1
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Jahangiri L. A mechanistic insight into cancer progression mediated by Nucleoporins. Cancer Genet 2024; 286-287:35-42. [PMID: 39024725 DOI: 10.1016/j.cancergen.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
The nuclear pore complexes are essential for cellular and molecular processes such as trafficking between the cytoplasm and the nucleus, chromatin, transcriptional outputs, and DNA damage repair. Nucleoporins, components of nuclear pore complexes, have been linked to cancer through nucleo-cytoplasmic cargo trafficking, cell division, signalling pathways, chromatin-related processes, and protein stability and degradation. This study aims to understand how nucleoporins specifically contribute to cancer proliferation and progression across various cancer types. Accordingly, angles such as nuclear trafficking, fusion proteins, tumour suppressors, signalling pathways, tumour microenvironment, nucleosomes, and chromatin processes were found to bridge the function of nucleoporins and cancer progression, and the underlying mechanisms have been analysed in this study. A deep understanding of the function of nucleoporins in cancer progression will pave the way for the effective targeting of these molecules for therapeutic gain. Improved treatment responses can enhance the quality of life of cancer patients.
Collapse
Affiliation(s)
- Leila Jahangiri
- School of Science and Technology, Nottingham Trent University, Clifton Site, Nottingham, NG11 8NS, UK; Division of Cellular and Molecular Pathology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
3
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
4
|
Guo Y, Tao T, Wu T, Hou J, Lin W. Nucleoporin Nup98 is an essential factor for ipo4 dependent protein import. J Cell Biochem 2024; 125:e30573. [PMID: 38780165 DOI: 10.1002/jcb.30573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Nucleocytoplasmic transport of macromolecules is essential in eukaryotic cells. In this process, the karyopherins play a central role when they transport cargoes across the nuclear pore complex. Importin 4 belongs to the karyopherin β family. Many studies have focused on finding substrates for importin 4, but no direct mechanism studies of its precise transport function have been reported. Therefore, this paper mainly aimed to study the mechanism of nucleoporins in mediating nuclear import and export of importin 4. To address this question, we constructed shRNAs targeting Nup358, Nup153, Nup98, and Nup50. We found that depletion of Nup98 resulted in a shift in the subcellular localization of importin 4 from the cytoplasm to the nucleus. Mutational analysis demonstrated that Nup98 physically and functionally interacts with importin 4 through its N-terminal phenylalanine-glycine (FG) repeat region. Mutation of nine of these FG motifs to SG motifs significantly attenuated the binding of Nup98 to importin 4, and we further confirmed the essential role of the six FG motifs in amino acids 121-360 of Nup98 in binding with importin 4. In vitro transport assay also confirmed that VDR, the substrate of importin 4, could not be transported into the nucleus after Nup98 knockdown. Overall, our results showed that Nup98 is required for efficient importin 4-mediated transport. This is the first study to reveal the mechanism of importin 4 in transporting substrates into the nucleus.
Collapse
Affiliation(s)
- Yingying Guo
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiame, Fujian, China
| | - Tao Tao
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiame, Fujian, China
| | - Ting Wu
- Department of Basic Medicine, School of Medicine, Cancer Research Center, Xiamen University, Xiamen, Fujian, China
| | - Jingjing Hou
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiame, Fujian, China
- Department of Gastrointestinal Surgery, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Wenbo Lin
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiame, Fujian, China
| |
Collapse
|
5
|
Guglielmi V, Lam D, D’Angelo MA. Nucleoporin Nup358 drives the differentiation of myeloid-biased multipotent progenitors by modulating HDAC3 nuclear translocation. SCIENCE ADVANCES 2024; 10:eadn8963. [PMID: 38838144 PMCID: PMC11152124 DOI: 10.1126/sciadv.adn8963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Nucleoporins, the components of nuclear pore complexes (NPCs), can play cell type- and tissue-specific functions. Yet, the physiological roles and mechanisms of action for most NPC components have not yet been established. We report that Nup358, a nucleoporin linked to several myeloid disorders, is required for the developmental progression of early myeloid progenitors. We found that Nup358 ablation in mice results in the loss of myeloid-committed progenitors and mature myeloid cells and the accumulation of myeloid-primed multipotent progenitors (MPPs) in bone marrow. Accumulated MPPs in Nup358 knockout mice are greatly restricted to megakaryocyte/erythrocyte-biased MPP2, which fail to progress into committed myeloid progenitors. Mechanistically, we found that Nup358 is required for histone deacetylase 3 (HDAC3) nuclear import and function in MPP2 cells and established that this nucleoporin regulates HDAC3 nuclear translocation in a SUMOylation-independent manner. Our study identifies a critical function for Nup358 in myeloid-primed MPP2 differentiation and uncovers an unexpected role for NPCs in the early steps of myelopoiesis.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Davina Lam
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maximiliano A. D’Angelo
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
6
|
Kapinos LE, Kalita J, Kassianidou E, Rencurel C, Lim RYH. Mechanism of exportin retention in the cell nucleus. J Cell Biol 2024; 223:e202306094. [PMID: 38241019 PMCID: PMC10798875 DOI: 10.1083/jcb.202306094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Exportin receptors are concentrated in the nucleus to transport essential cargoes out of it. A mislocalization of exportins to the cytoplasm is linked to disease. Hence, it is important to understand how their containment within the nucleus is regulated. Here, we have studied the nuclear efflux of exportin2 (cellular apoptosis susceptibility protein or CAS) that delivers karyopherinα (Kapα or importinα), the cargo adaptor for karyopherinβ1 (Kapβ1 or importinβ1), to the cytoplasm in a Ran guanosine triphosphate (RanGTP)-mediated manner. We show that the N-terminus of CAS attenuates the interaction of RanGTPase activating protein 1 (RanGAP1) with RanGTP to slow GTP hydrolysis, which suppresses CAS nuclear exit at nuclear pore complexes (NPCs). Strikingly, a single phosphomimetic mutation (T18D) at the CAS N-terminus is sufficient to abolish its nuclear retention and coincides with metastatic cellular behavior. Furthermore, downregulating Kapβ1 disrupts CAS nuclear retention, which highlights the balance between their respective functions that is essential for maintaining the Kapα transport cycle. Therefore, NPCs play a functional role in selectively partitioning exportins in the cell nucleus.
Collapse
Affiliation(s)
- Larisa E. Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| | - Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| | - Elena Kassianidou
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| | - Roderick Y. H. Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| |
Collapse
|
7
|
Ferreira PA. Nucleocytoplasmic transport at the crossroads of proteostasis, neurodegeneration and neuroprotection. FEBS Lett 2023; 597:2567-2589. [PMID: 37597509 DOI: 10.1002/1873-3468.14722] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
Nucleocytoplasmic transport comprises the multistep assembly, transport, and disassembly of protein and RNA cargoes entering and exiting nuclear pores. Accruing evidence supports that impairments to nucleocytoplasmic transport are a hallmark of neurodegenerative diseases. These impairments cause dysregulations in nucleocytoplasmic partitioning and proteostasis of nuclear transport receptors and client substrates that promote intracellular deposits - another hallmark of neurodegeneration. Disturbances in liquid-liquid phase separation (LLPS) between dense and dilute phases of biomolecules implicated in nucleocytoplasmic transport promote micrometer-scale coacervates, leading to proteinaceous aggregates. This Review provides historical and emerging principles of LLPS at the interface of nucleocytoplasmic transport, proteostasis, aging and noxious insults, whose dysregulations promote intracellular aggregates. E3 SUMO-protein ligase Ranbp2 constitutes the cytoplasmic filaments of nuclear pores, where it acts as a molecular hub for rate-limiting steps of nucleocytoplasmic transport. A vignette is provided on the roles of Ranbp2 in nucleocytoplasmic transport and at the intersection of proteostasis in the survival of photoreceptor and motor neurons under homeostatic and pathophysiological environments. Current unmet clinical needs are highlighted, including therapeutics aiming to manipulate aggregation-dissolution models of purported neurotoxicity in neurodegeneration.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Department of Ophthalmology, Department of Pathology, Duke University Medical Center, NC, Durham, USA
| |
Collapse
|
8
|
Fichtman B, Harel A. The magnified view: from ancient trinkets to single nuclear pore complexes. FEBS Lett 2023; 597:2590-2596. [PMID: 37777820 DOI: 10.1002/1873-3468.14746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
A journey from the earliest known use of lenses and magnifying glasses in ancient times, through the development of microscopes and towards modern electron microscopy techniques. The evolving technology and improved microscopes enabled the discovery of intracellular organelles, the nucleus and nuclear pore complexes (NPCs). Current advances have led to composite three-dimensional models showing NPC structure in unprecedented detail but relying on the averaging of many images. A complementary approach is field emission scanning electron microscopy providing topographic surface images that are easily and intuitively interpreted by our brain. Recent advances in this technique have made it possible to expose nuclei from human cells and to focus on individual NPCs and their architectural features.
Collapse
Affiliation(s)
- Boris Fichtman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Amnon Harel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
9
|
Martin AP, Bradshaw GA, Eisert RJ, Egan ED, Tveriakhina L, Rogers JM, Dates AN, Scanavachi G, Aster JC, Kirchhausen T, Kalocsay M, Blacklow SC. A spatiotemporal Notch interaction map from plasma membrane to nucleus. Sci Signal 2023; 16:eadg6474. [PMID: 37527352 PMCID: PMC10560377 DOI: 10.1126/scisignal.adg6474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
Notch signaling relies on ligand-induced proteolysis of the transmembrane receptor Notch to liberate a nuclear effector that drives cell fate decisions. Upon ligand binding, sequential cleavage of Notch by the transmembrane protease ADAM10 and the intracellular protease γ-secretase releases the Notch intracellular domain (NICD), which translocates to the nucleus and forms a complex that induces target gene transcription. To map the location and timing of the individual steps required for the proteolysis and movement of Notch from the plasma membrane to the nucleus, we used proximity labeling with quantitative, multiplexed mass spectrometry to monitor the interaction partners of endogenous NOTCH2 after ligand stimulation in the presence of a γ-secretase inhibitor and as a function of time after inhibitor removal. Our studies showed that γ-secretase-mediated cleavage of NOTCH2 occurred in an intracellular compartment and that formation of nuclear complexes and recruitment of chromatin-modifying enzymes occurred within 45 min of inhibitor washout. These findings provide a detailed spatiotemporal map tracking the path of Notch from the plasma membrane to the nucleus and identify signaling events that are potential targets for modulating Notch activity.
Collapse
Affiliation(s)
- Alexandre P. Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gary A. Bradshaw
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robyn J. Eisert
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily D. Egan
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lena Tveriakhina
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Julia M. Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew N. Dates
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jon C. Aster
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Marian Kalocsay
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Lead contact
| |
Collapse
|
10
|
Wang Z, Pan B, Qiu J, Zhang X, Ke X, Shen S, Wu X, Yao Y, Tang N. SUMOylated IL-33 in the nucleus stabilizes the transcription factor IRF1 in hepatocellular carcinoma cells to promote immune escape. Sci Signal 2023; 16:eabq3362. [PMID: 36917642 DOI: 10.1126/scisignal.abq3362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Interleukin-33 (IL-33) functions both as a secreted cytokine and as a nuclear factor, with pleiotropic roles in cancer and immunity. Here, we explored its role in hepatocellular carcinoma (HCC) and identified that a posttranslational modification altered its nuclear activity and promoted immune escape for HCC. IL-33 abundance was overall decreased but more frequently localized to the nucleus in patient HCC tissues than in normal liver tissues. In human and mouse HCC cells in culture and in vivo, IL-33 overexpression inhibited proliferation and repressed the abundance of programmed death ligand 1 (PD-L1) at the transcriptional level by promoting the ubiquitin-dependent degradation of interferon regulatory factor 1 (IRF1). However, this interaction was disrupted by SUMOylation of IL-33 at Lys54 mediated by the E3 ligase RanBP2. IL-33 SUMOylation correlated with its nuclear localization in HCC cells and tumors. An increase in SUMOylated IL-33 in HCC cells in cocultures and in vivo stabilized IRF1 and increased PD-L1 abundance and chemokine IL-8 secretion, which prevented the activation of cytotoxic T cells and promoted the M2 polarization of macrophages, respectively. Mutating the SUMOylation site in IL-33 reversed these effects and suppressed tumor growth. These findings indicate that SUMOylation of nuclear IL-33 in HCC cells impairs antitumor immunity.
Collapse
Affiliation(s)
- Zengbin Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Jiacheng Qiu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Xiaoling Ke
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Shuling Shen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Xiaoxuan Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China.,Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou 350001, China.,Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350122, China
| |
Collapse
|
11
|
Liu Y, Trnka MJ, He L, Burlingame AL, Correia MA. In-Cell Chemical Crosslinking Identifies Hotspots for SQSTM-1/p62-IκBα Interaction That Underscore a Critical Role of p62 in Limiting NF-κB Activation Through IκBα Stabilization. Mol Cell Proteomics 2023; 22:100495. [PMID: 36634736 PMCID: PMC9947424 DOI: 10.1016/j.mcpro.2023.100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
We have previously documented that in liver cells, the multifunctional protein scaffold p62/SQSTM1 is closely associated with IκBα, an inhibitor of the transcriptional activator NF-κB. Such an intimate p62-IκBα association we now document leads to a marked 18-fold proteolytic IκBα-stabilization, enabling its nuclear entry and termination of the NF-κB-activation cycle. In p62-/--cells, such termination is abrogated resulting in the nuclear persistence and prolonged activation of NF-κB following inflammatory stimuli. Utilizing various approaches both classic (structural deletion, site-directed mutagenesis) as well as novel (in-cell chemical crosslinking), coupled with proteomic analyses, we have defined the precise structural hotspots of p62-IκBα association. Accordingly, we have identified such IκBα hotspots to reside around N-terminal (K38, K47, and K67) and C-terminal (K238/C239) residues in its fifth ankyrin repeat domain. These sites interact with two hotspots in p62: One in its PB-1 subdomain around K13, and the other comprised of a positively charged patch (R183/R186/K187/K189) between its ZZ- and TB-subdomains. APEX proximity analyses upon IκBα-cotransfection of cells with and without p62 have enabled the characterization of the p62 influence on IκBα-protein-protein interactions. Interestingly, consistent with p62's capacity to proteolytically stabilize IκBα, its presence greatly impaired IκBα's interactions with various 20S/26S proteasomal subunits. Furthermore, consistent with p62 interaction with IκBα on an interface opposite to that of its NF-κB-interacting interface, p62 failed to significantly affect IκBα-NF-κB interactions. These collective findings together with the known dynamic p62 nucleocytoplasmic shuttling leads us to speculate that it may be involved in "piggy-back" nuclear transport of IκBα following its NF-κB-elicited transcriptional activation and de novo synthesis, required for termination of the NF-κB-activation cycle. Consequently, mice carrying a liver-specific deletion of p62-residues 68 to 252 reveal age-dependent-enhanced liver inflammation. Our findings reveal yet another mode of p62-mediated pathophysiologically relevant regulation of NF-κB.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Liang He
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - A L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Maria Almira Correia
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; The Liver Center, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
12
|
Hergott CB, Dal Cin P, Hornick JL, Winer ES, Carrasco RD, Kim AS. Characteristic nuclear membrane ALK reactivity in chronic myelomonocytic leukemia with RANBP2-ALK fusion. Am J Hematol 2023; 98:365-367. [PMID: 33491794 DOI: 10.1002/ajh.26107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/17/2021] [Indexed: 01/13/2023]
Affiliation(s)
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Eric S Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ruben D Carrasco
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Pörschke M, Rodríguez-González I, Parfentev I, Urlaub H, Kehlenbach RH. Transportin 1 is a major nuclear import receptor of the nitric oxide synthase interacting protein. J Biol Chem 2023; 299:102932. [PMID: 36690276 PMCID: PMC9974451 DOI: 10.1016/j.jbc.2023.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
The nitric oxide synthase interacting protein (NOSIP), an E3-ubiquitin ligase, is involved in various processes like neuronal development, craniofacial development, granulopoiesis, mitogenic signaling, apoptosis, and cell proliferation. The best-characterized function of NOSIP is the regulation of endothelial nitric oxide synthase activity by translocating the membrane-bound enzyme to the cytoskeleton, specifically in the G2 phase of the cell cycle. For this, NOSIP itself has to be translocated from its prominent localization, the nucleus, to the cytoplasm. Nuclear import of NOSIP was suggested to be mediated by the canonical transport receptors importin α/β. Recently, we found NOSIP in a proteomic screen as a potential importin 13 cargo. Here, we describe the nuclear shuttling characteristics of NOSIP in living cells and in vitro and show that it does not interact directly with importin α. Instead, it formed stable complexes with several importins (-β, -7, -β/7, -13, and transportin 1) and was also imported into the nucleus in digitonin-permeabilized cells by these factors. In living HeLa cells, transportin 1 seems to be the major nuclear import receptor for NOSIP. A detailed analysis of the NOSIP-transportin 1 interaction revealed a high affinity and an unusual binding mode, involving the N-terminal half of transportin 1. In contrast to nuclear import, nuclear export of NOSIP seems to occur mostly by passive diffusion. Thus, our results uncover additional layers in the larger process of endothelial nitric oxide synthase regulation.
Collapse
Affiliation(s)
- Marius Pörschke
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Inés Rodríguez-González
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany,Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ralph H. Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany,For correspondence: Ralph H. Kehlenbach
| |
Collapse
|
14
|
Ismail AM, Saha A, Lee JS, Painter DF, Chen Y, Singh G, Condezo GN, Chodosh J, San Martín C, Rajaiya J. RANBP2 and USP9x regulate nuclear import of adenovirus minor coat protein IIIa. PLoS Pathog 2022; 18:e1010588. [PMID: 35709296 PMCID: PMC9242475 DOI: 10.1371/journal.ppat.1010588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/29/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
As intracellular parasites, viruses exploit cellular proteins at every stage of infection. Adenovirus outbreaks are associated with severe acute respiratory illnesses and conjunctivitis, with no specific antiviral therapy available. An adenoviral vaccine based on human adenovirus species D (HAdV-D) is currently in use for COVID-19. Herein, we investigate host interactions of HAdV-D type 37 (HAdV-D37) protein IIIa (pIIIa), identified by affinity purification and mass spectrometry (AP-MS) screens. We demonstrate that viral pIIIa interacts with ubiquitin-specific protease 9x (USP9x) and Ran-binding protein 2 (RANBP2). USP9x binding did not invoke its signature deubiquitination function but rather deregulated pIIIa-RANBP2 interactions. In USP9x-knockout cells, viral genome replication and viral protein expression increased compared to wild type cells, supporting a host-favored mechanism for USP9x. Conversely, RANBP2-knock down reduced pIIIa transport to the nucleus, viral genome replication, and viral protein expression. Also, RANBP2-siRNA pretreated cells appeared to contain fewer mature viral particles. Transmission electron microscopy of USP9x-siRNA pretreated, virus-infected cells revealed larger than typical paracrystalline viral arrays. RANBP2-siRNA pretreatment led to the accumulation of defective assembly products at an early maturation stage. CRM1 nuclear export blockade by leptomycin B led to the retention of pIIIa within cell nuclei and hindered pIIIa-RANBP2 interactions. In-vitro binding analyses indicated that USP9x and RANBP2 bind to C-terminus of pIIIa amino acids 386–563 and 386–510, respectively. Surface plasmon resonance testing showed direct pIIIa interaction with recombinant USP9x and RANBP2 proteins, without competition. Using an alternative and genetically disparate adenovirus type (HAdV-C5), we show that the demonstrated pIIIa interaction is also important for a severe respiratory pathogen. Together, our results suggest that pIIIa hijacks RANBP2 for nuclear import and subsequent virion assembly. USP9x counteracts this interaction and negatively regulates virion synthesis. This analysis extends the scope of known adenovirus-host interactions and has potential implications in designing new antiviral therapeutics. The compact genomes of viruses must code for proteins with multiple functions, including those that assist with cell entry, replication, and escape from the host immune defenses. Viruses succeed in every stage of this process by hijacking critical cellular proteins for their propagation. Hence, identifying virus-host protein interactions may permit identifying therapeutic applications that restrict viral processes. Human adenovirus structural proteins link together to produce infectious virions. Protein IIIa is required to assemble fully packaged virions, but its interactions with host factors are unknown. Here, we identify novel host protein interactions of pIIIa with cellular RANBP2 and USP9x. We demonstrate that by interacting with cellular RANBP2, viral pIIIa gains entry to the nucleus for subsequent virion assembly and replication. Reduced RANBP2 expression inhibited pIIIa entry into the nucleus, minimized viral replication and viral protein expression, and led to accumulation of defective assembly products in the infected cells. As a defense against viral infection, USP9x reduces the interaction between pIIIa and RANBP2, resulting in decreased viral propagation. We also show that the identified pIIIa-host interactions are crucial in two disparate HAdV types with diverse disease implications.
Collapse
Affiliation(s)
- Ashrafali M. Ismail
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amrita Saha
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ji S. Lee
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David F. Painter
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gurdeep Singh
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gabriela N. Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Madrid, Spain
| | - James Chodosh
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Madrid, Spain
| | - Jaya Rajaiya
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
García-García M, Sánchez-Perales S, Jarabo P, Calvo E, Huyton T, Fu L, Ng SC, Sotodosos-Alonso L, Vázquez J, Casas-Tintó S, Görlich D, Echarri A, Del Pozo MA. Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP. Nat Commun 2022; 13:1174. [PMID: 35246520 PMCID: PMC8897400 DOI: 10.1038/s41467-022-28693-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Mechanical forces regulate multiple essential pathways in the cell. The nuclear translocation of mechanoresponsive transcriptional regulators is an essential step for mechanotransduction. However, how mechanical forces regulate the nuclear import process is not understood. Here, we identify a highly mechanoresponsive nuclear transport receptor (NTR), Importin-7 (Imp7), that drives the nuclear import of YAP, a key regulator of mechanotransduction pathways. Unexpectedly, YAP governs the mechanoresponse of Imp7 by forming a YAP/Imp7 complex that responds to mechanical cues through the Hippo kinases MST1/2. Furthermore, YAP behaves as a dominant cargo of Imp7, restricting the Imp7 binding and the nuclear translocation of other Imp7 cargoes such as Smad3 and Erk2. Thus, the nuclear import process is an additional regulatory layer indirectly regulated by mechanical cues, which activate a preferential Imp7 cargo, YAP, which competes out other cargoes, resulting in signaling crosstalk. The translation of mechanical cues into gene expression changes is dependent on the nuclear import of mechanoresponsive transcriptional regulators. Here the authors identify that Importin-7 drives the nuclear import of one such regulator YAP while YAP then controls Importin-7 response to mechanical cues and restricts Importin-7 binding to other cargoes.
Collapse
Affiliation(s)
- María García-García
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Sara Sánchez-Perales
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Patricia Jarabo
- Instituto Cajal-CSIC, Avda. Doctor Arce, 37, 28002, Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Liran Fu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Sheung Chun Ng
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Laura Sotodosos-Alonso
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Jesús Vázquez
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
16
|
Lopez L, Perrella G, Calderini O, Porceddu A, Panara F. Genome-Wide Identification of Histone Modification Gene Families in the Model Legume Medicago truncatula and Their Expression Analysis in Nodules. PLANTS 2022; 11:plants11030322. [PMID: 35161303 PMCID: PMC8838541 DOI: 10.3390/plants11030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 01/22/2023]
Abstract
Histone methylation and acetylation are key processes in the epigenetic regulation of plant growth, development, and responses to environmental stimuli. The genes encoding for the enzymes that are responsible for these chromatin post-translational modifications, referred to as histone modification genes (HMGs), have been poorly investigated in Leguminosae species, despite their importance for establishment and activity of nitrogen-fixing nodules. In silico analysis of Medicago truncatula HMGs identified 81 histone methyltransferases, 46 histone demethylases, 64 histone acetyltransferases, and 15 histone deacetylases. MtHMGs were analyzed for their structure and domain composition, and some combinations that were not yet reported in other plant species were identified. Genes have been retrieved from M. truncatula A17 and R108 genotypes as well as M. sativa CADL and Zhongmu No.1; the gene number and distribution were compared with Arabidopsis thaliana. Furthermore, by analyzing the expression data that were obtained at various developmental stages and in different zones of nitrogen-fixing nodules, we identified MtHMG loci that could be involved in nodule development and function. This work sets a reference for HMG genomic organization in legumes which will be useful for functional investigation that is aimed at elucidating HMGs involvement in nodule development and symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Loredana Lopez
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
| | - Giorgio Perrella
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
| | - Ornella Calderini
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, 06128 Perugia, Italy
- Correspondence: (O.C.); (F.P.); Tel.: +39-075-501-4858 (O.C.); +39-0835-974-523 (F.P.)
| | - Andrea Porceddu
- Department of Agriculture, University of Sassari, Viale Italia, 39a, 07100 Sassari, Italy;
| | - Francesco Panara
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
- Correspondence: (O.C.); (F.P.); Tel.: +39-075-501-4858 (O.C.); +39-0835-974-523 (F.P.)
| |
Collapse
|
17
|
Shukla P, Mandalla A, Elrick MJ, Venkatesan A. Clinical Manifestations and Pathogenesis of Acute Necrotizing Encephalopathy: The Interface Between Systemic Infection and Neurologic Injury. Front Neurol 2022; 12:628811. [PMID: 35058867 PMCID: PMC8764155 DOI: 10.3389/fneur.2021.628811] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Acute necrotizing encephalopathy (ANE) is a devastating neurologic condition that can arise following a variety of systemic infections, including influenza and SARS-CoV-2. Affected individuals typically present with rapid changes in consciousness, focal neurological deficits, and seizures. Neuroimaging reveals symmetric, bilateral deep gray matter lesions, often involving the thalami, with evidence of necrosis and/or hemorrhage. The clinical and radiologic picture must be distinguished from direct infection of the central nervous system by some viruses, and from metabolic and mitochondrial disorders. Outcomes following ANE are poor overall and worse in those with brainstem involvement. Specific management is often directed toward modulating immune responses given the potential role of systemic inflammation and cytokine storm in potentiating neurologic injury in ANE, though benefits of such approaches remain unclear. The finding that many patients have mutations in the nucleoporin gene RANBP2, which encodes a multifunctional protein that plays a key role in nucleocytoplasmic transport, may allow for the development of disease models that provide insights into pathogenic mechanisms and novel therapeutic approaches.
Collapse
Affiliation(s)
- Priya Shukla
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Abby Mandalla
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Matthew J Elrick
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Control of the Mdm2-p53 signal loop by β-arrestin 2: The ins and outs. Oncotarget 2021; 12:2543-2545. [PMID: 34966486 PMCID: PMC8711569 DOI: 10.18632/oncotarget.28065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/25/2022] Open
|
19
|
He Y, Yang Z, Zhao CS, Xiao Z, Gong Y, Li YY, Chen Y, Du Y, Feng D, Altman A, Li Y. T-cell receptor (TCR) signaling promotes the assembly of RanBP2/RanGAP1-SUMO1/Ubc9 nuclear pore subcomplex via PKC-θ-mediated phosphorylation of RanGAP1. eLife 2021; 10:67123. [PMID: 34110283 PMCID: PMC8225385 DOI: 10.7554/elife.67123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/03/2021] [Indexed: 01/15/2023] Open
Abstract
The nuclear pore complex (NPC) is the sole and selective gateway for nuclear transport, and its dysfunction has been associated with many diseases. The metazoan NPC subcomplex RanBP2, which consists of RanBP2 (Nup358), RanGAP1-SUMO1, and Ubc9, regulates the assembly and function of the NPC. The roles of immune signaling in regulation of NPC remain poorly understood. Here, we show that in human and murine T cells, following T-cell receptor (TCR) stimulation, protein kinase C-θ (PKC-θ) directly phosphorylates RanGAP1 to facilitate RanBP2 subcomplex assembly and nuclear import and, thus, the nuclear translocation of AP-1 transcription factor. Mechanistically, TCR stimulation induces the translocation of activated PKC-θ to the NPC, where it interacts with and phosphorylates RanGAP1 on Ser504 and Ser506. RanGAP1 phosphorylation increases its binding affinity for Ubc9, thereby promoting sumoylation of RanGAP1 and, finally, assembly of the RanBP2 subcomplex. Our findings reveal an unexpected role of PKC-θ as a direct regulator of nuclear import and uncover a phosphorylation-dependent sumoylation of RanGAP1, delineating a novel link between TCR signaling and assembly of the RanBP2 NPC subcomplex.
Collapse
Affiliation(s)
- Yujiao He
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiguo Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chen-Si Zhao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Xiao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Gong
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Yi Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiqi Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yunting Du
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dianying Feng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Amnon Altman
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, United States
| | - Yingqiu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Acute necrotizing encephalopathy-linked mutations in Nup358 impair interaction of Nup358 with TNRC6/GW182 and miRNA function. Biochem Biophys Res Commun 2021; 559:230-237. [PMID: 33962210 DOI: 10.1016/j.bbrc.2021.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022]
Abstract
MicroRNA (miRNA)-mediated translational suppression of mRNAs is involved in the regulation of multiple cellular processes. A recent study showed that Nup358, a protein mutated in a neurological disorder called acute necrotizing encephalopathy 1 (ANE1), helps in the coupling of miRNA-induced silencing complex (miRISC) - consisting of miRNA, AGO and GW182/TNRC6 proteins - with the target mRNA. Here we provide a detailed characterization of the interaction between Nup358 and GW182. We identified that the N-terminal region of Nup358 directly interacts with the C-terminal silencing domain of GW182. Interestingly, ANE1-associated Nup358 mutants display reduced interaction with GW182. Consistent with this, one of the prevalent ANE1 mutations, 585th threonine (T) residue changed to methionine (M) [T585M] compromised Nup358's ability to function in the miRNA pathway. Collectively, these results suggest that the ANE1-associated mutations in Nup358 might affect the miRNA pathway and contribute to the development of ANE1.
Collapse
|
21
|
Baade I, Hutten S, Sternburg EL, Pörschke M, Hofweber M, Dormann D, Kehlenbach RH. The RNA-binding protein FUS is chaperoned and imported into the nucleus by a network of import receptors. J Biol Chem 2021; 296:100659. [PMID: 33857479 PMCID: PMC8131929 DOI: 10.1016/j.jbc.2021.100659] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Fused in sarcoma (FUS) is a predominantly nuclear RNA-binding protein with key functions in RNA processing and DNA damage repair. Defects in nuclear import of FUS have been linked to severe neurodegenerative diseases; hence, it is of great interest to understand this process and how it is dysregulated in disease. Transportin-1 (TNPO1) and the closely related transportin-2 have been identified as major nuclear import receptors of FUS. They bind to the C-terminal nuclear localization signal of FUS and mediate the protein's nuclear import and at the same time also suppress aberrant phase transitions of FUS in the cytoplasm. Whether FUS can utilize other nuclear transport receptors for the purpose of import and chaperoning has not been examined so far. Here, we show that FUS directly binds to different import receptors in vitro. FUS formed stable complexes not only with TNPO1 but also with transportin-3, importin β, importin 7, or the importin β/7 heterodimer. Binding of these alternative import receptors required arginine residues within FUS-RG/RGG motifs and was weakened by arginine methylation. Interaction with these importins suppressed FUS phase separation and reduced its sequestration into stress granules. In a permeabilized cell system, we further showed that transportin-3 had the capacity to import FUS into the nucleus, albeit with lower efficiency than TNPO1. Our data suggest that aggregation-prone RNA-binding proteins such as FUS may utilize a network of importins for chaperoning and import, similar to histones and ribosomal proteins.
Collapse
Affiliation(s)
- Imke Baade
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Saskia Hutten
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Erin L Sternburg
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Marius Pörschke
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Mario Hofweber
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
22
|
The RanBP2/RanGAP1-SUMO complex gates β-arrestin2 nuclear entry to regulate the Mdm2-p53 signaling axis. Oncogene 2021; 40:2243-2257. [PMID: 33649538 DOI: 10.1038/s41388-021-01704-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
Mdm2 antagonizes the tumor suppressor p53. Targeting the Mdm2-p53 interaction represents an attractive approach for the treatment of cancers with functional p53. Investigating mechanisms underlying Mdm2-p53 regulation is therefore important. The scaffold protein β-arrestin2 (β-arr2) regulates tumor suppressor p53 by counteracting Mdm2. β-arr2 nucleocytoplasmic shuttling displaces Mdm2 from the nucleus to the cytoplasm resulting in enhanced p53 signaling. β-arr2 is constitutively exported from the nucleus, via a nuclear export signal, but mechanisms regulating its nuclear entry are not completely elucidated. β-arr2 can be SUMOylated, but no information is available on how SUMO may regulate β-arr2 nucleocytoplasmic shuttling. While we found β-arr2 SUMOylation to be dispensable for nuclear import, we identified a non-covalent interaction between SUMO and β-arr2, via a SUMO interaction motif (SIM), that is required for β-arr2 cytonuclear trafficking. This SIM promotes association of β-arr2 with the multimolecular RanBP2/RanGAP1-SUMO nucleocytoplasmic transport hub that resides on the cytoplasmic filaments of the nuclear pore complex. Depletion of RanBP2/RanGAP1-SUMO levels result in defective β-arr2 nuclear entry. Mutation of the SIM inhibits β-arr2 nuclear import, its ability to delocalize Mdm2 from the nucleus to the cytoplasm and enhanced p53 signaling in lung and breast tumor cell lines. Thus, a β-arr2 SIM nuclear entry checkpoint, coupled with active β-arr2 nuclear export, regulates its cytonuclear trafficking function to control the Mdm2-p53 signaling axis.
Collapse
|
23
|
Liu Y, Trnka MJ, Guan S, Kwon D, Kim DH, Chen JJ, Greer PA, Burlingame AL, Correia MA. A Novel Mechanism for NF-κB-activation via IκB-aggregation: Implications for Hepatic Mallory-Denk-Body Induced Inflammation. Mol Cell Proteomics 2020; 19:1968-1986. [PMID: 32912968 PMCID: PMC7710137 DOI: 10.1074/mcp.ra120.002316] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/06/2022] Open
Abstract
Mallory-Denk-bodies (MDBs) are hepatic protein aggregates associated with inflammation both clinically and in MDB-inducing models. Similar protein aggregation in neurodegenerative diseases also triggers inflammation and NF-κB activation. However, the precise mechanism that links protein aggregation to NF-κB-activation and inflammatory response remains unclear. Herein we find that treating primary hepatocytes with MDB-inducing agents (N-methylprotoporphyrin (NMPP), protoporphyrin IX (PPIX), or Zinc-protoporphyrin IX (ZnPP)) elicited an IκBα-loss with consequent NF-κB activation. Four known mechanisms of IκBα-loss i.e. the canonical ubiquitin-dependent proteasomal degradation (UPD), autophagic-lysosomal degradation, calpain degradation and translational inhibition, were all probed and excluded. Immunofluorescence analyses of ZnPP-treated cells coupled with 8 M urea/CHAPS-extraction revealed that this IκBα-loss was due to its sequestration along with IκBβ into insoluble aggregates, thereby releasing NF-κB. Through affinity pulldown, proximity biotinylation by antibody recognition, and other proteomic analyses, we verified that NF-κB subunit p65, which stably interacts with IκBα under normal conditions, no longer binds to it upon ZnPP-treatment. Additionally, we identified 10 proteins that interact with IκBα under baseline conditions, aggregate upon ZnPP-treatment, and maintain the interaction with IκBα after ZnPP-treatment, either by cosequestering into insoluble aggregates or through a different mechanism. Of these 10 proteins, the nucleoporins Nup153 and Nup358/RanBP2 were identified through RNA-interference, as mediators of IκBα-nuclear import. The concurrent aggregation of IκBα, NUP153, and RanBP2 upon ZnPP-treatment, synergistically precluded the nuclear entry of IκBα and its consequent binding and termination of NF-κB activation. This novel mechanism may account for the protein aggregate-induced inflammation observed in liver diseases, thus identifying novel targets for therapeutic intervention. Because of inherent commonalities this MDB cell model is a bona fide protoporphyric model, making these findings equally relevant to the liver inflammation associated with clinical protoporphyria.
Collapse
Affiliation(s)
- Yi Liu
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shenheng Guan
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Doyoung Kwon
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Do-Hyung Kim
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - J-J Chen
- Institute for Medical Engineering and Science, MIT, Cambridge, Massachusetts, USA
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - A L Burlingame
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Maria Almira Correia
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; The Liver Center, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
24
|
Moriyama T, Yoneda Y, Oka M, Yamada M. Transportin-2 plays a critical role in nucleocytoplasmic shuttling of oestrogen receptor-α. Sci Rep 2020; 10:18640. [PMID: 33122699 PMCID: PMC7596556 DOI: 10.1038/s41598-020-75631-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Oestrogen receptor-α (ERα) shuttles continuously between the nucleus and the cytoplasm, and functions as an oestrogen-dependent transcription factor in the nucleus and as an active mediator of signalling pathways, such as phosphatidylinositol 3-kinase (PI3K)/AKT, in the cytoplasm. However, little is known regarding the mechanism of ERα nucleocytoplasmic shuttling. In this study, we found that ERα is transported into the nucleus by importin-α/β1. Furthermore, we found that Transportin-2 (TNPO2) is involved in 17β-oestradiol (E2)-dependent cytoplasmic localisation of ERα. Interestingly, it was found that TNPO2 does not mediate nuclear export, but rather is involved in the cytoplasmic retention of ERα via the proline/tyrosine (PY) motifs. Moreover, we found that TNPO2 competitively binds to the basic nuclear localisation signal (NLS) of ERα with importin-α to inhibit importin-α/β-dependent ERα nuclear import. Finally, we confirmed that TNPO2 knockdown enhances the nuclear localisation of wild-type ERα and reduces PI3K/AKT phosphorylation in the presence of E2. These results reveal that TNPO2 regulates nucleocytoplasmic shuttling and cytoplasmic retention of ERα, so that ERα has precise functions depending on the stimulation.
Collapse
Affiliation(s)
- Tetsuji Moriyama
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Yoshihiro Yoneda
- Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Nuclear Transport Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan. .,Life Science Research Laboratory, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| |
Collapse
|
25
|
Zhu W, Shen Y, Liu J, Fei X, Zhang Z, Li M, Chen X, Xu J, Zhu Q, Zhou W, Zhang M, Liu S, Du J. Epigenetic alternations of microRNAs and DNA methylation contribute to gestational diabetes mellitus. J Cell Mol Med 2020; 24:13899-13912. [PMID: 33085184 PMCID: PMC7753873 DOI: 10.1111/jcmm.15984] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/29/2020] [Indexed: 01/01/2023] Open
Abstract
This study aimed to identify epigenetic alternations of microRNAs and DNA methylation for gestational diabetes mellitus (GDM) diagnosis and treatment using in silico approach. Data of mRNA and miRNA expression microarray (GSE103552 and GSE104297) and DNA methylation data set (GSE106099) were obtained from the GEO database. Differentially expressed genes (DEGs), differentially expressed miRNAs (DEMs) and differentially methylated genes (DMGs) were obtained by limma package. Functional and enrichment analyses were performed with the DAVID database. The protein‐protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. Simultaneously, a connectivity map (CMap) analysis was performed to screen potential therapeutic agents for GDM. In GDM, 184 low miRNA‐targeting up‐regulated genes and 234 high miRNA‐targeting down‐regulated genes as well as 364 hypomethylation–high‐expressed genes and 541 hypermethylation–low‐expressed genes were obtained. They were mainly enriched in terms of axon guidance, purine metabolism, focal adhesion and proteasome, respectively. In addition, 115 genes (67 up‐regulated and 48 down‐regulated) were regulated by both aberrant alternations of miRNAs and DNA methylation. Ten chemicals were identified as putative therapeutic agents for GDM and four hub genes (IGF1R, ATG7, DICER1 and RANBP2) were found in PPI and may be associated with GDM. Overall, this study identified a series of differentially expressed genes that are associated with epigenetic alternations of miRNA and DNA methylation in GDM. Ten chemicals and four hub genes may be further explored as potential drugs and targets for GDM diagnosis and treatment, respectively.
Collapse
Affiliation(s)
- Weiqiang Zhu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Shandong University, Jinan, China.,NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Yupei Shen
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Junwei Liu
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Xiaoping Fei
- The First people's Hospital of Kunshan, Kunshan, China
| | - Zhaofeng Zhang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Min Li
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Xiaohong Chen
- Department of Obstetrics and Gynecology, Shanghai Pudong New Area Health Care Hospital For Women & Children, Shanghai, China
| | - Jianhua Xu
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Qianxi Zhu
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Weijin Zhou
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Shandong University, Jinan, China
| | | | - Jing Du
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Nup358 and Transportin 1 Cooperate in Adenoviral Genome Import. J Virol 2020; 94:JVI.00164-20. [PMID: 32161167 DOI: 10.1128/jvi.00164-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Nuclear import of viral genomes is an important step during the life cycle of adenoviruses (AdV), requiring soluble cellular factors as well as proteins of the nuclear pore complex (NPC). We addressed the role of the cytoplasmic nucleoporin Nup358 during adenoviral genome delivery by performing depletion/reconstitution experiments and time-resolved quantification of adenoviral genome import. Nup358-depleted cells displayed reduced efficiencies of nuclear import of adenoviral genomes, and the nuclear import receptor transportin 1 became rate limiting under these conditions. Furthermore, we identified a minimal N-terminal region of Nup358 that was sufficient to compensate for the import defect. Our data support a model where Nup358 functions as an assembly platform that promotes the formation of transport complexes, allowing AdV to exploit a physiological protein import pathway for accelerated transport of its DNA.IMPORTANCE Nuclear import of viral genomes is an essential step to initiate productive infection for several nuclear replicating DNA viruses. On the other hand, DNA is not a physiological nuclear import substrate; consequently, viruses have to exploit existing physiological transport routes. Here, we show that adenoviruses use the nucleoporin Nup358 to increase the efficiency of adenoviral genome import. In its absence, genome import efficiency is reduced and the transport receptor transportin 1 becomes rate limiting. We show that the N-terminal half of Nup358 is sufficient to drive genome import and identify a transportin 1 binding region. In our model, adenovirus genome import exploits an existing protein import pathway and Nup358 serves as an assembly platform for transport complexes.
Collapse
|
27
|
Moreno-Oñate M, Herrero-Ruiz AM, García-Dominguez M, Cortés-Ledesma F, Ruiz JF. RanBP2-Mediated SUMOylation Promotes Human DNA Polymerase Lambda Nuclear Localization and DNA Repair. J Mol Biol 2020; 432:3965-3979. [PMID: 32224012 DOI: 10.1016/j.jmb.2020.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/28/2022]
Abstract
Cellular DNA is under constant attack by a wide variety of agents, both endogenous and exogenous. To counteract DNA damage, human cells have a large collection of DNA repair factors. Among them, DNA polymerase lambda (Polλ) stands out for its versatility, as it participates in different DNA repair and damage tolerance pathways in which gap-filling DNA synthesis is required. In this work, we show that human Polλ is conjugated with Small Ubiquitin-like MOdifier (SUMO) proteins both in vitro and in vivo, with Lys27 being the main target of this covalent modification. Polλ SUMOylation takes place in the nuclear pore complex and is mediated by the E3 ligase RanBP2. This post-translational modification promotes Polλ entry into the nucleus, which is required for its recruitment to DNA lesions and stimulated by DNA damage induction. Our work represents an advance in the knowledge of molecular pathways that regulate cellular localization of human Polλ, which are essential to be able to perform its functions during repair of nuclear DNA, and that might constitute an important point for the modulation of its activity in human cells.
Collapse
Affiliation(s)
- M Moreno-Oñate
- Departamento Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla
| | - A M Herrero-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla/CSIC/Universidad Pablo Olavide/Junta de Andalucía, 41092 Sevilla, Spain
| | - M García-Dominguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla/CSIC/Universidad Pablo Olavide/Junta de Andalucía, 41092 Sevilla, Spain
| | - F Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla/CSIC/Universidad Pablo Olavide/Junta de Andalucía, 41092 Sevilla, Spain; Topology and DNA Breaks Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| | - J F Ruiz
- Departamento Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla/CSIC/Universidad Pablo Olavide/Junta de Andalucía, 41092 Sevilla, Spain.
| |
Collapse
|
28
|
Hutten S, Dormann D. Nucleocytoplasmic transport defects in neurodegeneration — Cause or consequence? Semin Cell Dev Biol 2020; 99:151-162. [DOI: 10.1016/j.semcdb.2019.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
|
29
|
Into the basket and beyond: the journey of mRNA through the nuclear pore complex. Biochem J 2020; 477:23-44. [DOI: 10.1042/bcj20190132] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
The genetic information encoded in nuclear mRNA destined to reach the cytoplasm requires the interaction of the mRNA molecule with the nuclear pore complex (NPC) for the process of mRNA export. Numerous proteins have important roles in the transport of mRNA out of the nucleus. The NPC embedded in the nuclear envelope is the port of exit for mRNA and is composed of ∼30 unique proteins, nucleoporins, forming the distinct structures of the nuclear basket, the pore channel and cytoplasmic filaments. Together, they serve as a rather stationary complex engaged in mRNA export, while a variety of soluble protein factors dynamically assemble on the mRNA and mediate the interactions of the mRNA with the NPC. mRNA export factors are recruited to and dissociate from the mRNA at the site of transcription on the gene, during the journey through the nucleoplasm and at the nuclear pore at the final stages of export. In this review, we present the current knowledge derived from biochemical, molecular, structural and imaging studies, to develop a high-resolution picture of the many events that culminate in the successful passage of the mRNA out of the nucleus.
Collapse
|
30
|
Lee HJ, Han HJ. Role of Microtubule-Associated Factors in HIF1α Nuclear Translocation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:271-276. [PMID: 31893420 DOI: 10.1007/978-3-030-34461-0_34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adaptation to hypoxia is essential for regulating the survival and functions of hypoxic cells; it is mainly mediated by the hypoxia-inducible factor 1 (HIF1). The alpha subunit of HIF1 (HIF1α) is a well-known regulatory component of HIF1, which is tightly controlled by various types of HIF1α-regulating processes. Previous research has shown that microtubule-regulated HIF1α nuclear translocation is a key factor for HIF1 activation under hypoxia. In this review, we summarize experimental reports on the role of microtubule-associated factors, such as microtubule, dynein, and dynein adaptor protein, in nuclear translocation of HIF1α. Based upon scientific evidence, we propose a bicaudal D homolog (BICD) as a novel HIF1α translocation regulating factor. A deeper understanding of the mechanism of the action of regulatory factors in controlling HIF1α nuclear translocation will provide novel insights into cell biology under hypoxia.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
31
|
Cho KI, Yoon D, Yu M, Peachey NS, Ferreira PA. Microglial activation in an amyotrophic lateral sclerosis-like model caused by Ranbp2 loss and nucleocytoplasmic transport impairment in retinal ganglion neurons. Cell Mol Life Sci 2019; 76:3407-3432. [PMID: 30944974 PMCID: PMC6698218 DOI: 10.1007/s00018-019-03078-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Nucleocytoplasmic transport is dysregulated in sporadic and familial amyotrophic lateral sclerosis (ALS) and retinal ganglion neurons (RGNs) are purportedly involved in ALS. The Ran-binding protein 2 (Ranbp2) controls rate-limiting steps of nucleocytoplasmic transport. Mice with Ranbp2 loss in Thy1+-motoneurons develop cardinal ALS-like motor traits, but the impairments in RGNs and the degree of dysfunctional consonance between RGNs and motoneurons caused by Ranbp2 loss are unknown. This will help to understand the role of nucleocytoplasmic transport in the differential vulnerability of neuronal cell types to ALS and to uncover non-motor endophenotypes with pathognomonic signs of ALS. Here, we ascertain Ranbp2's function and endophenotypes in RGNs of an ALS-like mouse model lacking Ranbp2 in motoneurons and RGNs. Thy1+-RGNs lacking Ranbp2 shared with motoneurons the dysregulation of nucleocytoplasmic transport. RGN abnormalities were comprised morphologically by soma hypertrophy and optic nerve axonopathy and physiologically by a delay of the visual pathway's evoked potentials. Whole-transcriptome analysis showed restricted transcriptional changes in optic nerves that were distinct from those found in sciatic nerves. Specifically, the level and nucleocytoplasmic partition of the anti-apoptotic and novel substrate of Ranbp2, Pttg1/securin, were dysregulated. Further, acetyl-CoA carboxylase 1, which modulates de novo synthesis of fatty acids and T-cell immunity, showed the highest up-regulation (35-fold). This effect was reflected by the activation of ramified CD11b+ and CD45+-microglia, increase of F4\80+-microglia and a shift from pseudopodial/lamellipodial to amoeboidal F4\80+-microglia intermingled between RGNs of naive mice. Further, there was the intracellular sequestration in RGNs of metalloproteinase-28, which regulates macrophage recruitment and polarization in inflammation. Hence, Ranbp2 genetic insults in RGNs and motoneurons trigger distinct paracrine signaling likely by the dysregulation of nucleocytoplasmic transport of neuronal-type selective substrates. Immune-modulators underpinning RGN-to-microglial signaling are regulated by Ranbp2, and this neuronal-glial system manifests endophenotypes that are likely useful in the prognosis and diagnosis of motoneuron diseases, such as ALS.
Collapse
Affiliation(s)
- Kyoung-In Cho
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA
| | - Dosuk Yoon
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Neal S Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Paulo A Ferreira
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
32
|
Fichtman B, Harel T, Biran N, Zagairy F, Applegate CD, Salzberg Y, Gilboa T, Salah S, Shaag A, Simanovsky N, Ayoubieh H, Sobreira N, Punzi G, Pierri CL, Hamosh A, Elpeleg O, Harel A, Edvardson S. Pathogenic Variants in NUP214 Cause "Plugged" Nuclear Pore Channels and Acute Febrile Encephalopathy. Am J Hum Genet 2019; 105:48-64. [PMID: 31178128 DOI: 10.1016/j.ajhg.2019.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/06/2019] [Indexed: 12/15/2022] Open
Abstract
We report biallelic missense and frameshift pathogenic variants in the gene encoding human nucleoporin NUP214 causing acute febrile encephalopathy. Clinical symptoms include neurodevelopmental regression, seizures, myoclonic jerks, progressive microcephaly, and cerebellar atrophy. NUP214 and NUP88 protein levels were reduced in primary skin fibroblasts derived from affected individuals, while the total number and density of nuclear pore complexes remained normal. Nuclear transport assays exhibited defects in the classical protein import and mRNA export pathways in affected cells. Direct surface imaging of fibroblast nuclei by scanning electron microscopy revealed a large increase in the presence of central particles (known as "plugs") in the nuclear pore channels of affected cells. This observation suggests that large transport cargoes may be delayed in passage through the nuclear pore channel, affecting its selective barrier function. Exposure of fibroblasts from affected individuals to heat shock resulted in a marked delay in their stress response, followed by a surge in apoptotic cell death. This suggests a mechanistic link between decreased cell survival in cell culture and severe fever-induced brain damage in affected individuals. Our study provides evidence by direct imaging at the single nuclear pore level of functional changes linked to a human disease.
Collapse
Affiliation(s)
- Boris Fichtman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Tamar Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Nitzan Biran
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Fadia Zagairy
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Carolyn D Applegate
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yuval Salzberg
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Tal Gilboa
- Pediatric Neurology Unit, Hadassah-Hebrew University Medical Center, Jerusalem 91240, Israel
| | - Somaya Salah
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Avraham Shaag
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Natalia Simanovsky
- Department of Medical Imaging, Hadassah Medical Center, Jerusalem 91240, Israel
| | - Houriya Ayoubieh
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Baylor-Hopkins Center for Mendelian Genomics, Jerusalem 91240, Israel, Jerusalem 91240, Israel
| | - Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Baylor-Hopkins Center for Mendelian Genomics, Jerusalem 91240, Israel, Jerusalem 91240, Israel
| | - Giuseppe Punzi
- Laboratory of Biochemistry, Molecular and Computational Biology; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Computational Biology; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Baylor-Hopkins Center for Mendelian Genomics, Jerusalem 91240, Israel, Jerusalem 91240, Israel
| | - Orly Elpeleg
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Amnon Harel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah-Hebrew University Medical Center, Jerusalem 91240, Israel; Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
33
|
Magre I, Fandade V, Damle I, Banerjee P, Yadav SK, Sonawane M, Joseph J. Nup358 regulates microridge length by controlling SUMOylation-dependent activity of aPKC in zebrafish epidermis. J Cell Sci 2019; 132:jcs.224501. [PMID: 31164446 DOI: 10.1242/jcs.224501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
The Par polarity complex, consisting of Par3, Par6 and atypical protein kinase C (aPKC), plays a crucial role in the establishment and maintenance of cell polarity. Although activation of aPKC is critical for polarity, how this is achieved is unclear. The developing zebrafish epidermis, along with its apical actin-based projections, called microridges, offers a genetically tractable system for unraveling the mechanisms of the cell polarity control. The zebrafish aPKC regulates elongation of microridges by controlling levels of apical Lgl, which acts as a pro-elongation factor. Here, we show that the nucleoporin Nup358 (also known as RanBP2) - a component of the nuclear pore complex and a part of cytoplasmic annulate lamellae (AL) - SUMOylates zebrafish aPKC. Nup358-mediated SUMOylation controls aPKC activity to regulate Lgl-dependent microridge elongation. Our data further suggest that cytoplasmic AL structures are the possible site for Nup358-mediated aPKC SUMOylation. We have unraveled a hitherto unappreciated contribution of Nup358-mediated aPKC SUMOylation in cell polarity regulation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Indrasen Magre
- National Center for Cell Science, S.P. Pune University Campus, Pune 411 007, India
| | - Vikas Fandade
- National Center for Cell Science, S.P. Pune University Campus, Pune 411 007, India
| | - Indraneel Damle
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Poulomi Banerjee
- National Center for Cell Science, S.P. Pune University Campus, Pune 411 007, India
| | - Santosh Kumar Yadav
- National Center for Cell Science, S.P. Pune University Campus, Pune 411 007, India
| | - Mahendra Sonawane
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Jomon Joseph
- National Center for Cell Science, S.P. Pune University Campus, Pune 411 007, India
| |
Collapse
|
34
|
Novikova M, Zhang Y, Freed EO, Peng K. Multiple Roles of HIV-1 Capsid during the Virus Replication Cycle. Virol Sin 2019; 34:119-134. [PMID: 31028522 PMCID: PMC6513821 DOI: 10.1007/s12250-019-00095-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/16/2019] [Indexed: 11/29/2022] Open
Abstract
Human immunodeficiency virus-1 capsid (HIV-1 CA) is involved in different stages of the viral replication cycle. During virion assembly, CA drives the formation of the hexameric lattice in immature viral particles, while in mature virions CA monomers assemble in cone-shaped cores surrounding the viral RNA genome and associated proteins. In addition to its functions in late stages of the viral replication cycle, CA plays key roles in a number of processes during early phases of HIV-1 infection including trafficking, uncoating, recognition by host cellular proteins and nuclear import of the viral pre-integration complex. As a result of efficient cooperation of CA with other viral and cellular proteins, integration of the viral genetic material into the host genome, which is an essential step for productive viral infection, successfully occurs. In this review, we will summarize available data on CA functions in HIV-1 replication, describing in detail its roles in late and early phases of the viral replication cycle.
Collapse
Affiliation(s)
- Mariia Novikova
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Yulan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
35
|
Lee HJ, Jung YH, Choi GE, Kim JS, Chae CW, Han HJ. Role of HIF1 α Regulatory Factors in Stem Cells. Int J Stem Cells 2019; 12:8-20. [PMID: 30836734 PMCID: PMC6457711 DOI: 10.15283/ijsc18109] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF1) is a master transcription factor that induces the transcription of genes involved in the metabolism and behavior of stem cells. HIF1-mediated adaptation to hypoxia is required to maintain the pluripotency and survival of stem cells under hypoxic conditions. HIF1 activity is well known to be tightly controlled by the alpha subunit of HIF1 (HIF1α). Understanding the regulatory mechanisms that control HIF1 activity in stem cells will provide novel insights into stem cell biology under hypoxia. Recent research has unraveled the mechanistic details of HIF1α regulating processes, suggesting new strategies for regulating stem cells. This review summarizes recent experimental studies on the role of several regulatory factors (including calcium, 2-oxoglutarate-dependent dioxygenase, microtubule network, importin, and coactivators) in regulating HIF1α activity in stem cells.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| |
Collapse
|
36
|
BICD1 mediates HIF1α nuclear translocation in mesenchymal stem cells during hypoxia adaptation. Cell Death Differ 2018; 26:1716-1734. [PMID: 30464225 PMCID: PMC6748134 DOI: 10.1038/s41418-018-0241-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/11/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
Hypoxia inducible factor 1α (HIF1α) is a master regulator leading to metabolic adaptation, an essential physiological process to maintain the survival of stem cells under hypoxia. However, it is poorly understood how HIF1α translocates into the nucleus in stem cells under hypoxia. Here, we investigated the role of a motor adaptor protein Bicaudal D homolog 1 (BICD1) in dynein-mediated HIF1α nuclear translocation and the effect of BICD1 regulation on hypoxia adaptation and its therapeutic potential on human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). In our results, silencing of BICD1 but not BICD2 abolished HIF1α nuclear translocation and its activity. BICD1 overexpression further enhanced hypoxia-induced HIF1α nuclear translocation. Hypoxia stimulated direct bindings of HIF1α to BICD1 and the intermediate chain of dynein (Dynein IC), which was abolished by BICD1 silencing. Akt inhibition reduced the binding of BICD1 to HIF1α and nuclear translocation of HIF1α. Conversely, Akt activation or GSK3β silencing further enhanced the hypoxia-induced HIF1α nuclear translocation. Furthermore, BICD1 silencing abolished hypoxia-induced glycolytic reprogramming and increased mitochondrial ROS accumulation and apoptosis in UCB-MSCs under hypoxia. In the mouse skin wound healing model, the transplanted cell survival and skin wound healing capacities of hypoxia-pretreated UCB-MSCs were reduced by BICD1 silencing and further increased by GSK3β silencing. In conclusion, we demonstrated that BICD1-induced HIF1α nuclear translocation is critical for hypoxia adaptation, which determines the regenerative potential of UCB-MSCs.
Collapse
|
37
|
Wu K, Wang L, Chen Y, Pirooznia M, Singh K, Wälde S, Kehlenbach RH, Scott I, Gucek M, Sack MN. GCN5L1 interacts with αTAT1 and RanBP2 to regulate hepatic α-tubulin acetylation and lysosome trafficking. J Cell Sci 2018; 131:jcs.221036. [PMID: 30333138 DOI: 10.1242/jcs.221036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/04/2018] [Indexed: 01/07/2023] Open
Abstract
Although GCN5L1 (also known as BLOC1S1) facilitates mitochondrial protein acetylation and controls endosomal-lysosomal trafficking, the mechanisms underpinning these disparate effects are unclear. As microtubule acetylation modulates endosome-lysosome trafficking, we reasoned that exploring the role of GCN5L1 in this biology may enhance our understanding of GCN5L1-mediated protein acetylation. We show that α-tubulin acetylation is reduced in GCN5L1-knockout hepatocytes and restored by GCN5L1 reconstitution. Furthermore, GCN5L1 binds to the α-tubulin acetyltransferase αTAT1, and GCN5L1-mediated α-tubulin acetylation is dependent on αTAT1. Given that cytosolic GCN5L1 has been identified as a component of numerous multiprotein complexes, we explored whether novel interacting partners contribute to this regulation. We identify RanBP2 as a novel interacting partner of GCN5L1 and αTAT1. Genetic silencing of RanBP2 phenocopies GCN5L1 depletion by reducing α-tubulin acetylation, and we find that RanBP2 possesses a tubulin-binding domain, which recruits GCN5L1 to α-tubulin. Finally, we find that genetic depletion of GCN5L1 promotes perinuclear lysosome accumulation and histone deacetylase inhibition partially restores lysosomal positioning. We conclude that the interactions of GCN5L1, RanBP2 and αTAT1 function in concert to control α-tubulin acetylation and may contribute towards the regulation of cellular lysosome positioning. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kaiyuan Wu
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingdi Wang
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong Chen
- Proteomics Core, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Komudi Singh
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Wälde
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Iain Scott
- Cardiology Division, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Suresh S, Markossian S, Osmani AH, Osmani SA. Nup2 performs diverse interphase functions in Aspergillus nidulans. Mol Biol Cell 2018; 29:3144-3154. [PMID: 30355026 PMCID: PMC6340215 DOI: 10.1091/mbc.e18-04-0223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nuclear pore complex (NPC) protein Nup2 plays interphase nuclear transport roles and in Aspergillus nidulans also functions to bridge NPCs at mitotic chromatin for their faithful coinheritance to daughter G1 nuclei. In this study, we further investigate the interphase functions of Nup2 in A. nidulans. Although Nup2 is not required for nuclear import of all nuclear proteins after mitosis, it is required for normal G1 nuclear accumulation of the NPC nuclear basket–associated components Mad2 and Mlp1 as well as the THO complex protein Tho2. Targeting of Mlp1 to nuclei partially rescues the interphase delay seen in nup2 mutants indicating that some of the interphase defects in Nup2-deleted cells are due to Mlp1 mislocalization. Among the inner nuclear membrane proteins, Nup2 affects the localization of Ima1, orthologues of which are involved in nuclear movement. Interestingly, nup2 mutant G1 nuclei also exhibit an abnormally long period of extensive to-and-fro movement immediately after mitosis in a manner dependent on the microtubule cytoskeleton. This indicates that Nup2 is required to limit the transient postmitotic nuclear migration typical of many filamentous fungi. The findings reveal that Nup2 is a multifunctional protein that performs diverse functions during both interphase and mitosis in A. nidulans.
Collapse
Affiliation(s)
- Subbulakshmi Suresh
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Sarine Markossian
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
39
|
Zou M, Wang J, Gao J, Han H, Fang Y. Phosphoproteomic analysis of the antitumor effects of ginsenoside Rg3 in human breast cancer cells. Oncol Lett 2017; 15:2889-2898. [PMID: 29435015 PMCID: PMC5778838 DOI: 10.3892/ol.2017.7654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
The incidence of breast cancer has been increasing in China and the age of breast cancer onset is earlier compared with Western countries. Compounds commonly used in Traditional Chinese Medicine (TCM) are an important source of anticancer drugs. Ginseng is one of the most common medicines used in TCM. Ginsenosides, which are saponins found in the ginseng plant, are the major active components responsible for the chemopreventive effects of ginseng in cancer. However, the mechanisms by which ginsenosides exert their anticancer effects remain elusive. The current study combined tandem mass tag (TMT)-based quantification with titanium dioxide-based phosphopeptide enrichment to quantitatively analyze the changes in phosphoproteomes in breast cancer MDA-MB-231 cells that occur following treatment with the ginsenoside Rg3. A total of 5,140 phosphorylation sites on 2,041 phosphoproteins were quantified and it was demonstrated that the phosphorylation status of 13 sites were altered in MDA-MB-231 cells following treatment with Rg3. The perturbed phosphoproteins were: Cleavage and polyadenylation specificity factor subunit 7, elongation factor 2 (EEF2), HIRA-interacting protein 3, melanoma-associated antigen D2, myosin phosphatase Rho-interacting protein, probable E3 ubiquitin-protein ligase MYCBP2, PRKC apoptosis WT1 regulator protein, protein phosphatase 1 regulatory subunit 12A, E3 SUMO-protein ligase RanBP2, Septin-9, thymopoietin, and E3 UFM1-protein ligase 1. Western blotting confirmed that Rg3 increased the phosphorylation of EEF2 on Thr57 but did not alter the protein expression of EEF2 in MDA-MB-231 and HCC1143 cells. These ginsenoside Rg3-regulated proteins are involved in various biological processes, including protein synthesis, cell division and the inhibition of nuclear factor-κB signaling. The results of the present study revealed that Rg3 exerts its anticancer effects via a combination of different signaling pathways.
Collapse
Affiliation(s)
- Mingjin Zou
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Hui Han
- Department of Infection Control, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
40
|
Fu G, Tu LC, Zilman A, Musser SM. Investigating molecular crowding within nuclear pores using polarization-PALM. eLife 2017; 6:e28716. [PMID: 28949296 PMCID: PMC5693140 DOI: 10.7554/elife.28716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
The key component of the nuclear pore complex (NPC) controlling permeability, selectivity, and the speed of nucleocytoplasmic transport is an assembly of natively unfolded polypeptides, which contain phenylalanine-glycine (FG) binding sites for nuclear transport receptors. The architecture and dynamics of the FG-network have been refractory to characterization due to the paucity of experimental methods able to probe the mobility and density of the FG-polypeptides and embedded macromolecules within intact NPCs. Combining fluorescence polarization, super-resolution microscopy, and mathematical analyses, we examined the rotational mobility of fluorescent probes at various locations within the FG-network under different conditions. We demonstrate that polarization PALM (p-PALM) provides a rich source of information about low rotational mobilities that are inaccessible with bulk fluorescence anisotropy approaches, and anticipate that p-PALM is well-suited to explore numerous crowded cellular environments. In total, our findings indicate that the NPC's internal organization consists of multiple dynamic environments with different local properties.
Collapse
Affiliation(s)
- Guo Fu
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| | - Li-Chun Tu
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| | - Anton Zilman
- Department of PhysicsUniversity of TorontoTorontoCanada
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Siegfried M Musser
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| |
Collapse
|
41
|
Nuclear pore complex tethers to the cytoskeleton. Semin Cell Dev Biol 2017; 68:52-58. [PMID: 28676424 DOI: 10.1016/j.semcdb.2017.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
Abstract
The nuclear envelope is tethered to the cytoskeleton. The best known attachments of all elements of the cytoskeleton are via the so-called LINC complex. However, the nuclear pore complexes, which mediate the transport of soluble and membrane bound molecules, are also linked to the microtubule network, primarily via motor proteins (dynein and kinesins) which are linked, most importantly, to the cytoplasmic filament protein of the nuclear pore complex, Nup358, by the adaptor BicD2. The evidence for such linkages and possible roles in nuclear migration, cell cycle control, nuclear transport and cell architecture are discussed.
Collapse
|
42
|
Rahmani K, Dean DA. Leptomycin B alters the subcellular distribution of CRM1 (Exportin 1). Biochem Biophys Res Commun 2017; 488:253-258. [PMID: 28412356 PMCID: PMC5551409 DOI: 10.1016/j.bbrc.2017.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 02/04/2023]
Abstract
CRM1 (chromosome maintenance region 1, Exportin 1) binds to nuclear export signals and is required for nucleocytoplasmic transport of a large variety of proteins and RNP complexes. Leptomycin B (LMB), the first specific inhibitor of CRM1 identified, binds covalently to cysteine 528 in the nuclear export signal binding region of CRM1 leading to the inhibition of protein nuclear export. Although the biochemical mechanisms of action of CRM1 inhibitors such as LMB are well studied, the subcellular effects of inhibition on CRM1 are unknown. We have found that LMB causes CRM1 to redistribute from the nucleus to the cytoplasm in A549 cells. A significant decrease in nuclear CRM1 coupled with an increase in cytoplasmic CRM1 was sustained for up to 4 h, while there was no change in total CRM1 protein in fractionated cells. Cells expressing an LMB insensitive HA-tagged CRM1-C528S protein were unaffected by LMB treatment, whereas HA-tagged wildtype CRM1 redistributed from the nucleus to the cytoplasm with LMB treatment, similar to endogenous CRM1. GFP-tagged CRM1 protein microinjected into the cytoplasm of A549 cells distributed throughout the cell in untreated cells remained primarily cytoplasmic in LMB-treated cells. Upon nuclear microinjection, GFP-CRM1 translocated to and accumulated in the cytoplasm of LMB-treated cells. Thus, LMB binds to CRM1 and causes its redistribution to the cytoplasm by inhibiting its nuclear import. Decreasing the nuclear availability of CRM1 likely contributes to the accumulation of CRM1 cargo proteins in the nucleus, suggesting a new mechanism of action for LMB.
Collapse
Affiliation(s)
- Khatera Rahmani
- Department of Pediatrics, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - David A Dean
- Department of Pediatrics, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
43
|
He Q, Zhang Y, Zhang X, Xu D, Dong W, Li S, Wu R. Nucleoporin Nup358 facilitates nuclear import of Methoprene-tolerant (Met) in an importin β- and Hsp83-dependent manner. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:10-18. [PMID: 27979731 DOI: 10.1016/j.ibmb.2016.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/11/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
The bHLH-PAS transcription factor, Methoprene-tolerant (Met)1, functions as a juvenile hormone (JH) receptor and transduces JH signals by directly binding to E-box like motifs in the regulatory regions of JH response genes. Nuclear localization of Met is crucial for its transcriptional activity. Our previous studies have shown that the chaperone protein Hsp83 facilitates JH-induced Met nuclear import in Drosophila melanogaster. However, the exact molecular mechanisms of Met nuclear transport are not fully elucidated. Using DNA affinity chromatography, we have previously detected binding of the nucleoporin Nup358, in the presence of JH, to the JH response region (JHRR) sequences isolated from the Krüppel-homolog 1 (Kr-h1) promoter. Here, we have demonstrated that Nup358 regulates JH-Hsp83-induced Met nuclear localization. RNAi-mediated knockdown of Nup358 expression in Drosophila fat body perturbs Met nuclear transport during the 3 h after initiation of wandering, when the JH titer is high. The accompanying reduced expression of the transport receptor importin β in Nup358 RNAi flies could be one of the reasons accounting for Met mislocalization. Furthermore, a tetratricopeptide repeat (TPR) domain at the N-terminal end of Nup358 interacts with Hsp83 and is indispensable for Met nuclear localization. Overexpression of the TPR domain in Drosophila fat body prevents Met nuclear localization resulting in a decrease in JHRR-driven reporter activity and Kr-h1 expression. These data show that Nup358 facilitates JH-induced Met nuclear transport in a manner dependent on importin β and Hsp83.
Collapse
Affiliation(s)
- Qianyu He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuanxi Zhang
- Environmental Monitoring Center Station, DaQing Environmental Protection Agency, Daqing 163316, China
| | - Xu Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - DanDan Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wentao Dong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Sheng Li
- The Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Sciences and School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
44
|
Cho KI, Yoon D, Qiu S, Danziger Z, Grill WM, Wetsel WC, Ferreira PA. Loss of Ranbp2 in motoneurons causes disruption of nucleocytoplasmic and chemokine signaling, proteostasis of hnRNPH3 and Mmp28, and development of amyotrophic lateral sclerosis-like syndromes. Dis Model Mech 2017; 10:559-579. [PMID: 28100513 PMCID: PMC5451164 DOI: 10.1242/dmm.027730] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
The pathogenic drivers of sporadic and familial motor neuron disease (MND), such amyotrophic lateral sclerosis (ALS), are unknown. MND impairs the Ran GTPase cycle, which controls nucleocytoplasmic transport, ribostasis and proteostasis; however, cause-effect mechanisms of Ran GTPase modulators in motoneuron pathobiology have remained elusive. The cytosolic and peripheral nucleoporin Ranbp2 is a crucial regulator of the Ran GTPase cycle and of the proteostasis of neurological disease-prone substrates, but the roles of Ranbp2 in motoneuron biology and disease remain unknown. This study shows that conditional ablation of Ranbp2 in mouse Thy1 motoneurons causes ALS syndromes with hypoactivity followed by hindlimb paralysis, respiratory distress and, ultimately, death. These phenotypes are accompanied by: a decline in the nerve conduction velocity, free fatty acids and phophatidylcholine of the sciatic nerve; a reduction in the g-ratios of sciatic and phrenic nerves; and hypertrophy of motoneurons. Furthermore, Ranbp2 loss disrupts the nucleocytoplasmic partitioning of the import and export nuclear receptors importin β and exportin 1, respectively, Ran GTPase and histone deacetylase 4. Whole-transcriptome, proteomic and cellular analyses uncovered that the chemokine receptor Cxcr4, its antagonizing ligands Cxcl12 and Cxcl14, and effector, latent and activated Stat3 all undergo early autocrine and proteostatic deregulation, and intracellular sequestration and aggregation as a result of Ranbp2 loss in motoneurons. These effects were accompanied by paracrine and autocrine neuroglial deregulation of hnRNPH3 proteostasis in sciatic nerve and motoneurons, respectively, and post-transcriptional downregulation of metalloproteinase 28 in the sciatic nerve. Mechanistically, our results demonstrate that Ranbp2 controls nucleocytoplasmic, chemokine and metalloproteinase 28 signaling, and proteostasis of substrates that are crucial to motoneuronal homeostasis and whose impairments by loss of Ranbp2 drive ALS-like syndromes. Summary: Loss of Ranbp2 in spinal motoneurons drives ALS syndromes in mice and Ranbp2 functions in nucleocytoplasmic trafficking, proteostasis and chemokine signaling uncover novel therapeutic targets and mechanisms for motoneuron disease.
Collapse
Affiliation(s)
- Kyoung-In Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dosuk Yoon
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sunny Qiu
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zachary Danziger
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Paulo A Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA .,Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
45
|
Sahoo MR, Gaikwad S, Khuperkar D, Ashok M, Helen M, Yadav SK, Singh A, Magre I, Deshmukh P, Dhanvijay S, Sahoo PK, Ramtirtha Y, Madhusudhan MS, Gayathri P, Seshadri V, Joseph J. Nup358 binds to AGO proteins through its SUMO-interacting motifs and promotes the association of target mRNA with miRISC. EMBO Rep 2016; 18:241-263. [PMID: 28039207 DOI: 10.15252/embr.201642386] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/13/2016] [Accepted: 11/24/2016] [Indexed: 11/09/2022] Open
Abstract
MicroRNA (miRNA)-guided mRNA repression, mediated by the miRNA-induced silencing complex (miRISC), is an important component of post-transcriptional gene silencing. However, how miRISC identifies the target mRNA in vivo is not well understood. Here, we show that the nucleoporin Nup358 plays an important role in this process. Nup358 localizes to the nuclear pore complex and to the cytoplasmic annulate lamellae (AL), and these structures dynamically associate with two mRNP granules: processing bodies (P bodies) and stress granules (SGs). Nup358 depletion disrupts P bodies and concomitantly impairs the miRNA pathway. Furthermore, Nup358 interacts with AGO and GW182 proteins and promotes the association of target mRNA with miRISC A well-characterized SUMO-interacting motif (SIM) in Nup358 is sufficient for Nup358 to directly bind to AGO proteins. Moreover, AGO and PIWI proteins interact with SIMs derived from other SUMO-binding proteins. Our study indicates that Nup358-AGO interaction is important for miRNA-mediated gene silencing and identifies SIM as a new interacting motif for the AGO family of proteins. The findings also support a model wherein the coupling of miRISC with the target mRNA could occur at AL, specialized domains within the ER, and at the nuclear envelope.
Collapse
Affiliation(s)
- Manas Ranjan Sahoo
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Swati Gaikwad
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Deepak Khuperkar
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Maitreyi Ashok
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Mary Helen
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | | | - Aditi Singh
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Indrasen Magre
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Prachi Deshmukh
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Supriya Dhanvijay
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | | | - Yogendra Ramtirtha
- Division of Biology, Indian Institute of Science Education and Research, Pune, India
| | | | - Pananghat Gayathri
- Division of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Vasudevan Seshadri
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| |
Collapse
|
46
|
Yadav SK, Magre I, Singh A, Khuperkar D, Joseph J. Regulation of aPKC activity by Nup358 dependent SUMO modification. Sci Rep 2016; 6:34100. [PMID: 27682244 PMCID: PMC5040961 DOI: 10.1038/srep34100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/07/2016] [Indexed: 11/09/2022] Open
Abstract
Atypical PKC (aPKC) family members are involved in regulation of diverse cellular processes, including cell polarization. aPKCs are known to be activated by phosphorylation of specific threonine residues in the activation loop and turn motif. They can also be stimulated by interaction with Cdc42~GTP-Par6 complex. Here we report that PKCζ, a member of the aPKC family, is activated by SUMOylation. We show that aPKC is endogenously modified by SUMO1 and the nucleoporin Nup358 acts as its SUMO E3 ligase. Results from in vitro SUMOylation and kinase assays showed that the modification enhances the kinase activity of PKCζ by ~10-fold. By monitoring the phosphorylation of Lethal giant larvae (Lgl), a downstream target of aPKC, we confirmed these findings in vivo. Consistent with the function of Nup358 as a SUMO E3 ligase for aPKC, depletion of Nup358 attenuated the extent of SUMOylation and the activity of aPKC. Moreover, overexpression of the C-terminal fragment of Nup358 that possesses the E3 ligase activity enhanced SUMOylation of endogenous aPKC and its kinase activity. Collectively, our studies reveal a role for Nup358-dependent SUMOylation in the regulation of aPKC activity and provide a framework for understanding the role of Nup358 in cell polarity.
Collapse
Affiliation(s)
- Santosh Kumar Yadav
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Indrasen Magre
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Aditi Singh
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Deepak Khuperkar
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| |
Collapse
|
47
|
Ritterhoff T, Das H, Hofhaus G, Schröder RR, Flotho A, Melchior F. The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes. Nat Commun 2016; 7:11482. [PMID: 27160050 PMCID: PMC4866044 DOI: 10.1038/ncomms11482] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
Continuous cycles of nucleocytoplasmic transport require disassembly of transport receptor/Ran-GTP complexes in the cytoplasm. A basic disassembly mechanism in all eukaryotes depends on soluble RanGAP and RanBP1. In vertebrates, a significant fraction of RanGAP1 stably interacts with the nucleoporin RanBP2 at a binding site that is flanked by FG-repeats and Ran-binding domains, and overlaps with RanBP2's SUMO E3 ligase region. Here, we show that the RanBP2/RanGAP1*SUMO1/Ubc9 complex functions as an autonomous disassembly machine with a preference for the export receptor Crm1. We describe three in vitro reconstituted disassembly intermediates, which show binding of a Crm1 export complex via two FG-repeat patches, cargo-release by RanBP2's Ran-binding domains and retention of free Crm1 at RanBP2 after Ran-GTP hydrolysis. Intriguingly, all intermediates are compatible with SUMO E3 ligase activity, suggesting that the RanBP2/RanGAP1*SUMO1/Ubc9 complex may link Crm1- and SUMO-dependent functions.
Collapse
Affiliation(s)
- Tobias Ritterhoff
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Hrishikesh Das
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Götz Hofhaus
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Rasmus R. Schröder
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Annette Flotho
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| |
Collapse
|
48
|
Cho KI, Haney V, Yoon D, Hao Y, Ferreira PA. Uncoupling phototoxicity-elicited neural dysmorphology and death by insidious function and selective impairment of Ran-binding protein 2 (Ranbp2). FEBS Lett 2015; 589:3959-68. [PMID: 26632511 DOI: 10.1016/j.febslet.2015.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/06/2015] [Accepted: 11/20/2015] [Indexed: 01/27/2023]
Abstract
Morphological disintegration of neurons is coupled invariably to neural death. In particular, disruption of outer segments of photoreceptor neurons triggers photoreceptor death regardless of the pathological stressors. We show that Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) mice with mutations in SUMO-binding motif (SBM) of cyclophilin-like domain (CLD) of Ran-binding protein 2 (Ranbp2) expressed in a null Ranbp2 background lack untoward effects in photoreceptors in the absence of light-stress. However, compared to wild type photoreceptors, light-stress elicits profound disintegration of outer segments of Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) with paradoxical age-dependent resistance of photoreceptors to death and genotype-independent activation of caspases. Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) exhibit photoreceptor death-independent changes in ubiquitin-proteasome system (UPS), but death-dependent increase of ubiquitin carrier protein 9(ubc9) levels. Hence, insidious functional impairment of SBM of Ranbp2's CLD promotes neuroprotection and uncoupling of photoreceptor degeneration and death against phototoxicity.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Victoria Haney
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Dosuk Yoon
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Yin Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Paulo A Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States; Department of Pathology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
49
|
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear Pore Complexes and Nucleocytoplasmic Transport: From Structure to Function to Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:171-233. [PMID: 26614874 DOI: 10.1016/bs.ircmb.2015.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
50
|
Cho KI, Orry A, Park SE, Ferreira PA. Targeting the cyclophilin domain of Ran-binding protein 2 (Ranbp2) with novel small molecules to control the proteostasis of STAT3, hnRNPA2B1 and M-opsin. ACS Chem Neurosci 2015; 6:1476-85. [PMID: 26030368 DOI: 10.1021/acschemneuro.5b00134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyclophilins are peptidyl cis-trans prolyl isomerases (PPIases), whose activity is typically inhibited by cyclosporine A (CsA), a potent immunosuppressor. Cyclophilins are also chaperones. Emerging evidence supports that cyclophilins present nonoverlapping PPIase and chaperone activities. The proteostasis of the disease-relevant substrates, signal transducer and activator of transcription 3 and 5 (STAT3/STAT5), heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), and M-opsin, is regulated by nonoverlapping chaperone and PPIase activities of the cyclophilin domain (CY) of Ranbp2, a multifunctional and modular scaffold that controls nucleocytoplasmic shuttling and proteostasis of selective substrates. Although highly homologous, CY and the archetypal cyclophilin A (CyPA) present distinct catalytic and CsA-binding activities owing to unique structural features between these cylophilins. We explored structural idiosyncrasies between CY and CyPA to screen in silico nearly 9 million small molecules (SM) against the CY PPIase pocket and identify SMs with selective bioactivity toward STAT3, hnRNPA2B1, or M-opsin proteostasis. We found three classes of SMs that enhance the cytokine-stimulated transcriptional activity of STAT3 without changing latent and activated STAT3 levels, down-regulate hnRNPA2B1 or M-opsin proteostasis, or a combination of these. Further, a SM that suppresses hnRNPA2B1 proteostasis also inhibits strongly and selectively the PPIase activity of CY. This study unravels chemical probes for multimodal regulation of CY of Ranbp2 and its substrates, and this regulation likely results in the allosterism stemming from the interconversion of conformational substates of cyclophilins. The results also demonstrate the feasibility of CY in drug discovery against disease-relevant substrates controlled by Ranbp2, and they open new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Andrew Orry
- MolSoft LLC, San Diego, California 92121, United States
| | - Se Eun Park
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Paulo A. Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|