1
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Selective delivery of imaging probes and therapeutics to the endoplasmic reticulum or Golgi apparatus: Current strategies and beyond. Adv Drug Deliv Rev 2024; 212:115386. [PMID: 38971180 DOI: 10.1016/j.addr.2024.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| |
Collapse
|
2
|
Xu H, Chang F, Jain S, Heller BA, Han X, Liu Y, Edwards RH. SNX5 targets a monoamine transporter to the TGN for assembly into dense core vesicles by AP-3. J Cell Biol 2022; 221:e202106083. [PMID: 35426896 PMCID: PMC9016777 DOI: 10.1083/jcb.202106083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/06/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
The time course of signaling by peptide hormones, neural peptides, and other neuromodulators depends on their storage inside dense core vesicles (DCVs). Adaptor protein 3 (AP-3) assembles the membrane proteins that confer regulated release of DCVs and is thought to promote their trafficking from endosomes directly to maturing DCVs. We now find that regulated monoamine release from DCVs requires sorting nexin 5 (SNX5). Loss of SNX5 disrupts trafficking of the vesicular monoamine transporter (VMAT) to DCVs. The mechanism involves a role for SNX5 in retrograde transport of VMAT from endosomes to the TGN. However, this role for SNX5 conflicts with the proposed function of AP-3 in trafficking from endosomes directly to DCVs. We now identify a transient role for AP-3 at the TGN, where it associates with DCV cargo. Thus, retrograde transport from endosomes by SNX5 enables DCV assembly at the TGN by AP-3, resolving the apparent antagonism. A novel role for AP-3 at the TGN has implications for other organelles that also depend on this adaptor.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Fei Chang
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Shweta Jain
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| | - Bradley Austin Heller
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Departments of Pharmacology and Biological Chemistry, University of Pittsburgh, Pittsburgh, PA
| | - Robert H. Edwards
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| |
Collapse
|
3
|
Tomás M, Martínez-Alonso E, Martínez-Martínez N, Cara-Esteban M, Martínez-Menárguez JA. Fragmentation of the Golgi complex of dopaminergic neurons in human substantia nigra: New cytopathological findings in Parkinson's disease. Histol Histopathol 2020; 36:47-60. [PMID: 33078843 DOI: 10.14670/hh-18-270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fragmentation of the Golgi ribbon is a common feature of Parkinson´s disease and other neurodegenerative diseases. This alteration could be the consequence of the anterograde and retrograde transport imbalance, α-synuclein aggregates, and/or cytoskeleton alterations. Most information on this process has been obtained from cellular and animal experimental models, and as such, there is little information available on human tissue. If the information on human tissue was available, it may help to understand the cytopathological mechanisms of this disease. In the present study, we analyzed the morphological characteristics of the Golgi complex of dopaminergic neurons in human samples of substantia nigra of control and Parkinson's disease patients. We measured the expression levels of putative molecules involved in Golgi fragmentation, including α-synuclein, tubulin, and Golgi-associated regulatory and structural proteins. We show that, as a consequence of the disease, the Golgi complex is fragmented into small stacks without vesiculation. We found that only a limited number of regulatory proteins are altered. Rab1, a small GTPase regulating endoplasmic reticulum-to-Golgi transport, is the most dramatically affected, being highly overexpressed in the surviving neurons. We found that the SNARE protein syntaxin 5 forms extracellular aggregates resembling the amyloid plaques characteristic of Alzheimer's disease. These findings may help to understand the cytopathology of Parkinson's disease.
Collapse
Affiliation(s)
- Mónica Tomás
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain.
| | - Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, Murcia, Spain
| | | | - Mireia Cara-Esteban
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
| | | |
Collapse
|
4
|
Hertle AP, García-Cerdán JG, Armbruster U, Shih R, Lee JJ, Wong W, Niyogi KK. A Sec14 domain protein is required for photoautotrophic growth and chloroplast vesicle formation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2020; 117:9101-9111. [PMID: 32245810 PMCID: PMC7183190 DOI: 10.1073/pnas.1916946117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In eukaryotic photosynthetic organisms, the conversion of solar into chemical energy occurs in thylakoid membranes in the chloroplast. How thylakoid membranes are formed and maintained is poorly understood. However, previous observations of vesicles adjacent to the stromal side of the inner envelope membrane of the chloroplast suggest a possible role of membrane transport via vesicle trafficking from the inner envelope to the thylakoids. Here we show that the model plant Arabidopsis thaliana has a chloroplast-localized Sec14-like protein (CPSFL1) that is necessary for photoautotrophic growth and vesicle formation at the inner envelope membrane of the chloroplast. The cpsfl1 mutants are seedling lethal, show a defect in thylakoid structure, and lack chloroplast vesicles. Sec14 domain proteins are found only in eukaryotes and have been well characterized in yeast, where they regulate vesicle budding at the trans-Golgi network. Like the yeast Sec14p, CPSFL1 binds phosphatidylinositol phosphates (PIPs) and phosphatidic acid (PA) and acts as a phosphatidylinositol transfer protein in vitro, and expression of Arabidopsis CPSFL1 can complement the yeast sec14 mutation. CPSFL1 can transfer PIP into PA-rich membrane bilayers in vitro, suggesting that CPSFL1 potentially facilitates vesicle formation by trafficking PA and/or PIP, known regulators of membrane trafficking between organellar subcompartments. These results underscore the role of vesicles in thylakoid biogenesis and/or maintenance. CPSFL1 appears to be an example of a eukaryotic cytosolic protein that has been coopted for a function in the chloroplast, an organelle derived from endosymbiosis of a cyanobacterium.
Collapse
Affiliation(s)
- Alexander P Hertle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
| | - José G García-Cerdán
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Ute Armbruster
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Robert Shih
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jimmy J Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Winnie Wong
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
5
|
León-Espinosa G, DeFelipe J, Muñoz A. The Golgi Apparatus of Neocortical Glial Cells During Hibernation in the Syrian Hamster. Front Neuroanat 2019; 13:92. [PMID: 31824270 PMCID: PMC6882278 DOI: 10.3389/fnana.2019.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Hibernating mammals undergo torpor periods characterized by a general decrease in body temperature, metabolic rate, and brain activity accompanied by complex adaptive brain changes that appear to protect the brain from extreme conditions of hypoxia and low temperatures. These processes are accompanied by morphological and neurochemical changes in the brain including those in cortical neurons such as the fragmentation and reduction of the Golgi apparatus (GA), which both reverse a few hours after arousal from the torpor state. In the present study, we characterized – by immunofluorescence and confocal microscopy – the GA of cortical astrocytes, oligodendrocytes, and microglial cells in the Syrian hamster, which is a facultative hibernator. We also show that after artificial induction of hibernation, in addition to neurons, the GA of glia in the Syrian hamster undergoes important structural changes, as well as modifications in the intensity of immunostaining and distribution patterns of Golgi structural proteins at different stages of the hibernation cycle.
Collapse
Affiliation(s)
- Gonzalo León-Espinosa
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Departamento de Química y Bioquímica, Facultad de Farmacia, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Instituto Cajal, CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alberto Muñoz
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Instituto Cajal, CSIC, Madrid, Spain.,Departamento de Biología Celular, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Alcantara CDL, de Souza W, da Cunha E Silva NL. Tridimensional Electron Microscopy Analysis of the Early Endosomes and Endocytic Traffic in Trypanosoma cruzi Epimastigotes. Protist 2018; 169:887-910. [PMID: 30447618 DOI: 10.1016/j.protis.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/25/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
Trypanosoma cruzi epimastigotes internalize macromolecules avidly by endocytosis. Previously, we identified a tubule-vesicular network likely to correspond to the early-endosomes. However, a detailed ultrastructural characterization of these endosomes was missing. Here, we combined endocytosis assays with ultrastructural data from high-resolution electron microscopy to produce a 3D analysis of epimastigote endosomes and their interactions with endocytic organelles. We showed that endocytic cargo was found in carrier vesicles budding from the cytopharynx. These vesicles appeared to fuse with a tubule-vesicular network of early endosomes identified by ultrastructural features including the presence of intermembrane invaginations and coated membrane sections. Within the posterior region of the cell, endosomes localized preferentially on the side nearest to the cytopharynx microtubules. At 4°C, cargo accumulated at a shortened cytopharynx, and subsequent temperature shift to 12°C led to slow cargo delivery to endosomes and, later, to reservosomes. Bridges between reservosomes and endosomes resemble heterotypic fusion. Reservosomes are excluded from the posterior end of the cell, with no preferential cargo delivery to reservosomes closer to the nucleus. Our 3D analysis indicates that epimastigotes accomplish high-speed endocytic traffic by cargo transfer to a bona fide early-endosome and then directly from endosomes to reservosomes, via multiple and simultaneous heterotypic fusion events.
Collapse
Affiliation(s)
- Carolina de Lima Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro 21941-902, RJ, Brazil.
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro 21941-902, RJ, Brazil
| | - Narcisa L da Cunha E Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
7
|
Biochemical and cellular consequences of the antithrombin p.Met1? mutation identified in a severe thrombophilic family. Oncotarget 2018; 9:33202-33214. [PMID: 30237862 PMCID: PMC6145704 DOI: 10.18632/oncotarget.26059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/31/2018] [Indexed: 11/25/2022] Open
Abstract
Nature is always the best inspiration for basic research. A family with severe thrombosis and antithrombin deficiency, the strongest anticoagulant, carried a new mutation affecting the translation-start codon of SERPINC1, the gene encoding antithrombin. Expression of this variant in a eukaryotic cell system produced three different antithrombins. Two downstream methionines were used as alternative initiation codons, generating highly expressed small aglycosylated antithrombins with cytoplasmic localization. Wild-type antithrombin was generated by the use of the mutated AUU as initiation codon. Actually, any codon except for the three stop codons might be used to initiate translation in this strong Kozak context. We show unexpected consequences of natural mutations affecting translation-start codons. Downstream alternative initiation AUG codons may be used when the start codon is mutated, generating smaller molecules with potential different cell localization, biochemical features and unexplored consequences. Additionally, our data further support the use of other codons apart from AUG for initiation of translation in eukaryotes.
Collapse
|
8
|
Saraste J, Marie M. Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150:407-430. [PMID: 30173361 PMCID: PMC6182704 DOI: 10.1007/s00418-018-1717-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Despite its discovery more than three decades ago and well-established role in protein sorting and trafficking in the early secretory pathway, the intermediate compartment (IC) has remained enigmatic. The prevailing view is that the IC evolved as a specialized organelle to mediate long-distance endoplasmic reticulum (ER)–Golgi communication in metazoan cells, but is lacking in other eukaryotes, such as plants and fungi. However, this distinction is difficult to reconcile with the high conservation of the core machineries that regulate early secretory trafficking from yeast to man. Also, it has remained unclear whether the pleiomorphic IC components—vacuoles, tubules and vesicles—represent transient transport carriers or building blocks of a permanent pre-Golgi organelle. Interestingly, recent studies have revealed that the IC maintains its compositional, structural and spatial properties throughout the cell cycle, supporting a model that combines the dynamic and stable aspects of the organelle. Moreover, the IC has been assigned novel functions, such as cell signaling, Golgi-independent trafficking and autophagy. The emerging permanent nature of the IC and its connections with the centrosome and the endocytic recycling system encourage reconsideration of its relationship with the Golgi ribbon, role in Golgi biogenesis and ubiquitous presence in eukaryotic cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| |
Collapse
|
9
|
Gilbert CE, Sztul E, Machamer CE. Commonly used trafficking blocks disrupt ARF1 activation and the localization and function of specific Golgi proteins. Mol Biol Cell 2018; 29:937-947. [PMID: 29467256 PMCID: PMC5896932 DOI: 10.1091/mbc.e17-11-0622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cold temperature blocks used to synchronize protein trafficking inhibit GBF1 function, leading to a decrease in ARF1-GTP levels and mislocalization of the ARF1 effector golgin-160. Several other, but not all, Golgi proteins including ARL1 also mislocalize. ARF1 activity and golgin-160 localization require more than 30 min to recover from these blocks. ADP-ribosylation factor (ARF) proteins are key regulators of the secretory pathway. ARF1, through interacting with its effectors, regulates protein trafficking by facilitating numerous events at the Golgi. One unique ARF1 effector is golgin-160, which promotes the trafficking of only a specific subset of cargo proteins through the Golgi. While studying this role of golgin-160, we discovered that commonly used cold temperature blocks utilized to synchronize cargo trafficking (20 and 16°C) caused golgin-160 dispersal from Golgi membranes. Here, we show that the loss of golgin-160 localization correlates with a decrease in the levels of activated ARF1, and that golgin-160 dispersal can be prevented by expression of a GTP-locked ARF1 mutant. Overexpression of the ARF1 activator Golgi brefeldin A–resistant guanine nucleotide exchange factor 1 (GBF1) did not prevent golgin-160 dispersal, suggesting that GBF1 may be nonfunctional at lower temperatures. We further discovered that several other Golgi resident proteins had altered localization at lower temperatures, including proteins recruited by ARF-like GTPase 1 (ARL1), a small GTPase that also became dispersed in the cold. Although cold temperature blocks are useful for synchronizing cargo trafficking through the Golgi, our data indicate that caution must be taken when interpreting results from these assays.
Collapse
Affiliation(s)
- Catherine E Gilbert
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35924
| | - Carolyn E Machamer
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
10
|
A new insight into the three-dimensional architecture of the Golgi complex: Characterization of unusual structures in epididymal principal cells. PLoS One 2017; 12:e0185557. [PMID: 28957389 PMCID: PMC5619803 DOI: 10.1371/journal.pone.0185557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/14/2017] [Indexed: 12/01/2022] Open
Abstract
Principal epididymal cells have one of the largest and more developed Golgi complex of mammalian cells. In the present study, we have used this cell as model for the study of the three-dimensional architecture of the Golgi complex of highly secretory and endocytic cells. Electron tomography demonstrated the presence in this cell type of some unknown or very unusual Golgi structures such as branched cisternae, pocket-like cisternal invaginations or tubular connections. In addition, we have used this methodology and immunoelectron microscopy to analyze the close relationship between this organelle and both the endoplasmic reticulum and microtubules, and to describe in detail how these elements interact with compact and non-compact regions of the ribbon.
Collapse
|
11
|
Campelo F, van Galen J, Turacchio G, Parashuraman S, Kozlov MM, García-Parajo MF, Malhotra V. Sphingomyelin metabolism controls the shape and function of the Golgi cisternae. eLife 2017; 6. [PMID: 28500756 PMCID: PMC5462544 DOI: 10.7554/elife.24603] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/04/2017] [Indexed: 12/11/2022] Open
Abstract
The flat Golgi cisterna is a highly conserved feature of eukaryotic cells, but how is this morphology achieved and is it related to its function in cargo sorting and export? A physical model of cisterna morphology led us to propose that sphingomyelin (SM) metabolism at the trans-Golgi membranes in mammalian cells essentially controls the structural features of a Golgi cisterna by regulating its association to curvature-generating proteins. An experimental test of this hypothesis revealed that affecting SM homeostasis converted flat cisternae into highly curled membranes with a concomitant dissociation of membrane curvature-generating proteins. These data lend support to our hypothesis that SM metabolism controls the structural organization of a Golgi cisterna. Together with our previously presented role of SM in controlling the location of proteins involved in glycosylation and vesicle formation, our data reveal the significance of SM metabolism in the structural organization and function of Golgi cisternae. DOI:http://dx.doi.org/10.7554/eLife.24603.001 The Golgi complex is a hub inside cells that transports many proteins to various parts of the cell. It also receives freshly made proteins and modifies them to help them mature into their final active forms. The complex is made up of a stack of disc-like membrane structures called cisternae. Are the shapes of the cisternae important for the Golgi complex to work properly? Membranes are made of mixtures of molecules known as lipids and proteins. Previous experiments show that when the mixture of lipids in the Golgi membranes changes in a specific manner, the cisternae curl into an onion-like shape and the Golgi cannot process or send out proteins anymore. Campelo et al. used mathematics and experimental approaches to investigate what causes the Golgi to change shape when the lipid mixture of the cisternae changes. A mathematical description of the shape of the Golgi predicted that some proteins keep the cisternae flat by holding the membrane rim that connects the two faces of a cisterna. To test this prediction, Campelo et al. performed experiments in human cells, which showed that when the mixture of lipids in the Golgi membranes changes, certain proteins jump from the rim, causing the cisternae to curl. These same proteins are also needed to transport cargo proteins out of the Golgi, meaning that there is a connection between the shape of the Golgi and the tasks it carries out. The shape of the Golgi complex is altered in Alzheimer’s disease and many other neurodegenerative diseases. The next challenges are to understand how these shape changes happen, how this affects cells, and if it could be possible to develop drugs that prevent these changes from occurring in patients. DOI:http://dx.doi.org/10.7554/eLife.24603.002
Collapse
Affiliation(s)
- Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Josse van Galen
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriele Turacchio
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | | | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - María F García-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
12
|
Casey CA, Bhat G, Holzapfel MS, Petrosyan A. Study of Ethanol-Induced Golgi Disorganization Reveals the Potential Mechanism of Alcohol-Impaired N-Glycosylation. Alcohol Clin Exp Res 2016; 40:2573-2590. [PMID: 27748959 PMCID: PMC5133184 DOI: 10.1111/acer.13247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/20/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND It is known that ethanol (EtOH) and its metabolites have a negative effect on protein glycosylation. The fragmentation of the Golgi apparatus induced by alteration of the structure of largest Golgi matrix protein, giantin, is the major consequence of damaging effects of EtOH-metabolism on the Golgi; however, the link between this and abnormal glycosylation remains unknown. Because previously we have shown that Golgi morphology dictates glycosylation, we examined the effect EtOH administration has on function of Golgi residential enzymes involved in N-glycosylation. METHODS HepG2 cells transfected with mouse ADH1 (VA-13 cells) were treated with 35 mM EtOH for 72 hours. Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Characterization of Golgi-associated mannosyl (α-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (MGAT1), α-1,2-mannosidase (Man-I), and α-mannosidase II (Man-II) were performed in VA-13 cells and rat hepatocytes followed by three-dimensional structured illumination microscopy (3D SIM). RESULTS First, we detected that EtOH administration results in the loss of sialylated N-glycans on asialoglycoprotein receptor; however, the high-mannose-type N-glycans are increased. Further analysis by 3D SIM revealed that EtOH treatment despite Golgi disorganization does not change cis-Golgi localization for Man-I, but does induce medial-to-cis relocation of MGAT1 and Man-II. Using different approaches, including electron microscopy, we revealed that EtOH treatment results in dysfunction of ADP-ribosylation factor 1 (Arf1) GTPase followed by a deficiency in COPI vesicles at the Golgi. Silencing beta-COP or expression of GDP-bound mutant Arf1(T31N) mimics the EtOH effect on retaining MGAT1 and Man-II at the cis-Golgi, suggesting that (i) EtOH specifically blocks activation of Arf1, and (ii) EtOH alters the proper localization of Golgi enzymes through impairment of COPI. Importantly, the level of MGAT1 was reduced, because likely MGAT1, contrary to Man-I and Man-II, is giantin sensitive. CONCLUSIONS Thus, we provide the mechanism by which EtOH-induced Golgi remodeling may significantly modify formation of N-glycans.
Collapse
Affiliation(s)
- Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Ganapati Bhat
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Melissa S. Holzapfel
- Department of Pathology and Microbiology, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| |
Collapse
|
13
|
Saraste J. Spatial and Functional Aspects of ER-Golgi Rabs and Tethers. Front Cell Dev Biol 2016; 4:28. [PMID: 27148530 PMCID: PMC4834429 DOI: 10.3389/fcell.2016.00028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Two conserved Rab GTPases, Rab1 and Rab2, play important roles in biosynthetic-secretory trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus in mammalian cells. Both are expressed as two isoforms that regulate anterograde transport via the intermediate compartment (IC) to the Golgi, but are also required for transport in the retrograde direction. Moreover, Rab1 has been implicated in the formation of autophagosomes. Rab1 and Rab2 have numerous effectors or partners that function in membrane tethering, but also have other roles. These include the coiled-coil proteins p115, GM130, giantin, golgin-84, and GMAP-210, as well as the multisubunit COG (conserved oligomeric Golgi) and TRAPP (transport protein particle) tethering complexes. TRAPP also acts as the GTP exchange factor (GEF) in the activation of Rab1. According to the traditional view of the IC elements as motile, transient structures, the functions of the Rabs could take place at the two ends of the ER-Golgi itinerary, i.e., at ER exit sites (ERES) and/or cis-Golgi. However, there is considerable evidence for their specific association with the IC, including its recently identified pericentrosomal domain (pcIC), where many of the effectors turn out to be present, thus being able to exert their functions at the pre-Golgi level. The IC localization of these proteins is of particular interest based on the imaging of Rab1 dynamics, indicating that the IC is a stable organelle that bidirectionally communicates with the ER and Golgi, and is functionally linked to the endosomal system via the pcIC.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen Bergen, Norway
| |
Collapse
|
14
|
The trials and tubule-ations of Rab6 involvement in Golgi-to-ER retrograde transport. Biochem Soc Trans 2015; 42:1453-9. [PMID: 25233431 DOI: 10.1042/bst20140178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the early secretory pathway, membrane flow in the anterograde direction from the endoplasmic reticulum (ER) to the Golgi complex needs to be tightly co-ordinated with retrograde flow to maintain the size, composition and functionality of these two organelles. At least two mechanisms of transport move material in the retrograde direction: one regulated by the cytoplasmic coatomer protein I complex (COPI), and a second COPI-independent pathway utilizing the small GTP-binding protein Rab6. Although the COPI-independent pathway was discovered 15 years ago, it remains relatively poorly characterized, with only a handful of machinery molecules associated with its operation. One feature that makes this pathway somewhat unusual, and potentially difficult to study, is that the transport carriers predominantly seem to be tubular rather than vesicular in nature. This suggests that the regulatory machinery is likely to be different from that associated with vesicular transport pathways controlled by conventional coat complexes. In the present mini-review, we have highlighted the key experiments that have characterized this transport pathway so far and also have discussed the challenges that lie ahead with respect to its further characterization.
Collapse
|
15
|
Martínez-Martínez N, Martínez-Alonso E, Ballesta J, Martínez-Menárguez JA. Phospholipase D2 is involved in the formation of Golgi tubules and ArfGAP1 recruitment. PLoS One 2014; 9:e111685. [PMID: 25354038 PMCID: PMC4213061 DOI: 10.1371/journal.pone.0111685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/03/2014] [Indexed: 11/19/2022] Open
Abstract
Lipids and lipid-modifying enzymes play a key role in the biogenesis, maintenance and fission of transport carriers in the secretory and endocytic pathways. In the present study we demonstrate that phosphatidic acid generated by phospholipase D2 (PLD2) is involved in the formation of Golgi tubules. The main evidence to support this is: 1) inhibitors of phosphatidic acid formation and PLD2 depletion inhibit the formation of tubules containing resident enzymes and regulators of intra-Golgi transport in a low temperature (15°C) model of Golgi tubulation but do not affect brefeldin A-induced tubules, 2) inhibition of PLD2 enzymatic activity and PLD2 depletion in cells cultured under physiological conditions (37°C) induce the formation of tubules specifically containing Golgi matrix proteins, and, 3) over-expression of PLD2 induces the formation of a tubular network. In addition, it was found that the generation of this lipid by the isoenzyme is necessary for ArfGAP1 recruitment to Golgi membranes. These results suggest that both proteins are involved in the molecular mechanisms which drive the formation of different types of Golgi tubules.
Collapse
Affiliation(s)
- Narcisa Martínez-Martínez
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - José Ballesta
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - José A. Martínez-Menárguez
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
16
|
Fokin AI, Brodsky IB, Burakov AV, Nadezhdina ES. Interaction of early secretory pathway and Golgi membranes with microtubules and microtubule motors. BIOCHEMISTRY (MOSCOW) 2014; 79:879-93. [DOI: 10.1134/s0006297914090053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Nogueira C, Erlmann P, Villeneuve J, Santos AJ, Martínez-Alonso E, Martínez-Menárguez JÁ, Malhotra V. SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. eLife 2014. [PMID: 24842878 DOI: 10.7554/elife.02784.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TANGO1 binds and exports Procollagen VII from the endoplasmic reticulum (ER). In this study, we report a connection between the cytoplasmic domain of TANGO1 and SLY1, a protein that is required for membrane fusion. Knockdown of SLY1 by siRNA arrested Procollagen VII in the ER without affecting the recruitment of COPII components, general protein secretion, and retrograde transport of the KDEL-containing protein BIP, and ERGIC53. SLY1 is known to interact with the ER-specific SNARE proteins Syntaxin 17 and 18, however only Syntaxin 18 was required for Procollagen VII export. Neither SLY1 nor Syntaxin 18 was required for the export of the equally bulky Procollagen I from the ER. Altogether, these findings reveal the sorting of bulky collagen family members by TANGO1 at the ER and highlight the existence of different export pathways for secretory cargoes one of which is mediated by the specific SNARE complex containing SLY1 and Syntaxin 18.DOI: http://dx.doi.org/10.7554/eLife.02784.001.
Collapse
Affiliation(s)
- Cristina Nogueira
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patrik Erlmann
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julien Villeneuve
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - António Jm Santos
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Emma Martínez-Alonso
- Department of Cellular Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | - Vivek Malhotra
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
18
|
Nogueira C, Erlmann P, Villeneuve J, Santos AJ, Martínez-Alonso E, Martínez-Menárguez JÁ, Malhotra V. SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. eLife 2014; 3:e02784. [PMID: 24842878 PMCID: PMC4054776 DOI: 10.7554/elife.02784] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
TANGO1 binds and exports Procollagen VII from the endoplasmic reticulum (ER). In this study, we report a connection between the cytoplasmic domain of TANGO1 and SLY1, a protein that is required for membrane fusion. Knockdown of SLY1 by siRNA arrested Procollagen VII in the ER without affecting the recruitment of COPII components, general protein secretion, and retrograde transport of the KDEL-containing protein BIP, and ERGIC53. SLY1 is known to interact with the ER-specific SNARE proteins Syntaxin 17 and 18, however only Syntaxin 18 was required for Procollagen VII export. Neither SLY1 nor Syntaxin 18 was required for the export of the equally bulky Procollagen I from the ER. Altogether, these findings reveal the sorting of bulky collagen family members by TANGO1 at the ER and highlight the existence of different export pathways for secretory cargoes one of which is mediated by the specific SNARE complex containing SLY1 and Syntaxin 18.DOI: http://dx.doi.org/10.7554/eLife.02784.001.
Collapse
Affiliation(s)
- Cristina Nogueira
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patrik Erlmann
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julien Villeneuve
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - António Jm Santos
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Emma Martínez-Alonso
- Department of Cellular Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | - Vivek Malhotra
- Cell and Developmental Biology Program, Center for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
19
|
Martínez-Alonso E, Tomás M, Martínez-Menárguez JA. Golgi tubules: their structure, formation and role in intra-Golgi transport. Histochem Cell Biol 2013; 140:327-39. [PMID: 23812035 DOI: 10.1007/s00418-013-1114-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2013] [Indexed: 11/28/2022]
Abstract
Tubules are common Golgi elements that can form extensive networks associated with the cis-, lateral and trans-Golgi sides, but despite this, they have almost been forgotten for decades. The molecular mechanisms involved in their formation, elongation and fission are only just beginning to be understood. However, the role of these membranes is not well understood. In the present review, we analyze the mechanisms that induce Golgi tubulation or, conversely, disrupt tubules in order to throw some lights on the nature of these elements. The putative role of these elements in the framework of current models for intra-Golgi transport is also discussed.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
20
|
Abstract
The Golgi complex is considered the central station of the secretory pathway where cargo proteins and lipids are properly modified, classified, packed into specific carriers and delivered to their final destinations. Early electron microscope studies showed the extraordinary structural complexity of this organelle. However, despite the large volume of incoming and outgoing traffic, it is able to maintain its architecture, although it is also flexible enough to adapt to the functional status of the cell. Many components of the molecular machinery involved in membrane traffic and other Golgi functions have been identified. However, some basic aspects of Golgi functioning remain unsolved. For instance, how cargo moves through the stack remains controversial and two classical models have been proposed: vesicular transport and cisternal maturation. Since neither of these models explains all the experimental data, a combination of these models as well as new models have been proposed. In this context, the specific role of the cisternae, vesicles and tubules needs to be clarified. In this review, we summarize our current knowledge of the Golgi organization and function, focusing on the mechanisms of intra-Golgi transport.
Collapse
|
21
|
Martínez-Alonso E, Tomás M, Martínez-Menárguez JA. Morpho-functional architecture of the Golgi complex of neuroendocrine cells. Front Endocrinol (Lausanne) 2013; 4:41. [PMID: 23543640 PMCID: PMC3610015 DOI: 10.3389/fendo.2013.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/14/2013] [Indexed: 12/22/2022] Open
Abstract
In neuroendocrine cells, prohormones move from the endoplasmic reticulum to the Golgi complex (GC), where they are sorted and packed into secretory granules. The GC is considered the central station of the secretory pathway of proteins and lipids en route to their final destination. In most mammalian cells, it is formed by several stacks of cisternae connected by tubules, forming a continuous ribbon. This organelle shows an extraordinary structural and functional complexity, which is exacerbated by the fact that its architecture is cell type specific and also tuned by the functional status of the cell. It is, indeed, one the most beautiful cellular organelles and, for that reason, perhaps the most extensively photographed by electron microscopists. In recent decades, an exhaustive dissection of the molecular machinery involved in membrane traffic and other Golgi functions has been carried out. Concomitantly, detailed morphological studies have been performed, including 3D analysis by electron tomography, and the precise location of key proteins has been identified by immunoelectron microscopy. Despite all this effort, some basic aspects of Golgi functioning remain unsolved. For instance, the mode of intra-Golgi transport is not known, and two opposing theories (vesicular transport and cisternal maturation models) have polarized the field for many years. Neither of these theories explains all the experimental data so that new theories and combinations thereof have recently been proposed. Moreover, the specific role of the small vesicles and tubules which surround the stacks needs to be clarified. In this review, we summarize our current knowledge of the Golgi architecture in relation with its function and the mechanisms of intra-Golgi transport. Within the same framework, the characteristics of the GC of neuroendocrine cells are analyzed.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of MurciaMurcia, Spain
| | - Mónica Tomás
- Department of Human Anatomy and Embryology, Medical School, Valencia UniversityValencia, Spain
| | - José A. Martínez-Menárguez
- Department of Cell Biology and Histology, Medical School, University of MurciaMurcia, Spain
- *Correspondence: José A. Martínez-Menárguez, Department of Cell Biology and Histology, Medical School, University of Murcia, 30100 Murcia, Spain. e-mail:
| |
Collapse
|
22
|
Rendón WO, Martínez-Alonso E, Tomás M, Martínez-Martínez N, Martínez-Menárguez JA. Golgi fragmentation is Rab and SNARE dependent in cellular models of Parkinson’s disease. Histochem Cell Biol 2012; 139:671-84. [DOI: 10.1007/s00418-012-1059-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2012] [Indexed: 10/27/2022]
|
23
|
Petrosyan A, Ali MF, Cheng PW. Glycosyltransferase-specific Golgi-targeting mechanisms. J Biol Chem 2012; 287:37621-7. [PMID: 22988244 PMCID: PMC3488040 DOI: 10.1074/jbc.c112.403006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/07/2012] [Indexed: 01/20/2023] Open
Abstract
Glycosylation of secreted and membrane-bound mucins is carried out by glycosyltransferases localized to specific Golgi compartments according to the step in which each enzyme participates. However, the Golgi-targeting mechanisms of these enzymes are not clear. Herein, we investigate the Golgi-targeting mechanisms of core 1 β3 galactosyltransferase (C1GalT1) and core 2 β1,6-N-acetylglucosaminyltransferase-2 or mucus type (C2GnT-M), which participate in the early O-glycosylation steps. siRNAs, co-immunoprecipitation, and confocal fluorescence microscopy were employed to identify the golgins involved in the Golgi docking of vesicular complexes (VCs) that carry these two enzymes. We have found that these VCs use different golgins for docking: C2GnT-M-carrying VC (C2GnT-M-VC) utilizes Giantin, whereas C1GalT1-VC employs GM130-GRASP65 complex. However, in the absence of GRASP65, C1GalT1-VC utilizes GM130-Giantin complex. Also, we have found that these VCs are 1.1-1.2 μm in diameter, specific for each enzyme, and independent of coat protein complex II and I (COPII and COPI). These two fluorescently tagged enzymes exhibit different fluorescence recovery times in the Golgi after photobleaching. Thus, novel enzyme-specific Golgi-targeting mechanisms are employed by glycosyltransferases, and multiple Golgi docking strategies are utilized by C1GalT1.
Collapse
Affiliation(s)
- Armen Petrosyan
- From the Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105 and
- the Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Mohamed F. Ali
- From the Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105 and
- the Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Pi-Wan Cheng
- From the Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105 and
- the Department of Biochemistry and Molecular Biology, College of Medicine and
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
24
|
Alcohol induces Golgi fragmentation in differentiated PC12 cells by deregulating Rab1-dependent ER-to-Golgi transport. Histochem Cell Biol 2012; 138:489-501. [PMID: 22614950 DOI: 10.1007/s00418-012-0970-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Abstract
In the present study, we analyze the effects of ethanol on the Golgi structure and membrane transport in differentiated PC12 cells, which are used as a model of neurons. Chronic exposure to moderate doses of ethanol induces Golgi fragmentation, a common characteristic of many neurodegenerative diseases. Alcohol impaired the lateral linking of stacks without causing microtubule damage. Extensive immunocytochemical and western blot analyses of representative Golgi proteins showed that few, but important, proteins are significantly affected. Thus, alcohol exposure induced a significant ER-to-Golgi transport delay, the retention of the GTPase Rab1 in the Golgi membranes and the accumulation of tethering factor p115 in the cytosol. These modifications would explain the observed fragmentation. The amount of p115 and the stacking protein GRASP65 increased in alcohol-treated cells, which might be a mechanism to reverse Golgi damage. Importantly, the overexpression of GTP-tagged Rab1 but not of a dominant-negative Rab1 mutant, restored the Golgi morphology, suggesting that this protein is the main target of alcohol. Taken together, our results support the view that alcohol and neurodegenerative diseases such as Parkinson have similar effects on intracellular trafficking and provide new clues on the neuropathology of alcoholism.
Collapse
|
25
|
Zhang H, Abraham N, Khan LA, Hall DH, Fleming JT, Göbel V. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat Cell Biol 2011; 13:1189-201. [PMID: 21926990 PMCID: PMC3249144 DOI: 10.1038/ncb2328] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 07/28/2011] [Indexed: 02/06/2023]
Abstract
Metazoan internal organs are assembled from polarized tubular epithelia that must set aside an apical membrane domain as a lumenal surface. In a global Caenorhabditis elegans tubulogenesis screen, interference with several distinct fatty-acid-biosynthetic enzymes transformed a contiguous central intestinal lumen into multiple ectopic lumens. We show that multiple-lumen formation is caused by apicobasal polarity conversion, and demonstrate that in situ modulation of lipid biosynthesis is sufficient to reversibly switch apical domain identities on growing membranes of single post-mitotic cells, shifting lumen positions. Follow-on targeted lipid-biosynthesis pathway screens and functional genetic assays were designed to identify a putative single causative lipid species. They demonstrate that fatty-acid biosynthesis affects polarity through sphingolipid synthesis, and reveal ceramide glucosyltransferases (CGTs) as end-point biosynthetic enzymes in this pathway. Our findings identify glycosphingolipids, CGT products and obligate membrane lipids, as critical determinants of in vivo polarity and indicate that they sort new components to the expanding apical membrane.
Collapse
Affiliation(s)
- Hongjie Zhang
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
26
|
The ceramide-enriched trans-Golgi compartments reorganize together with other parts of the Golgi apparatus in response to ATP-depletion. Histochem Cell Biol 2011; 135:159-71. [PMID: 21225431 DOI: 10.1007/s00418-010-0773-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2010] [Indexed: 12/22/2022]
Abstract
In this study, the ceramide-enriched trans-Golgi compartments representing sites of synthesis of sphingomyelin and higher organized lipids were visualized in control and ATP-depleted hepatoma and endothelial cells using internalization of BODIPY-ceramide and the diaminobenzidine photooxidation method for combined light-electron microscopical exploration. Metabolic stress induced by lowering the cellular ATP-levels leads to reorganizations of the Golgi apparatus and the appearance of tubulo-glomerular bodies and networks. The results obtained with three different protocols, in which BODIPY-ceramide either was applied prior to, concomitantly with, or after ATP-depletion, revealed that the ceramide-enriched compartments reorganize together with other parts of the Golgi apparatus under these conditions. They were found closely associated with and integrated in the tubulo-glomerular bodies formed in response to ATP-depletion. This is in line with the changes of the staining patterns obtained with the Helix pomatia lectin and the GM130 and TGN46 immuno-reactions occurring in response to ATP-depletion and is confirmed by 3D electron tomography. The 3D reconstructions underlined the glomerular character of the reorganized Golgi apparatus and demonstrated continuities of ceramide positive and negative parts. Most interestingly, BODIPY-ceramide becomes concentrated in compartments of the tubulo-glomerular Golgi bodies, even though the reorganization took place before BODIPY-ceramide administration. This indicates maintained functionalities although the regular Golgi stack organization is abolished; the results provide novel insights into Golgi structure-function relationships, which might be relevant for cells affected by metabolic stress.
Collapse
|
27
|
Tomás M, Martínez-Alonso E, Ballesta J, Martínez-Menárguez JA. Regulation of ER-Golgi intermediate compartment tubulation and mobility by COPI coats, motor proteins and microtubules. Traffic 2010; 11:616-25. [PMID: 20136777 DOI: 10.1111/j.1600-0854.2010.01047.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Little is known about the formation and regulation of endoplasmic reticulum (ER)-Golgi transport intermediates, although previous studies suggest that cargo is the main regulator of their morphology. In this study, we analyze the role of coat protein I (COPI) and cytoskeleton in the formation of tubular ER-Golgi intermediate compartment (ERGIC) and also show that partial COPI detachment by means of low temperature (15 degrees C) or brefeldin A induces the formation of transient tubular ERGIC elements. Most of them moved from the cell periphery to the perinuclear area and were 2.5x slower than vesicles. Time-lapse analysis of living cells demonstrates that the ERGIC elements are able to shift very fast from tubular to vesicular forms and vice versa, suggesting that the amount of cargo is not the determining factor for ERGIC morphology. Both the partial microtubule depolymerization and the inhibition of uncoating of the membranes result in the formation of long tubules that grow from round ERGICs and form at complex network. Interestingly, both COPI detachment and microtubule depolymerization induce a redistribution of kinesin from peripheral ERGIC elements to the Golgi area, while dynein distribution is not affected. However, both kinesin and dynein downregulation by RNA interference induced ERGIC tubulation. The tubules induced by kinesin depletion were static, whereas those resulting from dynein depletion were highly mobile. Our results strongly suggest that the interaction of motor proteins with COPI-coated membranes and microtubules is a key regulator of ERGIC morphology and mobility.
Collapse
Affiliation(s)
- Mónica Tomás
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Murcia, Spain
| | | | | | | |
Collapse
|
28
|
Pozza A, Préz-Victoria JM, Pietro AD. Overexpression of homogeneous and active ABCG2 in insect cells. Protein Expr Purif 2009; 63:75-83. [DOI: 10.1016/j.pep.2008.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 01/10/2023]
|
29
|
Vivero-Salmerón G, Ballesta J, Martínez-Menárguez JA. Heterotypic tubular connections at the endoplasmic reticulum-Golgi complex interface. Histochem Cell Biol 2008; 130:709-17. [PMID: 18648846 DOI: 10.1007/s00418-008-0471-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2008] [Indexed: 12/28/2022]
Abstract
Electron microscopy and cryoimmunocytochemistry were used to characterize tubular connections in the secretory pathway using rat spermatids as model. Our results support the existence of a complex tubular network enriched in the Golgi matrix protein GM130 that transiently joins the cis-Golgi side and the endoplasmic reticulum. These tubules occasionally contain the endoplasmic reticulum resident protein PDI but not COPII complexes or KDEL receptor. At the lateral edges of the stacks tubules were seen to connect cisternae belonging to the same or adjacent stacks. These connections were observed in all cisternae but preferentially on the cis side. Giantin, Gos28 and Rab6 were detected in the tubules; importantly, we reported the presence of cis-trans heterotypic connections between cisternae. On the trans-Golgi side, we occasionally observed tubules highly immunoreactive for Rab6 connecting the stack with the forming acrosome. Together, our results support the existence of transient continuities throughout the secretory pathways.
Collapse
Affiliation(s)
- Guillermo Vivero-Salmerón
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, 30100, Murcia, Spain
| | | | | |
Collapse
|
30
|
Patterson GH, Hirschberg K, Polishchuk RS, Gerlich D, Phair RD, Lippincott-Schwartz J. Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 2008; 133:1055-67. [PMID: 18555781 DOI: 10.1016/j.cell.2008.04.044] [Citation(s) in RCA: 391] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 11/15/2007] [Accepted: 04/24/2008] [Indexed: 11/27/2022]
Abstract
The prevailing view of intra-Golgi transport is cisternal progression, which has a key prediction--that newly arrived cargo exhibits a lag or transit time before exiting the Golgi. Instead, we find that cargo molecules exit at an exponential rate proportional to their total Golgi abundance with no lag. Incoming cargo molecules rapidly mix with those already in the system and exit from partitioned domains with no cargo privileged for export based on its time of entry into the system. Given these results, we constructed a new model of intra-Golgi transport that involves rapid partitioning of enzymes and transmembrane cargo between two lipid phases combined with relatively rapid exchange among cisternae. Simulation and experimental testing of this rapid partitioning model reproduced all the key characteristics of the Golgi apparatus, including polarized lipid and protein gradients, exponential cargo export kinetics, and cargo waves.
Collapse
Affiliation(s)
- George H Patterson
- Cell Biology and Metabolism Program, National Institutes of Health, Building 18T, Room 101, 18 Library Drive, Bethesda, MD 20892-5430, USA
| | | | | | | | | | | |
Collapse
|
31
|
Global screening of genes essential for growth in high-pressure and cold environments: searching for basic adaptive strategies using a yeast deletion library. Genetics 2008; 178:851-72. [PMID: 18245339 DOI: 10.1534/genetics.107.083063] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microorganisms display an optimal temperature and hydrostatic pressure for growth. To establish the molecular basis of piezo- and psychroadaptation, we elucidated global genetic defects that give rise to susceptibility to high pressure and low temperature in Saccharomyces cerevisiae. Here we present 80 genes including 71 genes responsible for high-pressure growth and 56 responsible for low-temperature growth with a significant overlap of 47 genes. Numerous previously known cold-sensitive mutants exhibit marked high-pressure sensitivity. We identified critically important cellular functions: (i) amino acid biosynthesis, (ii) microautophagy and sorting of amino acid permease established by the exit from rapamycin-induced growth arrest/Gap1 sorting in the endosome (EGO/GSE) complex, (iii) mitochondrial functions, (iv) membrane trafficking, (v) actin organization mediated by Drs2-Cdc50, and (vi) transcription regulated by the Ccr4-Not complex. The loss of EGO/GSE complex resulted in a marked defect in amino acid uptake following high-pressure and low-temperature incubation, suggesting its role in surface delivery of amino acid permeases. Microautophagy and mitochondrial functions converge on glutamine homeostasis in the target of rapamycin (TOR) signaling pathway. The localization of actin requires numerous associated proteins to be properly delivered by membrane trafficking. In this study, we offer a novel route to gaining insights into cellular functions and the genetic network from growth properties of deletion mutants under high pressure and low temperature.
Collapse
|
32
|
Martínez-Alonso E, Tomás M, Ballesta J, Martínez-Menárguez JA. Low temperature (15 degrees C) induces COPII dissociation from membranes and slow exit from the endoplasmic reticulum in HeLa cells. Histochem Cell Biol 2007; 128:379-84. [PMID: 17694316 DOI: 10.1007/s00418-007-0317-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
Low temperature induces a transport blockade at the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) in cultured cells. Our previous studies support that the primary effect of low temperature is the detachment of COPI complexes from membranes. In the present study, we have used immunofluorescence and cryoimmunoelectron microscopy to investigate the effects of low temperature on both COPII and clathrin coat complexes in HeLa cells. Strikingly, COPII proteins moved from membranes to the cytosol at 15 degrees C, accumulating into electron-dense areas. In agreement with this observation, we also showed that ER exit is delayed in cells cultured at this temperature. In contrast, clathrin coat is not affected. Together, our results demonstrate that low temperature induces COPII dissociation from membranes and slow exit from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology, School of Medicine, University of Murcia, 30100, Murcia, Spain
| | | | | | | |
Collapse
|
33
|
Martínez-Alonso E, Ballesta J, Martínez-Menárguez JA. Low-Temperature-Induced Golgi Tubules Are Transient Membranes Enriched in Molecules Regulating Intra-Golgi Transport. Traffic 2007; 8:359-68. [PMID: 17274796 DOI: 10.1111/j.1600-0854.2006.00533.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The incubation of HeLa cells at 15 degrees C induces the formation of Golgi tubules, which contain glycosylation enzymes but neither cargo nor matrix proteins. We now show by immunofluorescence and immunoelectron microscopy that these tubules are enriched in a specific set of SNARE and Rab proteins mediating intra-Golgi transport (Gos28, GS15 and Rab6) but excluded others involved in endoplasmic reticulum-Golgi trafficking (Sec22, membrin, Rab 1 and Rab2). In vivo experiments using cyan fluorescent protein-tagged galactosyltransferase showed that most of these tubules are dynamic transient membranes that grow to the cell periphery but then decrease until disappearing into the perinuclear area. Interestingly, in experiments carried out with cells cultured under physiological conditions, Golgi tubules containing Gos28, GS15, Rab6 and glycosylation enzymes and showing in vivo dynamics identical to that detected in low-temperature-cultured cells were observed. Together, our results support that low-temperature-induced tubules may be representatives of the carriers mediating intra-Golgi recycling of enzymes.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology, School of Medicine, University of Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
34
|
Egea G, Lázaro-Diéguez F, Vilella M. Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 2006; 18:168-78. [PMID: 16488588 DOI: 10.1016/j.ceb.2006.02.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 02/09/2006] [Indexed: 01/05/2023]
Abstract
Secretion and endocytosis are highly dynamic processes that are sensitive to external stimuli. Thus, in multicellular organisms, different cell types utilize specialised pathways of intracellular membrane traffic to facilitate specific physiological functions. In addition to the complex internal molecular factors that govern sorting functions and fission or fusion of transport carriers, the actin cytoskeleton plays an important role in both the endocytic and secretory pathways. The interaction between the actin cytoskeleton and membrane trafficking is not restricted to transport processes: it also appears to be directly involved in the biogenesis of Golgi-derived transport carriers (budding and fission processes) and in the maintenance of the unique flat shape of Golgi cisternae.
Collapse
Affiliation(s)
- Gustavo Egea
- Departament de Biologia Cel.lular i Anatomia Patològica, Facultat de Medicina and Instituts de Nanociències i Nanotecnologia (IN(2)UB) and d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, E-08036 Barcelona, Spain
| | | | | |
Collapse
|
35
|
Sánchez-Laorden BL, Sánchez-Más J, Martínez-Alonso E, Martínez-Menárguez JA, García-Borrón JC, Jiménez-Cervantes C. Dimerization of the Human Melanocortin 1 Receptor: Functional Consequences and Dominant-Negative Effects. J Invest Dermatol 2006; 126:172-81. [PMID: 16417234 DOI: 10.1038/sj.jid.5700036] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The melanocortin 1 receptor (MC1R), a G(S)-protein-coupled receptor (GPCR), is a key regulator of proliferation and differentiation of epidermal melanocytes, and a determinant of human skin phototype and cancer risk. Homodimerization has been demonstrated for several GPCRs, but little information is available for MC1R. SDS-PAGE analysis of melanoma cells and heterologous cells expressing epitope-tagged MC1R revealed dimeric and oligomeric species in detergent-solubilized extracts, confirmed by co-immunoprecipitation of differentially tagged MC1R forms. Dimerization occurs early during MC1R biosynthesis, and is seen for mutants displaying intracellular retention. These mutants exerted dominant-negative effects on wild-type (WT) MC1R. Conversely, partial functional trans-complementation of selected loss-of-function mutants was observed. WT-MC1R lacks cooperativity in agonist binding, yet coexpression of WT and a C-terminal deletion mutant yielded a form of different pharmacological properties. The natural diminished function alleles R151C, R160W, and D294H, associated with red hair, displayed dimerization and heterodimerization with WT. Coexpression of WT and R151C or R160W reduced the density of binding sites on the plasma membrane of transfected cells, whereas D294H mediated a dominant-negative effect on functional coupling to adenylyl cyclase. Therefore, subtle changes of functional properties may be associated with different MC1R haplotypes, contributing to the complexity of skin phenotype.
Collapse
|
36
|
Simpson JC, Nilsson T, Pepperkok R. Biogenesis of tubular ER-to-Golgi transport intermediates. Mol Biol Cell 2005; 17:723-37. [PMID: 16314391 PMCID: PMC1356583 DOI: 10.1091/mbc.e05-06-0580] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tubular transport intermediates (TTIs) have been described as one class of transport carriers in endoplasmic reticulum (ER)-to-Golgi transport. In contrast to vesicle budding and fusion, little is known about the molecular regulation of TTI synthesis, transport and fusion with target membranes. Here we have used in vivo imaging of various kinds of GFP-tagged proteins to start to address these questions. We demonstrate that under steady-state conditions TTIs represent approximately 20% of all moving transport carriers. They increase in number and length when more transport cargo becomes available at the donor membrane, which we induced by either temperature-related transport blocks or increased expression of the respective GFP-tagged transport markers. The formation and motility of TTIs is strongly dependent on the presence of intact microtubules. Microinjection of GTPgammaS increases the frequency of TTI synthesis and the length of these carriers. When Rab proteins are removed from membranes by microinjection of recombinant Rab-GDI, the synthesis of TTIs is completely blocked. Microinjection of the cytoplasmic tails of the p23 and p24 membrane proteins also abolishes formation of p24-containing TTIs. Our data suggest that TTIs are ER-to-Golgi transport intermediates that form preferentially when transport-competent cargo exists in excess at the donor membrane. We propose a model where the interaction of the cytoplasmic tails of membrane proteins with microtubules are key determinants for TTI synthesis and may also serve as a so far unappreciated model for aspects of transport carrier formation.
Collapse
Affiliation(s)
- Jeremy C Simpson
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | | | | |
Collapse
|
37
|
de Marco MC, Puertollano R, Martínez-Menárguez JA, Alonso MA. Dynamics of MAL2 During Glycosylphosphatidylinositol-Anchored Protein Transcytotic Transport to the Apical Surface of Hepatoma HepG2 Cells. Traffic 2005; 7:61-73. [PMID: 16445687 DOI: 10.1111/j.1600-0854.2005.00361.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Delivery of glycosylphosphatidylinositol (GPI)-anchored proteins to the apical surface takes place by transcytosis in hepatocytes and also probably in epithelial Madin-Darby canine cells. The integral protein MAL2 was demonstrated to be essential for basolateral-to-apical transcytosis in hepatoma HepG2 cells. Reduction of endogenous MAL2 levels impedes cargo delivery to the apical membrane, but, paradoxically, cargo does not accumulate in the subapical compartment where MAL2 predominantly resides but in distant endosome elements. To understand how transcytosis can be apparently mediated at a distance, we have analyzed the dynamics of machinery and cargo by live-cell imaging of MAL2 and transcytosing CD59, a GPI-anchored protein, in HepG2 cells. MAL2 was revealed as being a highly dynamic protein. Soon after basolateral endocytosis of CD59, a fraction of MAL2 redistributed into peripheral vesicular clusters that concentrated CD59 and that were accessible to transferrin (Tf) receptor, a basolateral recycling protein. Following Tf receptor segregation, the clusters fused in a MAL2(+)globular structure and moved toward the apical surface for CD59 delivery. All these processes were impaired in cells with reduced MAL2 content. Other GPI-anchored proteins examined behave similarly. As MAL2 is expressed by many types of epithelia, the sorting events described herein are probably of quite general utility.
Collapse
Affiliation(s)
- María C de Marco
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid and Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Torgersen ML, Lauvrak SU, Sandvig K. The A-subunit of surface-bound Shiga toxin stimulates clathrin-dependent uptake of the toxin. FEBS J 2005; 272:4103-13. [PMID: 16098193 DOI: 10.1111/j.1742-4658.2005.04835.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shiga toxin can be internalized by clathrin-dependent endocytosis in different cell lines, although it binds specifically to the glycosphingolipid Gb3. It has been demonstrated previously that the toxin can induce recruitment of the toxin-receptor complex to clathrin-coated pits, but whether this process is concentration-dependent or which part of the toxin molecule is involved in this process, have so far been unresolved issues. In this article, we show that the rate of Shiga toxin uptake is dependent on the toxin concentration in several cell lines [HEp-2, HeLa, Vero and baby hamster kidney (BHK)], and that the increased rate observed at higher concentrations is strictly dependent on the presence of the A-subunit of cell surface-bound toxin. Surface-bound B-subunit has no stimulatory effect. Furthermore, this increase in toxin endocytosis is dependent on functional clathrin, as it did not occur in BHK cells after induction of antisense to clathrin heavy chain, thereby blocking clathrin-dependent endocytosis. By immunofluorescence, we show that there is an increased colocalization between Alexa-labeled Shiga toxin and Cy5-labeled transferrin in HeLa cells upon addition of unlabeled toxin. In conclusion, the data indicate that the Shiga toxin A-subunit of cell surface-bound toxin stimulates clathrin-dependent uptake of the toxin. Possible explanations for this phenomenon are discussed.
Collapse
Affiliation(s)
- Maria L Torgersen
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo, Norway
| | | | | |
Collapse
|
39
|
Kartberg F, Elsner M, Fröderberg L, Asp L, Nilsson T. Commuting between Golgi cisternae—Mind the GAP! BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:351-63. [PMID: 15939491 DOI: 10.1016/j.bbamcr.2005.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/29/2005] [Accepted: 05/03/2005] [Indexed: 11/18/2022]
Abstract
Intracellular transport has remained central to cell biology now for more than 40 years. Despite this, we still lack an overall mechanistic framework that describes transport in different parts of the cell. In the secretory pathway, basic questions, such as how biosynthetic cargo traverses the pathway, are still debated. Historically, emphasis was first put on interpreting function from morphology at the ultrastructural level revealing membrane structures such as the transitional ER, vesicular carriers, vesicular tubular clusters, Golgi cisternae, Golgi stacks and the Golgi ribbon. This emphasis on morphology later switched to biochemistry and yeast genetics yielding many of the key molecular players and their associated functions that we know today. More recently, microscopy studies of living cells incorporating biophysics and system analysis has proven useful and is often used to readdress earlier findings, sometimes with surprising outcomes.
Collapse
Affiliation(s)
- Fredrik Kartberg
- Department of Medical Biochemistry, Göteborg University, 413 90 Göteborg, Sweden
| | | | | | | | | |
Collapse
|