-controlled trial. Trials 2021; 22:231. [PMID: 33766084 PMCID: PMC7995760 DOI: 10.1186/s13063-021-05174-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a common chronic disease. Dyslipidemia and hypertension are two complications that may develop in diabetic patients if hyperglycemia, insulin resistance, and weight gain are not controlled. This study investigated the effects of melatonin supplementation on some cardiovascular disease risk factors and anthropometric indices in patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS In this double-blind, randomized, placebo-controlled trial, 50 T2DM patients were randomly allocated to intervention and control groups which received two tablets of either melatonin or placebo (250 mg) once a day for 8 weeks. Systolic blood pressure (SBP), mean arterial pressure (MAP), pulse pressure (PP), the atherogenic index of plasma (AIP), weight, body mass index (BMI), waist and hip circumference (WC, HC), a body shape index (ABSI), abdominal volume index (AVI), body adiposity index (BAI), lipid accumulation product (LAP), conicity index, and waist-to-height ratio (WHtR) were evaluated in all the patients pre- and post-intervention. RESULTS Melatonin supplementation for 8 weeks significantly decreased the mean levels of SBP, MAP, PP, weight, BMI, WC, HC, BAI, AVI, conicity index, and WHtR post-intervention (p < 0.05). Also, the median changes of SBP, MAP, PP, weight, BMI, WC, HC BAI, AVI, and conicity index were significantly lower in the intervention group compared with the control group (p < 0.05). A significant increase (p < 0.001) was observed in the mean levels of ABSI in the intervention group. The median changes of ABSI were significantly greater in the intervention group compared with the control group (p < 0.001). CONCLUSIONS Consumption of melatonin supplement may be effective in controlling arterial pressure including SBP, MAP, and PP and anthropometric indices (as predictors of obesity) in T2DM patients. TRIAL REGISTRATION Iranian Registry of Clinical Trials IRCT20190303042905N1 . Registered on 17 May 2019.
Collapse
Affiliation(s)
- Hadi Bazyar
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Zare Javid
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Bavi Behbahani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fardin Moradi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Moradi Poode
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parichehr Amiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Castagnola E, Robbins EM, Woeppel KM, McGuier M, Golabchi A, Taylor IM, Michael AC, Cui XT. Real-Time Fast Scan Cyclic Voltammetry Detection and Quantification of Exogenously Administered Melatonin in Mice Brain. Front Bioeng Biotechnol 2020; 8:602216. [PMID: 33330433 PMCID: PMC7732424 DOI: 10.3389/fbioe.2020.602216] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 01/19/2023] Open
Abstract
Melatonin (MT) has been recently considered an excellent candidate for the treatment of sleep disorders, neural injuries, and neurological diseases. To better investigate the actions of MT in various brain functions, real-time detection of MT concentrations in specific brain regions is much desired. Previously, we have demonstrated detection of exogenously administered MT in anesthetized mouse brain using square wave voltammetry (SWV). Here, for the first time, we show successful detection of exogenous MT in the brain using fast scan cyclic voltammetry (FSCV) on electrochemically pre-activated carbon fiber microelectrodes (CFEs). In vitro evaluation showed the highest sensitivity (28.1 nA/μM) and lowest detection limit (20.2 ± 4.8 nM) ever reported for MT detection at carbon surface. Additionally, an extensive CFE stability and fouling assessment demonstrated that a prolonged CFE pre-conditioning stabilizes the background, in vitro and in vivo, and provides consistent CFE sensitivity over time even in the presence of a high MT concentration. Finally, the stable in vivo background, with minimized CFE fouling, allows us to achieve a drift-free FSCV detection of exogenous administered MT in mouse brain over a period of 3 min, which is significantly longer than the duration limit (usually < 90 s) for traditional in vivo FSCV acquisition. The MT concentration and dynamics measured by FSCV are in good agreement with SWV, while microdialysis further validated the concentration range. These results demonstrated reliable MT detection using FSCV that has the potential to monitor MT in the brain over long periods of time.
Collapse
Affiliation(s)
- Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Elaine M. Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kevin M. Woeppel
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Moriah McGuier
- Department of Chemistry, Saint Vincent College, Latrobe, PA, United States
| | - Asiyeh Golabchi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | - I. Mitch Taylor
- Department of Chemistry, Saint Vincent College, Latrobe, PA, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Naaz S, Mishra S, Pal PK, Chattopadhyay A, Das AR, Bandyopadhyay D. Activation of SIRT1/PGC 1α/SIRT3 pathway by melatonin provides protection against mitochondrial dysfunction in isoproterenol induced myocardial injury. Heliyon 2020; 6:e05159. [PMID: 33088945 PMCID: PMC7567935 DOI: 10.1016/j.heliyon.2020.e05159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/16/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS Preventing mitochondrial dysfunction and enhancing mitochondrial health and biogenesis is a crucial therapeutic approach to ameliorate injury following acute myocardial infarction. Although the antioxidant role of melatonin against ischemia/reperfusion injury has been reported, the exact mechanism of protection, in vivo, remains poorly understood. This study aims to identify and elaborate upon mechanism of melatonin protection of rat cardiac mitochondria against acute myocardial infarction. MAIN METHODS Rats were pre-treated with melatonin (10 mg/kg body weight (b.w.); intraperitoneally, i.p.) before isoproterenol bitartrate (ISO) administration (25 mg/kg body weight (b.w.) subcutaneously,s.c.) and their effect on rat heart mitochondrial structure and function was studied. Biochemical changes in activity of biomarkers of oxidative stress, antioxidant enzymes as well as Krebs' cycle enzymes were analyzed. Gene expression studies and Isothermal titration calorimetric studies with pure catalase and ISO were also carried out. KEY FINDINGS Melatonin was shown to reduce ISO induced oxidative stress, by stimulating superoxide dismutase activity and removing the inhibition of Krebs' cycle enzymes. Herein we report for the first time in rat model that melatonin activates the SIRT1-PGC-1α-SIRT3 signaling pathways after ISO administration, which ultimately induces mitochondrial biogenesis. Melatonin exhibited significant protection of mitochondrial architecture and topology along with increased calcium ion permeability and reactive oxygen species (ROS) generation induced by ISO. Isothermal calorimetric studies revealed that melatonin binds to ISO molecules and sequesters them from the reaction thereby limiting their interaction with catalase along with occupying the binding sites of catalase themselves. SIGNIFICANCE Activation of SIRT1-PGC-1α-SIRT3 pathway by melatonin along with its biophysical properties prevents ISO induced mitochondrial injury in rat heart.
Collapse
Affiliation(s)
- Shamreen Naaz
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India
- Department of Physiology, Vidyasagar College for Women, Kolkata 700 006, India
| | - Sanatan Mishra
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India
- Department of Physiology, Vidyasagar College, Kolkata 700 006, India
| | - Palash K. Pal
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India
| | | | - Asish R. Das
- Department of Chemistry, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India
| | - Debasish Bandyopadhyay
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India
| |
Collapse
|
10
|
Melatonin as a protective agent in cardiac ischemia-reperfusion injury: Vision/Illusion? Eur J Pharmacol 2020; 885:173506. [PMID: 32858050 DOI: 10.1016/j.ejphar.2020.173506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 01/14/2023]
Abstract
Melatonin, an emphatic endogenous molecule exerts protective effects either via activation of G-protein coupled receptors (Melatonin receptors, MTR 1-3), tumor necrosis factor receptor (TNFR), toll like receptors (TLRS), nuclear receptors (NRS) or by directly scavenging the free radicals. MTRs are extensively expressed in the heart as well as in the coronary vasculature. Accumulating evidences have indicated the existence of a strong correlation between reduction in the circulating level of melatonin and precipitation of heart attack. Apparently, melatonin exhibits cardioprotective effects via modulating inextricably interlinked pathways including modulation of mitochondrial metabolism, mitochondrial permeability transition pore formation, nitric oxide release, autophagy, generation of inflammatory cytokines, regulation of calcium transporters, reactive oxygen species, glycosaminoglycans, collagen accumulation, and regulation of apoptosis. Convincingly, this review shall describe the various signaling pathways involved in salvaging the heart against ischemia-reperfusion injury.
Collapse
|
11
|
Szeiffova Bacova B, Viczenczova C, Andelova K, Sykora M, Chaudagar K, Barancik M, Adamcova M, Knezl V, Egan Benova T, Weismann P, Slezak J, Tribulova N. Antiarrhythmic Effects of Melatonin and Omega-3 Are Linked with Protection of Myocardial Cx43 Topology and Suppression of Fibrosis in Catecholamine Stressed Normotensive and Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9060546. [PMID: 32580481 PMCID: PMC7346184 DOI: 10.3390/antiox9060546] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac β-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced β-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-β1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Barbara Szeiffova Bacova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Csilla Viczenczova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Katarina Andelova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | | | - Miroslav Barancik
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Vladimir Knezl
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Peter Weismann
- Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia;
| | - Jan Slezak
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Narcisa Tribulova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Correspondence: ; Tel.: +00421-2-32295423
| |
Collapse
|
12
|
Dey T, Ghosh A, Mishra S, Pal PK, Chattopadhyay A, Pattari SK, Bandyopadhyay D. Attenuation of arsenic induced high fat diet exacerbated oxidative stress mediated hepatic and cardiac injuries in male Wistar rats by piperine involved antioxidative mechanisms. Food Chem Toxicol 2020; 142:111477. [PMID: 32525072 DOI: 10.1016/j.fct.2020.111477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/02/2020] [Accepted: 05/27/2020] [Indexed: 11/28/2022]
Abstract
The current study explored the efficacy of piperine in attenuating arsenic induced high fat diet aggravated oxidative stress mediated injury in hepatic and cardiac tissues of male Wistar rats. Oral administration of piperine significantly (p < 0.05) reduced the levels of organ specific and oxidative stress biomarkers in arsenic and high fat diet treated rat hepatic and cardiac tissues in a dose dependant manner with the dose of 60 mg/kg b.w. exhibiting maximum protection. Arsenic induced high fat diet aggravated oxidative stress mediated damages in liver and heart tissues led to decreased activities of antioxidant enzymes, ROS generation, diminished activities of Krebs' cycle and respiratory chain enzymes, collapsed mitochondrial membrane potential, mitochondrial DNA damage along with altered lipid metabolism and inflammatory cytokine levels. Histochemical and histopathological studies supported the above findings. Piperine efficiently counteracted the arsenic induced high fat diet aggravated oxidative stress mediated damages by modulating antioxidant defense mechanism along with free radical quenching ability. These findings indicate that piperine protected the arsenic induced high fat diet aggravated hepatic and cardiac injuries which underline the importance of piperine in providing a possible therapeutic regime for the amelioration of arsenic-induced high fat diet aggravated oxidative stress mediated organ damages.
Collapse
Affiliation(s)
- Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Auroma Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Sanatan Mishra
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India; Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Sanjib K Pattari
- R. N. Tagore International Institute of Cardiac Sciences, Mukundapur, Kolkata, 700099, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| |
Collapse
|
13
|
Raut GK, Manchineela S, Chakrabarti M, Bhukya CK, Naini R, Venkateshwari A, Reddy VD, Mendonza JJ, Suresh Y, Nallari P, Bhadra MP. Imine stilbene analog ameliorate isoproterenol-induced cardiac hypertrophy and hydrogen peroxide-induced apoptosis. Free Radic Biol Med 2020; 153:80-88. [PMID: 32311492 DOI: 10.1016/j.freeradbiomed.2020.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Cardiac hypertrophy is an adaptive response to stress, in order to maintain proper cardiac function. However, sustained stress leads to pathological hypertrophy accompanied by maladaptive responses and ultimately heart failure. At the cellular level, cardiomyocyte hypertrophy is characterized by an increase in myocyte size, reactivation of the fetal gene markers, disassembly of the sarcomere and transcriptional remodelling which are regulated by heart-specific transcription factors like MEF2, GATA4 and immediate early genes like c-jun and c-fos.2. It has been explored and established that the hypertrophic process is associated by oxidative stress and mediated by pathways involving several terminal stress kinases like P38, JNK and ERK1/2. Stilbenoids are bioactive polyphenols and earlier studies have shown that imine stilbene exert cardioprotective and anti aging effects by acting as modulators of Sirt1. The present study was aimed at designing and synthesizing a series of imine stilbene analogs and investigate its anti hypertrophic effects and regulatory mechanism in cardiac hypertrophy and apoptosis. Interestingly one of the analog, compound 3e (10 μM) alleviated isoproterenol (ISO, 25 μM) induced hypertrophy in rat cardiomyocyte (H9c2) cells by showing a marked decrease in the myocyte size. Further, compound 3e also restored the cardiac function by activating the metabolic stress sensor, AMPK. Moreover, molecular docking studies showed stable binding between compound 3e and GSK3β suggesting that compound 3e may directly regulate GSK3β activity and ameliorate ISO-induced cardiac hypertrophy. In agreement with this, compound 3e also modulated the crosstalk of all the hypertrophy inducing terminal Kinases by bringing down the expression to near control conditions. The compound also relieved H2O2 (100 μM) mediated ROS and normalized abnormal mitochondrial oxygen demand in hypertrophic conditions indicating the possibility of the compound to show promise in playing a role in cardiac hypertrophy.
Collapse
Affiliation(s)
- Ganesh Kumar Raut
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600113, India
| | - Sairam Manchineela
- Department of Genetics, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - Moumita Chakrabarti
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600113, India
| | - Chaitanya Kumar Bhukya
- Department of Genetics, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - Raju Naini
- Center for Plant Molecular Biology, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - A Venkateshwari
- Institute of Genetics & Hospital for Genetics Disease, Osmania University, Ameerpet, Hyderabad, 500007, Telangana State, India
| | - V D Reddy
- Center for Plant Molecular Biology, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - Jolly Janette Mendonza
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600113, India
| | - Y Suresh
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India
| | - Pratibha Nallari
- Department of Genetics, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - Manika Pal Bhadra
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600113, India.
| |
Collapse
|
14
|
Audebrand A, Désaubry L, Nebigil CG. Targeting GPCRs Against Cardiotoxicity Induced by Anticancer Treatments. Front Cardiovasc Med 2020; 6:194. [PMID: 32039239 PMCID: PMC6993588 DOI: 10.3389/fcvm.2019.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Novel anticancer medicines, including targeted therapies and immune checkpoint inhibitors, have greatly improved the management of cancers. However, both conventional and new anticancer treatments induce cardiac adverse effects, which remain a critical issue in clinic. Cardiotoxicity induced by anti-cancer treatments compromise vasospastic and thromboembolic ischemia, dysrhythmia, hypertension, myocarditis, and cardiac dysfunction that can result in heart failure. Importantly, none of the strategies to prevent cardiotoxicity from anticancer therapies is completely safe and satisfactory. Certain clinically used cardioprotective drugs can even contribute to cancer induction. Since G protein coupled receptors (GPCRs) are target of forty percent of clinically used drugs, here we discuss the newly identified cardioprotective agents that bind GPCRs of adrenalin, adenosine, melatonin, ghrelin, galanin, apelin, prokineticin and cannabidiol. We hope to provoke further drug development studies considering these GPCRs as potential targets to be translated to treatment of human heart failure induced by anticancer drugs.
Collapse
Affiliation(s)
| | | | - Canan G. Nebigil
- Laboratory of CardioOncology and Therapeutic Innovation, CNRS, Illkirch, France
| |
Collapse
|
15
|
Bhattacharjee B, Pal PK, Chattopadhyay A, Bandyopadhyay D. Oleic acid protects against cadmium induced cardiac and hepatic tissue injury in male Wistar rats: A mechanistic study. Life Sci 2020; 244:117324. [PMID: 31958420 DOI: 10.1016/j.lfs.2020.117324] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
AIMS The aim of the present study was to evaluate the possible antioxidant role of oleic acid (OA) against Cd-induced injuries in the heart and liver tissues of male Wistar rats. MAIN METHODS Rats were treated with either vehicle (control), or OA (10 mg/kg b.w., fed orally), or Cd (0.44 mg/kg b.w., s.c.), or both (OA + Cd) for 15 days. Following completion of the treatment period, biomarkers of organ damage and oxidative stress including ROS, activities of antioxidant enzymes and their level, activities of Krebs cycle enzymes and respiratory chain enzymes were measured. Levels of interleukins (IL-1β, IL-6, IL-10), tumor necrosis factor (TNF-α) and nuclear factor kappa B (NFκB) were estimated to evaluate the state of inflammation. In addition, changes in mitochondrial membrane potential and status of cytochrome c (Cyt c) were also studied. KEY FINDINGS Pre-treatment of rats with OA significantly protected against Cd-induced detrimental changes possibly by decreasing endogenous ROS through regulation of antioxidant defense system, inflammatory responses and activities of metabolic enzymes. Moreover, OA was also found to restore mitochondrial membrane potential possibly by regulating Cyt c leakage thereby increasing mitochondrial viability. SIGNIFICANCE Our results for the first time demonstrated systematically that OA provided protection against Cd-induced oxidative stress mediated injuries in rat heart and liver tissues through its antioxidant mechanism. The results raise the possibility of using OA singly or in combination with other antioxidants or diet in the treatment of situations arising due to oxidative stress and may have future therapeutic relevance.
Collapse
Affiliation(s)
- Bharati Bhattacharjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata 700006, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata 700009, India.
| |
Collapse
|
16
|
Bizzarri M. Advances in Characterizing Recently-Identified Molecular Actions of Melatonin: Clinical Implications. APPROACHING COMPLEX DISEASES 2020. [PMCID: PMC7164543 DOI: 10.1007/978-3-030-32857-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melatonin, N-acetyl-5-methoxy-tryptamine, was discovered to be a product of serotonin metabolism in the mammalian pineal gland where its synthesis is under control of the light:dark cycle. Besides its regulatory pathway involving ganglion cells in the retina, the neural connections between the eyes and the pineal gland include the master circadian clock, the suprachiasmatic nuclei, and the central and peripheral nervous systems. Since pineal melatonin is released into the blood and into the cerebrospinal fluid, it has access to every cell in an organism and it mediates system-wide effects. Subsequently, melatonin was found in several extrapineal organs and, more recently, perhaps in every cell of every organ. In contrast to the pinealocytes, non-pineal cells do not discharge melatonin into the blood; rather it is used locally in an intracrine, autocrine, or paracrine manner. Melatonin levels in non-pineal cells do not exhibit a circadian rhythm and do not depend on circulating melatonin concentrations although when animals are treated with exogenous melatonin it is taken up by presumably all cells. Mitochondria are the presumed site of melatonin synthesis in all cells; the enzymatic machinery for melatonin synthesis has been identified in mitochondria. The association of melatonin with mitochondria, because of its ability to inhibit oxidative stress, is very fortuitous since these organelles are a major site of damaging reactive oxygen species generation. In this review, some of the actions of non-pineal-derived melatonin are discussed in terms of cellular and subcellular physiology.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Omar AM, Meleis AE, Arfa SA, Zahran NM, Mehanna RA. Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells Derived from Adipose Tissue and Bone Marrow on Acute Myocardial Infarction Model. Oman Med J 2019; 34:534-543. [PMID: 31745418 PMCID: PMC6851069 DOI: 10.5001/omj.2019.97] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Stem cell therapy is a promising approach in the treatment of acute myocardial infarction (AMI). Mesenchymal stem cells (MSC) from bone marrow (BM-MSC) and adipose tissue (AT-MSC) are attractive and feasible for preclinical and clinical trials. In this study, we compared the therapeutic potential of BM-MSC and AT-MSC in repairing the hearts of rats with isoproterenol (ISO)-induced AMI. METHODS Forty-two female rats were assigned into two groups; the optimization and the experimental group. The optimization groups were further subdivided into control group and the AMI induced group (using ISO). The experimental group was subdivided into AMI+cell-free media injected in the tail vein, AMI+BM-MSC, and AMI+AT-MSC groups treated with the intravenous injection of their respective cell types. Twenty-eight days after induction, electrocardiogram (ECG) was performed, and heart tissue samples were collected for histological assessment and cells tracing. RESULTS MSC therapy repaired cardiac functions shown by the restoration of ST segment, QT and QRS intervals in the ECG when compared to the AMI group. Infarct area was significantly decreased, and cardiac tissue regeneration signs were shown on histopathological examination. CONCLUSIONS Both MSC sources proved to be equally efficient in the assessed parameters.
Collapse
Affiliation(s)
- Amira M Omar
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Anisa E Meleis
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samia A Arfa
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha M Zahran
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Jafari‐Vayghan H, Saleh‐Ghadimi S, Maleki V, Moludi J, Alizadeh M. The effects of melatonin on neurohormonal regulation in cardiac cachexia: A mechanistic review. J Cell Biochem 2019; 120:16340-16351. [DOI: 10.1002/jcb.29151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hamed Jafari‐Vayghan
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Sevda Saleh‐Ghadimi
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Vahid Maleki
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Jalal Moludi
- Department of Nutrition, Faculty of Nutrition Sciences and Food Technology Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohammad Alizadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
19
|
Zhang XJ, Tan H, Shi ZF, Li N, Jia Y, Hao Z. Growth differentiation factor 11 is involved in isoproterenol‑induced heart failure. Mol Med Rep 2019; 19:4109-4118. [PMID: 30942402 PMCID: PMC6471622 DOI: 10.3892/mmr.2019.10077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/02/2019] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the potential effects of growth differentiation factor 11 (GDF11) on isoproterenol (ISO)-induced heart failure (HF) and identify the underlying molecular mechanisms. A rat model of HF was induced in vivo by intraperitoneally administering ISO (5 mg/kg/day) for 7 days. After 4 weeks following establishment of the HF model, hemodynamic analysis demonstrated that ISO induced a significant increase in the left ventricular end-diastolic pressure and a decrease in the left ventricular systolic pressure and maximum contraction velocity. The plasma levels of myocardial injury markers, including lactate dehydrogenase (LDH), creatine kinase (CK), CK-muscle/brain which were determined using the corresponding assay kits and plasma brain natriuretic peptide which was detected by an ELISA kit, an important biomarker of HF, increased following ISO treatment. Furthermore, levels of GDF11 expression and protein, which were estimated using reverse transcription-quantitative polymerase chain reaction and an ELISA kit in plasma and western blotting in the heart tissue, respectively, significantly increased following ISO treatment. To demonstrate the effects of ISO on GDF11 production in cardiomyocytes, H9C2 cells (a cardiomyoblast cell line derived from embryonic rat heart tissue) were treated with ISO (50 nM) for 24 h in vitro; it was revealed that GDF11 protein and mRNA expression levels significantly increased following ISO treatment. In addition, recombinant GDF11 (rGDF11) administered to ISO-treated H9C2 cells resulted in decreased proliferation, which was detected via a CCK-8 assay, and increased LDH levels and cell apoptosis of cells, which was determined using Caspase-3 activity and Hoechst 33258 staining. Additionally, rGDF11 increased the levels of reactive oxygen species and malondialdehyde due to the upregulation of nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) following rGDF11 treatment. Conversely, GDF11 knockdown reduced ISO-induced apoptosis by inhibiting oxidative stress injury. The results suggested that GDF11 production was upregulated in ISO-induced rats with HF and in ISO-treated H9C2 cells, and that rGDF11 treatment increased ISO-induced oxidative stress injury by upregulating Nox4 in H9C2 cells.
Collapse
Affiliation(s)
- Xiu-Jing Zhang
- The First Department of Cadres Health Care, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Hua Tan
- The First Department of Cadres Health Care, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhi-Fang Shi
- The Second Department of Cadres Health Care, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Na Li
- The First Department of Cadres Health Care, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Ying Jia
- The First Department of Cadres Health Care, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhe Hao
- The First Department of Cadres Health Care, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
20
|
Feng J, Chen X, Liu R, Cao C, Zhang W, Zhao Y, Nie S. Melatonin protects against myocardial ischemia-reperfusion injury by elevating Sirtuin3 expression and manganese superoxide dismutase activity. Free Radic Res 2019; 52:840-849. [PMID: 30208798 DOI: 10.1080/10715762.2018.1461215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Myocardial ischemia-reperfusion (MI/R) injury is a crucial cause for mortality throughout the world. Recent studies indicated that melatonin might exert profound cardio-protective effect in MI/R injury. However, the underlying mechanisms are not completely understood. In the current study, we aimed to explore the potential effect of melatonin in the pathological process of MI/R. Both in vivo MI/R model and in vitro H9c2 cell line simulated I/R (SIR) model were applied with or without melatonin supplementation. We found that Sirtuin3 (Sirt3) expression and activity were markedly decreased under MI/R and SIR conditions. Melatonin treatment significantly increased myocardial Sirt3 expression, and alleviated MI/R-induced cardiac morphology changes and cardiac dysfunction, as well as myocardial apoptosis level. In addition, DHE and JC-1 staining results demonstrated that melatonin reduced mitochondrial reactive oxygen species (ROS) generation and restored ATP production after SIR injury via elevating Sirt3 expression. By using siRNA targeting Sirt3, we confirmed that the beneficial effects of melatonin were dependent on Sirt3, which in turn deacetylated and activated manganese superoxide dismutase (MnSOD). Collectively, the current study demonstrated the protective effect of melatonin against MI/R injury via alleviating myocardial oxidative stress. Moreover, these beneficial effects were associated with the deacetylation modification of Sirt3 on MnSOD.
Collapse
Affiliation(s)
- Jing Feng
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Xin Chen
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Rui Liu
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Changkui Cao
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Wei Zhang
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Yang Zhao
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Shinan Nie
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| |
Collapse
|
21
|
Bhattacharjee B, Pal PK, Ghosh AK, Mishra S, Chattopadhyay A, Bandyopadhyay D. Aqueous bark extract of Terminalia arjuna protects against cadmium-induced hepatic and cardiac injuries in male Wistar rats through antioxidative mechanisms. Food Chem Toxicol 2018; 124:249-264. [PMID: 30529122 DOI: 10.1016/j.fct.2018.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/23/2022]
Abstract
Cadmium (Cd) is one of the most ubiquitous toxic heavy metal in the environment. The present study was conducted to evaluate the protective role of aqueous bark extract of Terminalia arjuna (TA) against Cd induced oxidative damage in hepatic and cardiac tissues as the TA bark extract has folkloric medicinal use in the treatment of various hepatic and cardiac disorders. Male Wistar rats were divided into 4 groups. The control group was treated with normal saline as the vehicle; the second group orally administered with TA (20 mg/kg bw) daily for 15 days; the third group injected with Cd-acetate (0.44 mg/kg bw, s.c.) every alternate day for a period of 15 days; and the fourth group was administered with TA, 60 min prior to Cd treatment. The biomarkers of organ damage were significantly increased in the Cd treated groups. Besides, a significant alteration in the tissue levels of biomarkers of oxidative stress, the activities and the levels of antioxidant enzymes was observed following treatment with Cd. Additionally, some of the enzymes were found to be inhibited uncompetitively by Cd when tested in an in vitro system. Furthermore, evidence gathered from studies on the histological parameters and mitochondrial membrane potential in both the tissues argue in favour of the possible protective role of TA against Cd induced damage. Finally, gas chromatography-mass spectrometry revealed the presence of eight major bioactive phytochemicals in aqueous bark extract of TA having potent free radical scavenging property. The results indicate that the extract could protect hepatic and cardiac tissues against Cd-induced oxidative stress mediated damages through antioxidant mechanism(s).
Collapse
Affiliation(s)
- Bharati Bhattacharjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Arnab Kumar Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Sanatan Mishra
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India; Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| |
Collapse
|
22
|
Nduhirabandi F, Maarman GJ. Melatonin in Heart Failure: A Promising Therapeutic Strategy? Molecules 2018; 23:molecules23071819. [PMID: 30037127 PMCID: PMC6099639 DOI: 10.3390/molecules23071819] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a multifactorial clinical syndrome characterized by the inability of the heart to pump sufficient blood to the body. Despite recent advances in medical management, poor outcomes in patients with heart failure remain very high. This highlights a need for novel paradigms for effective, preventive and curative strategies. Substantial evidence supports the importance of endogenous melatonin in cardiovascular health and the benefits of melatonin supplementation in various cardiac pathologies and cardiometabolic disorders. Melatonin plays a crucial role in major pathological processes associated with heart failure including ischemic injury, oxidative stress, apoptosis, and cardiac remodeling. In this review, available evidence for the role of melatonin in heart failure is discussed. Current challenges and possible limitations of using melatonin in heart failure are also addressed. While few clinical studies have investigated the role of melatonin in the context of heart failure, current findings from experimental studies support the potential use of melatonin as preventive and adjunctive curative therapy in heart failure.
Collapse
Affiliation(s)
- Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa.
| | - Gerald J Maarman
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa.
| |
Collapse
|
23
|
Allawadhi P, Khurana A, Sayed N, Kumari P, Godugu C. Isoproterenol-induced cardiac ischemia and fibrosis: Plant-based approaches for intervention. Phytother Res 2018; 32:1908-1932. [PMID: 30009418 DOI: 10.1002/ptr.6152] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/04/2018] [Accepted: 06/18/2018] [Indexed: 11/08/2022]
Abstract
Heart is the most active and incumbent organ of the body, which maintains blood flow, but due to various pathological reasons, several acute and chronic cardiac complications arise out of which myocardial infarction is one of the teething problems. Isoproterenol (ISP)-induced myocardial ischemia is a classical model to screen the cardioprotective effects of various pharmacological interventions. Phytochemicals present a novel option for treating various human maladies including those of the heart. A large number of plant products and their active ingredients have been screened for efficacy in ameliorating ISP-induced myocardial ischemia including coriander, curcumin, Momordica, quercetin, and Withania somnifera. These phytochemicals constituents may play key role in preventing disease and help in cardiac remodeling. Reactive oxygen species scavenging, antiinflammatory, and modulation of various molecular pathways such as Nrf2, NFкB, p-21 activated kinase 1 (PAK1), and p-smad2/3 signaling modulation have been implicated behind the claimed protection. In this review, we have provided a focused overview on the utility of ISP-induced cardiotoxicity, myocardial ischemia, and cardiac fibrosis for preclinical research. In addition, we have also surveyed molecular mechanism of various plant-based interventions screened for cardioprotective effect in ISP-induced cardiotoxicity, and their probable mechanistic profile is summarized.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Nilofer Sayed
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Preeti Kumari
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| |
Collapse
|
24
|
Reperfusing the myocardium - a damocles Sword. Indian Heart J 2018; 70:433-438. [PMID: 29961464 PMCID: PMC6034085 DOI: 10.1016/j.ihj.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
Abstract
Return of blood flow after periodic ischemia is often accompanied by myocardial injury, commonly known as lethal reperfusion injury (RI). Experimental studies have shown that 50% of muscle die of ischemia and another 50% die because of reperfusion. It is characterized by myocardial, vascular, or electrophysiological dysfunction that is induced by the restoration of blood flow to previously ischemic tissue. This phenomenon reduces the efficiency of the present modalities used to combat the ischemic myocardium. Moreover, despite an improved understanding of the pathophysiology of this process and encouraging preclinical trials of multiple agents, most of the clinical trials to prevent RI have been disappointing and leaves us at ground zero to explore newer approaches.
Collapse
|
25
|
Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y. Protective role of melatonin in cardiac ischemia-reperfusion injury: From pathogenesis to targeted therapy. J Pineal Res 2018; 64. [PMID: 29363153 DOI: 10.1111/jpi.12471] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Acute myocardial infarction (MI) is a major cause of mortality and disability worldwide. In patients with MI, the treatment option for reducing acute myocardial ischemic injury and limiting MI size is timely and effective myocardial reperfusion using either thombolytic therapy or primary percutaneous coronary intervention (PCI). However, the procedure of reperfusion itself induces cardiomyocyte death, known as myocardial reperfusion injury, for which there is still no effective therapy. Recent evidence has depicted a promising role of melatonin, which possesses powerful antioxidative and anti-inflammatory properties, in the prevention of ischemia-reperfusion (IR) injury and the protection against cardiomyocyte death. A number of reports explored the mechanism of action behind melatonin-induced beneficial effects against myocardial IR injury. In this review, we summarize the research progress related to IR injury and discuss the unique actions of melatonin as a protective agent. Furthermore, the possible mechanisms responsible for the myocardial benefits of melatonin against reperfusion injury are listed with the prospect of the use of melatonin in clinical application.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Lin X, Zhao T, Lin CH, Zuo D, Ye Z, Lin S, Wen S, Liu L, Lin MT, Chang CP, Chao CM. Melatonin provides protection against heat stroke-induced myocardial injury in male rats. J Pharm Pharmacol 2018; 70:760-767. [PMID: 29484657 DOI: 10.1111/jphp.12895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/12/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study aimed to investigate the cardioprotective effects of melatonin on heat stroke (HS) induced acute myocardial infarction in rats and to explore the underlying mechanisms. METHODS Myocardial injury was induced by subjecting the anaesthetized rats to a high ambient temperature of 43°C for 70 min. Such a high ambient temperature caused hyperthermia, hypotension and myocardial injury in rats. Rats were treated with melatonin (3 mg/kg) intravenously one hour before and followed by an additional dose immediately after heat stress. KEY FINDINGS At the onset of HS, animals displayed myocardial injury evidenced by increased levels of cardiac damage indicators (e.g. total lactate dehydrogenase, cardiac troponin I and creatine kinase-MB), increased cardiac damage scores and suppressed left ventricular performance. Animals with HS also had increased cardiac oxidative stress evidenced by increased levels of lipid peroxidation (e.g. increased thiobarbituric acid reactive substances) and decreased levels of antioxidant enzymes (e.g. superoxide dismutase, catalase and reduced glutathione) and activated inflammation (e.g. increased levels of interleukin-6 and tumour necrosis factor-α). Pretreatment with melatonin significantly reversed the HS-induced myocardial injury, cardiac oxidative stress and cardiac inflammation. CONCLUSIONS Melatonin may protect against HS-induced myocardial injury in male rats by mitigating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Xiaojing Lin
- Department of Spinal Cord Injury and Repair, Trauma and Orthopedics, Institute of Chinese PLA, General Hospital of Jinan Military Region, Shandong, China.,Department of Neurobiology, Beijing Institute of Basic Medical Science, The Academy of Military Medical Sciences of the Chinese PLA, Guangdong, China
| | - Tingbao Zhao
- Department of Orthopedics, Shandong Cancer Hospital, Shandong University, Shandong, China
| | - Cheng-Hsien Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Dan Zuo
- Trauma and Orthopedics Center of Chinese PLA, General Hospital of Guangzhou Military Region Guangdong Province, Guangdong, China
| | - Zhujun Ye
- Trauma and Orthopedics Center of Chinese PLA, General Hospital of Guangzhou Military Region Guangdong Province, Guangdong, China
| | - Shide Lin
- Department of Neurobiology, Beijing Institute of Basic Medical Science, The Academy of Military Medical Sciences of the Chinese PLA, Guangdong, China
| | - Shaonan Wen
- Department of Neurobiology, Beijing Institute of Basic Medical Science, The Academy of Military Medical Sciences of the Chinese PLA, Guangdong, China
| | - Lin Liu
- Trauma and Orthopedics Center of Chinese PLA, General Hospital of Guangzhou Military Region Guangdong Province, Guangdong, China
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| |
Collapse
|
27
|
Yu LM, Di WC, Dong X, Li Z, Zhang Y, Xue XD, Xu YL, Zhang J, Xiao X, Han JS, Liu Y, Yang Y, Wang HS. Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation. Biochim Biophys Acta Mol Basis Dis 2017; 1864:563-578. [PMID: 29196237 DOI: 10.1016/j.bbadis.2017.11.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/18/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022]
Abstract
It has been demonstrated that the anti-oxidative and cardioprotective effects of melatonin are, at least in part, mediated by its membrane receptors. However, the direct downstream signaling remains unknown. We previously found that melatonin ameliorated myocardial ischemia-reperfusion (MI/R) injury in diabetic animals, although the underlying mechanisms are also incompletely understood. This study was designed to determine the role of melatonin membrane receptors in melatonin's cardioprotective actions against diabetic MI/R injury with a focus on cGMP and its downstream effector PKG. Streptozotocin-induced diabetic Sprague-Dawley rats and high-glucose medium-incubated H9c2 cardiomyoblasts were utilized to determine the effects of melatonin against MI/R injury. Melatonin treatment preserved cardiac function and reduced oxidative damage and apoptosis. Additionally, melatonin increased intracellular cGMP level, PKGIα expression, p-VASP/VASP ratio and further modulated myocardial Nrf-2-HO-1 and MAPK signaling. However, these effects were blunted by KT5823 (a selective inhibitor of PKG) or PKGIα siRNA except that intracellular cGMP level did not changed significantly. Additionally, our in vitro study showed that luzindole (a nonselective melatonin membrane receptor antagonist) or 4P-PDOT (a selective MT2 receptor antagonist) not only blocked the cytoprotective effect of melatonin, but also attenuated the stimulatory effect of melatonin on cGMP-PKGIα signaling and its modulatory effect on Nrf-2-HO-1 and MAPK signaling. This study showed that melatonin ameliorated diabetic MI/R injury by modulating Nrf-2-HO-1 and MAPK signaling, thus reducing myocardial apoptosis and oxidative stress and preserving cardiac function. Importantly, melatonin membrane receptors (especially MT2 receptor)-dependent cGMP-PKGIα signaling played a critical role in this process.
Collapse
Affiliation(s)
- Li-Ming Yu
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Wen-Cheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Xue Dong
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China; Department of Neurosurgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Zhi Li
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yong Zhang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xiao-Dong Xue
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yin-Li Xu
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jian Zhang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xiong Xiao
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China; Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Jin-Song Han
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yu Liu
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yang Yang
- Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, China.
| | - Hui-Shan Wang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
28
|
Zhai M, Liu Z, Zhang B, Jing L, Li B, Li K, Chen X, Zhang M, Yu B, Ren K, Yang Y, Yi W, Yang J, Liu J, Yi D, Liang H, Jin Z, Reiter RJ, Duan W, Yu S. Melatonin protects against the pathological cardiac hypertrophy induced by transverse aortic constriction through activating PGC-1β: In vivo and in vitro studies. J Pineal Res 2017; 63. [PMID: 28708271 DOI: 10.1111/jpi.12433] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022]
Abstract
Melatonin, a circadian molecule secreted by the pineal gland, confers a protective role against cardiac hypertrophy induced by hyperthyroidism, chronic hypoxia, and isoproterenol. However, its role against pressure overload-induced cardiac hypertrophy and the underlying mechanisms remains elusive. In this study, we investigated the pharmacological effects of melatonin on pathological cardiac hypertrophy induced by transverse aortic constriction (TAC). Male C57BL/6 mice underwent TAC or sham surgery at day 0 and were then treated with melatonin (20 mg/kg/day, via drinking water) for 4 or 8 weeks. The 8-week survival rate following TAC surgery was significantly increased by melatonin. Melatonin treatment for 8 weeks markedly ameliorated cardiac hypertrophy. Compared with the TAC group, melatonin treatment for both 4 and 8 weeks reduced pulmonary congestion, upregulated the expression level of α-myosin heavy chain, downregulated the expression level of β-myosin heavy chain and atrial natriuretic peptide, and attenuated the degree of cardiac fibrosis. In addition, melatonin treatment slowed the deterioration of cardiac contractile function caused by pressure overload. These effects of melatonin were accompanied by a significant upregulation in the expression of peroxisome proliferator-activated receptor-gamma co-activator-1 beta (PGC-1β) and the inhibition of oxidative stress. In vitro studies showed that melatonin also protects against angiotensin II-induced cardiomyocyte hypertrophy and oxidative stress, which were largely abolished by knocking down the expression of PGC-1β using small interfering RNA. In summary, our results demonstrate that melatonin protects against pathological cardiac hypertrophy induced by pressure overload through activating PGC-1β.
Collapse
Affiliation(s)
- Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenhua Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Jing
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer, Fourth Military Medical University, Xi'an, China
| | - Buying Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kaifeng Li
- Institute of Material Medical, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xiuju Chen
- The First Brigade of Student, Fourth Military Medical University, Xi'an, China
| | - Meng Zhang
- Institute of Material Medical, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Bo Yu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kai Ren
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dinghua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongliang Liang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
29
|
Nour MS, Sarhan NR, Mazroa SA, Gawish SA. Histological and immunohistochemical study of cardiac telocytes in a rat model of isoproterenol-induced myocardial infarction with a reference to the effect of grape seed extract. Acta Histochem 2017; 119:747-758. [PMID: 28943000 DOI: 10.1016/j.acthis.2017.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cardiac telocytes (TCs) represent a unique type of cells that make a supportive network for stem cells that contribute in cardiac renewal, but their role during myocardial infarction (MI) is not clear. Grape seed extract (GSE) is a powerful natural antioxidant. AIM OF THE WORK Quantitative study of cardiac TCs in a rat model of Isoproterenol (ISO)-induced MI, and to evaluate the effect of GSE on TCs and MI progression. MATERIALS AND METHODS Seventy adult male albino rats were assigned into 4 groups; group I; control rats, group II received GSE (100mg/kg/day) dissolved in distilled water orally, group III received 2 intra-peritoneal injections of 85mg/kg ISO dissolved in saline on 14th and 15th day to induce MI, and group IV received GSE and ISO. Myocardium was obtained 1 and 14days after ISO i.e. on day 16 and day 30 respectively. Tissue was prepared for histological and immunohistochemical study of CD117 and CD34 as two markers for TCs. CD34 was used also as a marker for angiogenesis. RESULTS Group III showed focal areas of myocardial infarction 1day and 14days after ISO. Degenerated cardiomyocytes showed loss of striation and hypereosinophilic vacuolated cytoplasm with condensed nuclei. Mononuclear cell infiltration and a significantly increased percentage area of fibrosis 14days after ISO were observed. CD117 and CD34 positive TCs were hardly detected 1day after ISO. Their number slightly increased 14days after ISO with insignificant difference to control. There was also a significant increase in the number of CD34 positive blood vessels 14days after ISO. Group IV showed much better histological picture with a significant decrease in the percentage area of fibrosis and a significant increase in the number of CD117 and CD34 positive TCs and the number of CD34 positive blood vessels as compared to group III. CONCLUSION Telocytes were significantly decreased in MI. GSE reduced ISO-induced histological changes and increased the number of TCs that improved angiogenesis.
Collapse
Affiliation(s)
- Mai Salah Nour
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, 35516, Egypt.
| | - Nahla Reda Sarhan
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, 35516, Egypt.
| | - Shireen A Mazroa
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, 35516, Egypt.
| | - Salwa A Gawish
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, 35516, Egypt.
| |
Collapse
|
30
|
Correlations of Serum Cyclophilin A and Melatonin Concentrations with Hypertension-induced Left Ventricular Hypertrophy. Arch Med Res 2017; 48:526-534. [DOI: 10.1016/j.arcmed.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
|
31
|
Gu J, Lu Z, Ji C, Chen Y, Liu Y, Lei Z, Wang L, Zhang HT, Li X. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells. Biomed Pharmacother 2017; 93:969-975. [PMID: 28724215 DOI: 10.1016/j.biopha.2017.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/14/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023] Open
Abstract
Melatonin, an indolamine mostly synthesized in the pineal gland, exerts the anti-cancer effect by various mechanisms in glioma cells. Our previous study showed that miR-155 promoted glioma cell proliferation and invasion. However, the question of whether melatonin may inhibit glioma by regulating miRNAs has not yet been addressed. In this study, we found that melatonin (100μM, 1μM and 1nM) significantly inhibited the expression of miR-155 in human glioma cell lines U87, U373 and U251. Especially, the lowest expression of miR-155 was detected in 1μM melatonin-treated glioma cells. Melatonin (1μM) inhibits cell proliferation of U87 by promoting cell apoptosis. Nevertheless, melatonin had no effect on cell cycle distribution of U87 cells. Moreover, U87 cells treated with 1μM melatonin presented significantly lower migration and invasion ability when compared with control cells. Importantly, melatonin inhibited c-MYB expression, and c-MYB knockdown reduced miR-155 expression and migration and invasion in U87 cells. Taken together, for the first time, our findings show that melatonin inhibits miR-155 expression and thereby represses glioma cell proliferation, migration and invasion, and suggest that melatonin may downregulate the expression of miR-155 via repression of c-MYB. This will provide a theoretical basis for revealing the anti-glioma mechanisms of melatonin.
Collapse
Affiliation(s)
- Junyi Gu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, China; Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, China
| | - Zhongsheng Lu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, China; Department of Neurological Surgery, Qinghai Provincial People's Hospital, Xi'ning 810007, China
| | - Chenghong Ji
- The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215004, China
| | - Yuchao Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, China
| | - Yuzhao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, China; Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou 215123, China
| | - Longqiang Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, China; Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou 215123, China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, China; Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou 215123, China.
| | - Xiangdong Li
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, China; Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou 215123, China.
| |
Collapse
|
32
|
Hao Y, Zhang Z, Han D, Cao Y, Zhou P, Wei Z, Lv M, Chen D. Gene expression profiling of human blastocysts from in vivo and 'rescue IVM' with or without melatonin treatment. Mol Med Rep 2017. [PMID: 28627630 PMCID: PMC5561793 DOI: 10.3892/mmr.2017.6742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To evaluate the effect of melatonin supplementation in maturation medium for human 'rescue IVM' and investigate differences in transcriptomic profile of blastocysts developed from oocytes matured in vitro with/without melatonin treatment and in vivo, a total of 314 GV oocytes and 320 MI oocytes were collected from 200 patients younger than 35 years old undergoing ICSI cycle. The oocytes were randomly distributed in the control group (no melatonin) and four other groups of varying melatonin concentrations (10‑11, 10‑9, 10‑7, 10‑5 mol/l). Gene profiling was performed on blastocysts developed from in vivo maturation oocytes (in vivo group), and in vitro maturation (IVM) oocytes with an optimal concentration of melatonin treatment (IVM‑anti group) or without melatonin (IVM group). The ratio of high quality blastocysts was significantly higher in the groups treated with 10‑5 mol/l melatonin compared with others groups. The large‑scale analysis of the transcriptome revealed significant differences in mRNA expression levels. In each group, nine blastocysts were selected for gene expression profiling. The differentially expressed genes were involved in cysteine and methionine metabolism, regulation of apoptotic process, mineral absorption, steroid hormone biosynthesis, Wnt signaling, p53 signaling pathway and other functions. The findings indicated that the IVM procedure may potentially affect DNA methylation and the canonical Wnt signaling pathway. Exogenous melatonin positively influenced quality of blastocysts, which may be mediated via upregulation of p53 signaling and correcting DNA methylation changes caused by 'rescue IVM'. However, this study reflected what was generally referred to as 'rescue IVM' and was not a true reflection of clinical IVM techniques. Therefore, melatonin required further investigation as a promising supplement for use in IVM.
Collapse
Affiliation(s)
- Yan Hao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dan Han
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Mingrong Lv
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dawei Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
33
|
Ghosh AK, Naaz S, Bhattacharjee B, Ghosal N, Chattopadhyay A, Roy S, Reiter RJ, Bandyopadhyay D. Mechanism of melatonin protection against copper-ascorbate-induced oxidative damage in vitro through isothermal titration calorimetry. Life Sci 2017; 180:123-136. [PMID: 28528861 DOI: 10.1016/j.lfs.2017.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
AIMS Involvement of oxidative stress in cardiovascular diseases is well established. Melatonin's role as an antioxidant and free radical scavenger via its receptor dependent and receptor independent pathways is well known. The aim of this study is to identify and elaborate upon a third mechanism by which melatonin is able to abrogate oxidative stress. MAIN METHODS Oxidative stress was induced in vitro, by copper (0.2mM)-ascorbate (1mM) in isolated goat heart mitochondria, cytosol and peroxisomes and they were co-incubated with graded doses of melatonin. Similar experiments in a cell-free chemical system involving two pure antioxidant enzymes, Cu-Zn superoxide dismutase and catalase was also carried out. Biochemical changes in activity of these antioxidant enzymes were analysed. Isothermal titration calorimetric studies with pure Cu-Zn superoxide dismutase and catalase were also carried out. KEY FINDINGS Incubation with copper-ascorbate led to alteration in activity of Cu-Zn superoxide dismutase and catalase which were found to be protected upon co-incubation with melatonin (80μM for catalase and 1μM for others). Results of isothermal titration calorimetric studies with pure Cu-Zn superoxide dismutase and catalase along with different combinations of copper chloride, ascorbic acid and melatonin suggest that when melatonin is present in the reaction medium along with copper-ascorbate, it restrains the copper-ascorbate molecules by binding with them physically along with scavenging the free radicals generated by them. SIGNIFICANCE The present study suggests that possibly, binding of melatonin with antioxidant enzymes masks the vulnerable sites of these antioxidant enzymes, thus preventing oxidative damage by copper-ascorbate molecules.
Collapse
Affiliation(s)
- Arnab K Ghosh
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India
| | - Shamreen Naaz
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India; Department of Physiology, Vidyasagar College for Women, Kolkata 700 006, India
| | - Bharati Bhattacharjee
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India
| | - Nirajan Ghosal
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India
| | | | - Souvik Roy
- DBT-IPLS Section, University College of Science, Technology and Agriculture, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Centre at San Antonio, TX, USA
| | - Debasish Bandyopadhyay
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700 009, West Bengal, India.
| |
Collapse
|
34
|
Xue RQ, Sun L, Yu XJ, Li DL, Zang WJ. Vagal nerve stimulation improves mitochondrial dynamics via an M 3 receptor/CaMKKβ/AMPK pathway in isoproterenol-induced myocardial ischaemia. J Cell Mol Med 2017; 21:58-71. [PMID: 27491814 PMCID: PMC5192749 DOI: 10.1111/jcmm.12938] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dynamics-fission and fusion-are associated with ischaemic heart disease (IHD). This study explored the protective effect of vagal nerve stimulation (VNS) against isoproterenol (ISO)-induced myocardial ischaemia in a rat model and tested whether VNS plays a role in preventing disorders of mitochondrial dynamics and function. Isoproterenol not only caused cardiac injury but also increased the expression of mitochondrial fission proteins [dynamin-related peptide1 (Drp1) and mitochondrial fission protein1 (Fis-1)) and decreased the expression of fusion proteins (optic atrophy-1 (OPA1) and mitofusins1/2 (Mfn1/2)], thereby disrupting mitochondrial dynamics and leading to increase in mitochondrial fragments. Interestingly, VNS restored mitochondrial dynamics through regulation of Drp1, Fis-1, OPA1 and Mfn1/2; enhanced ATP content and mitochondrial membrane potential; reduced mitochondrial permeability transition pore (MPTP) opening; and improved mitochondrial ultrastructure and size. Furthermore, VNS reduced the size of the myocardial infarction and ameliorated cardiomyocyte apoptosis and cardiac dysfunction induced by ISO. Moreover, VNS activated AMP-activated protein kinase (AMPK), which was accompanied by phosphorylation of Ca2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ) during myocardial ischaemia. Treatment with subtype-3 of muscarinic acetylcholine receptor (M3 R) antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide or AMPK inhibitor Compound C abolished the protective effects of VNS on mitochondrial dynamics and function, suggesting that M3 R/CaMKKβ/AMPK signalling are involved in mediating beneficial effects of VNS. This study demonstrates that VNS modulates mitochondrial dynamics and improves mitochondrial function, possibly through the M3 R/CaMKKβ/AMPK pathway, to attenuate ISO-induced cardiac damage in rats. Targeting mitochondrial dynamics may provide a novel therapeutic strategy in IHD.
Collapse
Affiliation(s)
- Run-Qing Xue
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dong-Ling Li
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
35
|
Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget 2016; 7:2985-3001. [PMID: 26672764 PMCID: PMC4823085 DOI: 10.18632/oncotarget.6407] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/16/2015] [Indexed: 02/01/2023] Open
Abstract
Melatonin, a molecule produced throughout the animal and plant kingdoms, and berberine, a plant derived agent, both exhibit antitumor and multiple biological and pharmacological effects, but they have never been combined altogether for the inhibition of human lung cancers. In this study, we investigated the role and underlying mechanisms of melatonin in the regulation of antitumor activity of berberine in lung cancer cells. Treatment with melatonin effectively increased the berberine-mediated inhibitions of cell proliferation, colony formation and cell migration, thereby enhancing the sensitivities of lung cancer cells to berberine. Melatonin also markedly increased apoptosis induced by berberine. Further mechanism study showed that melatonin promoted the cleavage of caspse-9 and PARP, enhanced the inhibition of Bcl2, and triggered the releasing of cytochrome C (Cyto C), thereby increasing the berberine-induced apoptosis. Melatonin also enhanced the berberine-mediated inhibition of telomerase reverses transcriptase (hTERT) by down-regulating the expression of AP-2β and its binding on hTERT promoter. Moreover, melatonin enhanced the berberine-mediated inhibition of cyclooxygenase 2 (COX-2) by inhibiting the nuclear translocation of NF-κB and its binding on COX-2 promoter. Melatonin also increased the berberine-mediated inhibition of the phosphorylated Akt and ERK. Collectively, our results demonstrated that melatonin enhanced the antitumor activity of berberine by activating caspase/Cyto C and inhibiting AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK signaling pathways. Our findings provide new insights in exploring the potential therapeutic strategies and novel targets for lung cancer treatment.
Collapse
|
36
|
Simko F, Baka T, Paulis L, Reiter RJ. Elevated heart rate and nondipping heart rate as potential targets for melatonin: a review. J Pineal Res 2016; 61:127-37. [PMID: 27264986 DOI: 10.1111/jpi.12348] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/03/2016] [Indexed: 01/08/2023]
Abstract
Elevated heart rate is a risk factor for cardiovascular and all-cause mortalities in the general population and various cardiovascular pathologies. Insufficient heart rate decline during the night, that is, nondipping heart rate, also increases cardiovascular risk. Abnormal heart rate reflects an autonomic nervous system imbalance in terms of relative dominance of sympathetic tone. There are only a few prospective studies concerning the effect of heart rate reduction in coronary heart disease and heart failure. In hypertensive patients, retrospective analyses show no additional benefit of slowing down the heart rate by beta-blockade to blood pressure reduction. Melatonin, a secretory product of the pineal gland, has several attributes, which predict melatonin to be a promising candidate in the struggle against elevated heart rate and its consequences in the hypertensive population. First, melatonin production depends on the sympathetic stimulation of the pineal gland. On the other hand, melatonin inhibits the sympathetic system in several ways representing potentially the counter-regulatory mechanism to normalize excessive sympathetic drive. Second, administration of melatonin reduces heart rate in animals and humans. Third, the chronobiological action of melatonin may normalize the insufficient nocturnal decline of heart rate. Moreover, melatonin reduces the development of endothelial dysfunction and atherosclerosis, which are considered a crucial pathophysiological disorder of increased heart rate and pulsatile blood flow. The antihypertensive and antiremodeling action of melatonin along with its beneficial effects on lipid profile and insulin resistance may be of additional benefit. A clinical trial investigating melatonin actions in hypertensive patients with increased heart rate is warranted.
Collapse
Affiliation(s)
- Fedor Simko
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
- 3rd Clinic of Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
- Institute of Experimental Endocrinology BMC, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Tomas Baka
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Ludovit Paulis
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
37
|
Chen WW, Zhang X, Huang WJ. Pain control by melatonin: Physiological and pharmacological effects. Exp Ther Med 2016; 12:1963-1968. [PMID: 27698681 PMCID: PMC5038497 DOI: 10.3892/etm.2016.3565] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
Pain and anxiety are the most common neurological responses to many harmful or noxious stimuli and their management clinically is often challenging. Many of the frequently used morphine-based drugs, non-steroid anti-inflammatory drugs and acetaminophen, while efficient for treating pain, lead to patients suffering from several unwanted side effects. Melatonin, produced from the pineal body is a hormone of darkness, is involved in the control of circadian rhythms, and exerts a number of pharmacological effects. Melatonin mediates its actions through MT1/MT2 melatonin receptors on the cell membrane and also through RZR/ROR nuclear orphan receptors. Chronic pain syndromes are often associated with the desynchronization of circadian and biological rhythms, which also cause disturbances in the sleep-wake cycle. Melatonin-mediated analgesic effects seem to involve β-endorphins, GABA receptor, opioid receptors and the nitric oxide-arginine pathway. The effectiveness of melatonin as an analgesic and anxiolytic agent has been demonstrated in various animal models of pain and this led to the use of melatonin clinically in different pathological conditions and also in patients undergoing surgery. Melatonin was found to be effective in many of these cases as an anxiolytic and analgesic agent, indicating its clinical application.
Collapse
Affiliation(s)
- Wei-Wei Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Xia Zhang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wen-Juan Huang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
38
|
Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO. Melatonin Stimulates the SIRT1/Nrf2 Signaling Pathway Counteracting Lipopolysaccharide (LPS)-Induced Oxidative Stress to Rescue Postnatal Rat Brain. CNS Neurosci Ther 2016; 23:33-44. [PMID: 27421686 DOI: 10.1111/cns.12588] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS Lipopolysaccharide (LPS) induces oxidative stress and neuroinflammation both in vivo and in vitro. Here, we provided the first detailed description of the mechanism of melatonin neuroprotection against LPS-induced oxidative stress, acute neuroinflammation, and neurodegeneration in the hippocampal dentate gyrus (DG) region of the postnatal day 7 (PND7) rat brain. METHODS The neuroprotective effects of melatonin against LPS-induced neurotoxicity were analyzed using multiple research techniques, including Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays (ELISAs) in PND7 rat brain homogenates and BV2 cell lysates in vitro. We also used EX527 to inhibit silent information regulator transcript-1 (SIRT1). RESULTS A single intraperitoneal (i.p) injection of LPS to PND7 rats significantly induced glial cell activation, acute neuroinflammation, reactive oxygen species (ROS) production and apoptotic neurodegeneration in hippocampal DG region after 4 h. However, the coadministration of melatonin significantly inhibited both LPS-induced acute neuroinflammation and apoptotic neurodegeneration and improved synaptic dysfunction in the hippocampal DG region of PND7 rats. Most importantly, melatonin stimulated the SIRT1/Nrf2 (nuclear factor-erythroid 2-related factor 2) signaling pathway to reduce LPS-induced ROS generation. The beneficial effects of melatonin were further confirmed in LPS-stimulated BV2 microglia cell lines in vitro using EX527 as an inhibitor of SIRT1. LPS-induced oxidative stress, Nrf2 inhibition, and neuroinflammation are SIRT1-dependent in BV2 microglia cell lines. CONCLUSION These results demonstrated that melatonin treatment rescued the hippocampal DG region of PND7 rat brains against LPS-induced oxidative stress damage, acute neuroinflammation, and apoptotic neurodegeneration via SIRT1/Nrf2 signaling pathway activation.
Collapse
Affiliation(s)
- Shahid Ali Shah
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Mehtab Khan
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeung-Hoon Jo
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Gi Jo
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Faiz Ul Amin
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeong Ok Kim
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
39
|
Rostami A, Moosavi SA, Dianat Moghadam H, Bolookat ER. Micronuclei Assessment of The Radioprotective Effects of Melatonin and Vitamin C in Human Lymphocytes. CELL JOURNAL 2016; 18:46-51. [PMID: 27054118 PMCID: PMC4819385 DOI: 10.22074/cellj.2016.3986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/24/2015] [Indexed: 12/12/2022]
Abstract
Objective Critical macromolecules such as DNA maybe damaged by free radicals that
are generated from the interaction of ionizing radiation with biological systems. Melatonin
and vitamin C have been shown to be direct free radical scavengers. The aim of this study
was to investigate the in vivo/in vitro radioprotective effects of melatonin and vitamin C
separately and combined against genotoxicity induced by 6 MV x-ray irradiation in human
cultured blood lymphocytes.
Materials and Methods In this experimental study, fifteen volunteers were divided into
three groups of melatonin, vitamin C and melatonin plus vitamin C treatment. Peripheral
blood samples were collected from each group before, and 1, 2 and 3 hours after melatonin and vitamin C administration (separately and combined). The blood samples were
then irradiated with 200 cGy of 6 MV x-ray. In order to characterize chromosomal aberrations, the lymphocyte samples were cultured with mitogenic stimulus on cytokinesisblocked binucleated cells.
Results The samples collected 1hour after melatonin and vitamin C (separately and
combined) ingestion exhibited a significant decrease in the incidence of micronuclei compared with their control group (P<0.05). The maximum synergic protection and reduction
in frequency of micronuclei (57%) was observed 1 hour after vitamin C and melatonin
administration combined.
Conclusion We conclude that simultaneous administration of melatonin and vitamin C
as radioprotector substances before irradiation may reduce genotoxicity caused by x-ray
irradiation.
Collapse
Affiliation(s)
- Aram Rostami
- Department of Medical Physics, School of Medicine-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Akbar Moosavi
- Department of Lab Sciences, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Dianat Moghadam
- Department of Medical Biotechnology, School of Advanced Technology, Tehran University of Medical Sciences, Tehran, Iran
| | - Eftekhar Rajab Bolookat
- Department of Radiotherapy, Hospital of Shohada Tajrish, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Garson C, Kelly-Laubscher R, Blackhurst D, Gwanyanya A. Lack of cardioprotection by single-dose magnesium prophylaxis on isoprenaline-induced myocardial infarction in adult Wistar rats. Cardiovasc J Afr 2015. [PMID: 26212925 PMCID: PMC4780018 DOI: 10.5830/cvja-2015-055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aim Magnesium (Mg2+) is effective in treating cardiovascular disorders such as arrhythmias and pre-eclampsia, but its role during myocardial infarction (MI) remains uncertain. In this study, we investigated the effects of Mg2+ pre-treatment on isoprenaline (ISO)-induced MI in vivo. Methods Rats divided into four groups were each pre-treated with either MgSO4 (270 mg/kg intraperitoneally) or an equivalent volume of physiological saline, prior to the ISO (67 mg/kg subcutaneously) or saline treatments. One day post-treatment, the electrocardiogram and left ventricular blood pressures were recorded. Infarcts were determined using 2,3,5-triphenyltetrazolium chloride staining, and serum markers of lipid peroxidation were measured with spectrophotometric assays. Results Mg2+ pre-treatment neither altered the ISO-induced infarct size compared with ISO treatment alone (p > 0.05), nor reversed the low-voltage electrocardiogram or the prominent Q waves induced by ISO, despite a trend to decreased Q waves. Similarly, Mg2+ did not prevent the ISO-induced decrease in peak left ventricular blood pressure or the decrease in minimal rate of pressure change. Mg2+ did not reverse the ISO-induced gain in heart weight or loss of body weight. Neither ISO nor Mg2+ altered the concentrations of lipid peroxidation markers 24 hours post MI induction. Conclusion Although Mg2+ had no detrimental effects on electrical or haemodynamic activity in ISO-induced MI, the lack of infarct prevention may detract from its utility in MI therapy.
Collapse
Affiliation(s)
- Christie Garson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Roisin Kelly-Laubscher
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dee Blackhurst
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
41
|
Zhu P, Liu J, Shi J, Zhou Q, Liu J, Zhang X, Du Z, Liu Q, Guo Y. Melatonin protects ADSCs from ROS and enhances their therapeutic potency in a rat model of myocardial infarction. J Cell Mol Med 2015; 19:2232-43. [PMID: 26081690 PMCID: PMC4568927 DOI: 10.1111/jcmm.12610] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/06/2015] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI) is a major cause of death and disability worldwide. In the last decade, mesenchymal stem cells (MSCs) based cell therapy has emerged as a promising therapeutic strategy. Although great advance have been made using MSCs to treat MI, the low viability of transplanted MSCs severely limits the efficiency of MSCs therapy. Here, we show evidence that ex vivo pre-treatment with melatonin, an endogenous hormone with newly found anti-oxidative activity, could improve survival and function of adipose tissue derived MSCs (ADSCs) in vitro as well as in vivo. ADSCs with 5 μM melatonin pre-treatment for 24 hrs showed increased expression of the antioxidant enzyme catalase and Cu/Zn superoxide dismutase (SOD-1), as well as pro-angiogenic and mitogenic factors like insulin-like growth factor 1, basic fibroblast growth factor, hepatocyte growth factor (HGF), epidermal growth factor. Furthermore, melatonin pre-treatment protected MSCs from reactive oxygen species (ROS) induced apoptosis both directly by promoting anti-apoptosis kinases like p-Akt as well as blocking caspase cascade, and indirectly by restoring the ROS impaired cell adhesion. Using a rat model of MI, we found that melatonin pre-treatment enhanced the viability of engrafted ADSCs, and promoted their therapeutic potency. Hopefully, our results may shed light on the design of more effective therapeutic strategies treating MI by MSCs in clinic.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jianfeng Liu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jinxin Shi
- Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| | - Qian Zhou
- Department of Cardiology, The Center Hospital of Zhoukou, Henan Province, China
| | - Jie Liu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China.,Department of Geriatrics, Civil Aviation General Hospital, Beijing, China
| | - Xianwei Zhang
- The Health Department of Guard Bureau in the General Staff, Beijing, China
| | - Zhiyan Du
- Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Qiaowei Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuanyuan Guo
- Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| |
Collapse
|
42
|
Mukherjee D, Ghosh AK, Dutta M, Mitra E, Mallick S, Saha B, Reiter RJ, Bandyopadhyay D. Mechanisms of isoproterenol-induced cardiac mitochondrial damage: protective actions of melatonin. J Pineal Res 2015; 58:275-90. [PMID: 25652673 DOI: 10.1111/jpi.12213] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction due to oxidative damage is the key feature of several diseases. We have earlier reported mitochondrial damage resulting from the generation of oxidative stress as a major pathophysiological effect of isoproterenol (ISO)-induced myocardial ischemia in rats. That melatonin is an antioxidant that ameliorates oxidative stress in experimental animals as well as in humans is well established. We previously demonstrated that melatonin provides cardioprotection against ISO-induced myocardial injury as a result of its antioxidant properties. The mechanism of ISO-induced cardiac mitochondrial damage and protection by melatonin, however, remains to be elucidated in vitro. In this study, we provide evidence that ISO causes dysfunction of isolated goat heart mitochondria. Incubation of cardiac mitochondria with increasing concentrations of ISO decreased mitochondrial succinate dehydrogenase (SDH) activity, which plays a pivotal role in mitochondrial bioenergetics, as well as altered the activities of other key enzymes of the Kreb's cycle and the respiratory chain. Co-incubation of ISO-challenged mitochondria with melatonin prevented the alterations in enzyme activity. That these changes in mitochondrial energy metabolism were due to the perpetration of oxidative stress by ISO was evident from the increased levels of lipid peroxidation and decreased reduced glutathione/oxidized glutathione ratio. ISO-induced oxidative stress also altered mitochondrial redox potential and brought about changes in the activity of the antioxidant enzymes manganese superoxide dismutase and glutathione peroxidase, eventually leading to alterations in total ATPase activity and membrane potential. Melatonin ameliorated these changes likely through its antioxidant abilities suggesting a possible mechanism of cardioprotection by this indole against ISO-induced myocardial injury.
Collapse
Affiliation(s)
- Debasri Mukherjee
- Oxidative stress and Free Radical Biology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, Kolkata, India; National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Protective effect of melatonin against myocardial injury induced by epinephrine. J Physiol Biochem 2015; 71:43-9. [DOI: 10.1007/s13105-014-0377-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
|
44
|
Amin AH, El-Missiry MA, Othman AI. Melatonin ameliorates metabolic risk factors, modulates apoptotic proteins, and protects the rat heart against diabetes-induced apoptosis. Eur J Pharmacol 2015; 747:166-73. [DOI: 10.1016/j.ejphar.2014.12.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/30/2014] [Accepted: 12/04/2014] [Indexed: 12/14/2022]
|
45
|
Pieme CA, Ngoupayo J, Nkoulou CHKK, Moukette BM, Nono BLN, Moor VJA, Minkande JZ, Ngogang JY. Syzyguim guineense Extracts Show Antioxidant Activities and Beneficial Activities on Oxidative Stress Induced by Ferric Chloride in the Liver Homogenate. Antioxidants (Basel) 2014; 3:618-35. [PMID: 26785075 PMCID: PMC4665412 DOI: 10.3390/antiox3030618] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine the in vitro antioxidant activity, free radical scavenging property and the beneficial effects of extracts of various parts of Syzygium guineense in reducing oxidative stress damage in the liver. The effects of extracts on free radicals were determined on radicals DPPH, ABTS, NO and OH followed by the antioxidant properties using Ferric Reducing Antioxidant Power assay (FRAP) and hosphomolybdenum (PPMB). The phytochemical screening of these extracts was performed by determination of the phenolic content. The oxidative damage inhibition in the liver was determined by measuring malondialdehyde (MDA) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase. Overall, the bark extract of the ethanol/water or methanol showed the highest radical scavenging activities against DPPH, ABTS and OH radicals compared to the other extracts. This extract also contained the highest phenolic content implying the potential contribution of phenolic compounds towards the antioxidant activities. However, the methanol extract of the root demonstrated the highest protective effects of SOD and CAT against ferric chloride while the hydro-ethanol extract of the leaves exhibited the highest inhibitory effects on lipid peroxidation. These findings suggest that antioxidant properties of S. guineense extracts could be attributed to phenolic compounds revealed by phytochemical studies. Thus, the present results indicate clearly that the extracts of S. guineense possess antioxidant properties and could serve as free radical inhibitors or scavengers, acting possibly as primary antioxidants. The antioxidant properties of the bark extract may thus sustain its various biological activities.
Collapse
Affiliation(s)
- Constant Anatole Pieme
- Laboratory of Biochemistry, Department of Biochemistry and Physiological Sciences Faculty of Medicine and Biomedical Sciences, University of Yaounde I, P.O. Box 1364 Yaounde, Cameroon.
| | - Joseph Ngoupayo
- Department of pharmacy, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, P.O. Box 1364 Yaounde, Cameroon.
| | - Claude Herve Khou-Kouz Nkoulou
- Department of pharmacy, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, P.O. Box 1364 Yaounde, Cameroon.
| | - Bruno Moukette Moukette
- Laboratory of Biochemistry, Department of Biochemistry and Physiological Sciences Faculty of Medicine and Biomedical Sciences, University of Yaounde I, P.O. Box 1364 Yaounde, Cameroon.
| | | | - Vicky Jocelyne Ama Moor
- Laboratory of Biochemistry, Department of Biochemistry and Physiological Sciences Faculty of Medicine and Biomedical Sciences, University of Yaounde I, P.O. Box 1364 Yaounde, Cameroon.
| | - Jacqueline Ze Minkande
- Department of Anesthesia and Reanimation, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, P.O. Box 1364 Yaounde, Cameroon.
| | - Jeanne Yonkeu Ngogang
- Laboratory of Biochemistry, Department of Biochemistry and Physiological Sciences Faculty of Medicine and Biomedical Sciences, University of Yaounde I, P.O. Box 1364 Yaounde, Cameroon.
| |
Collapse
|
46
|
Simko F, Bednarova KR, Krajcirovicova K, Hrenak J, Celec P, Kamodyova N, Gajdosechova L, Zorad S, Adamcova M. Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J Pineal Res 2014; 57:177-84. [PMID: 24942291 DOI: 10.1111/jpi.12154] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/13/2014] [Indexed: 02/05/2023]
Abstract
Melatonin was previously shown to reduce blood pressure and left ventricular (LV) remodeling in several models of experimental heart damage. This study investigated whether melatonin prevents LV remodeling and improves survival in isoproterenol-induced heart failure. In the first experiment, four groups of 3-month-old male Wistar rats (12 per group) were treated for 2 wk as follows: controls, rats treated with melatonin (10 mg/kg/day) (M), rats treated with isoproterenol (5 mg/kg/day intraperitoneally the second week) (Iso), and rats treated with melatonin (2 wk) and isoproterenol (the second week) in corresponding doses (IsoM). In the second experiment, 30 rats were treated with isoproterenol and 30 rats with isoproterenol plus melatonin for a period of 28 days and their mortality was investigated. Isoproterenol-induced heart failure with hypertrophy of the left and right ventricles (LV, RV), lowered systolic blood pressure (SBP) and elevated pulmonary congestion. Fibrotic rebuilding was accompanied by alterations of tubulin level in the LV and oxidative stress development. Melatonin failed to reduce the weight of the LV or RV; however, it curtailed the weight of the lungs and attenuated the decline in SBP. Moreover, melatonin decreased the level of oxidative stress and of insoluble and total collagen and partly prevented the beta-tubulin alteration in the LV. Most importantly, melatonin reduced mortality and prolonged the average survival time. In conclusion, melatonin exerts cardioprotective effects and improves outcome in a model of isoproterenol-induced heart damage. The antiremodeling effect of melatonin may be of potential benefit in patients with heart failure.
Collapse
Affiliation(s)
- Fedor Simko
- Department of Pathophysiology, School of Medicine, Comenius University, Bratislava, Slovak Republic; 3rd Clinic of Medicine, School of Medicine, Comenius University, Bratislava, Slovak Republic; Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic; Center of Excellence NOREG, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Firdaus SB, Ghosh D, Chattyopadhyay A, Dutta M, Paul S, Jana J, Basu A, Bose G, Lahiri H, Banerjee B, Pattari S, Chatterjee S, Jana K, Bandyopadhyay D. Protective effect of antioxidant rich aqueous curry leaf ( Murraya koenigii) extract against gastro-toxic effects of piroxicam in male Wistar rats. Toxicol Rep 2014; 1:987-1003. [PMID: 28962312 PMCID: PMC5598401 DOI: 10.1016/j.toxrep.2014.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022] Open
Abstract
Piroxicam causes gastric ulceration through oxidative stress. Curry leaf extract protects against piroxicam induced gastric injury. Antioxidant mechanism(s) are involved in such protection. The extract may have future therapeutic potential.
Piroxicam (chemically 4-hydroxy-2-methyl-N-2-pyridinyl-2H-1,2-benzothiazine-3-carboxamide), a classical non-steroidal anti-inflammatory drug (NSAID) is orally administered to arthritic patients. Inhibition of prostaglandin E2 (PGE2) synthesis and subsequent free hydroxyl radical generation in vivo exert gastro-toxic side effects on piroxicam treatment. Leaves of curry plant are rich in antioxidants with prolific free radical scavenging activities. This led us to investigate the efficiency of the use of curry leaves in ameliorating piroxicam induced gastric damage. Piroxicam was orally (30 mg per kg body weight) administered in male albino Wistar rats to generate gastric ulcers. These rats were orally fed with graded doses of aqueous extract of curry or Murraya koenigii leaves (Cu LE) prior to piroxicam administration. Oxidative stress biomarkers, activities of antioxidant and pro-oxidant enzymes, mucin content and nature, PGE2 level, activities of mitochondrial enzymes and histomorphology of gastric tissues were studied. Piroxicam treatment altered all the above mentioned parameters whereas, curry leaf extract pre-treated animals were protected against piroxicam induced alterations. Hence, the protective action of the antioxidant rich Cu LE was investigated to propose a new combination therapy or dietary management to arthritic patients using piroxicam.
Collapse
Affiliation(s)
- Syed Benazir Firdaus
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700009, India
| | - Debosree Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700009, India
| | | | - Mousumi Dutta
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700009, India
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata 700 009, India
| | - Sudeshna Paul
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700009, India
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata 700 009, India
| | - Jagannath Jana
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Kolkata 700 009, India
| | - Anjali Basu
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700009, India
| | - Gargi Bose
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700009, India
| | - Hiya Lahiri
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700009, India
| | - Bhaswati Banerjee
- Department of Molecular Medicine and Bose Institute, P-1/12 CIT Scheme VII M, Kolkata, India
| | - Sanjib Pattari
- RN Tagore International Institute of Cardiac Sciences, 124, Mukundapur, EM Bypass, Kolkata 700 099, India
| | - Subhrangshu Chatterjee
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Kolkata 700 009, India
| | - Kuladip Jana
- Department of Molecular Medicine and Bose Institute, P-1/12 CIT Scheme VII M, Kolkata, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700009, India
- Corresponding author at: Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology, 92, APC Road, Kolkata 700009, India. Tel.: +91 9433072066
| |
Collapse
|
48
|
Simşek Y, Parlakpınar H, Turhan U, Tağluk ME, Ateş B. Dual effects of melatonin on uterine myoelectrical activity of non-pregnant rats. J Turk Ger Gynecol Assoc 2014; 15:86-91. [PMID: 24976773 DOI: 10.5152/jtgga.2014.26932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 12/29/2013] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE In this experimental study, we aimed to investigate the role of melatonin on uterine myoelectrical activity of non-pregnant rats. MATERIAL AND METHODS Forty-six female rats were assigned to six groups: (1) control; (0.2 mL 0.9% NaCl was injected intravenously (IV), n=6); (2) melatonin applied as 0.4 mg/kg/IV (n=8); (3) melatonin applied as 4 mg/kg/IV (n=8); (4) single dose of oxytocin (100 mU/kg) injected IV (n=8); (5) melatonin (0.4 mg/kg) plus oxytocin (100 mU/kg) (n=8); and (6) melatonin (4 mg/kg) plus oxytocin (100 mU/kg) injected IV (n=8). Each rat underwent a laparotomy, and uterine myoelectrical signals were recorded. The mean spectrum, averaged over the spectral content of signals in each group, was compared. RESULTS Melatonin induced uterine myoelectrical activity in a dose-dependent manner. Treatment of melatonin after oxytocin suppressed the mean power of the signals. Serum melatonin concentrations were significantly higher in melatonin-treated rats. CONCLUSION Melatonin itself at two different dose levels was found to be equally effective in stimulating the uterine electrical signals, although oxytocin-induced uterine electrical activity was suppressed by melatonin. These findings merit further investigations on the possible beneficial role of melatonin in the treatment of conditions associated with abnormal uterine activity.
Collapse
Affiliation(s)
- Yavuz Simşek
- Department of Obstetrics and Gynecology, Kırıkkale University Faculty of Medicine, Kırıkkale, Turkey
| | - Hakan Parlakpınar
- Department of Medical Pharmacology, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Uğur Turhan
- Department of Obstetrics and Gynecology, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Mehmet Emin Tağluk
- Department of Electrical and Electronics, İnönü University Faculty of Engineering, Malatya, Turkey
| | - Burhan Ateş
- Department of Chemistry, İnönü University Faculty of Science, Malatya, Turkey
| |
Collapse
|
49
|
Rybka J, Kędziora-Kornatowska K, Kupczyk D, Muszalik M, Kornatowski M, Kędziora J. Antioxidant effect of immediate- versus sustained-release melatonin in type 2 diabetes mellitus and healthy controls. Drug Deliv 2014; 23:814-7. [DOI: 10.3109/10717544.2014.917343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Joanna Rybka
- Department and Clinic of Geriatrics, Collegium Medicum UMK, Bydgoszcz, Poland,
| | | | - Daria Kupczyk
- Department and Clinic of Geriatrics, Collegium Medicum UMK, Bydgoszcz, Poland,
| | - Marta Muszalik
- Department and Clinic of Geriatrics, Collegium Medicum UMK, Bydgoszcz, Poland,
| | | | | |
Collapse
|
50
|
High fat diet aggravates arsenic induced oxidative stress in rat heart and liver. Food Chem Toxicol 2014; 66:262-77. [DOI: 10.1016/j.fct.2014.01.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 01/15/2023]
|