1
|
Barik S, Andrews J. Host-Parasite Interactions in Toxoplasma gondii-Infected Cells: Roles of Mitochondria, Microtubules, and the Parasitophorous Vacuole. Int J Mol Sci 2024; 25:13459. [PMID: 39769222 PMCID: PMC11677533 DOI: 10.3390/ijms252413459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
An intracellular protozoan, the Apicomplexan parasite Toxoplasma gondii (T. gondii) infects nucleated cells, in which it triggers the formation of a specialized membrane-confined cytoplasmic vacuole, named the parasitophorous vacuole (PV). One of the most prominent events in the parasite's intracellular life is the congregation of the host cell mitochondria around the PV. However, the significance of this event has remained largely unsolved since the parasite itself possesses a functional mitochondrion, which is essential for its replication. Here, we explore several fundamental aspects of the interaction between the PV and the host cell mitochondria. They include the detailed features of the congregation, the nature and mechanism of the mitochondrial travel to the PV, and the potential significance of the migration and congregation. Using a combination of biochemical assays, high-resolution imaging, and RNAi-mediated knockdown, we show that: (i) mitochondrial travel to the PV starts very early in parasite infection, as soon as the smallest PV takes shape; (ii) the travel utilizes the contractile microtubular network of the host cell; and (iii) near the end of the parasitic life cycle, when most PVs have reached their largest sustainable size and are about to lyse in order to release the progeny parasites, the associated mitochondria change their usual elongated shape to small spheres, apparently resulting from increased fission. Intriguingly, despite the well-known mitochondrial role as a major producer of cellular ATP, the parasite does not seem to use cellular mitochondrial ATP. Together, these findings may serve as foundations for future research in host-parasite interaction, particularly in the elucidation of its mechanisms, and the possible development of novel antiparasitic drug regimens.
Collapse
|
2
|
Duan D, Koleske AJ. Phase separation of microtubule-binding proteins - implications for neuronal function and disease. J Cell Sci 2024; 137:jcs263470. [PMID: 39679446 DOI: 10.1242/jcs.263470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Protein liquid-liquid phase separation (LLPS) is driven by intrinsically disordered regions and multivalent binding domains, both of which are common features of diverse microtubule (MT) regulators. Many in vitro studies have dissected the mechanisms by which MT-binding proteins (MBPs) regulate MT nucleation, stabilization and dynamics, and investigated whether LLPS plays a role in these processes. However, more recent in vivo studies have focused on how MBP LLPS affects biological functions throughout neuronal development. Dysregulation of MBP LLPS can lead to formation of aggregates - an underlying feature in many neurodegenerative diseases - such as the tau neurofibrillary tangles present in Alzheimer's disease. In this Review, we highlight progress towards understanding the regulation of MT dynamics through the lens of phase separation of MBPs and associated cytoskeletal regulators, from both in vitro and in vivo studies. We also discuss how LLPS of MBPs regulates neuronal development and maintains homeostasis in mature neurons.
Collapse
Affiliation(s)
- Daisy Duan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Venkatramani A, Ashtam A, Panda D. EB1 Increases the Dynamics of Tau Droplets and Inhibits Tau Aggregation: Implications in Tauopathies. ACS Chem Neurosci 2024; 15:1219-1233. [PMID: 38445984 DOI: 10.1021/acschemneuro.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
EB1, a microtubule plus end-tracking protein (+TIP), regulates microtubule dynamics. Recent evidence indicates cross-talk between EB proteins and tau, a microtubule-associated neuronal protein that is important for the growth and stability of microtubules. We investigated the interaction between tau and EB1 and the effect of binding of EB1 on tau function and aggregation. EB1 colocalized with tau in SH-SY5Y cells and coimmunoprecipitated with tau. Further, purified EB1 impaired the ability of adult tau to induce tubulin polymerization in vitro. EB1 bound to tau with a dissociation constant of 2.5 ± 0.7 μM. EB1 reduced heparin-induced tau aggregation with a half-maximal inhibitory concentration of 4.3 ± 0.2 μM, and increased the dynamics of tau in phase-separated droplets. The fluorescence recovery rate in tau droplets increased from 0.02 ± 0.01 to 0.07 ± 0.03 s-1, while the half-time of recovery decreased from 44.5 ± 14 to 13.5 ± 6 s in the presence of 8 μM EB1, suggesting a delay in the transition of tau from the soluble to aggregated form in tau liquid-liquid phase separation. EB1 decreased the rate of aggregation and increased the critical concentration of tau aggregation. Dynamic light scattering, atomic force microscopy, dot blot assays, and SDS-PAGE analysis showed that EB1 inhibited the formation of oligomers and higher-order aggregates of tau. The data suggest a novel role for EB1 as a regulator of tau function and aggregation, and the findings indicated the role of the EB family proteins in neuronal function and neurodegeneration.
Collapse
Affiliation(s)
- Anuradha Venkatramani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anvesh Ashtam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
4
|
Smart K, Sharp DJ. The fidgetin family: Shaking things up among the microtubule-severing enzymes. Cytoskeleton (Hoboken) 2024; 81:151-166. [PMID: 37823563 DOI: 10.1002/cm.21799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The microtubule cytoskeleton is required for several crucial cellular processes, including chromosome segregation, cell polarity and orientation, and intracellular transport. These functions rely on microtubule stability and dynamics, which are regulated by microtubule-binding proteins (MTBPs). One such type of regulator is the microtubule-severing enzymes (MSEs), which are ATPases Associated with Diverse Cellular Activities (AAA+ ATPases). The most recently identified family are the fidgetins, which contain three members: fidgetin, fidgetin-like 1 (FL1), and fidgetin-like 2 (FL2). Of the three known MSE families, the fidgetins have the most diverse range of functions in the cell, spanning mitosis/meiosis, development, cell migration, DNA repair, and neuronal function. Furthermore, they offer intriguing novel therapeutic targets for cancer, cardiovascular disease, and wound healing. In the two decades since their first report, there has been great progress in our understanding of the fidgetins; however, there is still much left unknown about this unusual family. This review aims to consolidate the present body of knowledge of the fidgetin family of MSEs and to inspire deeper exploration into the fidgetins and the MSEs as a whole.
Collapse
Affiliation(s)
- Karishma Smart
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David J Sharp
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
- Microcures, Inc., Bronx, New York, USA
| |
Collapse
|
5
|
Gómez-Morón Á, Requena S, Pertusa C, Lozano-Prieto M, Calzada-Fraile D, Scagnetti C, Sánchez-García I, Calero-García AA, Izquierdo M, Martín-Cófreces NB. End-binding protein 1 regulates the metabolic fate of CD4 + T lymphoblasts and Jurkat T cells and the organization of the mitochondrial network. Front Immunol 2023; 14:1197289. [PMID: 37520527 PMCID: PMC10374013 DOI: 10.3389/fimmu.2023.1197289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
The organization of the mitochondrial network is relevant for the metabolic fate of T cells and their ability to respond to TCR stimulation. This arrangement depends on cytoskeleton dynamics in response to TCR and CD28 activation, which allows the polarization of the mitochondria through their change in shape, and their movement along the microtubules towards the immune synapse. This work focus on the role of End-binding protein 1 (EB1), a protein that regulates tubulin polymerization and has been previously identified as a regulator of intracellular transport of CD3-enriched vesicles. EB1-interferred cells showed defective intracellular organization and metabolic strength in activated T cells, pointing to a relevant connection of the cytoskeleton and metabolism in response to TCR stimulation, which leads to increased AICD. By unifying the organization of the tubulin cytoskeleton and mitochondria during CD4+ T cell activation, this work highlights the importance of this connection for critical cell asymmetry together with metabolic functions such as glycolysis, mitochondria respiration, and cell viability.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Immunology, Oftalmology and Otorrinolaryngology Dept., School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Silvia Requena
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Clara Pertusa
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Marta Lozano-Prieto
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Diego Calzada-Fraile
- Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III (CNIC), Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Madrid, Spain
| | - Inés Sánchez-García
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | | | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Noa B Martín-Cófreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III (CNIC), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
6
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
7
|
Wang W, Li W, Pan L, Li L, Xu Y, Wang Y, Zhang X, Zhang S. Dynamic Regulation Genes at Microtubule Plus Ends: A Novel Class of Glioma Biomarkers. BIOLOGY 2023; 12:biology12030488. [PMID: 36979179 PMCID: PMC10045452 DOI: 10.3390/biology12030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Simple Summary Microtubule plus-end-related genes (MPERGs) encode a group of proteins that specifically aggregate at the microtubule plus ends to play critical biological roles in the cell cycle, cell movement, ciliogenesis, and neuronal development by coordinating microtubule assembly and dynamics; however, the MPERG correlations and their clinical significance in glioma are not fully understood. This study is the first to systematically analyze and define a seven-gene signature (CTTNBP2, KIF18A, NAV1, SLAIN2, SRCIN1, TRIO, and TTBK2) and nomogram model closely associated with clinical factors and the tumor microenvironment as a reliable and independent prognostic biomarker to guide personalized choices of immunotherapy and chemotherapy for glioma patients. Abstract Glioma is the most prevalent and aggressive primary nervous system tumor with an unfavorable prognosis. Microtubule plus-end-related genes (MPERGs) play critical biological roles in the cell cycle, cell movement, ciliogenesis, and neuronal development by coordinating microtubule assembly and dynamics. This research seeks to systematically explore the oncological characteristics of these genes in microtubule-enriched glioma, focusing on developing a novel MPERG-based prognostic signature to improve the prognosis and provide more treatment options for glioma patients. First, we thoroughly analyzed and identified 45 differentially expressed MPERGs in glioma. Based on these genes, glioma patients were well distinguished into two subgroups with survival and tumor microenvironment infiltration differences. Next, we further screened the independent prognostic genes (CTTNBP2, KIF18A, NAV1, SLAIN2, SRCIN1, TRIO, and TTBK2) using 36 prognostic-related differentially expressed MPERGs to construct a signature with risk stratification and prognostic prediction ability. An increased risk score was related to the malignant progression of glioma. Therefore, we also designed a nomogram model containing clinical factors to facilitate the clinical use of the risk signature. The prediction accuracy of the signature and nomogram model was verified using The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets. Finally, we examined the connection between the signature and tumor microenvironment. The signature positively correlated with tumor microenvironment infiltration, especially immunoinhibitors and the tumor mutation load, and negatively correlated with microsatellite instability and cancer stemness. More importantly, immune checkpoint blockade treatment and drug sensitivity analyses confirmed that this prognostic signature was helpful in anticipating the effect of immunotherapy and chemotherapy. In conclusion, this research is the first study to define and validate an MPERG-based signature closely associated with the tumor microenvironment as a reliable and independent prognostic biomarker to guide personalized choices of immunotherapy and chemotherapy for glioma patients.
Collapse
Affiliation(s)
- Wenwen Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Affiliated Hangzhou First People’s Hospital, Hangzhou 310053, China
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Weilong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Affiliated Hangzhou First People’s Hospital, Hangzhou 310053, China
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Lifang Pan
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Affiliated Hangzhou First People’s Hospital, Hangzhou 310006, China
| | - Lingjie Li
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Affiliated Hangzhou First People’s Hospital, Hangzhou 310006, China
| | - Yasi Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Affiliated Hangzhou First People’s Hospital, Hangzhou 310053, China
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yuqing Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Affiliated Hangzhou First People’s Hospital, Hangzhou 310053, China
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, China
- Correspondence: (X.Z.); (S.Z.); Tel./Fax: +86-571-5600-7650 (S.Z.)
| | - Shirong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Affiliated Hangzhou First People’s Hospital, Hangzhou 310053, China
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Correspondence: (X.Z.); (S.Z.); Tel./Fax: +86-571-5600-7650 (S.Z.)
| |
Collapse
|
8
|
Luo W, Demidov V, Shen Q, Girão H, Chakraborty M, Maiorov A, Ataullakhanov FI, Lin C, Maiato H, Grishchuk EL. CLASP2 recognizes tubulins exposed at the microtubule plus-end in a nucleotide state-sensitive manner. SCIENCE ADVANCES 2023; 9:eabq5404. [PMID: 36598991 PMCID: PMC9812398 DOI: 10.1126/sciadv.abq5404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/23/2022] [Indexed: 05/28/2023]
Abstract
CLASPs (cytoplasmic linker-associated proteins) are ubiquitous stabilizers of microtubule dynamics, but their molecular targets at the microtubule plus-end are not understood. Using DNA origami-based reconstructions, we show that clusters of human CLASP2 form a load-bearing bond with terminal non-GTP tubulins at the stabilized microtubule tip. This activity relies on the unconventional TOG2 domain of CLASP2, which releases its high-affinity bond with non-GTP dimers upon their conversion into polymerization-competent GTP-tubulins. The ability of CLASP2 to recognize nucleotide-specific tubulin conformation and stabilize the catastrophe-promoting non-GTP tubulins intertwines with the previously underappreciated exchange between GDP and GTP at terminal tubulins. We propose that TOG2-dependent stabilization of sporadically occurring non-GTP tubulins represents a distinct molecular mechanism to suppress catastrophe at the freely assembling microtubule ends and to promote persistent tubulin assembly at the load-bearing tethered ends, such as at the kinetochores in dividing cells.
Collapse
Affiliation(s)
- Wangxi Luo
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir Demidov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qi Shen
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Hugo Girão
- Chromosome Instability & Dynamics Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Manas Chakraborty
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aleksandr Maiorov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fazly I. Ataullakhanov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 119991 Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russian Federation
| | - Chenxiang Lin
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cell Division Group, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ekaterina L. Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Mouron S, Bueno MJ, Lluch A, Manso L, Calvo I, Cortes J, Garcia-Saenz JA, Gil-Gil M, Martinez-Janez N, Apala JV, Caleiras E, Ximénez-Embún P, Muñoz J, Gonzalez-Cortijo L, Murillo R, Sánchez-Bayona R, Cejalvo JM, Gómez-López G, Fustero-Torre C, Sabroso-Lasa S, Malats N, Martinez M, Moreno A, Megias D, Malumbres M, Colomer R, Quintela-Fandino M. Phosphoproteomic analysis of neoadjuvant breast cancer suggests that increased sensitivity to paclitaxel is driven by CDK4 and filamin A. Nat Commun 2022; 13:7529. [PMID: 36477027 PMCID: PMC9729295 DOI: 10.1038/s41467-022-35065-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Precision oncology research is challenging outside the contexts of oncogenic addiction and/or targeted therapies. We previously showed that phosphoproteomics is a powerful approach to reveal patient subsets of interest characterized by the activity of a few kinases where the underlying genomics is complex. Here, we conduct a phosphoproteomic screening of samples from HER2-negative female breast cancer receiving neoadjuvant paclitaxel (N = 130), aiming to find candidate biomarkers of paclitaxel sensitivity. Filtering 11 candidate biomarkers through 2 independent patient sets (N = 218) allowed the identification of a subgroup of patients characterized by high levels of CDK4 and filamin-A who had a 90% chance of achieving a pCR in response to paclitaxel. Mechanistically, CDK4 regulates filamin-A transcription, which in turn forms a complex with tubulin and CLIP-170, which elicits increased binding of paclitaxel to microtubules, microtubule acetylation and stabilization, and mitotic catastrophe. Thus, phosphoproteomics allows the identification of explainable factors for predicting response to paclitaxel.
Collapse
Affiliation(s)
- S Mouron
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - M J Bueno
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - A Lluch
- Medical Oncology Department, Hospital Clínico Universitario, Valencia, Spain
| | - L Manso
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - I Calvo
- Medical Oncology Department MD, Anderson Cancer Center Madrid, Madrid, Spain
| | - J Cortes
- International Breast Cancer Center Quiron Group, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Hospital, Barcelona, Spain
| | - J A Garcia-Saenz
- Medical Oncology Department, Hospital Clinico San Carlos, Madrid, Spain
| | - M Gil-Gil
- Medical Oncoogy Department Institut, Catala d'Oncologia-IDIBELL L'Hospitalet de, Llobregat, Spain
| | - N Martinez-Janez
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - J V Apala
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - E Caleiras
- Histopathology Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - J Muñoz
- Proteomics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - L Gonzalez-Cortijo
- Medical Oncology Department, Hospital Universitario Quironsalud, Madrid, Spain
| | - R Murillo
- Pathology Department, Hospital Universitario Quironsalud, Madrid, Spain
| | - R Sánchez-Bayona
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - J M Cejalvo
- Medical Oncology Department, Hospital Clínico Universitario, Valencia, Spain
| | - G Gómez-López
- Bioinformatics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - C Fustero-Torre
- Bioinformatics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - S Sabroso-Lasa
- Genetic & Molecular Epidemiology Group Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - N Malats
- Genetic & Molecular Epidemiology Group Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - M Martinez
- Pathology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A Moreno
- Pathology Department, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - D Megias
- Confocal Microscopy Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - M Malumbres
- Cell Division and Cancer Group Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - R Colomer
- Medical Oncology Department, Hospital Universitario La Princesa, Madrid, Spain
- Endowed Chair of Personalized Precision Medicine Universidad Autonoma de Madrid (UAM) - Fundacion Instituto Roche, Madrid, Spain
| | - M Quintela-Fandino
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain.
- Endowed Chair of Personalized Precision Medicine Universidad Autonoma de Madrid (UAM) - Fundacion Instituto Roche, Madrid, Spain.
| |
Collapse
|
10
|
Passarella D, Ronci M, Di Liberto V, Zuccarini M, Mudò G, Porcile C, Frinchi M, Di Iorio P, Ulrich H, Russo C. Bidirectional Control between Cholesterol Shuttle and Purine Signal at the Central Nervous System. Int J Mol Sci 2022; 23:ijms23158683. [PMID: 35955821 PMCID: PMC9369131 DOI: 10.3390/ijms23158683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/07/2022] Open
Abstract
Recent studies have highlighted the mechanisms controlling the formation of cerebral cholesterol, which is synthesized in situ primarily by astrocytes, where it is loaded onto apolipoproteins and delivered to neurons and oligodendrocytes through interactions with specific lipoprotein receptors. The “cholesterol shuttle” is influenced by numerous proteins or carbohydrates, which mainly modulate the lipoprotein receptor activity, function and signaling. These molecules, provided with enzymatic/proteolytic activity leading to the formation of peptide fragments of different sizes and specific sequences, could be also responsible for machinery malfunctions, which are associated with neurological, neurodegenerative and neurodevelopmental disorders. In this context, we have pointed out that purines, ancestral molecules acting as signal molecules and neuromodulators at the central nervous system, can influence the homeostatic machinery of the cerebral cholesterol turnover and vice versa. Evidence gathered so far indicates that purine receptors, mainly the subtypes P2Y2, P2X7 and A2A, are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s and Niemann–Pick C diseases, by controlling the brain cholesterol homeostasis; in addition, alterations in cholesterol turnover can hinder the purine receptor function. Although the precise mechanisms of these interactions are currently poorly understood, the results here collected on cholesterol–purine reciprocal control could hopefully promote further research.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Patrizia Di Iorio
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Henning Ulrich
- Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-060, Brazil
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-087-440-4897
| |
Collapse
|
11
|
Mascanzoni F, Iannitti R, Colanzi A. Functional Coordination among the Golgi Complex, the Centrosome and the Microtubule Cytoskeleton during the Cell Cycle. Cells 2022; 11:cells11030354. [PMID: 35159164 PMCID: PMC8834581 DOI: 10.3390/cells11030354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
The Golgi complex of mammalian cells is organized in a ribbon-like structure often closely associated with the centrosome during interphase. Conversely, the Golgi complex assumes a fragmented and dispersed configuration away from the centrosome during mitosis. The structure of the Golgi complex and the relative position to the centrosome are dynamically regulated by microtubules. Many pieces of evidence reveal that this microtubule-mediated dynamic association between the Golgi complex and centrosome is of functional significance in cell polarization and division. Here, we summarize findings indicating how the Golgi complex and the centrosome cooperate in organizing the microtubule network for the directional protein transport and centrosome positioning required for cell polarization and regulating fundamental cell division processes.
Collapse
|
12
|
Post-translational modifications and stabilization of microtubules regulate transport of viral factors during infections. Biochem Soc Trans 2021; 49:1735-1748. [PMID: 34436545 DOI: 10.1042/bst20210017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Tubulin post-translational modifications (PTMs) constitute a source of diversity for microtubule (MT) functions, in addition to the different isotypes of α and β-tubulin acting as building blocks of MTs. Also, MT-associated proteins (MAPs) confer different characteristics to MTs. The combination of all these factors regulates the stability of these structures that act as rails to transport organelles within the cell, facilitating the association of motor complexes. All these functions are involved in crucial cellular processes in most cell types, ranging from spindle formation in mitosis to the defense against incoming cellular threats during phagocytosis mediated by immune cells. The regulation of MT dynamics through tubulin PTMs has evolved to depend on many different factors that act in a complex orchestrated manner. These tightly regulated processes are particularly relevant during the induction of effective immune responses against pathogens. Viruses have proved not only to hijack MTs and MAPs in order to favor an efficient infection, but also to induce certain PTMs that improve their cellular spread and lead to secondary consequences of viral processes. In this review, we offer a perspective on relevant MT-related elements exploited by viruses.
Collapse
|
13
|
Ayyappan S, Dharan PS, Krishnan A, Marira RR, Lambert M, Manna TK, Vijayan V. SxIP binding disrupts the constitutive homodimer interface of EB1 and stabilizes EB1 monomer. Biophys J 2021; 120:2019-2029. [PMID: 33737159 DOI: 10.1016/j.bpj.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
SxIP is a microtubule tip localizing signal found in many +TIP proteins that bind to the hydrophobic cavity of the C-terminal domain of end binding protein 1 (EB1) and then positively regulate the microtubule plus-end tracking of EBs. However, the exact mechanism of microtubule activation of EBs in the presence of SxIP signaling motif is not known. Here, we studied the effect of SxIP peptide on the native conformation of EB1 in solution. Using various NMR experiments, we found that SxIP peptide promoted the dissociation of natively formed EB1 dimer. We also discovered that I224A mutation of EB1 resulted in an unfolded C-terminal domain, which upon binding with the SxIP motif folded to its native structure. Molecular dynamics simulations also confirmed the relative structural stability of EB1 monomer in the SxIP bound state. Residual dipolar couplings and heteronuclear NOE analysis suggested that the binding of SxIP peptide at the C-terminal domain of EB1 decreased the dynamics and conformational flexibility of the N-terminal domain involved in EB1-microtubule interaction. The SxIP-induced disruption of the dimeric interactions in EB1, coupled with the reduction in conformational flexibility of the N-terminal domain of EB1, might facilitate the microtubule association of EB1.
Collapse
Affiliation(s)
- Shine Ayyappan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Pooja S Dharan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Arya Krishnan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Renjith R Marira
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Mahil Lambert
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
14
|
Mechanisms and Therapeutic Implications of GSK-3 in Treating Neurodegeneration. Cells 2021; 10:cells10020262. [PMID: 33572709 PMCID: PMC7911291 DOI: 10.3390/cells10020262] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are spreading worldwide and are one of the greatest threats to public health. There is currently no adequate therapy for these disorders, and therefore there is an urgent need to accelerate the discovery and development of effective treatments. Although neurodegenerative disorders are broad ranging and highly complex, they may share overlapping mechanisms, and thus potentially manifest common targets for therapeutic interventions. Glycogen synthase kinase-3 (GSK-3) is now acknowledged to be a central player in regulating mood behavior, cognitive functions, and neuron viability. Indeed, many targets controlled by GSK-3 are critically involved in progressing neuron deterioration and disease pathogenesis. In this review, we focus on three pathways that represent prominent mechanisms linking GSK-3 with neurodegenerative disorders: cytoskeleton organization, the mammalian target of rapamycin (mTOR)/autophagy axis, and mitochondria. We also consider the challenges and opportunities in the development of GSK-3 inhibitors for treating neurodegeneration.
Collapse
|
15
|
Hayashi I. The C-terminal region of the plasmid partitioning protein TubY is a tetramer that can bind membranes and DNA. J Biol Chem 2020; 295:17770-17780. [PMID: 33454013 PMCID: PMC7762940 DOI: 10.1074/jbc.ra120.014705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
Bacterial low-copy-number plasmids require partition (par) systems to ensure their stable inheritance by daughter cells. In general, these systems consist of three components: a centromeric DNA sequence, a centromere-binding protein and a nucleotide hydrolase that polymerizes and functions as a motor. Type III systems, however, segregate plasmids using three proteins: the FtsZ/tubulin-like GTPase TubZ, the centromere-binding protein TubR and the MerR-like transcriptional regulator TubY. Although the TubZ filament is sufficient to transport the TubR-centromere complex in vitro, TubY is still necessary for the stable maintenance of the plasmid. TubY contains an N-terminal DNA-binding helix-turn-helix motif and a C-terminal coiled-coil followed by a cluster of lysine residues. This study determined the crystal structure of the C-terminal domain of TubY from the Bacillus cereus pXO1-like plasmid and showed that it forms a tetrameric parallel four-helix bundle that differs from the typical MerR family proteins with a dimeric anti-parallel coiled-coil. Biochemical analyses revealed that the C-terminal tail with the conserved lysine cluster helps TubY to stably associate with the TubR-centromere complex as well as to nonspecifically bind DNA. Furthermore, this C-terminal tail forms an amphipathic helix in the presence of lipids but must oligomerize to localize the protein to the membrane in vivo. Taken together, these data suggest that TubY is a component of the nucleoprotein complex within the partitioning machinery, and that lipid membranes act as mediators of type III systems.
Collapse
Affiliation(s)
- Ikuko Hayashi
- Department of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Kanagawa, Japan
| |
Collapse
|
16
|
Arru C, Serra E, Porcu C, Gadau SD. Confocal investigation on colocalization between tubulin posttranslational modifications and associated proteins in rat C6 glioma cells. J Struct Biol 2020; 213:107676. [PMID: 33279655 DOI: 10.1016/j.jsb.2020.107676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/29/2023]
Abstract
Glioblastoma multiforme is the most lethal brain tumor. In the study of mechanisms underlying its development attention has been paid to the microtubular network of its cells, mainly on βIII tubulin, considered as a marker of malignancy. In the present work, we chose to investigate the tubulin code in glioblastoma cells, analyzing the degree of interaction between tubulin post-translational modifications and different proteins associated with them. The pattern of diverse associated proteins such as EB-1, CLIP-170 and kinesin-1 and their degree of co-distribution with the most abundant post-translational tubulin modifications (tyrosination, acetylation and polyglutamylation) were evaluated. Through immunofluorescence we have shown that EB-1, CLIP-170 and kinesin-1 were well detectable in glioblastoma cells. The double fluorescence and colocalization index between the post-translational modifications of tubulin and associated proteins showed that tyrosinated α-tubulin has significantly high affinity with EB-1, CLIP-170 and kinesin-1, while for acetylated and polyglutamylated tubulin, the degree of interaction with the three associated proteins evaluated was less apparent. Data presented in this paper underline the importance of a thorough analysis of the microtubular mechanics in glioblastoma cells. This may suggest new experimental therapeutic approaches able to act more selectively on the microtubular network of cells in this type of cancer.
Collapse
Affiliation(s)
- Caterina Arru
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Elisa Serra
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Cristian Porcu
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Sergio D Gadau
- Department of Veterinary Medicine, University of Sassari, Italy.
| |
Collapse
|
17
|
Tanabe T, Kawamukai M, Matsuo Y. Glucose limitation and pka1 deletion rescue aberrant mitotic spindle formation induced by Mal3 overexpression in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2020; 84:1667-1680. [PMID: 32441227 DOI: 10.1080/09168451.2020.1763157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, transition into meiosis, proper chromosome segregation, and stress responses in Schizosaccharomyces pombe. We demonstrated that both the cAMP/PKA pathway and glucose limitation play roles in appropriate spindle formation. Overexpression of Mal3 (1-308), an EB1 family protein, caused growth defects, increased 4C DNA content, and induced monopolar spindle formation. Overproduction of a high-affinity microtubule binding mutant (Q89R) and a recombinant protein possessing the CH and EB1 domains (1-241) both resulted in more severe phenotypes than Mal3 (1-308). Loss of functional Pka1 and glucose limitation rescued the phenotypes of Mal3-overexpressing cells, whereas deletion of Tor1 or Ssp2 did not. Growth defects and monopolar spindle formation in a kinesin-5 mutant, cut7-446, was partially rescued by pka1 deletion or glucose limitation. These findings suggest that Pka1 and glucose limitation regulate proper spindle formation in Mal3-overexpressing cells and the cut7-446 mutant.
Collapse
Affiliation(s)
- Takuma Tanabe
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University , Matsue, Japan
| | - Makoto Kawamukai
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University , Matsue, Japan.,Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University , Matsue, Japan
| | - Yasuhiro Matsuo
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University , Matsue, Japan.,Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University , Matsue, Japan
| |
Collapse
|
18
|
Yan H, Chaumont N, Gilles JF, Bolte S, Hamant O, Bailly C. Microtubule self-organisation during seed germination in Arabidopsis. BMC Biol 2020; 18:44. [PMID: 32354334 PMCID: PMC7191766 DOI: 10.1186/s12915-020-00774-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Upon water uptake and release of seed dormancy, embryonic plant cells expand, while being mechanically constrained by the seed coat. Cortical microtubules (CMTs) are key players of cell elongation in plants: their anisotropic orientation channels the axis of cell elongation through the guidance of oriented deposition of load-bearing cellulose microfibrils in the cell wall. Interestingly, CMTs align with tensile stress, and consistently, they reorient upon compressive stress in growing hypocotyls. How CMTs first organise in germinating embryos is unknown, and their relation with mechanical stress has not been investigated at such an early developing stage. RESULTS Here, we analysed CMT dynamics in dormant and non-dormant Arabidopsis seeds by microscopy of fluorescently tagged microtubule markers at different developmental time points and in response to abscisic acid and gibberellins. We found that CMTs first appear as very few thick bundles in dormant seeds. Consistently, analysis of available transcriptome and translatome datasets show that limiting amounts of tubulin and microtubule regulators initially hinder microtubule self-organisation. Seeds imbibed in the presence of gibberellic acid or abscisic acid displayed altered microtubule organisation and transcriptional regulation. Upon the release of dormancy, CMTs then self-organise into multiple parallel transverse arrays. Such behaviour matches the tensile stress patterns in such mechanically constrained embryos. This suggests that, as CMTs first self-organise, they also align with shape-derived tensile stress patterns. CONCLUSIONS Our results provide a scenario in which dormancy release in the embryo triggers microtubule self-organisation and alignment with tensile stress prior to germination and anisotropic growth.
Collapse
Affiliation(s)
- Huifang Yan
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, F-75005, Paris, France
- Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Nicole Chaumont
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, F-75005, Paris, France
| | - Jean François Gilles
- Imaging Core Facility, CNRS-FRE3631-Institut de Biologie Paris Seine, Sorbonne Université, F-75005, Paris, France
| | - Susanne Bolte
- Imaging Core Facility, CNRS-FRE3631-Institut de Biologie Paris Seine, Sorbonne Université, F-75005, Paris, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69000, Lyon, France
| | - Christophe Bailly
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, F-75005, Paris, France.
| |
Collapse
|
19
|
Balkunde R, Foroughi L, Ewan E, Emenecker R, Cavalli V, Dixit R. Mechanism of microtubule plus-end tracking by the plant-specific SPR1 protein and its development as a versatile plus-end marker. J Biol Chem 2019; 294:16374-16384. [PMID: 31527079 PMCID: PMC6827287 DOI: 10.1074/jbc.ra119.008866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/12/2019] [Indexed: 11/06/2022] Open
Abstract
Microtubules are cytoskeletal polymers that perform diverse cellular functions. The plus ends of microtubules promote polymer assembly and disassembly and connect the microtubule tips to other cellular structures. The dynamics and functions of microtubule plus ends are governed by microtubule plus end-tracking proteins (+TIPs). Here we report that the Arabidopsis thaliana SPIRAL1 (SPR1) protein, which regulates directional cell expansion, is an autonomous +TIP. Using in vitro reconstitution experiments and total internal reflection fluorescence microscopy, we demonstrate that the conserved N-terminal region of SPR1 and its GGG motif are necessary for +TIP activity whereas the conserved C-terminal region and its PGGG motif are not. We further show that the N- and C-terminal regions, either separated or when fused in tandem (NC), are sufficient for +TIP activity and do not significantly perturb microtubule plus-end dynamics compared with full-length SPR1. We also found that exogenously expressed SPR1-GFP and NC-GFP label microtubule plus ends in plant and animal cells. These results establish SPR1 as a new type of intrinsic +TIP and reveal the utility of NC-GFP as a versatile microtubule plus-end marker.
Collapse
Affiliation(s)
- Rachappa Balkunde
- Department of Biology and Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130
| | - Layla Foroughi
- Department of Biology and Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130
| | - Eric Ewan
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Ryan Emenecker
- Department of Biology and Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
20
|
Reid TA, Coombes C, Mukherjee S, Goldblum RR, White K, Parmar S, McClellan M, Zanic M, Courtemanche N, Gardner MK. Structural state recognition facilitates tip tracking of EB1 at growing microtubule ends. eLife 2019; 8:48117. [PMID: 31478831 PMCID: PMC6742484 DOI: 10.7554/elife.48117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/23/2019] [Indexed: 11/13/2022] Open
Abstract
The microtubule binding protein EB1 specifically targets the growing ends of microtubules in cells, where EB1 facilitates the interactions of cellular proteins with microtubule plus-ends. Microtubule end targeting of EB1 has been attributed to high-affinity binding of EB1 to GTP-tubulin that is present at growing microtubule ends. However, our 3D single-molecule diffusion simulations predicted a ~ 6000% increase in EB1 arrivals to open, tapered microtubule tip structures relative to closed lattice conformations. Using quantitative fluorescence, single-molecule, and electron microscopy experiments, we found that the binding of EB1 onto opened, structurally disrupted microtubules was dramatically increased relative to closed, intact microtubules, regardless of hydrolysis state. Correspondingly, in cells, the blunting of growing microtubule plus-ends by Vinblastine was correlated with reduced EB1 targeting. Together, our results suggest that microtubule structural recognition, based on a fundamental diffusion-limited binding model, facilitates the tip tracking of EB1 at growing microtubule ends.
Collapse
Affiliation(s)
- Taylor A Reid
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Courtney Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Soumya Mukherjee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Rebecca R Goldblum
- Medical Scientist Training Program, University of Minnesota, Minneapolis, United States.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
| | - Kyle White
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Sneha Parmar
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| |
Collapse
|
21
|
Vanhaesebroeck B, Bilanges B, Madsen RR, Dale KL, Lau E, Vladimirou E. Perspective: Potential Impact and Therapeutic Implications of Oncogenic PI3K Activation on Chromosomal Instability. Biomolecules 2019; 9:E331. [PMID: 31374965 PMCID: PMC6723836 DOI: 10.3390/biom9080331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Abstract
Genetic activation of the class I PI3K pathway is very common in cancer. This mostly results from oncogenic mutations in PIK3CA, the gene encoding the ubiquitously expressed PI3Kα catalytic subunit, or from inactivation of the PTEN tumour suppressor, a lipid phosphatase that opposes class I PI3K signalling. The clinical impact of PI3K inhibitors in solid tumours, aimed at dampening cancer-cell-intrinsic PI3K activity, has thus far been limited. Challenges include poor drug tolerance, incomplete pathway inhibition and pre-existing or inhibitor-induced resistance. The principle of pharmacologically targeting cancer-cell-intrinsic PI3K activity also assumes that all cancer-promoting effects of PI3K activation are reversible, which might not be the case. Emerging evidence suggests that genetic PI3K pathway activation can induce and/or allow cells to tolerate chromosomal instability, which-even if occurring in a low fraction of the cell population-might help to facilitate and/or drive tumour evolution. While it is clear that such genomic events cannot be reverted pharmacologically, a role for PI3K in the regulation of chromosomal instability could be exploited by using PI3K pathway inhibitors to prevent those genomic events from happening and/or reduce the pace at which they are occurring, thereby dampening cancer development or progression. Such an impact might be most effective in tumours with clonal PI3K activation and achievable at lower drug doses than the maximum-tolerated doses of PI3K inhibitors currently used in the clinic.
Collapse
Affiliation(s)
- Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK.
| | - Benoit Bilanges
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Ralitsa R Madsen
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Katie L Dale
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Evelyn Lau
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Elina Vladimirou
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
22
|
Shakhov AS, Dugina VB, Alieva IB. Structural Features of Actin Cytoskeleton Required for Endotheliocyte Barrier Function. BIOCHEMISTRY (MOSCOW) 2019; 84:358-369. [PMID: 31228927 DOI: 10.1134/s0006297919040035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytoplasmic actin structures are essential components of the eukaryotic cytoskeleton. According to the classic concepts, actin structures perform contractile and motor functions, ensuring the possibility of cell shape changes during cell spreading, polarization, and movement both in vitro and in vivo, from the early embryogenesis stages and throughout the life of a multicellular organism. Intracellular organization of actin structures, their biochemical composition, and dynamic properties play a key role in the realization of specific cellular and tissue functions and vary in different cell types. This paper is a review of recent studies on the organization and properties of actin structures in endotheliocytes, interaction of these structures with other cytoskeletal components and elements involved in cell adhesion, as well as their role in the functional activity of endothelial cells.
Collapse
Affiliation(s)
- A S Shakhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - V B Dugina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I B Alieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
23
|
Density of small dendritic spines and microtubule-associated-protein-2 immunoreactivity in the primary auditory cortex of subjects with schizophrenia. Neuropsychopharmacology 2019; 44:1055-1061. [PMID: 30795003 PMCID: PMC6461932 DOI: 10.1038/s41386-019-0350-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/22/2022]
Abstract
Previously, we demonstrated that dendritic spine density (DSD) in deep layer 3 of the primary auditory cortex (A1) is lower, due to having fewer small spines, in subjects with schizophrenia (SZ) than non-psychiatric control (NPC) subjects. We also previously demonstrated that microtubule-associated-protein-2 immunoreactivity (MAP2-IR) in A1 deep layer 3 is lower, and positively correlated with DSD, in SZ subjects. Here, we first sought to confirm these findings in an independent cohort of 25 SZ-NPC subject pairs (cohort 1). We used immunohistochemistry and confocal microscopy to measure DSD and MAP2-IR in A1 deep layer 3. Consistent with previous studies, both DSD and MAP2-IR were lower in SZ subjects. We then tested the hypothesis that MAP2-IR mediates the effect of SZ on DSD in a cohort of 45 SZ-NPC subject pairs (combined cohort) that included all subjects from cohort 1 and two previously studied cohorts. Based on the distribution of MAP2-IR values in NPC subjects, we categorized each SZ subject as having either low MAP2-IR (SZ MAP2-IR(low)) or normal MAP2-IR (SZ MAP2-IR(normal)). Among SZ MAP-IR(low) subjects, mean DSD was significantly lower than in NPC subjects. However, mean DSD did not differ between SZ MAP2-IR(normal) and NPC subjects. Moreover, MAP2-IR statistically mediated small spine differences, with lower MAP2-IR values associated with fewer small spines. Our findings confirm that low density of small spines and low MAP2-IR are robust SZ phenotypes and suggest that MAP2-IR mediates the effect of SZ on DSD.
Collapse
|
24
|
Sarkar A, Rieger H, Paul R. Search and Capture Efficiency of Dynamic Microtubules for Centrosome Relocation during IS Formation. Biophys J 2019; 116:2079-2091. [PMID: 31084903 DOI: 10.1016/j.bpj.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 11/29/2022] Open
Abstract
Upon contact with antigen-presenting cells, cytotoxic T lymphocytes (T cells) establish a highly organized contact zone denoted as the immunological synapse (IS). The formation of the IS implies relocation of the microtubule organizing center (MTOC) toward the contact zone, which necessitates a proper connection between the MTOC and the IS via dynamic microtubules (MTs). The efficiency of the MTs finding the IS within the relevant timescale is, however, still illusive. We investigate how MTs search the three-dimensional constrained cellular volume for the IS and bind upon encounter to dynein anchored at the IS cortex. The search efficiency is estimated by calculating the time required for the MTs to reach the dynein-enriched region of the IS. In this study, we develop simple mathematical and numerical models incorporating relevant components of a cell and propose an optimal search strategy. Using the mathematical model, we have quantified the average search time for a wide range of model parameters and proposed an optimized set of values leading to the minimal capture time. Our results show that search times are minimal when the IS formed at the nearest or at the farthest sites on the cell surface with respect to the perinuclear MTOC. The search time increases monotonically away from these two specific sites and is maximal at an intermediate position near the equator of the cell. We observed that search time strongly depends on the number of searching MTs and distance of the MTOC from the nuclear surface.
Collapse
Affiliation(s)
- Apurba Sarkar
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India.
| | - Heiko Rieger
- Department of Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| | - Raja Paul
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India.
| |
Collapse
|
25
|
Mal3 is a multi-copy suppressor of the sensitivity to microtubule-depolymerizing drugs and chromosome mis-segregation in a fission yeast pka1 mutant. PLoS One 2019; 14:e0214803. [PMID: 30973898 PMCID: PMC6459531 DOI: 10.1371/journal.pone.0214803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/20/2019] [Indexed: 11/24/2022] Open
Abstract
The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, transition into meiosis, chronological aging, and stress responses in the fission yeast, Schizosaccharomyces pombe. We demonstrated here that Pka1 is responsible for normal growth in the presence of the microtubule-destabilization drug TBZ and proper chromosome segregation. The deletion of the pka1 gene resulted in the TBZ-sensitive phenotype and chromosome mis-segregation. We isolated the mal3 gene as a multi-copy suppressor of the TBZ-sensitive phenotype in the pka1Δ strains. Overexpression of the CH domain (1–143) or the high-affinity microtubule binding mutant (1–143 Q89R) of Mal3 rescued the TBZ-sensitive phenotype in the pka1Δ and mal3Δ strains, while the EB1 domain (135–308) and the mutants defective in microtubule binding (1–143 Q89E) failed to do so in the same strains. Chromosome mis-segregation caused by TBZ in the pka1Δ or mal3Δ strains was suppressed by the overexpression of the Mal3 CH domain (1–143), Mal3 CH domain with the coiled-coil domain (1–197), or full-length Mal3. Overexpression of EB1 orthologs from Saccharomyces cerevisiae, Arabidopsis thaliana, Mus musculus, or Homo sapiens suppressed the TBZ-sensitive phenotype in the pka1Δ strains, indicating their conserved functions. These findings suggest that Pka1 and the microtubule binding of the Mal3 CH domain play a role in the maintenance of proper chromosome segregation.
Collapse
|
26
|
Denarier E, Brousse C, Sissoko A, Andrieux A, Boscheron C. A neurodevelopmental TUBB2B β-tubulin mutation impairs Bim1 (yeast EB1)-dependent spindle positioning. Biol Open 2019; 8:bio.038620. [PMID: 30674462 PMCID: PMC6361202 DOI: 10.1242/bio.038620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Malformations of the human cerebral cortex can be caused by mutations in tubulins that associate to compose microtubules. Cerebral cortical folding relies on neuronal migration and on progenitor proliferation partly dictated by microtubule-dependent mitotic spindle positioning. A single amino acid change, F265L, in the conserved TUBB2B β-tubulin gene has been identified in patients with abnormal cortex formation. A caveat for studying this mutation in mammalian cells is that nine genes encode β-tubulin in human. Here, we generate a yeast strain expressing F265L tubulin mutant as the sole source of β-tubulin. The F265L mutation does not preclude expression of a stable β-tubulin protein which is incorporated into microtubules. However, impaired cell growth was observed at high temperatures along with altered microtubule dynamics and stability. In addition, F265L mutation produces a highly specific mitotic spindle positioning defect related to Bim1 (yeast EB1) dysfunction. Indeed, F265L cells display an abnormal Bim1 recruitment profile at microtubule plus-ends. These results indicate that the F265L β-tubulin mutation affects microtubule plus-end complexes known to be important for microtubule dynamics and for microtubule function during mitotic spindle positioning.
Collapse
Affiliation(s)
- Eric Denarier
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - Carine Brousse
- Institut National de la Transfusion Sanguine (INTS), F-75015 Paris, France
| | | | - Annie Andrieux
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - Cécile Boscheron
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France .,Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38000, Grenoble, France.,Institut de Biologie Structurale (IBS) , F-38000 Grenoble, France
| |
Collapse
|
27
|
Mo SJ, Cho Y, Choi BI, Lee D, Kim H. PKA-dependent phosphorylation of IP3K-A at Ser119 regulates a binding affinity with EB3. Biochem Biophys Res Commun 2019; 508:52-59. [PMID: 30466786 DOI: 10.1016/j.bbrc.2018.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Abstract
Microtubule-associated end-binding protein 3 (EB3) accumulates asymmetrically at the tip-end of growing microtubules, providing a central platform for linking various cellular components. EB3 orchestrates microtubule dynamics and targeting, enabling diverse processes within neurons. Inositol 1, 4, 5-trisphosphate 3-kinase A (IP3K-A; also known as ITPKA) is a neuron-enriched protein that binds to microtubules by PKA-dependent manners. In this study, we found that IP3K-A binds to EB3 and their binding affinity is precisely regulated by protein kinase A (PKA)-dependent phosphorylation of IP3K-A at Ser119 (pSer119). We also revealed that the complex of IP3K-A and EB3 dissociates and reassociates rapidly during chemically induced LTP (cLTP) condition. This dynamic rearrangement of IP3K-A and EB3 complex will contribute remodeling of microtubule cytoskeleton allowing effective structural plasticity in response to synaptic stimulations.
Collapse
Affiliation(s)
- Seo Jung Mo
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Yongsang Cho
- Gachon Liberal Arts College, Gachon University, Seongnam-si, Republic of Korea
| | - Byung-Il Choi
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dongmin Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
28
|
CLASP promotes stable tethering of endoplasmic microtubules to the cell cortex to maintain cytoplasmic stability in Arabidopsis meristematic cells. PLoS One 2018; 13:e0198521. [PMID: 29894477 PMCID: PMC5997327 DOI: 10.1371/journal.pone.0198521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022] Open
Abstract
Following cytokinesis in plants, Endoplasmic MTs (EMTs) assemble on the nuclear surface, forming a radial network that extends out to the cell cortex, where they attach and incorporate into the cortical microtubule (CMT) array. We found that in these post-cytokinetic cells, the MT-associated protein CLASP is enriched at sites of EMT-cortex attachment, and is required for stable EMT tethering and growth into the cell cortex. Loss of EMT-cortex anchoring in clasp-1 mutants results in destabilized EMT arrays, and is accompanied by enhanced mobility of the cytoplasm, premature vacuolation, and precocious entry into cell elongation phase. Thus, EMTs appear to maintain cells in a meristematic state by providing a structural scaffold that stabilizes the cytoplasm to counteract actomyosin-based cytoplasmic streaming forces, thereby preventing premature establishment of a central vacuole and rapid cell elongation.
Collapse
|
29
|
Gozes I, Ivashko-Pachima Y, Sayas CL. ADNP, a Microtubule Interacting Protein, Provides Neuroprotection Through End Binding Proteins and Tau: An Amplifier Effect. Front Mol Neurosci 2018; 11:151. [PMID: 29765303 PMCID: PMC5938608 DOI: 10.3389/fnmol.2018.00151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Dr. Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Yanina Ivashko-Pachima
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Dr. Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Carmen L Sayas
- Centre for Biomedical Research of the Canary Islands, Institute for Biomedical Technologies, Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
30
|
Mustyatsa VV, Boyakhchyan AV, Ataullakhanov FI, Gudimchuk NB. EB-family proteins: Functions and microtubule interaction mechanisms. BIOCHEMISTRY (MOSCOW) 2017; 82:791-802. [DOI: 10.1134/s0006297917070045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
She ZY, Yang WX. Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 2017; 130:2097-2110. [DOI: 10.1242/jcs.200261] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ABSTRACT
During eukaryote cell division, molecular motors are crucial regulators of microtubule organization, spindle assembly, chromosome segregation and intracellular transport. The kinesin-14 motors are evolutionarily conserved minus-end-directed kinesin motors that occur in diverse organisms from simple yeasts to higher eukaryotes. Members of the kinesin-14 motor family can bind to, crosslink or slide microtubules and, thus, regulate microtubule organization and spindle assembly. In this Commentary, we present the common subthemes that have emerged from studies of the molecular kinetics and mechanics of kinesin-14 motors, particularly with regard to their non-processive movement, their ability to crosslink microtubules and interact with the minus- and plus-ends of microtubules, and with microtubule-organizing center proteins. In particular, counteracting forces between minus-end-directed kinesin-14 and plus-end-directed kinesin-5 motors have recently been implicated in the regulation of microtubule nucleation. We also discuss recent progress in our current understanding of the multiple and fundamental functions that kinesin-14 motors family members have in important aspects of cell division, including the spindle pole, spindle organization and chromosome segregation.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
32
|
Portilho DM, Persson R, Arhel N. Role of non-motile microtubule-associated proteins in virus trafficking. Biomol Concepts 2017; 7:283-292. [PMID: 27879481 DOI: 10.1515/bmc-2016-0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/04/2016] [Indexed: 11/15/2022] Open
Abstract
Viruses are entirely dependent on their ability to infect a host cell in order to replicate. To reach their site of replication as rapidly and efficiently as possible following cell entry, many have evolved elaborate mechanisms to hijack the cellular transport machinery to propel themselves across the cytoplasm. Long-range movements have been shown to involve motor proteins along microtubules (MTs) and direct interactions between viral proteins and dynein and/or kinesin motors have been well described. Although less well-characterized, it is also becoming increasingly clear that non-motile microtubule-associated proteins (MAPs), including structural MAPs of the MAP1 and MAP2 families, and microtubule plus-end tracking proteins (+TIPs), can also promote viral trafficking in infected cells, by mediating interaction of viruses with filaments and/or motor proteins, and modulating filament stability. Here we review our current knowledge on non-motile MAPs, their role in the regulation of cytoskeletal dynamics and in viral trafficking during the early steps of infection.
Collapse
|
33
|
Wang JC, Lee JYJ, Christian S, Dang-Lawson M, Pritchard C, Freeman SA, Gold MR. The Rap1-cofilin-1 pathway coordinates actin reorganization and MTOC polarization at the B cell immune synapse. J Cell Sci 2017; 130:1094-1109. [PMID: 28167682 DOI: 10.1242/jcs.191858] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
B cells that bind antigens displayed on antigen-presenting cells (APCs) form an immune synapse, a polarized cellular structure that optimizes the dual functions of the B cell receptor (BCR), signal transduction and antigen internalization. Immune synapse formation involves polarization of the microtubule-organizing center (MTOC) towards the APC. We now show that BCR-induced MTOC polarization requires the Rap1 GTPase (which has two isoforms, Rap1a and Rap1b), an evolutionarily conserved regulator of cell polarity, as well as cofilin-1, an actin-severing protein that is regulated by Rap1. MTOC reorientation towards the antigen contact site correlated strongly with cofilin-1-dependent actin reorganization and cell spreading. We also show that BCR-induced MTOC polarization requires the dynein motor protein as well as IQGAP1, a scaffolding protein that can link the actin and microtubule cytoskeletons. At the periphery of the immune synapse, IQGAP1 associates closely with F-actin structures and with the microtubule plus-end-binding protein CLIP-170 (also known as CLIP1). Moreover, the accumulation of IQGAP1 at the antigen contact site depends on F-actin reorganization that is controlled by Rap1 and cofilin-1. Thus the Rap1-cofilin-1 pathway coordinates actin and microtubule organization at the immune synapse.
Collapse
Affiliation(s)
- Jia C Wang
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jeff Y-J Lee
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Sonja Christian
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - May Dang-Lawson
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Caitlin Pritchard
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Spencer A Freeman
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Michael R Gold
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
34
|
Liu Z, Wu S, Chen Y, Han X, Gu Q, Yin Y, Ma Z. The microtubule end-binding protein FgEB1 regulates polar growth and fungicide sensitivity via different interactors in Fusarium graminearum. Environ Microbiol 2017; 19:1791-1807. [PMID: 28028881 DOI: 10.1111/1462-2920.13651] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
In yeasts, the end-binding protein 1 (EB1) homologs regulate microtubule dynamics, cell polarization, and chromosome stability. However, functions of EB1 orthologs in plant pathogenic fungi have not been characterized yet. Here, we observed that the FgEB1 deletion mutant (ΔFgEB1) of Fusarium graminearum exhibits twisted hyphae, increased hyphal branching and curved conidia, indicating that FgEB1 is involved in the regulation of cellular polarity. Microscopic examination further showed that the microtubules of ΔFgEB1 exhibited less organized in comparison with those of the wild type. In addition, the lack of FgEB1 also altered the distribution of polarity-related class I myosin via the interaction with the actin. On the other hand, we identified four core septins as FgEB1-interacting proteins, and found that FgEB1 and septins regulated conidial polar growth in the opposite orientation. Interestingly, FgEB1 and FgKar9 constituted another complex that modulated the response to carbendazim, a microtubule-damaging agent specifically. In addition, the deletion of FgEB1 led to dramatically decreased deoxynivalenol (DON) biosynthesis. Taken together, results of this study indicate that FgEB1 regulates cellular polarity, fungicide sensitivity and DON biosynthesis via different interactors in F. graminarum, which provides a novel insight into understanding of the biological functions of EB1 in filamentous fungi.
Collapse
Affiliation(s)
- Zunyong Liu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Sisi Wu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xinyue Han
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
35
|
Ngo T, Miao X, Robinson DN, Zhou QQ. An RNA-binding protein, RNP-1, protects microtubules from nocodazole and localizes to the leading edge during cytokinesis and cell migration in Dictyostelium cells. Acta Pharmacol Sin 2016; 37:1449-1457. [PMID: 27569394 DOI: 10.1038/aps.2016.57] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/21/2016] [Indexed: 01/02/2023] Open
Abstract
AIM RNA-binding proteins are a large group of regulators (800-1000 in humans), some of which play significant roles in mRNA local translation. In this study, we analyzed the functions of the protein RNP-1, which was previously discovered in a genetic selection screen for nocodazole suppression. METHODS The growth rates and the microtubule networks of Dictyostelium cells were assessed with or without nocodazole (10 μmol/L) in suspension culture. Fluorescent images of RNP-1-GFP and RFP-tubulin were captured when cells were undergoing cytokinesis, then the GFP signal intensity and distance to the nearest centrosome were analyzed by using a computer program written in Matlab®. The RNP-1-GFP-expresseding cells were polarized, and the time-lapse images of cells were captured when cells were chemotaxing to a cAMP source. RESULTS Over-expression of RNP-1 rescued the growth defects caused by the microtubule-destabilizing agent nocodazole. Over-expression of RNP-1 protected microtubules from nocodazole treatment. In cells undergoing cytokinesis, the RNP-1 protein was localized to the polar regions of the cell cortex, and protein levels decreased proportionally as the power of the distance from the cell cortex to the nearest centrosome. In chemotactic cells, the RNP-1 protein localized to the leading edge of moving cells. Sequence analysis revealed that RNP-1 has two RNA-binding domains and is related to cytosolic poly(A)-binding proteins (PABPCs) in humans. CONCLUSION RNP-1 has roles in protecting microtubules and in directing cortical movement during cytokinesis and cell migration in Dictyostelium cells. The sequence similarity of RNP-1 to human PABPCs suggests that PABPCs may have similar functions in mammalian cells, perhaps in regulating microtubule dynamics and functions during cortical movement in cytokinesis and cell migration.
Collapse
|
36
|
Readhead B, Haure-Mirande JV, Zhang B, Haroutunian V, Gandy S, Schadt EE, Dudley JT, Ehrlich ME. Molecular systems evaluation of oligomerogenic APP(E693Q) and fibrillogenic APP(KM670/671NL)/PSEN1(Δexon9) mouse models identifies shared features with human Alzheimer's brain molecular pathology. Mol Psychiatry 2016; 21:1099-111. [PMID: 26552589 PMCID: PMC4862938 DOI: 10.1038/mp.2015.167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/25/2015] [Accepted: 09/17/2015] [Indexed: 12/20/2022]
Abstract
Identification and characterization of molecular mechanisms that connect genetic risk factors to initiation and evolution of disease pathophysiology represent major goals and opportunities for improving therapeutic and diagnostic outcomes in Alzheimer's disease (AD). Integrative genomic analysis of the human AD brain transcriptome holds potential for revealing novel mechanisms of dysfunction that underlie the onset and/or progression of the disease. We performed an integrative genomic analysis of brain tissue-derived transcriptomes measured from two lines of mice expressing distinct mutant AD-related proteins. The first line expresses oligomerogenic mutant APP(E693Q) inside neurons, leading to the accumulation of amyloid beta (Aβ) oligomers and behavioral impairment, but never develops parenchymal fibrillar amyloid deposits. The second line expresses APP(KM670/671NL)/PSEN1(Δexon9) in neurons and accumulates fibrillar Aβ amyloid and amyloid plaques accompanied by neuritic dystrophy and behavioral impairment. We performed RNA sequencing analyses of the dentate gyrus and entorhinal cortex from each line and from wild-type mice. We then performed an integrative genomic analysis to identify dysregulated molecules and pathways, comparing transgenic mice with wild-type controls as well as to each other. We also compared these results with datasets derived from human AD brain. Differential gene and exon expression analysis revealed pervasive alterations in APP/Aβ metabolism, epigenetic control of neurogenesis, cytoskeletal organization and extracellular matrix (ECM) regulation. Comparative molecular analysis converged on FMR1 (Fragile X Mental Retardation 1), an important negative regulator of APP translation and oligomerogenesis in the post-synaptic space. Integration of these transcriptomic results with human postmortem AD gene networks, differential expression and differential splicing signatures identified significant similarities in pathway dysregulation, including ECM regulation and neurogenesis, as well as strong overlap with AD-associated co-expression network structures. The strong overlap in molecular systems features supports the relevance of these findings from the AD mouse models to human AD.
Collapse
Affiliation(s)
- B Readhead
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J-V Haure-Mirande
- Department of Neurology, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - B Zhang
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - V Haroutunian
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, New York, NY, USA
| | - S Gandy
- Department of Neurology, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, New York, NY, USA
- Center for Cognitive Health and NFL Neurological Care, Department of Neurology, New York, NY, USA
| | - E E Schadt
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J T Dudley
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M E Ehrlich
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
37
|
Zhu X, Efimova N, Arnette C, Hanks SK, Kaverina I. Podosome dynamics and location in vascular smooth muscle cells require CLASP-dependent microtubule bending. Cytoskeleton (Hoboken) 2016; 73:300-15. [PMID: 27105779 DOI: 10.1002/cm.21302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 11/07/2022]
Abstract
Extracellular matrix (ECM) remodeling during physiological processes is mediated by invasive protrusions called podosomes. Positioning and dynamics of podosomes define the extent of ECM degradation. Microtubules are known to be involved in podosome regulation, but the role of microtubule (MT) network configuration in podosome dynamics and positioning is not well understood. Here, we show that the arrangement of the microtubule network defines the pattern of podosome formation and relocation in vascular smooth muscle cells (VSMCs). We show that microtubule plus-end targeting facilitates de novo formation of podosomes, in addition to podosome remodeling. Moreover, specialized bent microtubules with plus ends reversed towards the cell center promote relocation of podosomes from the cell edge to the cell center, resulting in an evenly distributed podosome pattern. Microtubule bending is induced downstream of protein kinase C (PKC) activation and requires microtubule-stabilizing proteins known as cytoplasmic linker associated proteins (CLASPs) and retrograde actin flow. Similar to microtubule depolymerization, CLASP depletion by siRNA blocks microtubule bending and eliminates centripetal relocation of podosomes. Podosome relocation also coincides with translocation of podosome-stimulating kinesin KIF1C, which is known to move preferentially along CLASP-associated microtubules. These findings indicate that CLASP-dependent microtubule network configuration is critical to the cellular location and distribution of KIF1C-dependent podosomes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Nadia Efimova
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Christopher Arnette
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Steven K Hanks
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
38
|
Lacroix B, Ryan J, Dumont J, Maddox PS, Maddox AS. Identification of microtubule growth deceleration and its regulation by conserved and novel proteins. Mol Biol Cell 2016; 27:1479-87. [PMID: 26985017 PMCID: PMC4850035 DOI: 10.1091/mbc.e16-01-0056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/09/2016] [Indexed: 11/29/2022] Open
Abstract
Live imaging of microtubule dynamics in Caenorhabditis elegans muscle cells reveals a novel microtubule behavior characterized by an abrupt change in growth rate, named “microtubule growth deceleration.” The conserved protein ZYG-9TOGp and two novel ORFs, cylc-1 and cylc-2, are involved in the regulation of this novel microtubule behavior. Microtubules (MTs) are cytoskeletal polymers that participate in diverse cellular functions, including cell division, intracellular trafficking, and templating of cilia and flagella. MTs undergo dynamic instability, alternating between growth and shortening via catastrophe and rescue events. The rates and frequencies of MT dynamic parameters appear to be characteristic for a given cell type. We recently reported that all MT dynamic parameters vary throughout differentiation of a smooth muscle cell type in intact Caenorhabditis elegans. Here we describe local differences in MT dynamics and a novel MT behavior: an abrupt change in growth rate (deceleration) of single MTs occurring in the cell periphery of these cells. MT deceleration occurs where there is a decrease in local soluble tubulin concentration at the cell periphery. This local regulation of tubulin concentration and MT deceleration are dependent on two novel homologues of human cylicin. These novel ORFs, which we name cylc-1 and -2, share sequence homology with stathmins and encode small, very basic proteins containing several KKD/E repeats. The TOG domain–containing protein ZYG-9TOGp is responsible for the faster polymerization rate within the cell body. Thus we have defined two contributors to the molecular regulation for this novel MT behavior.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Joël Ryan
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Paul S Maddox
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Amy S Maddox
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
39
|
Penazzi L, Bakota L, Brandt R. Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:89-169. [PMID: 26811287 DOI: 10.1016/bs.ircmb.2015.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are the basic information-processing units of the nervous system. In fulfilling their task, they establish a structural polarity with an axon that can be over a meter long and dendrites with a complex arbor, which can harbor ten-thousands of spines. Microtubules and their associated proteins play important roles during the development of neuronal morphology, the plasticity of neurons, and neurodegenerative processes. They are dynamic structures, which can quickly adapt to changes in the environment and establish a structural scaffold with high local variations in composition and stability. This review presents a comprehensive overview about the role of microtubules and their dynamic behavior during the formation and maturation of processes and spines in the healthy brain, during aging and under neurodegenerative conditions. The review ends with a discussion of microtubule-targeted therapies as a perspective for the supportive treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
40
|
Lui C, Ashton C, Sharma M, Brocardo MG, Henderson BR. APC functions at the centrosome to stimulate microtubule growth. Int J Biochem Cell Biol 2015; 70:39-47. [PMID: 26556314 DOI: 10.1016/j.biocel.2015.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/26/2022]
Abstract
The adenomatous polyposis coli (APC) tumor suppressor is multi-functional. APC is known to localize at the centrosome, and in mitotic cells contributes to formation of the mitotic spindle. To test whether APC contributes to nascent microtubule (MT) growth at interphase centrosomes, we employed MT regrowth assays in U2OS cells to measure MT assembly before and after nocodazole treatment and release. We showed that siRNA knockdown of full-length APC delayed both initial MT aster formation and MT elongation/regrowth. In contrast, APC-mutant SW480 cancer cells displayed a defect in MT regrowth that was unaffected by APC knockdown, but which was rescued by reconstitution of full-length APC. Our findings identify APC as a positive regulator of centrosome MT initial assembly and suggest that this process is disrupted by cancer mutations. We confirmed that full-length APC associates with the MT-nucleation factor γ-tubulin, and found that the APC cancer-truncated form (1-1309) also bound to γ-tubulin through APC amino acids 1-453. While binding to γ-tubulin may help target APC to the site of MT nucleation complexes, additional C-terminal sequences of APC are required to stimulate and stabilize MT growth.
Collapse
Affiliation(s)
- Christina Lui
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Cahora Ashton
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Manisha Sharma
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Mariana G Brocardo
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Beric R Henderson
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
41
|
Mori Y, Inoue Y, Tanaka S, Doda S, Yamanaka S, Fukuchi H, Terada Y. Cep169, a Novel Microtubule Plus-End-Tracking Centrosomal Protein, Binds to CDK5RAP2 and Regulates Microtubule Stability. PLoS One 2015; 10:e0140968. [PMID: 26485573 PMCID: PMC4613824 DOI: 10.1371/journal.pone.0140968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/02/2015] [Indexed: 11/18/2022] Open
Abstract
The centrosomal protein, CDK5RAP2, is a microcephaly protein that regulates centrosomal maturation by recruitment of a γ-tubulin ring complex (γ-TuRC) onto centrosomes. In this report, we identified a novel human centrosomal protein, Cep169, as a binding partner of CDK5RAP2, a member of microtubule plus-end-tracking proteins (+TIPs). Cep169 interacts directly with CDK5RAP2 through CM1, an evolutionarily conserved domain, and colocalizes at the pericentriolar matrix (PCM) around centrioles with CDK5RAP2. In addition, Cep169 interacts with EB1 through SxIP-motif responsible for EB1 binding, and colocalizes with CDK5RAP2 at the microtubule plus-end. EB1-binding–deficient Cep169 abolishes EB1 interaction and microtubule plus-end attachment, indicating Cep169 as a novel member of +TIPs. We further show that ectopic expression of either Cep169 or CDK5RAP2 induces microtubule bundling and acetylation in U2OS cells, and depletion of Cep169 induces microtubule depolymerization in HeLa cells, although Cep169 is not required for assembly of γ-tubulin onto centrosome by CDK5RAP2. These results show that Cep169 targets microtubule tips and regulates stability of microtubules with CDK5RAP2.
Collapse
Affiliation(s)
- Yusuke Mori
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Yoko Inoue
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Sayori Tanaka
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Satoka Doda
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Shota Yamanaka
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Hiroki Fukuchi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Yasuhiko Terada
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
- * E-mail:
| |
Collapse
|
42
|
Boehlke C, Janusch H, Hamann C, Powelske C, Mergen M, Herbst H, Kotsis F, Nitschke R, Kuehn EW. A Cilia Independent Role of Ift88/Polaris during Cell Migration. PLoS One 2015; 10:e0140378. [PMID: 26465598 PMCID: PMC4605505 DOI: 10.1371/journal.pone.0140378] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/24/2015] [Indexed: 11/29/2022] Open
Abstract
Ift88 is a central component of the intraflagellar transport (Ift) complex B, essential for the building of cilia and flagella from single cell organisms to mammals. Loss of Ift88 results in the absence of cilia and causes left-right asymmetry defects, disordered Hedgehog signaling, and polycystic kidney disease, all of which are explained by aberrant ciliary function. In addition, a number of extraciliary functions of Ift88 have been described that affect the cell-cycle, mitosis, and targeting of the T-cell receptor to the immunological synapse. Similarly, another essential ciliary molecule, the kinesin-2 subunit Kif3a, which transports Ift-B in the cilium, affects microtubule (MT) dynamics at the leading edge of migrating cells independently of cilia. We now show that loss of Ift88 impairs cell migration irrespective of cilia. Ift88 is required for the polarization of migrating MDCK cells, and Ift88 depleted cells have fewer MTs at the leading edge. Neither MT dynamics nor MT nucleation are dependent on Ift88. Our findings dissociate the function of Ift88 from Kif3a outside the cilium and suggest a novel extraciliary function for Ift88. Future studies need to address what unifying mechanism underlies the different extraciliary functions of Ift88.
Collapse
Affiliation(s)
| | - Heike Janusch
- Department of Nephrology, University Hospital, Freiburg, Germany
| | - Christoph Hamann
- Department of Nephrology, University Hospital, Freiburg, Germany
| | | | - Miriam Mergen
- Department of Nephrology, University Hospital, Freiburg, Germany
| | - Henriette Herbst
- Department of Nephrology, University Hospital, Freiburg, Germany
| | - Fruzsina Kotsis
- Department of Nephrology, University Hospital, Freiburg, Germany
| | - Roland Nitschke
- Life Imaging Center, Center for Biosystems Analysis, Albert-Ludwig-University, Freiburg, Germany
- Center for Biological Signaling Studies (bioss), Albert-Ludwig-University, Freiburg, Germany
| | - E. Wolfgang Kuehn
- Department of Nephrology, University Hospital, Freiburg, Germany
- Center for Biological Signaling Studies (bioss), Albert-Ludwig-University, Freiburg, Germany
- * E-mail:
| |
Collapse
|
43
|
Shakhov AS, Dugina VB, Alieva IB. Reorganization of actin and microtubule systems in human vein endothelial cells during intercellular contact formation. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x15040112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Chiu CT, Liao CK, Shen CC, Tang TK, Jow GM, Wang HS, Wu JC. HYS-32-Induced Microtubule Catastrophes in Rat Astrocytes Involves the PI3K-GSK3beta Signaling Pathway. PLoS One 2015; 10:e0126217. [PMID: 25938237 PMCID: PMC4418738 DOI: 10.1371/journal.pone.0126217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
HYS-32 is a novel derivative of combretastatin-A4 (CA-4) previously shown to induce microtubule coiling in rat primary astrocytes. In this study, we further investigated the signaling mechanism and EB1, a microtubule-associated end binding protein, involved in HYS-32-induced microtubule catastrophes. Confocal microscopy with double immunofluorescence staining revealed that EB1 accumulates at the growing microtubule plus ends, where they exhibit a bright comet-like staining pattern in control astrocytes. HYS-32 induced microtubule catastrophes in both a dose- and time-dependent manner and dramatically increased the distances between microtubule tips and the cell border. Treatment of HYS-32 (5 μM) eliminated EB1 localization at the microtubule plus ends and resulted in an extensive redistribution of EB1 to the microtubule lattice without affecting the β-tubulin or EB1 protein expression. Time-lapse experiments with immunoprecipitation further displayed that the association between EB-1 and β-tubulin was significantly decreased following a short-term treatment (2 h), but gradually increased in a prolonged treatment (6-24 h) with HYS-32. Further, HYS-32 treatment induced GSK3β phosphorylation at Y216 and S9, where the ratio of GSK3β-pY216 to GSK3β-pS9 was first elevated followed by a decrease over time. Co-treatment of astrocytes with HYS-32 and GSK3β inhibitor SB415286 attenuated the HYS-32-induced microtubule catastrophes and partially prevented EB1 dissociation from the plus end of microtubules. Furthermore, co-treatment with PI3K inhibitor LY294002 inhibited HYS-32-induced GSK3β-pS9 and partially restored EB1 distribution from the microtubule lattice to plus ends. Together these findings suggest that HYS-32 induces microtubule catastrophes by preventing EB1 from targeting to microtubule plus ends through the GSK3β signaling pathway.
Collapse
Affiliation(s)
- Chi-Ting Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chih-Kai Liao
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chien-Chang Shen
- Division of Medicinal Chemistry, National Research Institute of Chinese Medicine, Taipei 11221, Taiwan
| | - Tswen-Kei Tang
- Department of Nursing, College of Health and Nursing, National Quemoy University, Kinmen 89250, Taiwan
| | - Guey-Mei Jow
- School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Hwai-Shi Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Jiahn-Chun Wu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
45
|
Sayas CL, Tortosa E, Bollati F, Ramírez-Ríos S, Arnal I, Avila J. Tau regulates the localization and function of End-binding proteins 1 and 3 in developing neuronal cells. J Neurochem 2015; 133:653-67. [PMID: 25761518 DOI: 10.1111/jnc.13091] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Abstract
The axonal microtubule-associated protein tau is a well-known regulator of microtubule stability in neurons. However, the putative interplay between tau and End-binding proteins 1 and 3 (EB1/3), the core microtubule plus-end tracking proteins, has not been elucidated yet. Here, we show that a cross-talk between tau and EB1/3 exists in developing neuronal cells. Tau and EBs partially colocalize at extending neurites of N1E-115 neuroblastoma cells and axons of primary hippocampal neurons, as shown by confocal immunofluorescence analyses. Tau down-regulation leads to a reduction of EB1/3 comet length, as observed in shRNA-stably depleted neuroblastoma cells and TAU-/- neurons. EB1/3 localization depends on the expression levels and localization of tau protein. Over-expression of tau at high levels induces EBs relocalization to microtubule bundles at extending neurites of N1E-115 cells. In differentiating primary neurons, tau is required for the proper accumulation of EBs at stretches of microtubule bundles at the medial and distal regions of the axon. Tau interacts with EB proteins, as shown by immunoprecipitation in different non-neuronal and neuronal cells and in whole brain lysates. A tau/EB1 direct interaction was corroborated by in vitro pull-down assays. Fluorescence recovery after photobleaching assays performed in neuroblastoma cells confirmed that tau modulates EB3 cellular mobility. In summary, we provide evidence of a new function of tau as a direct regulator of EB proteins in developing neuronal cells. This cross-talk between a classical microtubule-associated protein and a core microtubule plus-end tracking protein may contribute to the fine-tuned regulation of microtubule dynamics and stability during neuronal differentiation. We describe here a novel function for tau as a direct regulator of End binding (EB) proteins in differentiating neuronal cells. EB1/3 cellular mobility and localization in extending neurites and axons is modulated by tau levels and localization. We provide new evidence of the interplay between classical microtubule-associated proteins (MAPs) and "core" microtubule plus-end tracking proteins (+TIPs) during neuronal development.
Collapse
Affiliation(s)
- Carmen Laura Sayas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain; Centre for Biomedical Research of the Canary Islands (CIBICAN), Institute for Biomedical Technologies (ITB), University of La Laguna (ULL), Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Stinchcombe JC, Griffiths GM. Communication, the centrosome and the immunological synapse. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0463. [PMID: 25047617 PMCID: PMC4113107 DOI: 10.1098/rstb.2013.0463] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent findings on the behaviour of the centrosome at the immunological synapse suggest a critical role for centrosome polarization in controlling the communication between immune cells required to generate an effective immune response. The features observed at the immunological synapse show parallels to centrosome (basal body) polarization seen in cilia and flagella, and the cellular communication that is now known to occur at all of these sites.
Collapse
Affiliation(s)
- Jane C Stinchcombe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK
| |
Collapse
|
47
|
Liu J, Han R. The Evolution of Microtubule End-Binding Protein 1 (EB1) and Roles in Regulating Microtubule Behavior. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.613212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Kedashiro S, Pastuhov SI, Nishioka T, Watanabe T, Kaibuchi K, Matsumoto K, Hanafusa H. LRRK1-phosphorylated CLIP-170 regulates EGFR trafficking by recruiting p150Glued to microtubule plus ends. J Cell Sci 2014; 128:385-96. [PMID: 25413345 DOI: 10.1242/jcs.161547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The binding of ligand to epidermal growth factor receptor (EGFR) causes the receptor to become activated and stimulates the endocytosis of EGFR. Early endosomes containing activated EGFR migrate along microtubules as they mature into late endosomes. We have recently shown that LRRK1, which is related to the familial Parkinsonism gene product Park8 (also known as LRRK2), regulates this EGFR transport in a manner dependent on LRRK1 kinase activity. However, the downstream targets of LRRK1 that might modulate this transport function have not been identified. Here, we identify CLIP-170 (also known as CLIP1), a microtubule plus-end protein, as a substrate of LRRK1. LRRK1 phosphorylates CLIP-170 at Thr1384, located in its C-terminal zinc knuckle motif, and this promotes the association of CLIP-170 with dynein-dynactin complexes. We find that LRRK1-mediated phosphorylation of CLIP-170 causes the accumulation of p150(Glued) (also known as DCTN1) a subunit of dynactin, at microtubule plus ends, thereby facilitating the migration of EGFR-containing endosomes. Thus, our findings provide new mechanistic insights into the dynein-driven transport of EGFR.
Collapse
Affiliation(s)
- Shin Kedashiro
- Division of Biological Science, Graduate school of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Strahil Iv Pastuhov
- Division of Biological Science, Graduate school of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Watanabe
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate school of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroshi Hanafusa
- Division of Biological Science, Graduate school of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
49
|
Patel DM, Dubash AD, Kreitzer G, Green KJ. Disease mutations in desmoplakin inhibit Cx43 membrane targeting mediated by desmoplakin-EB1 interactions. ACTA ACUST UNITED AC 2014; 206:779-97. [PMID: 25225338 PMCID: PMC4164953 DOI: 10.1083/jcb.201312110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanisms by which microtubule plus ends interact with regions of cell-cell contact during tissue development and morphogenesis are not fully understood. We characterize a previously unreported interaction between the microtubule binding protein end-binding 1 (EB1) and the desmosomal protein desmoplakin (DP), and demonstrate that DP-EB1 interactions enable DP to modify microtubule organization and dynamics near sites of cell-cell contact. EB1 interacts with a region of the DP N terminus containing a hotspot for pathogenic mutations associated with arrhythmogenic cardiomyopathy (AC). We show that a subset of AC mutations, in addition to a mutation associated with skin fragility/woolly hair syndrome, impair gap junction localization and function by misregulating DP-EB1 interactions and altering microtubule dynamics. This work identifies a novel function for a desmosomal protein in regulating microtubules that affect membrane targeting of gap junction components, and elucidates a mechanism by which DP mutations may contribute to the development of cardiac and cutaneous diseases.
Collapse
Affiliation(s)
- Dipal M Patel
- Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Adi D Dubash
- Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Geri Kreitzer
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY 10065
| | - Kathleen J Green
- Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
50
|
Zhang Y, Wang F, Niu YJ, Liu HL, Rui R, Cui XS, Kim NH, Sun SC. Formin mDia1, a downstream molecule of FMNL1, regulates Profilin1 for actin assembly and spindle organization during mouse oocyte meiosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:317-27. [PMID: 25447542 DOI: 10.1016/j.bbamcr.2014.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/06/2014] [Accepted: 11/04/2014] [Indexed: 02/07/2023]
Abstract
Mammalian diaphanous1 (mDia1) is a homologue of Drosophila diaphanous and belongs to the Formin-homology family of proteins that catalyze actin nucleation and polymerization. Although Formin family proteins, such as Drosophila diaphanous, have been shown to be essential for cytokinesis, whether and how mDia1 functions during meiosis remain uncertain. In this study, we explored possible roles and the signaling pathway involved for mDia1 using a mouse oocyte model. mDia1 depletion reduced polar body extrusion, which may have been due to reduced cortical actin assembly. mDia1 and Profilin1 had similar localization patterns in mouse oocytes and mDia1 knockdown resulted in reduced Profilin1 expression. Depleting FMNL1, another Formin family member, resulted in reduced mDia1 expression, while RhoA inhibition did not alter mDia1 expression, which indicated that there was a FMNL1-mDia1-Profilin1 signaling pathway in mouse oocytes. Additionally, mDia1 knockdown resulted in disrupting oocyte spindle morphology, which was confirmed by aberrant p-MAPK localization. Thus, these results demonstrated indispensable roles for mDia1 in regulating mouse oocyte meiotic maturation through its effects on actin assembly and spindle organization.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying-Jie Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Rui
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|