1
|
Makambi WK, Chiu VL, Kasper L, Hube B, Karlsson AJ. Role of amino acid substitutions on proteolytic stability of histatin 5 in the presence of secreted aspartyl proteases and salivary proteases. Protein Sci 2025; 34:e70011. [PMID: 39720900 DOI: 10.1002/pro.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
Histatin 5 (Hst5) is a 24-amino-acid peptide naturally present in human saliva that has been proposed as a potential antifungal therapeutic. However, Hst5 is susceptible to degradation by secreted aspartyl proteases (Saps) produced by Candida albicans, which could limit its efficacy as a therapeutic. To better understand the role of the lysine residues of Hst5 in proteolysis by C. albicans Saps (Sap1, Sap2, Sap3, Sap5, Sap6, Sap9, and Sap10), we studied variants of Hst5 with substitutions to leucine or arginine at the lysine residues (K5, K11, K13, and K17). Sap5, Sap6, and Sap10 did not degrade Hst5 or the variants. However, we observed degradation of the peptides by Sap1, Sap2, Sap3, and Sap9, and the degradation depended on the site of substitution and the substituent residue. Some modifications, such as K11L and K13L, were particularly susceptible to proteolysis by Sap1, Sap2, Sap3, and Sap9. In contrast, the K17L modification substantially increased the stability and antifungal activity of Hst5 in the presence of Saps. We used mass spectrometry to characterize the proteolysis products, which allowed us to identify fragments likely to have maintained or lost antifungal activity. We also evaluated the proteolytic stability of the Hst5 variants in saliva. Both K17L and K5R showed improved stability; however, the enhancements were modest, suggesting that further engineering is required to achieve significant improvements. Our approach demonstrates the potential of simple, rational substitutions to enhance peptide efficacy and proteolytic stability, providing a promising strategy for improving the properties of antifungal peptides.
Collapse
Affiliation(s)
- Wright K Makambi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Victoria L Chiu
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller University, Jena, Germany
| | - Amy J Karlsson
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Chauhan A, Salwa, Shedgaonkar GG, Kumar L, Karmakar A, Khajuria S, Raghavendra AP, Verma R. Antioxidant and anticancer activities of hesperetin and its novel formulations in KB cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03581-y. [PMID: 39531045 DOI: 10.1007/s00210-024-03581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to formulate the hesperetin nanostructured lipid carriers (NLCs) containing oro-mucosal gel for its activity assessment on the KB cell line. NLCs were prepared with glyceryl monostearate, oleic acid, and lecithin using a modified constant-temperature emulsification technique. The particle size analysis, in vitro drug release studies, etc., of prepared NLCs were evaluated. The formulated gels were analyzed with respect to spreadability, extrudability, swelling index, texture analysis, etc. The particle size, polydispersity index, zeta potential, and drug entrapment of nanocarriers were recorded to be 221.733 ± 61.536 nm, 0.381 ± 0.091, - 51.433 ± 4.143 mV, and 89.29%, respectively. The optimized NLCs in 24 h released 87.14 ± 6.62% of the drug. The round shape of NLCs was noticed with scanning electron microscopy. The pH, spreadability, extrudability, swelling index, content uniformity, and drug release studies of hesperetin NLCs-containing gel (HNG) were found to be 6.81 ± 0.04, 2.49 ± 0.04 cm.mg/s, 539.04 ± 32.88 g/cm2, 4.27 ± 0.47, 107.98 ± 1.93%, and 90.17 ± 6.67% (in 48 h), respectively. The developed formulations showed promising in vitro anticancer and antioxidant activities. HNP results authorize that the formulation may be beneficial for the treatment of oral cancer.
Collapse
Affiliation(s)
- Arunima Chauhan
- Faculty of Dentistry, Melaka-Manipal Medical College, Manipal Academy of Higher Education, Manipal, India
- Faculty of Dentistry, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka, Malaysia
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Gayatri Gopal Shedgaonkar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur 844 102, Vaishali, Bihar, India.
| | - Arka Karmakar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur 844 102, Vaishali, Bihar, India
| | - Salil Khajuria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844 102, Vaishali, Bihar, India
| | | | - Ruchi Verma
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Ahirwar P, Kozlovskaya V, Pukkanasut P, Nikishau P, Nealy S, Harber G, Michalek SM, Antony L, Wu H, Kharlampieva E, Velu SE. Polymer vesicles for the delivery of inhibitors of cariogenic biofilm. Dent Mater 2024; 40:1937-1953. [PMID: 39317560 PMCID: PMC11580801 DOI: 10.1016/j.dental.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES The goal of this study is to develop a novel drug delivery platform for the pH-responsive delivery of biofilm inhibitors as a potential avenue to prevent and treat dental caries. METHODS Biofilm and growth inhibition assays were performed in polystyrene microtiter 96-well plates. Docking analysis was performed using the reported GtfB + HA5 co-crystal structure (PDB code: 8fg8) in SeeSAR 13.0.1 software. Polymersome vesicles were assembled from poly(N-vinylpyrrolidone)8-block-poly(dimethylsiloxane)64-block-poly(N-vinylpyrrolidone)8 (PVPON8-PDMS64-PVPON8) triblock copolymer using a nanoprecipitation method. Microbiome analysis of biofilm inhibitors and the in vivo drug release and antivirulence activities of polymersome encapsulated inhibitors have been carried out in a S. mutans induced rat caries model. RESULTS Biofilm inhibitors for HA5 and HA6 have shown species-specific selectivity towards S. mutans and the ability to preserve the oral microbiome in a S. mutans induced dental caries model. The inhibitors were encapsulated into pH-responsive block copolymer vesicles to generate polymersome-encapsulated biofilm inhibitors, and their biofilm and growth inhibitory activities against S. mutans and representative strains of oral commensal streptococci have been assessed. A 4-week treatment of S. mutans UA159 infected gnotobiotic rats with 100 µM of polymersome-encapsulated biofilm inhibitor, PEHA5 showed significant reductions in buccal, sulcal, and proximal caries scores compared to an untreated control group. SIGNIFICANCE Taken together, our data suggests that the biofilm-selective therapy using the polymersome-encapsulated biofilm inhibitors is a viable approach for the prevention and treatment of dental caries while preserving the oral microbiome.
Collapse
Affiliation(s)
- Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Piyasuda Pukkanasut
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pavel Nikishau
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sarah Nealy
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gregory Harber
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suzanne M Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Linto Antony
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Wu
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center of Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Microbiome Center, Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Global Center for Craniofacial Oral and Dental Disorders, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Karanth S, Wiesenfarth M, Benthin J, Koehler M. Fava Bean Protein Nanofibrils Modulate Cell Membrane Interfaces for Biomolecular Interactions as Unveiled by Atomic Force Microscopy. Foods 2024; 13:3411. [PMID: 39517195 PMCID: PMC11545818 DOI: 10.3390/foods13213411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Functional amyloids (protein nanofibrils, PNF) synthesized from plant sources exhibit unique physicochemical and nanomechanical properties that could improve food texture. While environmental factors affecting PNFs are well-known, scientific evidence on how cells (focus on the oral cavity) respond to them under physiological conditions is lacking. Self-assembled PNFs synthesized from fava bean whole protein isolate show a strong pH- and solvent-dependent morphology and elasticity modification measured by atomic force microscopy (AFM). After incubation of PNFs with an oral mechanosensitive model cell line at pH 7.3, difference in cell-surface roughness without significant changes in the overall cell elasticity were measured. The role of cell membrane composition on supported lipid bilayers was also tested, showing an increase in membrane elasticity with increasing fibril concentration and the possible impact of annular phospholipids in binding. Genetic responses of membrane proteins involved in texture and fat perception were detected at the mRNA level by RT-qPCR assay and both mechano- and chemosensing proteins displayed responses highlighting an interface dependent interaction. The outcomes of this study provide a basis for understanding the changing physicochemical properties of PNFs and their effect on flavor perception by altering mouthfeel and fat properties. This knowledge is important in the development of plant-based texture enhancers for sensory-appealing foods that require consumer acceptance and further promote healthy diets.
Collapse
Affiliation(s)
- Sanjai Karanth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (S.K.); (M.W.); (J.B.)
| | - Marina Wiesenfarth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (S.K.); (M.W.); (J.B.)
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany
| | - Julia Benthin
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (S.K.); (M.W.); (J.B.)
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (S.K.); (M.W.); (J.B.)
- Chair of Nutritional Systems Biology, TUM Junior Fellow, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
5
|
Slowik KM, Edmans JG, Harrison S, Edwards SM, Bolt R, Spain SG, Hatton PV, Murdoch C, Colley HE. Controlled dual drug release from adhesive electrospun patches for prevention and treatment of alveolar osteitis. J Control Release 2024; 376:253-265. [PMID: 39389367 DOI: 10.1016/j.jconrel.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Approximately one in five individuals experience alveolar osteitis (AO) following wisdom tooth extraction. AO is characterised by loss of the blood clot from the tooth extraction socket leading to infection and pain, resulting in repeated hospital visits that impose a substantial burden on healthcare systems. Current treatments are sub-optimal; to address this we developed a novel drug-loaded mucoadhesive patch composed of dual electrospun polyvinyl pyrrolidone/Eudragit RS100 (PVP/RS100) and poly(N-isopropylacrylamide) (PNIPAM) fibres protected by a poly(ε-caprolactone) (PCL) backing layer. These patches demonstrated controlled release of the long-acting analgesic bupivacaine HCl and the anti-inflammatory drug prednisolone. Topical application of patches to tissue-engineered gingival mucosa showed that patch-released bupivacaine and prednisolone achieved sustained tissue permeation with 54.8 ± 3.3 % bupivacaine HCl and 65.8 ± 5.1 % prednisolone permeating the epithelium after 24 h. The drugs retained their functionality after release; bupivacaine HCl significantly (p < 0.05) inhibited veratridine-induced intracellular calcium flux in SH-SY5Y neuronal cells, while prednisolone significantly reduced gene expression of IL-6 (2-fold; p < 0.001), CXCL8 (5.1-fold; p < 0.01) and TNF-α (1.5-fold; p < 0.001) in stimulated THP-1 monocytes. Taken together, these data show that dual electrospun patches have the potential to provide a mucoadhesive covering to prevent blood clot loss while delivering pain relief and anti-inflammatory therapeutics at tooth extraction sites to prevent and treat AO. This study not only offers a future therapeutic pathway for AO but also contributes valuable insights into future advancements in drug delivery devices for periodontal or oral mucosal tissue.
Collapse
Affiliation(s)
- Klaudia M Slowik
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Jake G Edmans
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK
| | - Samuel Harrison
- Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK
| | - Sean M Edwards
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| | - Robert Bolt
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Sebastian G Spain
- Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK
| | - Paul V Hatton
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; Insigneo, University of Sheffield, Sheffield, UK
| | - Craig Murdoch
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; Insigneo, University of Sheffield, Sheffield, UK.
| | - Helen E Colley
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; Insigneo, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Meldrum OW, Yakubov GE. Journey of dietary fiber along the gastrointestinal tract: role of physical interactions, mucus, and biochemical transformations. Crit Rev Food Sci Nutr 2024:1-29. [PMID: 39141568 DOI: 10.1080/10408398.2024.2390556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Dietary fiber-rich foods have been associated with numerous health benefits, including a reduced risk of cardiovascular and metabolic diseases. Harnessing the potential to deliver positive health outcomes rests on our understanding of the underlying mechanisms that drive these associations. This review addresses data and concepts concerning plant-based food functionality by dissecting the cascade of physical and chemical digestive processes and interactions that underpin these physiological benefits. Functional transformations of dietary fiber along the gastrointestinal tract from the stages of oral processing and gastric emptying to intestinal digestion and colonic fermentation influence its capacity to modulate digestion, transit, and commensal microbiome. This analysis highlights the significance, limitations, and challenges in decoding the complex web of interactions to establish a coherent framework connecting specific fiber components' molecular and macroscale interactions across multiple length scales within the gastrointestinal tract. One critical area that requires closer examination is the interaction between fiber, mucus barrier, and the commensal microbiome when considering food structure design and personalized nutritional strategies for beneficial physiologic effects. Understanding the response of specific fibers, particularly concerning an individual's physiology, will offer the opportunity to exploit these functional characteristics to elicit specific, symptom-targeting effects or use fiber types as adjunctive therapies.
Collapse
Affiliation(s)
- Oliver W Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Gleb E Yakubov
- Soft Matter Biomaterials and Biointerfaces, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Maddeppungeng NM, Syahirah NA, Hidayati N, Rahman FUA, Mansjur KQ, Rieuwpassa IE, Setiawati D, Fadhlullah M, Aziz AYR, Salsabila A, Alsayed AR, Pamornpathomkul B, Permana AD, Hasyim R. Specific delivery of metronidazole using microparticles and thermosensitive in situ hydrogel for intrapocket administration as an alternative in periodontitis treatment. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1726-1749. [PMID: 38769614 DOI: 10.1080/09205063.2024.2349414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
Periodontitis is a common chronic inflammatory disease primarily caused by the prevalence of bacterial overgrowth resulting in the development of an inflammatory condition that destroys the tooth's supporting tissues and eventual tooth loss. Comparatively, to other treatment methods, it is difficult for topical antibacterial drugs to effectively permeate the biofilm's physical barrier, making conventional therapy for periodontitis more challenging. This novel study combines thermosensitive in situ hydrogel with microparticles (MPs) to enhance the targeted delivery of metronidazole (MET) to the periodontal pocket. Polycaprolactone (PCL) polymer was utilized to produce bacteria-sensitive MPs. Additionally, the study assessed the attributes of MPs and demonstrated an enhancement in the in vitro antibacterial efficacy of MPs towards Staphylococcus aureus (SA) and Escherichia coli (EC). Subsequently, we incorporated MET-MPs into thermosensitive in situ hydrogel formulations using chitosan. The optimized formulations exhibited stability, appropriate gelation temperature, mucoadhesive strength, and viscosity. In vitro permeation tests showed selective and prolonged drug release against SA and EC. Ex vivo experiments demonstrated no significant differences between in situ hydrogel containing pure MET and MET-MPs in biofilm quantity, bacterial counts, and metabolic activity in biofilms. According to in vitro tests and the effectiveness of the antibacterial activity, this study has exhibited a novel methodology for more efficacious therapies for periodontitis. This study aims to utilize MET in MPs to improve its effectiveness, enhance its antibacterial activity, and improve patient treatment outcomes. In further research, the efficacy of the treatment should be investigated in vivo using an appropriate animal model.
Collapse
Affiliation(s)
- Nurul Muhlisah Maddeppungeng
- Department of Pharmacy, Faculty of Medicine and Health Sciences, Alauddin Islamic State University, Samata Gowa, Indonesia
| | | | - Nasyrah Hidayati
- Department of Orthodontic, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Fadhlil U A Rahman
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Karima Qurnia Mansjur
- Department of Orthodontic, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Irene E Rieuwpassa
- Department of Oral Biology, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Dian Setiawati
- Department of Periodontology, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Fadhlullah
- Veterinary Paramedic Study Program, Faculty of Vocational Study, Hasanuddin University, Makassar, Indonesia
| | | | | | - Ahmad R Alsayed
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | | | | | - Rafikah Hasyim
- Department of Oral Biology, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
8
|
Santonocito R, Cavallaro A, Puglisi R, Pappalardo A, Tuccitto N, Petroselli M, Trusso Sfrazzetto G. Smartphone-Based Sensing of Cortisol by Functionalized Rhodamine Probes. Chemistry 2024; 30:e202401201. [PMID: 38600692 DOI: 10.1002/chem.202401201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
During a stress condition, the human body synthesizes catecholamine neurotransmitters and specific hormones (called "stress hormones"), the most important of which is cortisol. The monitoring of cortisol levels should be extremely important to control the stress levels, and for this reason, it shows important medical applications. The common analytical methods (HPLC, GC-MS) cannot be used in real life, due to the bulky size of the instruments and the necessity of specialized personnel. Molecular probes solve these problems due to their fast and easy use. The synthesis of new fluorescent rhodamine probes, able to interact by non-covalent interactions with cortisol, the recognition properties in solution as well as in solid state by Strip Test, using a smartphone as detector, are here reported. DFT calculations and FT-IR measurements suggest the formation of supramolecular complexes through hydrogen bonds as main non-covalent interaction. The present study represents one of the first sensor, based on synthetical chemical receptors, able to detect cortisol in a linear range from 1 mM to 1 pM, based on non-covalent molecular recognition and paves the way to the realization of practical point-of-care device for the monitoring of cortisol in real live.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- Laboratory for Molecular Surfaces and Nanotechnology - CSGI, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Manuel Petroselli
- Institute of Chemical Research of Catalonia (ICIQ), Av. PaÏsos Catalans 16, Tarragona, 43007, Spain
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
9
|
Shafi H, Reddy DVS, Rashid R, Roy T, Kawoosa S, Bader GN, Jvus C, Abdal-Hay A, Beigh MA, Majeed S, Khan NA, Sheikh FA. Optimizing the fabrication of electrospun nanofibers of prochlorperazine for enhanced dissolution and permeation properties. BIOMATERIALS ADVANCES 2024; 158:213773. [PMID: 38277903 DOI: 10.1016/j.bioadv.2024.213773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Despite being an approved antiemetic for more than five decades, the clinical usefulness of prochlorperazine is limited by its low solubility and inconsistent absorption in the gastrointestinal tract, which presents challenges for nanotherapeutic interventions. Here, we report the preparation of a highly soluble and permeable nanofiber formulation of prochlorperazine using the Quality-by-Design approach. The final nanofiber formulation with drug entrapment of 88.02 ± 1.14 % was obtained at 20.0 kV, with a flow rate of 0.5 ml/h and tip-to-collector distance of 19.9 cm. Physio-mechanical properties, such as thickness (0.42 ± 0.02 mm), pH resistance (7.04 ± 0.08), folding endurance (54 ± 5), and tensile strength (0.244 ± 0.02 N.mm-2), were appropriate for packaging and application to oromucosal surfaces. The content uniformity (93.48-106.63 %) and weight variation (<1.8 mg) of the optimal nanofiber formulation were within the permissible limits prescribed for orodispersible films. Microscopical investigations confirm a randomly deposited and dense network of woven nanofibers with an average diameter of 363 ± 5.66 nm. The drug particles were embedded homogeneously on the fiber in the nanoform (4.27 ± 1.34 nm). The spectral analysis using TEM-EDS shows diffraction peaks of sulfur and chlorine, the elemental constituents of prochlorperazine. The drug was amorphized in the nanofiber formulation, as led by the decline of the crystallinity index from 87.25 % to 7.93 % due to electrostatic destabilization and flash evaporation of the solvent. The enthalpy of fusion values of the drug in the nanofiber mat decreased significantly to 23.6 J/g compared to its pristine form, which exhibits a value of 260.7 J/g. The nanofibers were biocompatible with oral mucosal cells, and there were no signs of mucosal irritation compared to 1 % sodium lauryl sulfate. The fiber mats rapidly disintegrated within <1 s and released ≈91.49 ± 2.1 % of the drug within 2 min, almost 2-fold compared to the commercial Stemetil MD® tablets. Similarly, the cumulative amount of the drug permeated across the unit area of the oromucosal membrane was remarkably high (31.28 ± 1.30 μg) compared to 10.17 ± 1.11 μg and 13.10 ± 1.79 μg from the cast film and drug suspension. Our results revealed these nanofiber formulations have the potential to be fast-dissolving oromucosal delivery systems, which can result in enhanced bioavailability with an early onset of action due to rapid disintegration, dissolution, and permeation.
Collapse
Affiliation(s)
- Hasham Shafi
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India; Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India; CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - D V Siva Reddy
- CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Rumaisa Rashid
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India; CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Trisha Roy
- CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Shabnam Kawoosa
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - G N Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Chakradhar Jvus
- CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Abdalla Abdal-Hay
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo - Fifth Settlement, Cairo 11835, Egypt; Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt; The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston, QLD 4006, Australia; Cellular Signalling and Nanotherapeutics Laboratory, Department of Nanotechnology, University of KashmirHazratbal, Srinagar, Jammu and Kashmir, India
| | - Mushtaq A Beigh
- Cellular Signalling and Nanotherapeutics Laboratory, Department of Nanotechnology, University of KashmirHazratbal, Srinagar, Jammu and Kashmir, India
| | - Shafquat Majeed
- Laboratory for Multifunctional Nanomaterials, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | - Nisar Ahmad Khan
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
10
|
Pan Z, Zhang X, Xie W, Cui J, Wang Y, Zhang B, Du L, Zhai W, Sun H, Li Y, Li D. Revisited and innovative perspectives of oral ulcer: from biological specificity to local treatment. Front Bioeng Biotechnol 2024; 12:1335377. [PMID: 38456005 PMCID: PMC10917957 DOI: 10.3389/fbioe.2024.1335377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Mouth ulcers, a highly prevalent ailment affecting the oral mucosa, leading to pain and discomfort, significantly impacting the patient's daily life. The development of innovative approaches for oral ulcer treatment is of great importance. Moreover, a deeper and more comprehensive understanding of mouth ulcers will facilitate the development of innovative therapeutic strategies. The oral environment possesses distinct traits as it serves as the gateway to the digestive and respiratory systems. The permeability of various epithelial layers can influence drug absorption. Moreover, oral mucosal injuries exhibit distinct healing patterns compared to cutaneous lesions, influenced by various inherent and extrinsic factors. Furthermore, the moist and dynamic oral environment, influenced by saliva and daily physiological functions like chewing and speaking, presents additional challenges in local therapy. Also, suitable mucosal adhesion materials are crucial to alleviate pain and promote healing process. To this end, the review comprehensively examines the anatomical and structural aspects of the oral cavity, elucidates the healing mechanisms of oral ulcers, explores the factors contributing to scar-free healing in the oral mucosa, and investigates the application of mucosal adhesive materials as drug delivery systems. This endeavor seeks to offer novel insights and perspectives for the treatment of oral ulcers.
Collapse
Affiliation(s)
- Ziyi Pan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- School of Stomatology, Jilin University, Changchun, China
| | - Xu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Wangni Xie
- School of Stomatology, Jilin University, Changchun, China
| | - Jing Cui
- School of Stomatology, Jilin University, Changchun, China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Boya Zhang
- School of Stomatology, Jilin University, Changchun, China
| | - Liuyi Du
- School of Stomatology, Jilin University, Changchun, China
| | - Wenhao Zhai
- School of Stomatology, Jilin University, Changchun, China
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- School of Stomatology, Jilin University, Changchun, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- School of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
11
|
Brazaca LC, Imamura AH, Blasques RV, Camargo JR, Janegitz BC, Carrilho E. The use of biological fluids in microfluidic paper-based analytical devices (μPADs): Recent advances, challenges and future perspectives. Biosens Bioelectron 2024; 246:115846. [PMID: 38006702 DOI: 10.1016/j.bios.2023.115846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
The use of microfluidic paper-based analytical devices (μPADs) for aiding medical diagnosis is a growing trend in the literature mainly due to their low cost, easy use, simple manufacturing, and great potential for application in low-resource settings. Many important biomarkers (proteins, ions, lipids, hormones, DNA, RNA, drugs, whole cells, and more) and biofluids are available for precise detection and diagnosis. We have reviewed the advances μPADs in medical diagnostics have achieved in the last few years, focusing on the most common human biofluids (whole blood/plasma, sweat, urine, tears, and saliva). The challenges of detecting specific biomarkers in each sample are discussed, along with innovative techniques that overcome such limitations. Finally, the difficulties of commercializing μPADs are considered, and future trends are presented, including wearable devices and integrating multiple steps in a single platform.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.
| | - Amanda Hikari Imamura
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | - Rodrigo Vieira Blasques
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Jéssica Rocha Camargo
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
12
|
Burkett BJ, Rasmussen CM, Fillmore WJ, McDonald JS, McDonald RJ, Fagan AJ, Erdahl SA, Eckdahl SJ, Welker KM. No Increased Mercury Release from Dental Restorations at 1.5T, 3T, or 7T MRI. Magn Reson Med 2024; 91:660-669. [PMID: 37755142 DOI: 10.1002/mrm.29872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE Dental amalgam contains mercury and is commonly used in dental restorations. The impact of MRI on mercury excretion from dental amalgam is not well understood across clinical field strengths, especially 7T. We investigated the effects of MRI exposure on mercury excretion using fresh, lab-created dental amalgam restorations and in extracted teeth with old, pre-existing restorations. METHODS Donated, unfilled human teeth (n = 120) were restored with amalgam before being stored in saline, artificial saliva, or a dry box prior to MRI scanning. The teeth were placed in individual tubes of fresh artificial saliva and scanned at 1.5T, 3T, or 7T or left unscanned as controls. Mercury concentrations were measured 24-30 h later. Donated teeth with pre-existing restorations (n = 40) were stored in artificial saliva, scanned at 7T or left unscanned as controls, and mercury concentration tested. RESULTS For teeth extracted and restored in a laboratory, no significant difference was found (F = 2.42, P = 0.072) between mean mercury concentrations of unscanned teeth (13.72 μg/L) and teeth scanned at 1.5T (10.88 μg/L), 3T (12.65 μg/L), or 7T (8.88 μg/L). For teeth extracted with previously placed restorations, no significant difference (P = 0.288) was found between unscanned controls (4.28 μg/L) and teeth scanned at 7T (6.63 μg/L). CONCLUSION MRI of dental amalgam does not significantly increase mercury excretion at 1.5T, 3T, or 7T compared to unscanned teeth. This holds true for controlled laboratory restorations as well as for those placed and lived with prior to extraction and scanning, demonstrating no added risk to the clinical patient or research subject.
Collapse
Affiliation(s)
- Brian J Burkett
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chad M Rasmussen
- Division of Orthodontics and Dentofacial Orthopedics, Department of Dental Specialties, Mayo Clinic, Rochester, Minnesota, USA
| | - W Jonathan Fillmore
- Division of Oral and Maxillofacial Surgery, Department of Dental Specialties, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Andrew J Fagan
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah A Erdahl
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven J Eckdahl
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kirk M Welker
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Szekalska M, Czajkowska-Kośnik A, Maciejewski B, Misztalewska-Turkowicz I, Wilczewska AZ, Bernatoniene J, Winnicka K. Mucoadhesive Alginate/Pectin Films Crosslinked by Calcium Carbonate as Carriers of a Model Antifungal Drug-Posaconazole. Pharmaceutics 2023; 15:2415. [PMID: 37896175 PMCID: PMC10610174 DOI: 10.3390/pharmaceutics15102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The mucosal membrane of the oral cavity, due to its unique structure and availability, constitutes an appropriate site for the delivery of drugs, both with local and systemic effects. Mucoadhesive buccal films are drug dosage forms that due to their convenience of application, flexibility and size, are characterized by patients' compliance. Sodium alginate and pectin are natural polymers from the polysaccharides group, with mucoadhesive properties, that are widely applied to obtain buccal films. However, their hydrophilic nature and poor water resistance limit their application in sustained drug release formulations. Hence, the aim of this investigation was to design alginate/pectin buccal films by a one-step crosslinking technique-with the application of calcium carbonate. This technique was applied to prepare crosslinked alginate and alginate/pectin mucoadhesive films with a model antifungal drug-posaconazole. The obtained formulations were evaluated for the impact of crosslinking and pectin's presence on their pharmaceutical, mucoadhesive, mechanical and physicochemical properties. Additionally, the antifungal activity of the prepared films against Candida spp. was evaluated. It was shown that pectin's presence in the formulations improved flexibility, mucoadhesion and antifungal activity. The crosslinking process reduced mucoadhesiveness and antifungal activity but significantly enhanced the mechanical properties and stability and enabled prolonged drug release.
Collapse
Affiliation(s)
- Marta Szekalska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (A.C.-K.); (K.W.)
| | - Anna Czajkowska-Kośnik
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (A.C.-K.); (K.W.)
| | - Bartosz Maciejewski
- Department of Pharmaceutical Technology, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| | - Iwona Misztalewska-Turkowicz
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland (A.Z.W.)
| | - Agnieszka Zofia Wilczewska
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland (A.Z.W.)
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (A.C.-K.); (K.W.)
| |
Collapse
|
14
|
Ahirwar P, Kozlovskaya V, Nijampatnam B, Rojas EM, Pukkanasut P, Inman D, Dolmat M, Law AC, Schormann N, Deivanayagam C, Harber GJ, Michalek SM, Wu H, Kharlampieva E, Velu SE. Hydrogel-Encapsulated Biofilm Inhibitors Abrogate the Cariogenic Activity of Streptococcus mutans. J Med Chem 2023; 66:7909-7925. [PMID: 37285134 PMCID: PMC11188996 DOI: 10.1021/acs.jmedchem.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We designed and synthesized analogues of a previously identified biofilm inhibitor IIIC5 to improve solubility, retain inhibitory activities, and to facilitate encapsulation into pH-responsive hydrogel microparticles. The optimized lead compound HA5 showed improved solubility of 120.09 μg/mL, inhibited Streptococcus mutans biofilm with an IC50 value of 6.42 μM, and did not affect the growth of oral commensal species up to a 15-fold higher concentration. The cocrystal structure of HA5 with GtfB catalytic domain determined at 2.35 Å resolution revealed its active site interactions. The ability of HA5 to inhibit S. mutans Gtfs and to reduce glucan production has been demonstrated. The hydrogel-encapsulated biofilm inhibitor (HEBI), generated by encapsulating HA5 in hydrogel, selectively inhibited S. mutans biofilms like HA5. Treatment of S. mutans-infected rats with HA5 or HEBI resulted in a significant reduction in buccal, sulcal, and proximal dental caries compared to untreated, infected rats.
Collapse
Affiliation(s)
- Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Edwin M. Rojas
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Piyasuda Pukkanasut
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel Inman
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maksim Dolmat
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anna C. Law
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Norbert Schormann
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gregory J. Harber
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suzanne M. Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Wu
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center of Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Microbiome Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Duarte JCM, Costa IB, Teixeira DDB, Fregatto LF, Mendes CG, Mascarin AMN, da Silveira Junior SB, Serva BEBM, Comar LP, da Silva RG, Buchaim DV, Buchaim RL, Chagas EFB, Agostinho Junior F, Cola PC. Biochemical and Microbiological Aspects of the Oral Cavity of Children and Young People with Neurological Impairment and Oropharyngeal Dysphagia. Life (Basel) 2023; 13:1342. [PMID: 37374125 DOI: 10.3390/life13061342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The components and the salivary flow have a direct influence on the composition of the oral microbiota of children and young people with oropharyngeal dysphagia, and studies have already demonstrated the excessive accumulation of supragingival dental calculus in individuals with enteral nutrition. This study aimed to compare the oral hygiene, biochemical, and microbiological aspects of the oral cavity of children and young people with neurological impairment and oropharyngeal dysphagia. Forty children and young people with neurological impairment and oropharyngeal dysphagia were enrolled and divided into two groups: group I, encompassing 20 participants fed via gastrostomy; and group II, encompassing 20 participants fed via the oral route. Oral hygiene and salivary pH and flow were assessed, and a polymerase chain reaction was performed to evaluate the messenger RNA expressions of Porphyromonas gingivalis, Tanerella forsythia, and Treponema denticola. In groups I and II, the mean Oral Hygiene Index-Simplified scores were 4 and 2, respectively, showing a significant difference; the mean Calculus Index scores were 2 and 0, respectively, showing a significant difference; and the mean pH was 7.5 and 6.0, respectively, showing a significant difference. Bacterial analysis indicated no association between the two groups. It can be concluded that children and young people who use gastrostomy had a poorer oral hygiene, greater dental calculus deposition, and higher salivary pH. The saliva of patients in both groups contained Porphyromonas gingivalis, Tanerella forsythia, and Treponema denticola.
Collapse
Affiliation(s)
- Janaina Costa Marangon Duarte
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Isabela Bazzo Costa
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Luiz Fernando Fregatto
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Nursing School, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Claudemir Gregorio Mendes
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Faculty of Pharmacy and Biomedicine, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Aline Maria Noli Mascarin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Salum Bueno da Silveira Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | | | - Livia Picchi Comar
- Dentistry School, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Roberta Gonçalves da Silva
- Dysphagia Research Rehabilitation Center, Graduate of Speech, Language and Hearing Sciences Department, São Paulo State University (UNESP), Marilia 17525-900, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Francisco Agostinho Junior
- Child's Love Project, Projeto Amor de Criança, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Paula Cristina Cola
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Speech Therapy Department, São Paulo State University (UNESP), Marilia 17525-900, Brazil
| |
Collapse
|
16
|
Satti MK, Nayyer M, Alshamrani M, Kaleem M, Salawi A, Safhi AY, Alsalhi A, Sabei FY, Khan AS, Muhammad N. Synthesis, Characterization, and Investigation of Novel Ionic Liquid-Based Tooth Bleaching Gels: A Step towards Safer and Cost-Effective Cosmetic Dentistry. Molecules 2023; 28:3131. [PMID: 37049892 PMCID: PMC10096067 DOI: 10.3390/molecules28073131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The objective of this study was to synthesize a novel choline hydroxide ionic liquid-based tooth bleaching gel. Ionic liquid-based gels were synthesized and characterized using FTIR along with pH testing. Tooth sample preparation was carried out in line with ISO 28399:2020. The effects of synthesized gels on tooth samples were tested. Tooth samples were stained and grouped into three experimental groups: EAI (22% choline hydroxide gel), EAII (44% choline hydroxide gel), and EB (choline citrate gel) and two control groups: CA (commercial at-home 16% carbamide peroxide gel) and CB (deionized water). The tooth color analysis, which included shade matching with the Vitapan shade guide (n = 2), and digital colorimetric analysis (n = 2) were evaluated. The surface characteristics and hardness were analyzed with 3D optical profilometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), and Microhardness testing (n = 3), respectively. The tooth color analysis (Vitapan shade guide) revealed that all the tooth samples treated with synthesized choline citrate gel (EB) showed an A1 shade as compared to the other four groups, giving a range of shades. An analysis of the ΔE values from digital colorimetry; EAI, EAII, CA, and CB showed ΔE values in a range that was clinically perceptible at a glance. However, EB showed the highest value of ΔE. The mean microhardness values for the five groups showed that the effects of three experimental gels i.e., 44% choline hydroxide, 22% choline hydroxide, and choline citrate, on the microhardness of the tooth samples were similar to that of the positive control, which comprised commercial at-home 16% carbamide peroxide gel. SEM with EDX of three tested subgroups was closely related in surface profile, elemental composition, and Ca/P ratio. The roughness average values from optical profilometry of four tested subgroups lie within approximately a similar range, showing a statistically insignificant difference (p > 0.05) between the tested subgroups. The synthesized novel experimental tooth bleaching gels displayed similar tooth bleaching actions without any deleterious effects on the surface characteristics and microhardness of the treated tooth samples when compared with the commercial at-home tooth bleaching gel.
Collapse
Affiliation(s)
- Memuna Kausar Satti
- Department of Dental Materials, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
| | - Maleeha Nayyer
- Department of Dental Materials, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Muhammad Kaleem
- Department of Dental Materials, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| |
Collapse
|
17
|
Nair VV, Cabrera P, Ramírez-Lecaros C, Jara MO, Brayden DJ, Morales JO. Buccal delivery of small molecules and biologics: Of mucoadhesive polymers, films, and nanoparticles - An update. Int J Pharm 2023; 636:122789. [PMID: 36868332 DOI: 10.1016/j.ijpharm.2023.122789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023]
Abstract
Buccal delivery of small and large molecules is an attractive route of administration that has been studied extensively over the past few decades. This route bypasses first-pass metabolism and can be used to deliver therapeutics directly to systemic circulation. Moreover, buccal films are efficient dosage forms for drug delivery due to their simplicity, portability, and patient comfort. Films have traditionally been formulated using conventional techniques, including hot-melt extrusion and solvent casting. However, newer methods are now being exploited to improve the delivery of small molecules and biologics. This review discusses recent advances in buccal film manufacturing, using the latest technologies, such as 2D and 3D printing, electrospraying, and electrospinning. This review also focuses on the excipients used in the preparation of these films, with emphasis on mucoadhesive polymers and plasticizers. Along with advances in manufacturing technology, newer analytical tools have also been used for the assessment of permeation of the active agents across the buccal mucosa, the most critical biological barrier and limiting factor of this route. Additionally, preclinical and clinical trial challenges are discussed, and some small molecule products already on the market are explored.
Collapse
Affiliation(s)
- Varsha V Nair
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Pablo Cabrera
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Independencia, Santiago 8380494, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | | | - Miguel O Jara
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, Belfield, Dublin D04 V1W8, Ireland
| | - Javier O Morales
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Independencia, Santiago 8380494, Chile; Center of New Drugs for Hypertension (CENDHY), Santiago 8380492, Chile; Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile.
| |
Collapse
|
18
|
Elsayed A, Al-Remawi M, Jaber N, Abu-Salah KM. Advances in buccal and oral delivery of insulin. Int J Pharm 2023; 633:122623. [PMID: 36681204 DOI: 10.1016/j.ijpharm.2023.122623] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Diabetes mellitus is a metabolic endocrine disease characterized by chronic hyperglycemia with disturbances in metabolic processes, such as those related to carbohydrates, fat, and protein. There are two main types of this disease: type 1 diabetes (T1D) and type 2 diabetes (T2D). Insulin therapy is pivotal to the management of diabetes. Over the last two decades, many routes of administration, including nasal, pulmonary, rectal, transdermal, buccal, and ocular, have been investigated. Nevertheless, subcutaneous parenteral administration is still the most common route for insulin therapy. To overcome poor bioavailability and the barriers to oral insulin absorption, novel approaches in the field of oral drug delivery and administration have been brought about by the coalescence of different branches of nanoscience and nanotechnology, such as nanomedicine, nano-biochemistry, and nano-pharmacy. Novel drug delivery systems, including nanoparticles, nano-platforms, and nanocarriers, have been suggested. The objective of this review is to provide an update on the various promising approaches that have been explored and evaluated for the safe and efficient oral and buccal administration of insulin.
Collapse
Affiliation(s)
- Amani Elsayed
- College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Khalid M Abu-Salah
- King Saud bin Abdulaziz University for Health Sciences/ King Abdullah International Medical Research Center, Department of Nanomedicine, Riyadh, Saudi Arabia.
| |
Collapse
|
19
|
Microenvironmental pH Modification in Buccal/Sublingual Dosage Forms for Systemic Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020637. [PMID: 36839959 PMCID: PMC9961113 DOI: 10.3390/pharmaceutics15020637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Many drug candidates are poorly water-soluble. Microenvironmental pH (pHM) modification in buccal/sublingual dosage forms has attracted increasing interest as a promising pharmaceutical strategy to enhance the oral mucosal absorption of drugs with pH-dependent solubility. Optimizing drug absorption at the oral mucosa using pHM modification is considered to be a compromise between drug solubility and drug lipophilicity (Log D)/permeation. To create a desired pHM around formulations during the dissolution process, a suitable amount of pH modifiers should be added in the formulations, and the appropriate methods of pHM measurement are required. Despite pHM modification having been demonstrated to be effective in enhancing the oral mucosal absorption of drugs, some potential risks, such as oral mucosal irritation and teeth erosion caused by the pH modifiers, should not been neglected during the formulation design process. This review aims to provide a short introduction to the pHM modification concept in buccal/sublingual dosage forms, the properties of saliva related to pHM modification, as well as suitable drug candidates and pH modifiers for pHM modifying buccal/sublingual formulations. Additionally, the methods of pHM measurement, pHM modification methods and the corresponding challenges are summarized in the present review.
Collapse
|
20
|
Composition-Property Relationships of pH-Responsive Poly[(2-vinylpyridine)-co-(butyl methacrylate)] Copolymers for Reverse Enteric Coatings. Pharmaceutics 2023; 15:pharmaceutics15020454. [PMID: 36839776 PMCID: PMC9959453 DOI: 10.3390/pharmaceutics15020454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The taste-masking of bitter-tasting active pharmaceutical ingredients is key to ensuring patient compliance when producing oral pharmaceutical formulations. This is generally achieved via the incorporation of pH-responsive, reverse enteric polymers, that prevent the dissolution of the formulation in the oral environment, but rapidly mediate it within the gastric environment. Reverse enteric polymers are commonly applied as coatings on oral dosage forms via spray atomisation (e.g., fluidised-bed spray coating), and generally exhibit the most efficient taste-masking. However, currently used reverse enteric coatings require high mass gains (% w/w) during coating to mediate taste-masking, and thereby exhibit delayed release within the gastric environment. Therefore, there remains a need for the development of new reverse enteric coatings, that can efficiently taste-mask at low mass gains and maintain rapid release characteristics within the gastric environment. Herein we report the synthesis and evaluation of a series of addition copolymers of 2-vinylpyridine and butyl methacrylate, methyl methacrylate and isobornyl methacrylate. The thermal, solubility, and water absorption properties of the copolymers were effectively tuned by altering the mol% fraction of the constitutive monomers. Based on their physical properties, selected copolymers were preliminarily evaluated for their compatibility with fluidised-bed spray coating, and effectiveness as taste-masking reverse enteric coatings. The copolymers poly[(2-vinylpyridine)-co-(butyl methacrylate)] (mol% ratio 40:60) and poly[(2-vinylpyridine)-co-(butyl methacrylate)-co-(methyl methacrylate)] (mol% ratio 40:50:10) were found to exhibit excellent taste-masking properties following fluidised-bed spray coating onto Suglets® sugar spheres. Suglets® bearing a film coating of either copolymer (5.2-6.5% w/w mass gain) were found to effectively impede the release of a model drug formulation for up to 72 h in a simulated salivary environment, and rapidly release it (<10 min) within a simulated gastric environment. The results demonstrated the potential of poly[(2-vinylpyridine)-co-(butyl methacrylate)] copolymers to form effectively taste-masked, reverse enteric dosage forms, and suggested that these copolymers may provide improved performance compared to currently available polymers.
Collapse
|
21
|
El-Sakhawy MA, M Donia AER, Kobisi ANA, Abdelbasset WK, Saleh AM, Ibrahim AM, Negm RM. Oral Candidiasis of Tobacco Smokers: A Literature Review. Pak J Biol Sci 2023; 26:1-14. [PMID: 37129200 DOI: 10.3923/pjbs.2023.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The mouth is a vital point of entry into the human body, the health of the mouth entails mental, physical as well as social well-being. Studying diseases, microbiota and environmental conditions of the mouth is important to maintain oral health and all body. The smoke of tobacco cigarettes is one of the worst habits that affect the health of the mouth and the body. Therefore, this review has been conducted to study the effect of smoking on the balance of the oral microbiota and the opportunistic organisms, one of the most important of them <i>Candida</i>. Although a few studies have found that cigarette smoking does not influence carriage by <i>Candida</i> significantly. However, most of the studies had results completely contrary to that, smoking cigarettes affect <i>Candida</i> pathogenic characteristics such as a transition from yeast to hyphal form, biofilm formation and, virulence-related gene expressions. Tobacco is not only an inducer of the transition process but it considers an excellent medium for this process. Furthermore, smoking was significantly associated with <i>Candida</i> pathogenicity in patients with clinically suspected oral leukoplakia and smoking worsens oral candidiasis and dampens epithelial cell defense response. Nicotine significantly altered the composition and proportion of yeast cells, as well as the extracellular polysaccharide amounts which increase biofilm matrix and thickness which could promote oral candidiasis. Smoking has the potential to alter the oral condition and cause severe oxidative stress, thereby damaging the epithelial barrier of the mouth. These oxidative molecules during smoking activate epithelial cells proteins called oxidative stress-sensing proteins. If some of these proteins induced, widely thought to have anti-inflammatory properties, inhibit the secretion of pro-inflammatory cytokines and are linked to inflammation and oxidative stress is thought to be a possible therapeutic objective and a crucial regulator for smoking-related oral diseases and mouth candidiasis for instance leukoplakia. Also, it is transported into the cell nucleus in the existence of additional electrophilic chemicals to activate antioxidant enzyme gene expression. Therefore, smoking cigarettes destroys oral health and consequently destroys the health of the whole body.
Collapse
|
22
|
Gaber DA, Alburaykan AI, Alruthea LM, Aldohan NS, Alharbi RF, Aljohani AR, Albilaihi HM, Adogim SS. Development, in vitro Evaluation, and in vivo Study of Adhesive Buccal Films for the Treatment of Diabetic Pediatrics via Trans Mucosal Delivery of Gliclazide. Drug Des Devel Ther 2022; 16:4235-4250. [PMID: 36536629 PMCID: PMC9759005 DOI: 10.2147/dddt.s394523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE Development and evaluation of bucco-adhesive films of Gliclazide for pediatric use. METHODS Sixteen films were formulated using a different combination of Gelatin, Hydroxy propyl methyl cellulose (HPMC), polyvinyl alcohol, Hydroxy propyl cellulose (HPC), chitosan, polyethylene glycol, sodium alginate, and carbopol. Compatibility study for drug and polymers was conducted using differential scanning calorimetry method and Fourier transform infrared spectroscopy. All films were examined for drug content, weight variation, thickness, swelling index, muco-adhesion and folding endurance. In vitro drug release has been completed for two hours. Stability studies were conducted at 4°C, 25°C, and 40°C for selected films. The optimized formulation based on in vitro data was selected for a bioavailability study in rabbits. RESULTS The selected film formula (carbopol 2%, HPMC 2%) did not demonstrate interactions between the drug and polymers, while it showed accepted content, muco-adhesion, and mechanical properties. The in vitro release study showed rapid and complete release of drug from films. Stability studies confirmed accepted stability of the selected film at 4°C and 25°C, but the film get hard with few particles at 40°C. The bioavailability studies conducted showed that there was 2.1 fold increase in the AUC0-24 of selected film compared with oral tablets. CONCLUSION Bucco adhesive films of Gliclazide is a promising dosage form for the treatment of diabetes in children.
Collapse
Affiliation(s)
- Dalia A Gaber
- Department of Quality Control & Quality Assurance, Holding Company for Biological Products and Vaccines, Cairo, Egypt
- Department of Pharmaceutics, College of Pharmacy, AL-Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Abeer I Alburaykan
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Lama M Alruthea
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Njoud S Aldohan
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Raneem F Alharbi
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Alhanoof R Aljohani
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Helah M Albilaihi
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Somaiah S Adogim
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
de Almeida e Bueno L, Milnthorpe W, Bergmann JHM. Determining the performance of a temperature sensor embedded into a mouthguard. BDJ Open 2022; 8:23. [PMID: 35915087 PMCID: PMC9343656 DOI: 10.1038/s41405-022-00114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Objective This study aimed to determine the steady-state errors of oral-based temperature sensors, that are embedded in mouthguards, using a robust assessment process. Materials and methods Four electronic boards with temperature sensors were encapsulated in mouthguards made from ethylene-vinyl acetate (EVA). The error and time to reach steady-state temperature were determined using a thermostatic water bath during three different conditions (34, 38.5 and 43 °C). Subsequently, a case study of one volunteer wearing the instrumented mouthguard is presented. Results The water bath tests showed that a mean absolute error of 0.2 °C was reached after a maximum of 690 s across all test conditions. The case study yielded an absolute error was 0.2 °C after 1110 s. Conclusion These results show that an instrumented mouthguard with temperature sensing capabilities can yield a consistent steady-state error that is close to the clinical requirements across a range of temperatures. However, the time it takes to reach steady-state temperature needs to be considered for these systems to correctly interpret the outcomes.
Collapse
|
24
|
Joosten F, Parrilla M, van Nuijs AL, Ozoemena KI, De Wael K. Electrochemical detection of illicit drugs in oral fluid: potential for forensic drug testing. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Abstract
Oral commensal streptococci are primary colonizers of the oral cavity. These streptococci produce many adhesins, metabolites, and antimicrobials that modulate microbial succession and diversity within the oral cavity. Often, oral commensal streptococci antagonize cariogenic and periodontal pathogens such as Streptococcus mutans and Porphyromonas gingivalis, respectively. Mechanisms of antagonism are varied and range from the generation of hydrogen peroxide, competitive metabolite scavenging, the generation of reactive nitrogen intermediates, and bacteriocin production. Furthermore, several oral commensal streptococci have been shown to alter the host immune response at steady state and in response to oral pathogens. Collectively, these features highlight the remarkable ability of oral commensal streptococci to regulate the structure and function of the oral microbiome. In this review, we discuss mechanisms used by oral commensal streptococci to interact with diverse oral pathogens, both physically and through the production of antimicrobials. Finally, we conclude by exploring the critical roles of oral commensal streptococci in modulating the host immune response and maintaining health and homeostasis.
Collapse
Affiliation(s)
- Joshua J. Baty
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara N. Stoner
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica A. Scoffield
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
26
|
Hashem HM, Motawea A, Kamel AH, Bary EMA, Hassan SSM. Fabrication and characterization of electrospun nanofibers using biocompatible polymers for the sustained release of venlafaxine. Sci Rep 2022; 12:18037. [PMID: 36302929 PMCID: PMC9614003 DOI: 10.1038/s41598-022-22878-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Recently, drug-controlled release nanotechnology has gained special attention in biomedicine. This work focuses on developing novel electrospun polymeric nanofibers (NFs) for buccal delivery of VEN to avoid the hepatic metabolism and enzymatic degradation in the GIT and develop an effective control of drug release. The optimized NFs were obtained by blending polylactic acid (PLA), and poly (ɛ-caprolactone) (PCL) fixed at a ratio of 1:1. It was characterized for morphology, drug-loading, FTIR, XRD, DSC, and in vitro drug release. Ex vivo permeability of the blend NFs was assessed using chicken pouch mucosa compared to VEN suspension, followed by histopathological examination. Further, the cytotoxic effect in three different cell lines using WST-1 assay. SEM morphologies refer to defect-free uniform NFs of PLA, PCL, and PLA/PCL mats. These fibers had a diameter ranging from 200 to 500 nm. The physico-thermal characterization of NFs depicted that the drug was successfully loaded and in an amorphous state in the PLA/PCL NFs. In vitro release of NFs substantiated a bi-phasic profile with an initial burst release of about 30% in the initial 0.5 h and a prolonged cumulative release pattern that reached 80% over 96 h following a non-Fickian diffusion mechanism. Ex vivo permeation emphasizes the major enhancement of the sustained drug release and the noticeable decrease in the permeability of the drug from NFs. Cytotoxicity data found that IC50 of VEN alone was 217.55 μg/mL, then VEN-NFs recorded an IC50 value of 250.62 μg/mL, and plain NFs showed the lowest toxicity and IC50 440.48 μg/mL in oral epithelial cells (OEC). Histopathology and cell toxicity studies demonstrated the preserved mucosal architecture and the preclinical safety. The developed PLA/PCL NFs can be promising drug carriers to introduce a step-change in improved psychiatric treatment healthcare.
Collapse
Affiliation(s)
- Heba M. Hashem
- grid.10251.370000000103426662Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Amira Motawea
- grid.10251.370000000103426662Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Ayman H. Kamel
- grid.7269.a0000 0004 0621 1570Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo Egypt ,grid.413060.00000 0000 9957 3191Chemistry Department, College of Science, Bahrain University, Sakhir, 32038 Bahrain
| | - E. M. Abdel Bary
- grid.10251.370000000103426662Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Saad S. M. Hassan
- grid.7269.a0000 0004 0621 1570Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo Egypt
| |
Collapse
|
27
|
Ultrafast one-minute electronic detection of SARS-CoV-2 infection by 3CL pro enzymatic activity in untreated saliva samples. Nat Commun 2022; 13:6375. [PMID: 36289211 PMCID: PMC9605950 DOI: 10.1038/s41467-022-34074-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Since its onset in December 2019, severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, has caused over 6.5 million deaths worldwide as of October 2022. Attempts to curb viral transmission rely heavily on reliable testing to detect infections since a large number of transmissions are carried through asymptomatic individuals. Many available detection methods fall short in terms of reliability or point-of-care applicability. Here, we report an electrochemical approach targeting a viral proteolytic enzyme, 3CLpro, as a marker of active infection. We detect proteolytic activity directly from untreated saliva within one minute of sample incubation using a reduction-oxidation pH indicator. Importantly, clinical tests of saliva samples from 50 subjects show accurate detection of SARS-CoV-2, with high sensitivity and specificity, validated by PCR testing. These, coupled with our platform's ultrafast detection, simplicity, low cost and point-of-care compatibility, make it a promising method for the real-world SARS-CoV-2 mass-screening.
Collapse
|
28
|
Aldawsari MF, Khafagy ES, Alotaibi HF, Abu Lila AS. Vardenafil-Loaded Bilosomal Mucoadhesive Sponge for Buccal Delivery: Optimization, Characterization, and In Vivo Evaluation. Polymers (Basel) 2022; 14:polym14194184. [PMID: 36236132 PMCID: PMC9573218 DOI: 10.3390/polym14194184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022] Open
Abstract
Vardenafil (VDF) is a relatively new phosphodiesterase-5 inhibitor that has limited oral bioavailability (≈15%). The objective of this study was to develop bilosome-based mucoadhesive buccal sponge for augmenting the oral bioavailability of VDF. VDF-loaded bilosomes were fabricated and optimized using a Box-Behnken design. The optimized VDF-loaded bilosomal formulation was assessed for surface morphology, particle size, thermal characteristics, and in vitro release. Afterwards, the optimized bilosomal formulation was incorporated into a cellulose-based matrix to obtain buccal sponge, which was evaluated for ex vivo permeation studies, in vivo oral bioavailability, and in vivo serum concentration of cyclic guanosine monophosphate (cGMP). The mean particle size and entrapment efficiency (%) of optimized bilosome formulation were 282.6 ± 9.5 nm and 82.95 ± 3.5%, respectively. In vitro release studies at pH 6.8 emphasized the potential of optimized bilosomal formulation to sustain VDF release for 12 h. Ex vivo permeation study using sheep buccal mucosa indicated significant enhancement in penetration of VDF from bilosomal buccal sponge compared to plain VDF gel. Pharmacokinetic study in Albino rats showed ~5 fold increase in relative bioavailability with bilosomal buccal sponge, compared to VDF suspension. In addition, VDF-loaded bilosomal buccal sponge triggered higher serum levels of cGMP, a biomarker of VDF in vivo efficacy, compared to oral VDF suspension. To sum up, bilosomes might represent a potential nanocarrier for buccal delivery of VDF, enhancing its oral bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Correspondence:
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
29
|
Lu Q, Wang YY, Chen HM, Wang QH, Yang XY, Zou LP. A rise in saliva and urine pH in children with SCN1A-related epilepsy: An exploratory prospective controlled study. Front Neurol 2022; 13:982050. [PMID: 36237607 PMCID: PMC9552845 DOI: 10.3389/fneur.2022.982050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Objective SCN1A, encoding the alpha 1 subunit of the sodium channel, is associated with a range of related epilepsy. This study aims to assess saliva and urine pH in children with SCN1A-related epilepsy. Methods A prospective controlled observational study with a 1:1 ratio was conducted on seven patients with SCN1A-related epilepsy and seven healthy children of the same family, gender, and age but without a history of seizures. The pH of saliva and urine was measured by pH test paper. Parents of patients with epilepsy recorded seizures to compare the relationship between pH and seizures. Results The fourteen participants were all males, aged 1 to 14 years. Seven patients had different pathogenic SCN1A variants. The pH of saliva and urine was monitored for 21–95 days. The pH of saliva and urine was higher in patients with SCN1A-related epilepsy than in the healthy group. The urine pH in Dravet syndrome patients was high compared with other epilepsy patients. The urine pH in patients with seizures was higher than that in patients without seizures, which occurred during the study. Conclusions The pH of saliva and urine was chronically high in patients with SCN1A-related epilepsy, and urine pH was higher in patients with seizures and with Dravet syndrome.
Collapse
Affiliation(s)
- Qian Lu
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang-Yang Wang
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui-Min Chen
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiu-Hong Wang
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Yan Yang
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li-Ping Zou
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
- *Correspondence: Li-Ping Zou
| |
Collapse
|
30
|
Brunaugh AD, Walz A, Warnken Z, Pearce C, Munoz Gutierrez J, Koleng JJ, Smyth HDC, Gonzalez-Juarrero M. Respirable Clofazimine Particles Produced by Air Jet Milling Technique Are Efficacious in Treatment of BALB/c Mice with Chronic Mycobacterium tuberculosis Infection. Antimicrob Agents Chemother 2022; 66:e0018622. [PMID: 35943265 PMCID: PMC9487480 DOI: 10.1128/aac.00186-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/17/2022] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) remains a major cause of morbidity and mortality, particularly in low- and middle-income countries where access to health care workers, cold-chain storage, and sterile water sources may be limited. Inhaled drug delivery is a promising alternative to systemic delivery of antimycobacterial drugs, as it enables rapid achievement of high infection-site drug concentrations. The off-patent drug clofazimine (CFZ) may be particularly suitable for this route, given its known systemic toxicities. In this study, micronized CFZ particles produced by air jet milling were assessed for shelf-stability, pharmacokinetics, and anti-TB efficacy by the oral and pulmonary routes in BALB/c mice. Intratracheal instillation of micronized CFZ particles produced several-fold higher lung concentrations after a single 30 mg/kg dose compared to delivery via oral gavage, and faster onset of bactericidal activity was observed in lungs of mice with chronic Mycobacterium tuberculosis infection compared to the oral route. Both infection status and administration route affected the multidose pharmacokinetics (PK) of micronized CFZ. Increased lung and spleen accumulation of the drug after pulmonary administration was noted in infected mice compared to naive mice, while the opposite trend was noted in the oral dosing groups. The infection-dependent PK of inhaled micronized CFZ may point to a role of macrophage trafficking in drug distribution, given the intracellular-targeting nature of the formulation. Lastly, air jet milled CFZ exhibited robustness to storage-induced chemical degradation and changes in aerosol performance, thereby indicating the suitability of the formulation for treatment of TB in regions with limited cold chain supply.
Collapse
Affiliation(s)
- Ashlee D. Brunaugh
- Via Therapeutics, LLC, Austin, Texas, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Amanda Walz
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Camron Pearce
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Juan Munoz Gutierrez
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Hugh D. C. Smyth
- Via Therapeutics, LLC, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas, Austin, Texas, USA
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
31
|
Mucosal vaccine delivery: A focus on the breakthrough of specific barriers. Acta Pharm Sin B 2022; 12:3456-3474. [PMID: 35818435 PMCID: PMC9259023 DOI: 10.1016/j.apsb.2022.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022] Open
Abstract
Mucosal vaccines can effectively induce an immune response at the mucosal site and form the first line of defense against microbial invasion. The induced mucosal immunity includes the proliferation of effector T cells and the production of IgG and IgA antibodies, thereby effectively blocking microbial infection and transmission. However, after a long period of development, the transformation of mucosal vaccines into clinical use is still relatively slow. To date, fewer than ten mucosal vaccines have been approved. Only seven mucosal vaccines against coronavirus disease 2019 (COVID-19) are under investigation in clinical trials. A representative vaccine is the adenovirus type-5 vectored COVID-19 vaccine (Ad5-nCoV) developed by Chen and coworkers, which is currently in phase III clinical trials. The reason for the limited progress of mucosal vaccines may be the complicated mucosal barriers. Therefore, this review summarizes the characteristics of mucosal barriers and highlights strategies to overcome these barriers for effective mucosal vaccine delivery.
Collapse
|
32
|
Salivary Assessments in Post-Liver Transplantation Patients. J Clin Med 2022; 11:jcm11113152. [PMID: 35683539 PMCID: PMC9181838 DOI: 10.3390/jcm11113152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Saliva is in the first line of the body's defense mechanism. In order to better understand how liver transplantation impacts salivary biochemistry, the aim of this cross-sectional study was to explore variations of salivary markers for oral health in post-liver transplantation patients, as compared with systemically healthy dental outpatients (controls). In this case, 26 patients were enrolled in each group, with similar socio-demographic characteristics. Unstimulated whole saliva was collected; total protease activity and total protein content were measured. The oral health in both groups was assessed using a self-report oral health questionnaire. Data were analyzed using parametric and nonparametric tests. Comparable results were recorded in terms of salivary protein and protease activity assessments. In post-liver transplantation group, positive correlation was found between the salivary pH level and the salivary secretion rate (r = 0.39; p = 0.04). With respect to self-reported oral health, there were no significant differences between the two groups, except for dental and oral care habits, the controls reporting more frequently use of dental floss and mouthwash (p = 0.02, and p = 0.003, respectively). Considering the high risk for developing systemic complications after liver transplantation, oral health care is an important issue to be addressed, salivary investigations representing powerful tool for disease changes monitoring.
Collapse
|
33
|
Formulation Challenges and Strategies to Develop Pediatric Dosage Forms. CHILDREN 2022; 9:children9040488. [PMID: 35455532 PMCID: PMC9027946 DOI: 10.3390/children9040488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
The development of pediatric-specific dose forms is particularly difficult due to a variety of factors relating to pediatric population differences from adult populations. The buccal dosage form is considered a good alternative to oral dosage form if the latter cannot be used in pediatric patients. Both oral and buccal dosage formulations uphold great application qualities for pediatric patients. This review sheds light on both oral and buccal, as they are the most convenient dosage forms for pediatrics. The use of adult drugs to treat children is a legislation concern, as it may result in incorrect dose, safety, and efficacy. The Best Pharmaceuticals for Children Act (BPCA) and the Pediatric Research Equity Act (PREA) are two key pieces of legislation that encourage and regulate pediatric medication research. Both contribute to a well-balanced approach to emphasizing critical safety and efficacy warnings for the of medications within pediatric populations. These contributions are what enable companies to continue making significant investments in pediatric drug developments. Despite the importance of investigating medicines for children, there is still a demand for pediatric-specific formulations and dosage forms. Many formulations and dosage forms can be designed, among which the buccal drug delivery seems a good modality for pediatric-friendly dosage forms. The main issues associated with these pediatric dosage forms development, particularly clinical and physiological factors, are discussed in this review. In addition, formulation developments and regulatory expectations are highlighted. In turn, suggestions are made to potentially improve future pediatric formulation development.
Collapse
|
34
|
Morgado M, Ascenso C, Carmo J, Mendes JJ, Manso AC. pH analysis of still and carbonated bottled water: Potential influence on dental erosion. Clin Exp Dent Res 2022; 8:552-560. [PMID: 35191217 PMCID: PMC9033543 DOI: 10.1002/cre2.535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Objective To assess pH values to characterize bottled water in Portugal, being able to provide information for both patients and clinicians about its erosive potential, as a tool to prevent the ingrowing prevalence of dental erosion and its progression, especially in patients who are at greater risk, such as those with dry mouth syndrome, making the dissemination of this knowledge a fundamental tool for clinical decision. Materials and Methods One hundred and five common brands of bottled water (n = 105), commercialized in Portugal, were analyzed. Of these, 73 were smooth water (Group A) and 32 carbonated water (Group B). All pH values were assessed by potentiometric measurement with a calibrated electrode. For each brand, five independent measurements were recorded at 25°C for further calculation of the mean pH value and standard deviation. Results Focusing on the mean pH values from Group A, one had a pH mean value lower than 5.2, four between 5.2 and 5.5, thirty‐seven between 5.5 and 6.8, and thirty‐one higher than 6.8. In Group B, ten had a mean pH value lower than 5.2, ten between 5.2 and 5.5, twelve between 5.5 and 6.8, and none above 6.8. Conclusions Bottled water, commercialized in Portugal, has different mean pH values, some below the critical threshold of enamel and/or dentin, suggesting that they may have a greater risk of consumption than others, only with respect to the pH parameter of erosive potential. Further investigation concerning this area is needed for wider conclusions.
Collapse
Affiliation(s)
- Mariana Morgado
- Clinical Research Unit, Egas Moniz Higher Education School Centro de investigação interdisciplinar Egas Moniz (CiiEM) Caparica Portugal
| | - Carla Ascenso
- Clinical Research Unit, Egas Moniz Higher Education School Centro de investigação interdisciplinar Egas Moniz (CiiEM) Caparica Portugal
| | - Joana Carmo
- Clinical Research Unit, Egas Moniz Higher Education School Centro de investigação interdisciplinar Egas Moniz (CiiEM) Caparica Portugal
| | - José João Mendes
- Clinical Research Unit, Egas Moniz Higher Education School Centro de investigação interdisciplinar Egas Moniz (CiiEM) Caparica Portugal
| | - Ana Cristina Manso
- Clinical Research Unit, Egas Moniz Higher Education School Centro de investigação interdisciplinar Egas Moniz (CiiEM) Caparica Portugal
| |
Collapse
|
35
|
Chong PH, Chen J, Yin D, Qin L. Tea compound-saliva interactions and their correlations with sweet aftertaste. NPJ Sci Food 2022; 6:13. [PMID: 35140228 PMCID: PMC8828886 DOI: 10.1038/s41538-022-00123-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
Huigan is an important sensory attribute which is commonly used as a quality indicator evaluation of tea products. Previous studies showed a strong correlation between the lubrication behavior of saliva-tea compound mixture and the sensory perception of Huigan from trained panelists. This work was further designed to investigate how the effect of tea consumption on the rate of saliva secretion and its functional properties including total protein content of saliva (TPC), salivary α-amylase (AMY) and lipase activity (LP). A quartz crystal microbalance with dissipation monitoring (QCM-D) was applied to reveal the adsorption behavior of human whole saliva and how the salivary film is affected by the presence of tea compounds. Results showed a significant positive correlation among TPC, LP and Huigan intensity for subjects who are Huigan-sensitive. Compared to the desorption of salivary film, the desorption of saliva-EC/EGC (epicatechin/epigallocatechin) mixture from the gold surface by QCM-D observation showed a significant effect on Huigan intensity in sensitive group when comparing to the salivary layer (blank).
Collapse
Affiliation(s)
- Pik Han Chong
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Jianshe Chen
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China.
| | - Danting Yin
- Firmenich Aromatics (China) Co., Ltd., No. 3901, Jindu Road, Minhang District, 201108, Shanghai, China
| | - Lanxi Qin
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
36
|
Wollmer E, Ungell AL, Nicolas JM, Klein S. Review of paediatric gastrointestinal physiology relevant to the absorption of orally administered medicines. Adv Drug Deliv Rev 2022; 181:114084. [PMID: 34929252 DOI: 10.1016/j.addr.2021.114084] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/13/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Despite much progress in regulations to improve paediatric drug development, there remains a significant need to develop better medications for children. For the design of oral dosage forms, a detailed understanding of the specific gastrointestinal (GI) conditions in children of different age categories and how they differ from GI conditions in adults is essential. Several review articles have been published addressing the ontogeny of GI characteristics, including luminal conditions in the GI tract of children. However, the data reported in most of these reviews are of limited quality because (1) information was cited from very old publications and sometimes low quality sources, (2) data gaps in the original data were filled with textbook knowledge, (3) data obtained on healthy and sick children were mixed, (4) average data obtained on groups of patients were mixed with data obtained on individual patients, and (5) results obtained using investigative techniques that may have altered the outcome of the respective studies were considered. Consequently, many of these reviews draw conclusions that may be incorrect. The aim of the present review was to provide a comprehensive and updated overview of the available original data on the ontogeny of GI luminal conditions relevant to oral drug absorption in the paediatric population. To this end, the PubMed and Web of Science metadatabases were searched for appropriate studies that examined age-related conditions in the oral cavity, esophagus, stomach, small intestine, and colon. Maturation was observed for several GI parameters, and corresponding data sets were identified for each paediatric age group. However, it also became clear that the ontogeny of several GI traits in the paediatric population is not yet known. The review article provides a robust and valuable data set for the development of paediatric in vitro and in silico biopharmaceutical tools to support the development of age-appropriate dosage forms. In addition, it provides important information on existing data gaps and should provide impetus for further systematic and well-designed in vivo studies on GI physiology in children of specific age groups in order to close existing knowledge gaps and to sustainably improve oral drug therapy in children.
Collapse
|
37
|
Abouhussein DMN, Nabarawi MAE, Shalaby SH, El-Bary AA. Development and optimization of cosolvent-based blended Sertraline orodispersible films - A step to personalized medicine. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
38
|
Zhao H, Dai Z, He T, Zhu S, Yan X, Yang J. Fabrication of PANI-modified PVDF nanofibrous yarn for pH sensor. E-POLYMERS 2021. [DOI: 10.1515/epoly-2022-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
In recent years, with the rise of an intelligent concept, oral and maxillofacial surgery smart dressing had also attracted the interest of researchers, especially for the pH sensor with flexible medium. In this study, polyvinylidene fluoride (PVDF) nanofibrous yarn was fabricated by a conjugate electrospinning process and modified with in situ polymerization of polyaniline (PANI) forming a PANI/PVDF yarn. By a weaving process, these yarns could be weaved into a fabric. It was found that both the PANI/PVDF yarn and the fabric showed a sensitivity to pH, about −48.53 mV per pH for yarn and −38.4 mVper pH for fabric, respectively, in the pH range of 4.0–8.0. These results indicated that the prepared PANI-modified PVDF yarn and fabric might have a potential application in intelligent oral and maxillofacial surgery dressings for monitoring wound healing.
Collapse
Affiliation(s)
- Hongmei Zhao
- The Affiliated Hospital of Qingdao University , Qingdao 266003 , China
- School of Stomatology of Qingdao University , Qingdao 266003 , China
| | - Zhang Dai
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
| | - Tian He
- Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University , 127 Siliu South Road, 266042 , Qingdao , China
| | - Shufang Zhu
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
| | - Xu Yan
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University , Qingdao 266071 , China
| | - Jianjun Yang
- The Affiliated Hospital of Qingdao University , Qingdao 266003 , China
- School of Stomatology of Qingdao University , Qingdao 266003 , China
| |
Collapse
|
39
|
Davidovich E, Hevroni A, Gadassi LT, Spierer-Weil A, Yitschaky O, Polak D. Dental, oral pH, orthodontic and salivary values in children with obstructive sleep apnea. Clin Oral Investig 2021; 26:2503-2511. [PMID: 34677695 DOI: 10.1007/s00784-021-04218-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Mouth breathing is a key feature of obstructive sleep apnea (OSA). The current study evaluated dental, salivary and orthodontic characteristics of children with OSA, and compared them to those of children without OSA. MATERIALS AND METHODS Twenty-two children (mean age 5.3 years, 13 males) with OSA and 21 children without OSA who served as a control group (mean age 6.8 years, 11 males) underwent dental examinations. The OSA group was classified according to the apnea-hypopnea Index. Clinical examination included plaque index, gingival index, caries status, pH at 7 oral sites, salivary carries bacterial counts and inflammatory cytokine levels. Orthodontics measurements were calculated as the percentage of children with values in the normal range, in each group. RESULTS The mean values of the decayed, missing and filled teeth (DMFT)/dmft index, the gingival index and the plaque index were higher in the OSA than the control group. Salivary Mutans streptococci and lactobacilli counts were significantly higher in the OSA than the control group; as were pH values in the hard and soft palate, and in the posterior and middle tongue. Significantly lower values were observed in the OSA than the control group for most of the orthodontic variables examined. Similarly, stratification of AHI according to severity shows the lowest values among those with mild OSA, and the highest among those with severe AHI. CONCLUSIONS Compared to a control group, mouth breathing children with obstructive sleep apnea had differences in oral microbiota, greater acidity and poorer dental status. CLINICAL RELEVANCE Clinicians should be aware of the various oral disturbances that may accompany OSA, and implement preventive measures.
Collapse
Affiliation(s)
- E Davidovich
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel.
| | - A Hevroni
- Department of Pulmonology, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - L Tzur Gadassi
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - A Spierer-Weil
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - O Yitschaky
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - D Polak
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
40
|
Majid H, Bartel A, Burckhardt BB. Predictivity of Standardized and Controlled Permeation Studies: Ex vivo - In vitro - In vivo Correlation for Sublingual Absorption of Propranolol. Eur J Pharm Biopharm 2021; 169:12-19. [PMID: 34508807 DOI: 10.1016/j.ejpb.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/04/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022]
Abstract
In preclinical drug development, ex vivo and in vitro permeability studies are a decisive element for specifying subsequent development steps. In this context, reliability, physiological alignment and appropriate in vivo correlation are mandatory for predictivity regarding drug absorption. Especially in oromucosal drug delivery, these prerequisites are not adequately met, which hinders its progressive development and results in the continuous need for animal experiments. To address current limitations, an innovative, standardized, and controlled ex vivo permeation model was applied. It is based on Kerski diffusion cells embedded in automated sampling and coupled to mass spectrometric quantification under physiologically relevant conditions. This study aimed to evaluate the predictivity of the developed model using porcine mucosa (ex vivo) in relation to data of sublingual propranolol absorption (in vivo). In addition, the usefulness of biomimetic barriers (in vitro) as a replacement for porcine mucosa was investigated. Therefore, solubility and permeability studies considering microenvironmental conditions were conducted and achieved good predictivity (R2=0.997) for pH-dependent permeability. A multiple level C correlation (R2≥0.860) between obtained permeability and reported pharmacokinetic animal data (AUC, Cmax) was revealed. Furthermore, a point-to-point correlation was demonstrated for several sublingual formulations. The successful IVIVC confirms the standardized ex vivo model as a viable alternative to animal testing for estimating the in vivo absorption behavior of oromucosal pharmaceuticals.
Collapse
Affiliation(s)
- Haidara Majid
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Dusseldorf, Germany
| | - Anke Bartel
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Dusseldorf, Germany
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Dusseldorf, Germany.
| |
Collapse
|
41
|
Araújo JLDS, Alvim MMA, Campos MJDS, Apolônio ACM, Carvalho FG, Lacerda-Santos R. Analysis of Chlorhexidine Modified Cement in Orthodontic Patients: A Double-Blinded, Randomized, Controlled Trial. Eur J Dent 2021; 15:639-646. [PMID: 34428840 PMCID: PMC8630966 DOI: 10.1055/s-0041-1727556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the microbiological and mechanical properties of glass ionomer cement (GIC) modified by chlorhexidine (CLX) for the purpose of cementing bands to the teeth of orthodontic patients. MATERIALS AND METHODS Ten patients, between the ages of 19 and 33 years, in the initial stage of orthodontic treatment, were randomly designated to two groups using the split-mouth design (n = 10). One group (GICEX) had bands cemented with GIC modified by CLX and a Control group (GIC), evaluated at time intervals before (T0), 3 months (T3), and 6 months (T6) after cementation. Total microbiological counts were performed, and color stability of tooth enamel, salivary pH, and the adhesive remnant index (ARI) were evaluated. STATISTICAL ANALYSIS The Friedman and Dunn's tests, Mann-Whitney, one-way analysis of variance, and Tukey, and paired and non-paired t-tests (p< 0.05) were used. RESULTS In T3, there was evidence of significant reduction in the quantity of colony forming unit (CFU) in GICEX group in comparison with the Control (p = 0.041). In T6, the quantity of CFU was similar to the quantity in T3 and significantly different to control (p = 0.045); Control group demonstrated a similar quantity of CFU between the experimental time intervals (p = 0.066). Salivary pH demonstrated significant difference only between the time intervals T0 and T6 (p = 0.022). The tooth enamel color (p = 0.366) and ARI (p = 0.343) values demonstrated no significant changes. CONCLUSION The incorporation of CLX into GIC demonstrated effective antibacterial action, allowed a good bond of the cement to the enamel, a high rate of survival of the bands, did not change the color of the tooth enamel, and maintained the salivary pH at physiological levels.
Collapse
Affiliation(s)
- José Lucas Dos Santos Araújo
- Graduate Program in Dentistry, Dental School, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.,Rua José Lourenço Kelmer, São Pedro, Brazil
| | - Mariana Massi Afonso Alvim
- Rua José Lourenço Kelmer, São Pedro, Brazil.,Pharmacy School, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Márcio José da Silva Campos
- Rua José Lourenço Kelmer, São Pedro, Brazil.,Department of Orthodontics, Faculty of Dentistry, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Ana Carolina Morais Apolônio
- Rua José Lourenço Kelmer, São Pedro, Brazil.,Department of Orthodontics, Faculty of Dentistry, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Fabíola Galbiatti Carvalho
- Rua José Lourenço Kelmer, São Pedro, Brazil.,Department of Orthodontics, Faculty of Dentistry, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Rogério Lacerda-Santos
- Rua José Lourenço Kelmer, São Pedro, Brazil.,Department of Orthodontics, Faculty of Dentistry, Federal University of Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
42
|
Stokowa-Sołtys K, Wojtkowiak K, Jagiełło K. Fusobacterium nucleatum - Friend or foe? J Inorg Biochem 2021; 224:111586. [PMID: 34425476 DOI: 10.1016/j.jinorgbio.2021.111586] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Fusobacterium nucleatum (F. nucleatum) is one of the most abundant Gram-negative anaerobic bacteria, part of the gut, and oral commensal flora, generally found in human dental plaque. Its presence could be associated with various human diseases, including, e.g., periodontal, angina, lung and gynecological abscesses. This bacteria can enter the blood circulation as a result of periodontal infection. It was proven that F. nucleatum migrates from its primary site of colonization in the oral cavity to other parts of the body. It could cause numerous diseases, including cancers. On the other hand, it was shown that Fusobacterium produces significant amounts of butyric acid, which is a great source of energy for colonocytes (anti-inflammatory cells). Therefore, it is very interesting to get to know the two faces of F. nucleatum.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Karolina Jagiełło
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
43
|
Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021; 13:1206. [PMID: 34452167 PMCID: PMC8399227 DOI: 10.3390/pharmaceutics13081206] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| |
Collapse
|
44
|
Lăzureanu PC, Popescu F, Tudor A, Stef L, Negru AG, Mihăilă R. Saliva pH and Flow Rate in Patients with Periodontal Disease and Associated Cardiovascular Disease. Med Sci Monit 2021; 27:e931362. [PMID: 34305133 PMCID: PMC8323473 DOI: 10.12659/msm.931362] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/15/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Periodontal disease, a frequent oral health problem, is connected with cardiovascular morbidity and mortality. This study aimed to assess the unstimulated saliva flow rate and saliva pH as markers of the severity of periodontal disease in patients with cardiovascular disease. MATERIAL AND METHODS A cohort of 155 patients (78 men and 77 women, aged 30-92 years) was included, and a structured questionnaire obtained information about their health status, oral healthcare behaviors, and eating habits. An oral examination was performed to assess periodontal status and presence of dental calculus. The unstimulated whole salivary flow rate and salivary pH were measured. An oral hygienization was performed, and 3 months later, salivary flow rate and pH were reevaluated. RESULTS A severe form of periodontal disease was found in 22.4% of patients. Disease severity was strongly correlated with low pH values (6.25 in stage IV periodontal disease), lower salivary flow rate (0.28 mL/min), smoking, poor oral hygiene habits and obesity, with no significant differences by sex. We observed a significant increase of pH (up to 6.30±0.17) in patients with severe periodontal disease (P=0.001) and salivary flow rate values (0.29±0.07 mL/min; P=0.014) 3 months after oral hygienization. There was a strong association between the severity of periodontal disease and presence of cardiovascular disease (P=0.001). CONCLUSIONS Our study suggests that the decrease of salivary flow rate and pH level might be associated with the severity of periodontal disease.
Collapse
Affiliation(s)
| | - Florina Popescu
- Department of Occupational Health, Victor Babeş University of Medicine and Pharmacy, Timișoara, Romania
| | - Anca Tudor
- Department of Functional Science, Discipline of Medical Informatics and Biostatistics Victor Babeş University of Medicine and Pharmacy, Timișoara, Romania
| | - Laura Stef
- Department of Oral Health and Nursing, Faculty of Medicine, Research Center for Complex Physical Systems, Lucian Blaga University, Sibiu, Romania
| | - Alina Gabriela Negru
- Department of Cardiology, Victor Babeş University of Medicine and Pharmacy, Timișoara, Romania
| | - Romeo Mihăilă
- Department of Internal Medicine, County Emergency Hospital Sibiu, Faculty of Medicine, Lucian Blaga University, Sibiu, Romania
| |
Collapse
|
45
|
Srinivas S, Ashokkumar K, Sriraghavan K, Senthil Kumar A. A prototype device of microliter volume voltammetric pH sensor based on carbazole-quinone redox-probe tethered MWCNT modified three-in-one screen-printed electrode. Sci Rep 2021; 11:13905. [PMID: 34230547 PMCID: PMC8260652 DOI: 10.1038/s41598-021-93368-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
As an alternate for the conventional glass-based pH sensor which is associated with problems like fragile nature, alkaline error, and potential drift, the development of a new redox-sensitive pH probe-modified electrode that could show potential, current-drift and surface-fouling free voltammetric pH sensing is a demanding research interest, recently. Herein, we report a substituted carbazole-quinone (Car-HQ) based new redox-active pH-sensitive probe that contains benzyl and bromo-substituents, immobilized multiwalled carbon nanotube modified glassy carbon (GCE/MWCNT@Car-HQ) and screen-printed three-in-one (SPE/MWCNT@Car-HQ) electrodes for selective, surface-fouling free pH sensor application. This new system showed a well-defined surface-confined redox peak at an apparent standard electrode potential, Eo' = - 0.160 V versus Ag/AgCl with surface-excess value, Γ = 47 n mol cm-2 in pH 7 phosphate buffer solution. When tested with various electroactive chemicals and biochemicals such as cysteine, hydrazine, NADH, uric acid, and ascorbic acid, MWCNT@Car-HQ showed an unaltered redox-peak potential and current values without mediated oxidation/reduction behavior unlike the conventional hydroquinone, anthraquinone and other redox mediators based voltammetry sensors with serious electrocatalytic effects and in turn potential and current drifts. A strong π-π interaction, nitrogen-atom assisted surface orientation and C-C bond formation on the graphitic structure of MWCNT are the plausible reasons for stable and selective voltammetric pH sensing application of MWCNT@Car-HQ system. Using a programed/in-built three-in-one screen printed compatible potentiostat system, voltammetric pH sensing of 3 μL sample of urine, saliva, and orange juice samples with pH values comparable to that of milliliter volume-based pH-glass electrode measurements has been demonstrated.
Collapse
Affiliation(s)
- Sakthivel Srinivas
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore, 632 014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | - Krishnan Ashokkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | - Kamaraj Sriraghavan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India.
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore, 632 014, India.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
46
|
Zhou L, Li A, Wang H, Sun W, Zuo S, Li C. Preparation and characterization of luteolin-loaded MPEG-PCL-g-PEI micelles for oral Candida albicans infection. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Matzeu G, Naveh GRS, Agarwal S, Roshko JA, Ostrovsky‐Snider NA, Napier BS, Omenetto FG. Functionalized Mouth-Conformable Interfaces for pH Evaluation of the Oral Cavity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003416. [PMID: 34165900 PMCID: PMC8224410 DOI: 10.1002/advs.202003416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/14/2021] [Indexed: 05/25/2023]
Abstract
Oral health monitoring is highly desired, especially for in home use, however, current methods are not sensitive enough and technically convoluted for this purpose. This paper presents incorporation of bioactive materials and colorimetric chemical sensors into routinely used oral appliances transforming them into bioresponsive, conformable interfaces. Specifically, endodontic paper points and dental floss can be functionalized to locally sense and monitor pH variations within the oral cavity via color changes. Moreover, edible colorimetric indicators are developed and used to make sensing, edible devices in the form factor of candies that can dynamically and visually respond to acidity changes in saliva. These interfaces would enable early detection of caries (e.g., using dental floss and paper points) providing low-cost point of care devices that respond in real-time by detecting pH variations in biological fluids thus bringing monitoring to home settings .
Collapse
Affiliation(s)
- Giusy Matzeu
- SilklabDepartment of Biomedical EngineeringTufts UniversityMedfordMA02155USA
- Center for Applied Brain and Cognitive ScienceTufts UniversityMedfordMA02155USA
- Laboratory for Living DevicesTufts UniversityMedfordMA02155USA
| | - Gili R. S. Naveh
- Harvard School of Dental Medicine188 Longwood AvenueBostonMA02115USA
| | - Siddhart Agarwal
- SilklabDepartment of Biomedical EngineeringTufts UniversityMedfordMA02155USA
| | - Jeffery A. Roshko
- SilklabDepartment of Biomedical EngineeringTufts UniversityMedfordMA02155USA
| | | | - Bradley S. Napier
- SilklabDepartment of Biomedical EngineeringTufts UniversityMedfordMA02155USA
| | - Fiorenzo G. Omenetto
- SilklabDepartment of Biomedical EngineeringTufts UniversityMedfordMA02155USA
- Center for Applied Brain and Cognitive ScienceTufts UniversityMedfordMA02155USA
- Laboratory for Living DevicesTufts UniversityMedfordMA02155USA
- Department of Electrical and Computer EngineeringTufts UniversityMedfordMA02155USA
- Department of PhysicsTufts UniversityMedfordMA02155USA
| |
Collapse
|
48
|
Nguyen OOT, Tran KD, Ha NT, Doan SM, Dinh TTH, Tran TH. Oral cavity: An open horizon for nanopharmaceuticals. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00530-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Ramezani J, Khaligh MR, Ansari G, Yazdani Y, Mohammadi S. Association of salivary physicochemical characteristics and peptide levels with dental caries in children. J Indian Soc Pedod Prev Dent 2021; 39:189-195. [PMID: 34341240 DOI: 10.4103/jisppd.jisppd_251_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM The purpose of this investigation was to evaluate the association of physicochemical properties and antimicrobial peptide levels of saliva with caries activity in children. MATERIALS AND METHODS The required volume of unstimulated saliva was collected from 41 children aged 3-12 years with no systemic diseases. Caries activity was calculated using DMFS and dmfs records for each participating child. Collected saliva samples were then examined for their flow rate, pH, and buffering capacity. The concentration of three peptides was assessed including LL-37, human neutrophil peptide (HNP) 1-3, and human beta-defensin (HBD)-3 through an enzyme-linked immunosorbent assay. The correlation between caries activity score (CAS) and salivary variables was looked using the linear regression and Spearman's correlation method. The comparison of CAS means between high- and low-value groups of salivary items was performed using independent sample t-test while the association of CAS and salivary parameters in categorical scale was tested by Chi-square test. RESULTS No statistically significant differences were found between the CAS means at low and high categories of each salivary physicochemical parameter and those of antimicrobial peptides. There was a negative correlation between HNP1-3 and CAS and also between HBD-3 and CAS, but these results were not statistically meaningful. High HNP1-3 concentration was noted in 67% of the low caries rate group and 29% of the high caries rate group, with a statistically significant difference between the low and high caries rate groups (P = 0.019). CONCLUSION Salivary inherent factors are not dominant determinants in caries activity. The current results may suggest that α-defensins (HNP1-3) have a protective role against dental caries.
Collapse
Affiliation(s)
- Jamileh Ramezani
- Department of Pediatric Dentistry, Faculty of Dentistry, Golestan University of Medical Sciences; Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Rezaei Khaligh
- Department of Pediatric Dentistry, Faculty of Dentistry, Golestan University of Medical Sciences; Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ghassem Ansari
- Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yaghoub Yazdani
- Department of Medical Immunology, Faculty of Advanced Medical Science Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Department of Molecular Medicine, Faculty of Advanced Medical Science Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
50
|
Formulation and evaluation of mucoadhesive buccal tablets of aceclofenac. Heliyon 2021; 7:e06439. [PMID: 33786387 PMCID: PMC7988282 DOI: 10.1016/j.heliyon.2021.e06439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
This project was aimed to formulate and characterize mucoadhesive buccal tablets of aceclofenac, utilizing different proportions of three polymers carbopol 934, hydroxypropyl methylcellulose, and sodium carboxymethylcellulose. Twelve batches of buccoadhesive aceclofenac were prepared by the direct compression method. The compressed tablets were then evaluated for physicochemical parameters such as hardness, thickness, weight variation, drug content, friability, swelling index, surface pH, and ex vivo mucoadhesion. In vitro dissolution test was conducted for 12 h according to Indian Pharmacopeia 2018, using the rotating paddle method in phosphate buffer of pH 7.4. Physiochemical parameters like weight variation (231.25–268.75 mg), hardness (8.32–11.56 kg), friability (0.04–0.2%), diameter (9.00 mm), thickness (3.8–4.05 mm), and drug content ((97.67–102.25%) were within the acceptable limit as per Indian Pharmacopeia 2018. The swelling index was reported to be in the range of 112.93–450.19%, at 8 h. The surface pHs of all the batches were in between 6.72 to 6.96. The mucoadhesive strengths (40.5–50 g) varied with the change in polymer concentrations especially of carbopol 934. The dissolution profile of all the batches varied greatly, with a maximum release of 109.41% (in batch 12 at 6 h) to a minimum release of 44.82% (in batch 3 at 12 h). Among them, only batch 1 ensured sustained and effective drug release (88.34% at 12 h) with appropriate swelling index (112.93%) and mucoadhesive strength (40 g). Fourier Transform Infrared Spectroscopy analysis showed no evidence of drug excipients interaction. Hence, the results concluded that buccal mucoadhesive aceclofenac tablets can be formulated. Furthermore, the property of the tablet not only depends on the concentration but also the behavior of the polymers used.
Collapse
|