1
|
Das S, Basak S, Sarkar S. Decoding Salivary ncRNAomes as Novel Biomarkers for Oral Cancer Detection and Prognosis. Noncoding RNA 2025; 11:28. [PMID: 40126352 PMCID: PMC11932315 DOI: 10.3390/ncrna11020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/16/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Oral cancer (OC) ranks among the most prevalent head and neck cancers, becoming the eleventh most common cancer worldwide with ~350,000 new cases and 177,000 fatalities annually. The rising trend in the occurrence of OC among young individuals and women who do not have tobacco habits is escalating rapidly. Surgical procedures, radiation therapy, and chemotherapy are among the most prevalent treatment options for oral cancer. To achieve better therapy and an early detection of the cancer, it is essential to understand the disease's etiology at the molecular level. Saliva, the most prevalent body fluid obtained non-invasively, holds a collection of distinct non-coding RNA pools (ncRNAomes) that can be assessed as biomarkers for identifying oral cancer. Non-coding signatures, which are transcripts lacking a protein-coding function, have been identified as significant in the progression of various cancers, including oral cancer. This review aims to examine the role of various salivary ncRNAs (microRNA, circular RNA, and lncRNA) associated with disease progression and to explore their functions as potential biomarkers for early disease identification to ensure better survival outcomes for oral cancer patients.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907-2064, USA
| | - Sampad Basak
- Gujarat Biotechnology University, Gujarat International Finance Tec-City, Gandhinagar 382355, Gujarat, India;
| | - Soumyadev Sarkar
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
2
|
Barros O, D'Agostino VG, Lara Santos L, Vitorino R, Ferreira R. Shaping the future of oral cancer diagnosis: advances in salivary proteomics. Expert Rev Proteomics 2024; 21:149-168. [PMID: 38626289 DOI: 10.1080/14789450.2024.2343585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/19/2024] [Indexed: 04/18/2024]
Abstract
INTRODUCTION Saliva has gained increasing attention in the quest for disease biomarkers. Because it is a biological fluid that can be collected is an easy, painless, and safe way, it has been increasingly studied for the identification of oral cancer biomarkers. This is particularly important because oral cancer is often diagnosed at late stages with a poor prognosis. AREAS COVERED The review addresses the evolution of the experimental approaches used in salivary proteomics studies of oral cancer over the years and outlines advantages and pitfalls related to each one. In addition, examines the current landscape of oral cancer biomarker discovery and translation focusing on salivary proteomic studies. This discussion is based on an extensive literature search (PubMed, Scopus and Google Scholar). EXPERT OPINION The introduction of mass spectrometry has revolutionized the study of salivary proteomics. In the future, the focus will be on refining existing methods and introducing powerful experimental techniques such as mass spectrometry with selected reaction monitoring, which, despite their effectiveness, are still underutilized due to their high cost. In addition, conducting studies with larger cohorts and establishing standardized protocols for salivary proteomics are key challenges that need to be addressed in the coming years.
Collapse
Affiliation(s)
- Oriana Barros
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) and Surgical Department of Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Vito G D'Agostino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Lucio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) and Surgical Department of Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) and Surgical Department of Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Maryam S, Nogueira MS, Gautam R, Krishnamoorthy S, Venkata Sekar SK, Kho KW, Lu H, Ni Riordain R, Feeley L, Sheahan P, Burke R, Andersson-Engels S. Label-Free Optical Spectroscopy for Early Detection of Oral Cancer. Diagnostics (Basel) 2022; 12:diagnostics12122896. [PMID: 36552903 PMCID: PMC9776497 DOI: 10.3390/diagnostics12122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Oral cancer is the 16th most common cancer worldwide. It commonly arises from painless white or red plaques within the oral cavity. Clinical outcome is highly related to the stage when diagnosed. However, early diagnosis is complex owing to the impracticality of biopsying every potentially premalignant intraoral lesion. Therefore, there is a need to develop a non-invasive cost-effective diagnostic technique to differentiate non-malignant and early-stage malignant lesions. Optical spectroscopy may provide an appropriate solution to facilitate early detection of these lesions. It has many advantages over traditional approaches including cost, speed, objectivity, sensitivity, painlessness, and ease-of use in clinical setting for real-time diagnosis. This review consists of a comprehensive overview of optical spectroscopy for oral cancer diagnosis, epidemiology, and recent improvements in this field for diagnostic purposes. It summarizes major developments in label-free optical spectroscopy, including Raman, fluorescence, and diffuse reflectance spectroscopy during recent years. Among the wide range of optical techniques available, we chose these three for this review because they have the ability to provide biochemical information and show great potential for real-time deep-tissue point-based in vivo analysis. This review also highlights the importance of saliva-based potential biomarkers for non-invasive early-stage diagnosis. It concludes with the discussion on the scope of development and future demands from a clinical point of view.
Collapse
Affiliation(s)
- Siddra Maryam
- Tyndall National Institute, University College Cork, T12 R229 Cork, Ireland
- Correspondence:
| | | | - Rekha Gautam
- Tyndall National Institute, University College Cork, T12 R229 Cork, Ireland
| | | | | | - Kiang Wei Kho
- Tyndall National Institute, University College Cork, T12 R229 Cork, Ireland
| | - Huihui Lu
- Tyndall National Institute, University College Cork, T12 R229 Cork, Ireland
| | - Richeal Ni Riordain
- ENTO Research Institute, University College Cork, T12 R229 Cork, Ireland
- Cork University Dental School and Hospital, Wilton, T12 E8YV Cork, Ireland
| | - Linda Feeley
- ENTO Research Institute, University College Cork, T12 R229 Cork, Ireland
- Cork University Hospital, T12 DC4A Cork, Ireland
| | - Patrick Sheahan
- ENTO Research Institute, University College Cork, T12 R229 Cork, Ireland
- South Infirmary Victoria University Hospital, T12 X23H Cork, Ireland
| | - Ray Burke
- Tyndall National Institute, University College Cork, T12 R229 Cork, Ireland
| | | |
Collapse
|
4
|
Wu Q, Cao R, Chen J, Xie X. Screening and identification of biomarkers associated with clinicopathological parameters and prognosis in oral squamous cell carcinoma. Exp Ther Med 2019; 18:3579-3587. [PMID: 31608128 PMCID: PMC6778814 DOI: 10.3892/etm.2019.7998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/16/2019] [Indexed: 12/27/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a major type of malignant tumor of the oral cavity. Despite marked advances in the management and diagnosis of OSCC, the associated overall survival ratio has only exhibited a modest increase in recent years. The present study aimed to identify potential crucial genes associated with clinical features and prognosis for OSCC, and to provide a basis for further investigation. RNA-sequencing data and corresponding clinical information were downloaded from The Cancer Genome Atlas database and differentially expressed mRNAs (DEmRNAs) were identified using the edgeR package. Bioinformatics analysis was performed to identify differentially expressed clinical features-associated mRNAs (CFmRNAs) and enhance the current knowledge of the function of them. Functional enrichment analysis and protein-protein interplay (PPI) network analysis were then performed to better understand CFmRNAs. Survival-associated genes were analyzed with Kaplan-Meier survival curves and the log-rank test. A total of 2,013 DEmRNAs between OSCC samples and normal tissues were identified, 180 of which were associated with clinical features. A total of 17 GO terms and 4 KEGG pathways were significantly enriched in functional enrichment analysis. A total of 4 hub genes (albumin, statherin, neurotensin and mucin 7) were identified in the PPI network analysis. A total of 6 genes (DDB1 and CUL4 associated factor 4 like 2, opiorphin prepropeptide, R3H domain containing like, transmembrane phosphatase with tensin homology, actin like 8 and protocadherin α 11) were observed to have an influence on survival. The DEmRNAs identified may have a crucial role in the genesis and development of OSCC and may be further developed for diagnostic, therapeutic and prognostic applications for OSCC in the future.
Collapse
Affiliation(s)
- Qiqi Wu
- Department of Endodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Ruoyan Cao
- Department of Prosthodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Juan Chen
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Xiaoli Xie
- Department of Endodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|
5
|
Ahsan H. Biomolecules and biomarkers in oral cavity: bioassays and immunopathology. J Immunoassay Immunochem 2018; 40:52-69. [DOI: 10.1080/15321819.2018.1550423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Inoue K, Tsubamoto H, Isono-Nakata R, Sakata K, Nakagomi N. Itraconazole treatment of primary malignant melanoma of the vagina evaluated using positron emission tomography and tissue cDNA microarray: a case report. BMC Cancer 2018; 18:630. [PMID: 29866134 PMCID: PMC5987480 DOI: 10.1186/s12885-018-4520-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Primary malignant melanoma of the vagina is extremely rare, with a poorer prognosis than cutaneous malignant melanoma. Previous studies have explored the repurposing of itraconazole, a common oral anti-fungal agent, for the treatment of various cancers. Here, we describe a patient with metastatic, unresectable vaginal malignant melanoma treated with 200 mg oral itraconazole twice a day in a clinical window-of-opportunity trial. CASE PRESENTATION A 64-year-old Japanese woman with vaginal and inguinal tumours was referred to our institution. On the basis of an initial diagnosis of vaginal cancer metastatic to the inguinal lymph nodes, we treated her with itraconazole in a clinical trial until the biopsy and imaging study results were obtained. During this period, biopsies were performed three times, and 18F-fluoro-deoxyglucose positron emission tomography (FDG/PET)-computed tomography (CT) was performed twice. Biopsy results confirmed the diagnosis of primary malignant melanoma of the vagina. Imaging studies revealed metastases to multiple sites, including the brain, for which she underwent gamma-knife radiosurgery. During the window period before nivolumab initiation, the patient received itraconazole for 30 days. Within a week of itraconazole initiation, pain in the inguinal nodes was ameliorated. PET-CT on days 6 and 30 showed a reduction in tumour size and FDG uptake, respectively. The biopsied specimens obtained on days 1, 13, and 30 were subjected to cDNA microarray analysis, which revealed a 100-fold downregulation in the transcription of four genes: STATH, EEF1A2, TTR, and CDH2. After 12 weeks of nivolumab administration, she developed progressive disease and grade 3 immune-related hepatitis. Discontinuation of nivolumab resulted in the occurrence of left pelvic and inguinal pain. Following re-challenge with itraconazole, the patient has not reported any pain for 4 months. CONCLUSION The findings of this case suggest that itraconazole is a potential effective treatment option for primary malignant melanoma of the vagina. Moreover, we identified potential itraconazole target genes, which could help elucidate the mechanism underlying this disease and potentially aid in the development of new therapeutic agents.
Collapse
Affiliation(s)
- Kayo Inoue
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Hiroshi Tsubamoto
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
- Department of Medical Oncology, Meiwa Hospital, Nishinomiya, Hyogo 663-8186 Japan
| | - Roze Isono-Nakata
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Kazuko Sakata
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| |
Collapse
|
7
|
Keshavarzi M, Darijani M, Momeni F, Moradi P, Ebrahimnejad H, Masoudifar A, Mirzaei H. Molecular Imaging and Oral Cancer Diagnosis and Therapy. J Cell Biochem 2017; 118:3055-3060. [PMID: 28390191 DOI: 10.1002/jcb.26042] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 12/31/2022]
Abstract
Oral cancer is known as one of relatively common type of cancer worldwide. Despite the easy access of the oral cavity to examination, oral tumors are diagnosed in more advanced stages of the disease. Imaging techniques have been recently emerged as non-invasive approaches to detect molecular and cellular changes in living cells and organisms. These techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) could help physicians to screen patients with oral tumors particularly oral squamous cell carcinoma (OSCC) in early stage of the disease. In this review, we discuss that early detection and diagnosis of oral tumors through using more robust and precise imaging techniques and a variety of cellular/molecular biomarkers not only could lead to more effective and less aggressive form of treatment for the disease but also could improve survival rates and lower treatment costs. J. Cell. Biochem. 118: 3055-3060, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maryam Keshavarzi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mansoreh Darijani
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Momeni
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouya Moradi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Ebrahimnejad
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Royan Institute for Biotechnology, Cell Science Research Center, ACECR, Isfahan, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Csősz É, Lábiscsák P, Kalló G, Márkus B, Emri M, Szabó A, Tar I, Tőzsér J, Kiss C, Márton I. Proteomics investigation of OSCC-specific salivary biomarkers in a Hungarian population highlights the importance of identification of population-tailored biomarkers. PLoS One 2017; 12:e0177282. [PMID: 28545132 PMCID: PMC5436697 DOI: 10.1371/journal.pone.0177282] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 04/01/2017] [Indexed: 12/19/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounting for about 90% of malignant oral lesions is the 6th most common malignancy worldwide. Diagnostic delay may contribute to dismal survival rate therefore, there is a need for developing specific and sensitive biomarkers to improve early detection. Hungarian population occupies the top places of statistics regarding OSCC incidence and mortality figures therefore, we aimed at finding potential salivary protein biomarkers suitable for the Hungarian population. In this study we investigated 14 proteins which were previously reported as significantly elevated in saliva of patients with OSCC. In case of IL-1α, IL-1β, IL-6, IL-8, TNF-α and VEGF a Luminex-based multiplex kit was utilized and the salivary concentrations were determined. In case of catalase, profilin-1, S100A9, CD59, galectin-3-bindig protein, CD44, thioredoxin and keratin-19, SRM-based targeted proteomic method was developed and the relative amount of the proteins was determined in the saliva of patients with OSCC and controls. After several rounds of optimization and using stable isotope-containing peptides, we developed an SRM-based method for rapid salivary protein detection. The validation of the selected potential biomarkers by ELISA revealed salivary protein S100A9 and IL-6 as useful protein biomarkers for OSCC detection improving the diagnostic accuracy for OSCC in the Hungarian population.A noninvasive diagnostic method to detect biomarkers useful for the early diagnosis of OSCC was developed. This can be an attractive strategy in screening saliva samples collected in a nation-wide multi-centric study in order to decrease morbidity, mortality, to enhance survival rate and to improve quality of life. The heterogeneity of protein biomarkers found in different ethnic groups presented in the literature highlights the importance of identification of population-tailored protein biomarkers.
Collapse
Affiliation(s)
- Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 1. Egyetem ter, Debrecen, Hungary
| | - Péter Lábiscsák
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 1. Egyetem ter, Debrecen, Hungary
| | - Gergő Kalló
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 1. Egyetem ter, Debrecen, Hungary
| | - Bernadett Márkus
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 1. Egyetem ter, Debrecen, Hungary
| | - Miklós Emri
- Department of Medical Imaging, Faculty of Medicine, University of Debrecen, 1. Egyetem ter, Debrecen, Hungary
| | - Adrienn Szabó
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Debrecen, 1. Egyetem ter, Debrecen, Hungary
| | - Ildikó Tar
- Department of Periodontology, Faculty of Dentistry, University of Debrecen, 1. Egyetem ter, Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 1. Egyetem ter, Debrecen, Hungary
| | - Csongor Kiss
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 1. Egyetem ter, Debrecen, Hungary
| | - Ildikó Márton
- Department of Periodontology, Faculty of Dentistry, University of Debrecen, 1. Egyetem ter, Debrecen, Hungary
| |
Collapse
|
9
|
Abstract
Role of calcium in bone remodeling and tooth remineral-ization is well known. However, calcium also plays a very imperative role in many biochemical reactions, which are essential for normal functioning of cells. The calcium associated tissue homeostasis encompasses activities like proliferation, cell death, cell motility, oxygen, and nutrient supply.
Collapse
Affiliation(s)
- Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India, Phone: +919922491465 e-mail:
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences Division of Oral Pathology, College of Dentistry, Jazan University Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Kaczor-Urbanowicz KE, Martin Carreras-Presas C, Aro K, Tu M, Garcia-Godoy F, Wong DT. Saliva diagnostics - Current views and directions. Exp Biol Med (Maywood) 2016; 242:459-472. [PMID: 27903834 DOI: 10.1177/1535370216681550] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this review, we provide an update on the current and future applications of saliva for diagnostic purposes. There are many advantages of using saliva as a biofluid. Its collection is fast, easy, inexpensive, and non-invasive. In addition, saliva, as a "mirror of the body," can reflect the physiological and pathological state of the body. Therefore, it serves as a diagnostic and monitoring tool in many fields of science such as medicine, dentistry, and pharmacotherapy. Introduced in 2008, the term "Salivaomics" aimed to highlight the rapid development of knowledge about various "omics" constituents of saliva, including: proteome, transcriptome, micro-RNA, metabolome, and microbiome. In the last few years, researchers have developed new technologies and validated a wide range of salivary biomarkers that will soon make the use of saliva a clinical reality. However, a great need still exists for convenient and accurate point-of-care devices that can serve as a non-invasive diagnostic tool. In addition, there is an urgent need to decipher the scientific rationale and mechanisms that convey systemic diseases to saliva. Another promising technology called liquid biopsy enables detection of circulating tumor cells (CTCs) and fragments of tumor DNA in saliva, thus enabling non-invasive early detection of various cancers. The newly developed technology-electric field-induced release and measurement (EFIRM) provides near perfect detection of actionable mutations in lung cancer patients. These recent advances widened the salivary diagnostic approach from the oral cavity to the whole physiological system, and thus point towards a promising future of salivary diagnostics for personalized individual medicine applications including clinical decisions and post-treatment outcome predictions. Impact statement The purpose of this mini-review is to make an update about the present and future applications of saliva as a diagnostic biofluid in many fields of science such as dentistry, medicine and pharmacotherapy. Using saliva as a fluid for diagnostic purposes would be a huge breakthrough for both patients and healthcare providers since saliva collection is easy, non-invasive and inexpensive. We will go through the current main diagnostic applications of saliva, and provide a highlight on the emerging, newly developing technologies and tools for cancer screening, detection and monitoring.
Collapse
Affiliation(s)
| | | | - Katri Aro
- 1 School of Dentistry, Center for Oral/Head & Neck Oncology Research, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Tu
- 1 School of Dentistry, Center for Oral/Head & Neck Oncology Research, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Franklin Garcia-Godoy
- 3 College of Dentistry, University of Tennessee Health Science Center, Bioscience Research Center, Memphis, TN 38163, USA
| | - David Tw Wong
- 1 School of Dentistry, Center for Oral/Head & Neck Oncology Research, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Abstract
Background Statherin is an important salivary protein for maintaining oral health. The purpose of the current study was to determine if differences in statherin levels exist between diabetic and healthy subjects. Methods A total of 48 diabetic and healthy controls were randomly selected from a community-based database. Diabetic subjects (n = 24) had fasting glucose levels > 180 mg/dL, while controls (n = 24) had levels < 110 mg/dL. Parotid saliva (PS) and sublingual/submandibular saliva (SS) were collected and salivary flow rates determined. Salivary statherin levels were determined by densitometry of Western blots. Blood hemoglobin A1c (HbA1c) and total protein in saliva were also obtained. Results SS, but not PS, salivary flow rate and total protein in diabetics were significantly less than those in healthy controls (p = 0.021 & p < 0.001 respectively). Correlation analysis revealed the existence of a negative correlation between PS statherin levels and HbA1c (p = 0.012) and fasting glucose (p = 0.021) levels, while no such correlation was found for SS statherin levels. When statherin levels were normalized to total salivary protein, the proportion of PS statherin, but not SS statherin, in diabetics was significantly less than that in controls (p = 0.032). In contrast, the amount of statherin secretion in SS, but not PS, was significantly decreased in diabetics compared to controls (p = 0.016). Conclusions and general significance The results show that synthesis and secretion of statherin is reduced in diabetics and this reduction is salivary gland specific. As compromised salivary statherin secretion leads to increased oral health risk, this study indicates that routine oral health assessment of these patients is warranted. A major salivary protein, statherin, was evaluated in diabetic and healthy subjects. Statherin levels in parotid saliva (PS) were reduced in type 2 diabetics. PS statherin levels were negatively correlated with HbA1c & fasting glucose levels. Diabetic patients have higher decayed, missing, and filled teeth (DMFT) scores. This is the first study to show decreased statherin in saliva of type 2 diabetics.
Collapse
|
12
|
de Sousa-Pereira P, Cova M, Abrantes J, Ferreira R, Trindade F, Barros A, Gomes P, Colaço B, Amado F, Esteves PJ, Vitorino R. Cross-species comparison of mammalian saliva using an LC-MALDI based proteomic approach. Proteomics 2015; 15:1598-607. [PMID: 25641928 DOI: 10.1002/pmic.201400083] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 12/01/2014] [Accepted: 01/13/2015] [Indexed: 01/31/2023]
Abstract
Despite the importance of saliva in the regulation of oral cavity homeostasis, few studies have been conducted to quantitatively compare the saliva of different mammal species. Aiming to define a proteome signature of mammals' saliva, an in-depth SDS-PAGE-LC coupled to MS/MS (GeLC-MS/MS) approach was used to characterize the saliva from primates (human), carnivores (dog), glires (rat and rabbit), and ungulates (sheep, cattle, horse). Despite the high variability in the number of distinct proteins identified per species, most protein families were shared by the mammals studied with the exception of cattle and horse. Alpha-amylase is an example that seems to reflect the natural selection related to digestion efficacy and food recognition. Casein protein family was identified in all species but human, suggesting an alternative to statherin in the protection of hard tissues. Overall, data suggest that different proteins might assure a similar role in the regulation of oral cavity homeostasis, potentially explaining the specific mammals' salivary proteome signature. Moreover, some protein families were identified for the first time in the saliva of some species, the presence of proline-rich proteins in rabbit's saliva being a good example.
Collapse
Affiliation(s)
- Patrícia de Sousa-Pereira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Vairão, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sarode SC, Sarode GS, Patil S. Role of statherin in oral carcinogenesis. Oral Oncol 2014; 50:e55-6. [PMID: 25128293 DOI: 10.1016/j.oraloncology.2014.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Maheshnagar, Pimpri, Pune - 18, Maharashtra, India.
| | - Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Maheshnagar, Pimpri, Pune - 18, Maharashtra, India.
| | - Snehal Patil
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Maheshnagar, Pimpri, Pune - 18, Maharashtra, India
| |
Collapse
|
14
|
Farina A. Proximal fluid proteomics for the discovery of digestive cancer biomarkers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:988-1002. [DOI: 10.1016/j.bbapap.2013.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/15/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
|
15
|
Cheng YSL, Rees T, Wright J. A review of research on salivary biomarkers for oral cancer detection. Clin Transl Med 2014; 3:3. [PMID: 24564868 PMCID: PMC3945802 DOI: 10.1186/2001-1326-3-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/13/2014] [Indexed: 12/12/2022] Open
Abstract
Using saliva for disease diagnostics and health surveillance is a promising approach as collecting saliva is relatively easy and non-invasive. Over the past two decades, using salivary biomarkers specifically for early cancer detection has attracted much research interest, especially for cancers occurring in the oral cavity and oropharynx, for which the five-year survival rate (62%) is still one of the lowest among all major human cancers. More than 90% of oral cancers are oral squamous cell carcinoma (OSCC) and the standard method for detection is through a comprehensive clinical examination by oral healthcare professionals. Despite the fact that the oral cavity is easily accessible, most OSCCs are not diagnosed until an advanced stage, which is believed to be the major reason for the low survival rate, and points to the urgent need for clinical diagnostic aids for early detection of OSCC. Thus, much research effort has been dedicated to investigating potential salivary biomarkers for OSCC, and more than 100 such biomarkers have been reported in the literature. However, some important issues and challenges have emerged that require solutions and further research in order to find reliable OSCC salivary biomarkers for clinical use. This review article provides an up-to-date list of potential OSCC salivary biomarkers reported as of the fall of 2013, and discusses those emerging issues. By raising the awareness of these issues on the part of both researchers and clinicians, it is hoped that reliable, specific and sensitive salivary biomarkers may be found soon-and not only biomarkers for early OSCC detection but also for detecting other types of cancers or even for monitoring non-cancerous disease activity.
Collapse
Affiliation(s)
- Yi-Shing Lisa Cheng
- Department of Diagnostic Sciences, Texas A&M University-Baylor College of Dentistry, 3302 Gaston Ave,, Dallas, TX 75246, USA.
| | | | | |
Collapse
|
16
|
Amado F, Lobo MJC, Domingues P, Duarte JA, Vitorino R. Salivary peptidomics. Expert Rev Proteomics 2014; 7:709-21. [DOI: 10.1586/epr.10.48] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Vitorino R, Barros AS, Caseiro A, Ferreira R, Amado F. Evaluation of different extraction procedures for salivary peptide analysis. Talanta 2012; 94:209-15. [DOI: 10.1016/j.talanta.2012.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/03/2012] [Accepted: 03/12/2012] [Indexed: 01/05/2023]
|
18
|
Castagnola M, Cabras T, Vitali A, Sanna MT, Messana I. Biotechnological implications of the salivary proteome. Trends Biotechnol 2011; 29:409-18. [DOI: 10.1016/j.tibtech.2011.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/31/2011] [Accepted: 04/08/2011] [Indexed: 12/23/2022]
|
19
|
Abstract
AIMS The goal of this review is to identify the antimicrobial proteins in the oral fluids, saliva and gingival crevicular fluid and identify functional families and candidates for antibacterial treatment. RESULTS Periodontal biofilms initiate a cascade of inflammatory and immune processes that lead to the destruction of gingival tissues and ultimately alveolar bone loss and tooth loss. Treatment of periodontal disease with conventional antibiotics does not appear to be effective in the absence of mechanical debridement. An alternative treatment may be found in antimicrobial peptides and proteins, which can be bactericidal and anti-inflammatory and block the inflammatory effects of bacterial toxins. The peptides have co-evolved with oral bacteria, which have not developed significant peptide resistance. Over 45 antibacterial proteins are found in human saliva and gingival crevicular fluid. The proteins and peptides belong to several different functional families and offer broad protection from invading microbes. Several antimicrobial peptides and proteins (AMPs) serve as templates for the development of therapeutic peptides and peptide mimetics, although to date none have demonstrated efficacy in human trials. CONCLUSIONS Existing and newly identified AMPs may be developed for therapeutic use in periodontal disease or can serve as templates for peptide and peptide mimetics with improved therapeutic indices.
Collapse
Affiliation(s)
- Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
20
|
Manconi B, Fanali C, Cabras T, Inzitari R, Patamia M, Scarano E, Fiorita A, Vitali A, Castagnola M, Messana I, Sanna MT. Structural characterization of a new statherin from pig parotid granules. J Pept Sci 2010; 16:269-75. [PMID: 20474038 DOI: 10.1002/psc.1232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study describes the identification and structural characterization of Sus scrofa statherin. HPLC-electrospray ionization mass spectrometry analysis on pig parotid secretory granule extracts evidenced a peptide with a molecular mass value of 5381.1 +/- 0.6 Da and its truncated form, devoid of the C-terminal Ala residue, with a molecular mass value of 5310.1 +/- 0.6 Da. The complete sequence of pig statherin gene was determined by sequencing the full-length cDNA obtained by rapid amplification of cDNA ends. The gene is 549 base pairs long and contains an open reading frame of 185 nucleotides, encoding a 42-amino acid secretory polypeptide with a signal peptide of 19 residues. This sequence presents some typical features of the four statherins characterized till now, showing the highest degree of amino acid identity with bovine (57%) and human statherin (39%). Pig statherin is mono-phoshorylated on Ser-3, while primate statherins already characterized are di-phosphorylated on Ser-2 and Ser-3. This difference, probably connected to the Asp-4 --> Glu substitution, suggests the involvement of the Golgi-casein kinase, which strictly recognizes the SX(E/pS) consensus sequence.
Collapse
Affiliation(s)
- Barbara Manconi
- Dipartimento di Scienze Applicate ai Biosistemi, Università di Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Laudenbach JM, Epstein JB. Treatment strategies for oropharyngeal candidiasis. Expert Opin Pharmacother 2010; 10:1413-21. [PMID: 19505211 DOI: 10.1517/14656560902952854] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Oropharyngeal candidiasis (OPC) is a common oral disease that may cause oral symptoms, lead to regional infection (e.g., esophageal candidiasis) and increase the risk of systemic fungal infection in the compromised host. OBJECTIVE Critical review of the literature of prevention and therapy. METHODS The literature was reviewed using PubMed, and specific keywords from the MeSH Database were used. RESULTS/CONCLUSION Management of OPC requires that the underlying risk factors of infection be diagnosed and managed whenever possible. Antimicrobials may be provided as topical or systemic therapy. Topical therapies may provide effective management for candidiasis in the non-compromised host and increase the control of colonization in the compromised host. Advances in prevention and management include new agents and improved mechanisms of topical drug delivery.
Collapse
Affiliation(s)
- Joel M Laudenbach
- University of Illinois at Chicago College of Dentistry, Department of Oral Medicine and Diagnostic Sciences, 801 South Paulina Street (MC 838), Rm 554A, Chicago, IL 60612, USA.
| | | |
Collapse
|
22
|
|
23
|
Isola M, Cabras T, Inzitari R, Lantini MS, Proto E, Cossu M, Riva A. Electron microscopic detection of statherin in secretory granules of human major salivary glands. J Anat 2008; 212:664-8. [PMID: 18397241 DOI: 10.1111/j.1469-7580.2008.00888.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In order to increase current knowledge regarding statherin secretion into the oral cavity, ultrastructural localization of this peptide was investigated in human salivary glands by using a post-embedding immunogold staining technique. Statherin reactivity was found inside the granules of serous cells of parotid and submandibular glands. In parotid granules immunostaining was preferentially present in the less electron-dense region, whereas in submandibular serous granules the reactivity was uniform and the dense core always stained. By contrast, none or weak reactivity was observed in serous cells of major sublingual glands. These findings reveal for the first time the subcellular localization of statherin by electron transmission microscopy and confirm that of the three major types of salivary glands, the parotid and submandibular glands are the greatest source of salivary statherin. Moreover, they suggest that more than one packaging mechanism may be involved in the storage of statherin within serous granules of salivary glands.
Collapse
Affiliation(s)
- M Isola
- Department of Cytomorphology, University of Cagliari, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Lerman MA, Laudenbach J, Marty FM, Baden LR, Treister NS. Management of oral infections in cancer patients. Dent Clin North Am 2008; 52:129-53, ix. [PMID: 18154868 DOI: 10.1016/j.cden.2007.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The myelosuppressive and mucosal-damaging consequences of cancer and cancer therapies place patients at high risk for developing infectious complications. Bacterial, fungal, and viral infections are all commonly encountered in the oral cavity, contributing to both morbidity and mortality in this patient population. Prevention, early and definitive diagnosis, and appropriate management are critical to ensure optimal treatment outcomes. With the majority of cancer patients treated as outpatients in the community setting, oral health care professionals play an important role in managing such infectious complications of cancer therapy.
Collapse
Affiliation(s)
- Mark A Lerman
- Division of Oral Medicine and Dentistry, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
25
|
Tan S, Liang CRMY, Yeoh KG, So J, Hew CL, Chung MCM. Gastrointestinal fluids proteomics. Proteomics Clin Appl 2007; 1:820-33. [PMID: 21136736 DOI: 10.1002/prca.200700169] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Indexed: 01/19/2023]
Abstract
Seventy million people suffer from diseases of the gastrointestinal tract annually in US, translating to US$85.5 billion in direct healthcare costs. The debilitating effects of these gastrointestinal (GI) diseases can be circumvented with good biomarkers for early detection of these disorders, which will greatly increase the success of curative treatments. GI fluids represent a potential reservoir of biomarkers for early diagnosis of various GI and systemic diseases since these fluids are the most proximal fluid bathing diseased cells. They are anticipated to have proteomes that closely reflect the ensemble of proteins secreted from the respective GI tissues. Most importantly, the disease markers present in GI fluids should be present in higher concentrations than in sera, thus offering greater sensitivity in their detection. However, proteome analysis of GI fluids can be complex mainly due to the dynamic range of protein content and the numerous PTMs of proteins in each specialized GI compartment. This review attempts to discuss the physiology of the various GI fluids, the special technical considerations required for proteome analysis of each fluid, as well as to summarize the current state of knowledge of biomarker discoveries and clinical utility of GI fluids such as salivary, gastric, pancreatic, and biliary secretions.
Collapse
Affiliation(s)
- Sandra Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
26
|
Chiappin S, Antonelli G, Gatti R, De Palo EF. Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 2007; 383:30-40. [PMID: 17512510 DOI: 10.1016/j.cca.2007.04.011] [Citation(s) in RCA: 464] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 03/30/2007] [Accepted: 04/07/2007] [Indexed: 01/31/2023]
Abstract
The assay of saliva is an increasing area of research with implications for basic and clinical purposes. Although this biological fluid is easy to manipulate and collect, careful attention must be directed to limit variation in specimen integrity. Recently, the use of saliva has provided a substantial addition to the diagnostic armamentarium as an investigative tool for disease processes and disorders. In addition to its oral indications, the analysis of saliva provides important information about the functioning of various organs within the body. In this respect, endocrine research certainly occupies a central role. The present review considers the laboratory aspects of salivary assays with respect to the different analytes including ions, drugs and various non-protein/protein compounds such as hormones and immunoglobulins. This review also examines the consequences of preanalytical variation with respect to collection strategy and subsequent storage conditions. It is likely that the use of saliva in assays will continue to expand thus providing a new instrument of investigation for physiologic as well as pathophysiologic states.
Collapse
Affiliation(s)
- Silvia Chiappin
- Section of Clinical Biochemistry, Department of Medical Diagnostic Sciences and Spec. Ther., University of Padua, c/o ex Istituto di Semeiotica Medica, Via Ospedale 105-35128, Padova, Italy
| | | | | | | |
Collapse
|
27
|
Goobes R, Goobes G, Shaw WJ, Drobny GP, Campbell CT, Stayton PS. Thermodynamic roles of basic amino acids in statherin recognition of hydroxyapatite. Biochemistry 2007; 46:4725-33. [PMID: 17391007 DOI: 10.1021/bi602345a] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salivary statherin is a highly acidic, 43 amino acid residue protein that functions as an inhibitor of primary and secondary crystallization of the biomineral hydroxyapatite. The acidic domain at the N-terminus was previously shown to be important in the binding of statherin to hydroxyapatite surfaces. This acidic segment is followed by a basic segment whose role is unclear. In this study, the role of the basic amino acids in the hydroxyapatite adsorption thermodynamics has been determined using isothermal titration calorimetry and equilibrium adsorption isotherm analysis. Single point mutations of the basic side chains to alanine lowered the binding affinity to the surface but did not perturb the maximal surface coverage and the adsorption enthalpy. The structural and dynamic properties of the single point mutants as characterized by solid-state NMR techniques were not altered either. Simultaneous replacement of all four basic amino acids with alanine lowered the adsorption equilibrium constant by 5-fold and the maximal surface coverage by nearly 2-fold. The initial exothermic phase of adsorption exhibited by native statherin is preserved in this mutant, along with the alpha-helical structure and the dynamic properties of the N-terminal domain. These results help to refine the two binding site model of statherin adsorption proposed earlier in our study of wild-type statherin (Goobes, R., Goobes, G., Campbell, C.T., and Stayton, P.S. (2006) Biochemistry 45, 5576-5586). The basic charges function to reduce protein-protein charge repulsion on the HAP surface, and in their absence, there is a considerable decrease in statherin packing density on the surface at binding saturation.
Collapse
Affiliation(s)
- Rivka Goobes
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
28
|
Santhosh C, Dharmadhikari AK, Alti K, Dharmadhikari JA, Mathur D. Suppression of ultrafast supercontinuum generation in a salivary protein. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:020510. [PMID: 17477707 DOI: 10.1117/1.2731316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The first studies of the propagation of ultrafast (<45 fs) pulses of intense infrared light through protein media reveal that supercontinuum (white light) generation is severely suppressed in the presence of the protein alpha-amylase, a potential stress marker in human saliva. The continuum suppression capacity is attributed to the electron scavenging property of the protein.
Collapse
Affiliation(s)
- Chidangil Santhosh
- Manipal University, Centre for Laser Spectroscopy, Manipal Life Sciences Centre, Manipal 576 104, India
| | | | | | | | | |
Collapse
|
29
|
Inzitari R, Cabras T, Rossetti DV, Fanali C, Vitali A, Pellegrini M, Paludetti G, Manni A, Giardina B, Messana I, Castagnola M. Detection in human saliva of different statherin and P-B fragments and derivatives. Proteomics 2006; 6:6370-9. [PMID: 17080484 DOI: 10.1002/pmic.200600395] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Statherin is a multifunctional polypeptide specific of human saliva involved in oral calcium homeostasis, phosphate buffering and formation of protein networks. Salivary P-B peptide is usually included into the basic proline-rich protein family but it shows some similarities with statherin and its specific biological role is still undefined. In this study, various fragments and derivatives of statherin and P-B peptide were consistently detected by RP-HPLC ESI-IT MS in 23 samples of human saliva. They were: statherin mono- and non-phosphorylated, statherin Des-Phe(43) (statherin SV1), statherin Des-Thr(42),Phe(43), statherin Des-Asp(1), statherin Des(6-15) (statherin SV2), statherin Des(1-9), statherin Des(1-10), statherin Des(1-13) and P-B Des(1-5). Statherin SV3 (statherin Des(6-15), Phe(43)) was detected only in one sample. Identity of the fragments was confirmed either by MS/MS experiments or by enzymatic digestion or by Edman sequencing. Detection of the fragments suggests that statherin and P-B peptide are submitted to post-translational proteolytic cleavages that are common to other classes of salivary proteins.
Collapse
Affiliation(s)
- Rosanna Inzitari
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cabras T, Inzitari R, Fanali C, Scarano E, Patamia M, Sanna MT, Pisano E, Giardina B, Castagnola M, Messana I. HPLC–MS characterization of cyclo-statherin Q-37, a specific cyclization product of human salivary statherin generated by transglutaminase 2. J Sep Sci 2006; 29:2600-8. [PMID: 17313100 DOI: 10.1002/jssc.200600244] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the present study the analytical potential of HPLC-MS/MS was utilized for the structural characterization of a post-translational modification of statherin. Human salivary statherin (M(av)5380.0 +/- 0.3 Da) is transformed by the action of transglutaminase 2 into a cyclic derivative with an average molecular mass of 5363.0 +/- 0.3 Da. The intra-molecular bridge is generated by the loss of an ammonia molecule between the unique Ione-pair donating nucleophile Lys-6 and one acceptor among the seven glutamine residues of statherin. Digestion of the cyclic derivative with chymotrypsin, proteinase K, and carboxypeptidase Y, monitored by HPLC-electrospray ionization-ion trap-mass spectrometric analysis, demonstrated that cyclization involved almost specifically Gln-37 (> 95%), with the percentage of Gln-39 implicated in the cross-linkiing being less than 5%. The main derivative was named cyclostatherin Q37. Guineapig transglutaminase 2 showed high affinity for statherin in vitro (Km = 0.65 +/- 0.06 microM). Cyclo-statherin was detected in vivo by HPLC-electrospray ionization ion trap-mass spectrometry analysis of whole human saliva and it accounted for about 1% of total statherin. Detection of cyclo-statherin in whole saliva is suggestive of a putative role of this molecule in the formation of the "oral protein pellicle".
Collapse
Affiliation(s)
- Tiziana Cabras
- Department of Sciences Applied to Biosystems, Cagliari University, Monserrato Campus, Monserrato, CA, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mori M, Takeuchi H, Sato M, Sumitomo S. Antimicrobial Peptides in Saliva and Salivary Glands: Their Roles in the Oral Defense System. ACTA ACUST UNITED AC 2006. [DOI: 10.3353/omp.11.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Masahiko Mori
- Department of Oral and Maxillofacial Surgery, Asahi University School of Dentistry
| | - Hiroshi Takeuchi
- Department of Oral Pathology, Asahi University School of Dentistry
| | - Masaru Sato
- Department of Oral Pathology, Asahi University School of Dentistry
| | - Shinichiro Sumitomo
- Department of Oral and Maxillofacial Surgery, Asahi University School of Dentistry
| |
Collapse
|