1
|
Yapto CV, Rajes K, Inselmann A, Staufenbiel S, Stolte KN, Witt M, Haag R, Dommisch H, Danker K. Topical Application of Dexamethasone-Loaded Core-Multishell Nanocarriers Against Oral Mucosal Inflammation. Macromol Biosci 2024:e2400286. [PMID: 39363619 DOI: 10.1002/mabi.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/14/2024] [Indexed: 10/05/2024]
Abstract
Topical treatment of oral inflammatory diseases is challenging due to the intrinsic physicochemical barriers of the mucosa and the continuous flow of saliva, which dilute drugs and limit their bioavailability. Nanocarrier technology can be an innovative approach to circumvent these problems and thus improve the efficacy of topical drug delivery to the mucosa. Core-multishell (CMS) nanocarriers are putative delivery systems with high biocompatibility and the ability to adhere to and penetrate the oral mucosa. Ester-based CMS nanocarriers release the anti-inflammatory compound dexamethasone (Dx) more efficiently than a conventional cream. Mussel-inspired functionalization of a CMS nanocarrier with catechol further improves the adhesion of the nanocarrier and may enhance the efficacy of the loaded drugs. In the present study, the properties of the ester-based CMS 10-E-15-350 nanocarrier (CMS-NC) are further evaluated in comparison to the catechol-functionalized variant (CMS-C0.08). While the mucoadhesion of CMS-NC is inhibited by saliva, CMS-C0.08 exhibits better mucoadhesion in the presence of saliva. Due to the improved adhesion properties, CMS-C0.08 loaded with dexamethasone (Dx-CMS-C0.08) shows a better anti-inflammatory effect than Dx-CMS-NC when applied dynamically. These results highlight the superiority of CMS-C0.08 over CMS-NC as an innovative drug delivery system (DDS) for the treatment of oral mucosal diseases.
Collapse
Affiliation(s)
- Cynthia V Yapto
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Berlin, Germany
| | - Keerthana Rajes
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Antonia Inselmann
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Berlin, Germany
| | - Sven Staufenbiel
- Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Technology, 12169, Berlin, Germany
| | - Kim N Stolte
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Berlin, Germany
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, 14197, Berlin, Germany
| | - Maren Witt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Berlin, Germany
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, 14197, Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Henrik Dommisch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Berlin, Germany
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, 14197, Berlin, Germany
| | - Kerstin Danker
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Berlin, Germany
| |
Collapse
|
2
|
Kang Y, Xiong Y, Lu B, Wang Y, Zhang D, Feng J, Chen L, Zhang Z. Application of In Situ Mucoadhesive Hydrogel with Anti-Inflammatory and Pro-Repairing Dual Properties for the Treatment of Chemotherapy-Induced Oral Mucositis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35949-35963. [PMID: 38970482 DOI: 10.1021/acsami.4c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Chemotherapy-induced oral mucositis (CIOM) is a prevalent complication of chemotherapy and significantly affects the treatment process. However, effective treatment for CIOM is lacking due to the unique environment of the oral cavity and the single effect of current drug delivery systems. In this present study, we propose an innovative approach by combining a methacrylate-modified human recombinant collagen III (rhCol3MA) hydrogel system with hyaluronic acid-epigallocatechin gallate (HA-E) and dopamine-modified methacrylate-alginate (AlgDA-MA). HA-E is used as an antioxidant and anti-inflammatory agent and synergizes with AlgDA-MA to improve the wet adhesion of hydrogel. The results of rhCol3MA/HA-E/AlgDA-MA (Col/HA-E/Alg) hydrogel demonstrate suitable physicochemical properties, excellent wet adhesive capacity, and biocompatibility. Notably, the hydrogel could promote macrophage polarization from M1 to M2 and redress human oral keratinocyte (HOK) inflammation by inhibiting NF-κB activation. Wound healing evaluations in vivo demonstrate that the Col/HA-E/Alg hydrogel exhibits a pro-repair effect by mitigating inflammatory imbalances, fostering early angiogenesis, and facilitating collagen repair. In summary, the Col/HA-E/Alg hydrogel could serve as a promising multifunctional dressing for the treatment of CIOM.
Collapse
Affiliation(s)
- Yujie Kang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| | - Yahui Xiong
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
| | - Bingxu Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| | - Yunyi Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| | - Danya Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| | - Jinghao Feng
- Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P. R. China
| | - Lei Chen
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| |
Collapse
|
3
|
Liu T, Gong X, Cai Y, Li HY, Forbes B. Pullulan-Based Spray-Dried Mucoadhesive Microparticles for Sustained Oromucosal Drug Delivery. Pharmaceutics 2024; 16:460. [PMID: 38675121 PMCID: PMC11053838 DOI: 10.3390/pharmaceutics16040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Mucoadhesive microparticles for oromucosal drug delivery offer several advantages, including intimate contact with the mucosa, delivery to less accessible regions, extended residence time, sustained drug release, reduced irritation, and improved patient compliance. In this study, pullulan was used to prepare mucoadhesive spray-dried microparticles for delivering benzydamine hydrochloride (BZH) to oral mucosa. The BZH-pullulan spray-dried microparticles had a mean size of <25 μm with an angle of repose values between 25.8-36.6°. Pullulan markedly extended drug-release time to >180 min, ~9 times greater than the duration (i.e., 20 min) reportedly achieved by chitosan. Kinetic analysis showed the drug-release rate was concentration dependent and jointly controlled by drug diffusion and polymer chain relaxation. Further, pullulan was mucoadhesive and was able to retain up to 78.8% w/w of microencapsulated gold nanoparticle probes at the mucosal membrane. These data strongly suggest that BZH-pullulan microparticles have great potential for oromucosal drug delivery, by providing elongated residence time in situ and sustained drug release for the treatment of local diseases.
Collapse
Affiliation(s)
- Ting Liu
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; (T.L.); (Y.C.)
| | - Xiang Gong
- Guiyang Hospital of Stomatology, Guiyang 550007, China;
| | - Yang Cai
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; (T.L.); (Y.C.)
| | - Hao-Ying Li
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| |
Collapse
|
4
|
Edmans JG, Harrison S, Hatton PV, Murdoch C, Spain SG, Colley HE. Electrospinning polymersomes into bead-on-string polyethylene oxide fibres for the delivery of biopharmaceuticals to mucosal epithelia. BIOMATERIALS ADVANCES 2024; 157:213734. [PMID: 38109830 DOI: 10.1016/j.bioadv.2023.213734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Fibrous mucoadhesive polymer membranes prepared using electrospinning demonstrate many advantages for mucosal drug delivery compared to other formulations. Previous electrospun membrane formulations have been developed mainly for the delivery of small molecule drugs. There remains great potential to further develop the technology for the delivery of vesicular vectors that allow administration of advanced therapeutic agents. However, there are no previous reports demonstrating the release of intact drug delivery vesicles from electrospun materials. Here, we describe incorporation and release of protein-loaded polymersomes from polyethylene oxide (PEO)-based electrospun membranes. Polymersomes comprising a copolymer of glycerol monomethacrylate (GMA) and hydroxypropyl methacrylate (HPMA) were prepared using polymerization-induced self-assembly and incorporated within PEO membranes using bead-on-string electrospinning at approximately 40 % w/w by polymer mass. Super-resolution fluorescence imaging showed that the vesicles remained intact and retained their encapsulated protein load within the fibre beads. Transmission electron microscopy and dynamic light scattering demonstrated that polymersomes retained their morphology following release from the polymer fibres. F(ab) antibody fragments were encapsulated within polymersomes and then electrospun into membranes. 78 ± 13 % of the F(ab) remained encapsulated within polymersomes during electrospinning and retained functionality when released from electrospun membranes, demonstrating that the formulation is suitable for the delivery of biologics. Membranes were non-irritant to the oral epithelium and fluorescence microscopy detected accumulation of polymersomes within the epithelia following application. This innovative drug delivery approach represents a novel and potentially highly useful method for the administration of large molecular mass therapeutic molecules to diseased mucosal sites.
Collapse
Affiliation(s)
- Jake G Edmans
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, United Kingdom; Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Samuel Harrison
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Paul V Hatton
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, United Kingdom
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, United Kingdom.
| | - Sebastian G Spain
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Helen E Colley
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, United Kingdom
| |
Collapse
|
5
|
Shen F, Ge W, Ling H, Yang Y, Chen R, Wang X. Hemicellulose-based nanoaggregate-incorporated biocompatible hydrogels with enhanced mechanical properties and sustained controlled curcumin release behaviors. Int J Biol Macromol 2024; 259:129445. [PMID: 38232865 DOI: 10.1016/j.ijbiomac.2024.129445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Local drug delivery has generated considerable interest due to its controlled and sustained drug release at the target site on demand. Nanoaggregate-incorporated composite hydrogels are desirable as local drug delivery systems; however, it is difficult to achieve sustained and controlled hydrophobic drug release and superior mechanical properties in one system. Herein, a "smart" composite hydrogel was synthesized by incorporating hemicellulose-based nanoaggregates into a double network consisting of alginate/Ca2+ and polyacrylic acid-co-dimethylaminoethyl methacrylate [P(AA-co-DMAEMA)]. Hemicellulose-based nanoaggregates were assembled from xylan-rich hemicellulose laurate methacrylate (XH-LA-MA) polymers and entrapped into the hydrogel framework via chemical fixation. Another composite hydrogel with physically embedded hemicellulose laurate (XH-LA) nanoaggregates was prepared as a comparison. Accordingly, covalently cross-linked XH-LA-MA nanoaggregates in hydrogels resulted in a denser pore structure and reinforced mechanical properties. Nanoaggregate diffusion analysis revealed that covalent bonding between the nanoaggregates and the hydrogel framework contributed to prolonged diffusion behavior. Curcumin (Cur)-loaded XH-LA-MA composite hydrogels enabled sustained Cur release in simulated body fluid and showed stimulus responsiveness toward ethylenediaminetetraacetic acid (EDTA) and/or glutathione (GSH). All the composite hydrogels were biocompatible, as verified by Cell Counting Kit-8 (CCK-8) assay against NIH/3T3 cells. These composite hydrogels hold great potential as a promising dosage form for biomedical applications.
Collapse
Affiliation(s)
- Feng Shen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Jinan Shengquan Group Share Holding Co., Ltd., Jinan 250000, China
| | - Wenjiao Ge
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 256000, China.
| | - Hao Ling
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yang Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ruiai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 256000, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 256000, China.
| |
Collapse
|
6
|
Sharma A, Singh M, Sharma V, Vashishth A, Raj M, Upadhyay SK, Singh S, Ramniwas S, Dhama K, Sharma AK, Bhatia SK. Current paradigms in employing self-assembled structures: Drug delivery implications with improved therapeutic potential. Colloids Surf B Biointerfaces 2024; 234:113745. [PMID: 38241890 DOI: 10.1016/j.colsurfb.2024.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Recent efforts have focused on developing improved drug delivery systems with enhanced therapeutic efficacy and minimal side effects. Micelles, self-assembled from amphiphilic block copolymers in aqueous solutions, have gained considerable attention for drug delivery. However, there is a need to further enhance their efficiency. These micelles offer benefits like biodegradability, biocompatibility, sustained drug release, and improved patient compliance. Yet, researchers must address stability issues and reduce toxicity. Nanoscale self-assembled structures have shown promise as efficient drug carriers, offering an alternative to conventional methods. Fine-tuning at the monomeric and molecular levels, along with structural modifications, is crucial for optimal drug release profiles. Various strategies, such as entrapping hydrophobic drugs and using polyethylene oxide diblock copolymer micelles to resist protein adsorption and cellular adhesion, protect the hydrophobic core from degradation. The polyethylene oxide corona also provides stealth properties, prolonging blood circulation for extended drug administration. Amphiphilic copolymers are attractive for drug delivery due to their adjustable properties, allowing control over micelle size and morphology. Emerging tools promise complex and multifunctional platforms. This article summarizes about the challenges as far as the use of micelles is concerned, including optimizing performance, rigorous pre-clinical and clinical research, and suggests further improvement for drug delivery efficacy.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh 176041, India; Center for Nanoscience and Technology, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India.
| | - Manoj Singh
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Varruchi Sharma
- Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Chandigarh 160019, India.
| | - Amit Vashishth
- Department of Science and Humanities, SRM Institute of Science & Technology (Deemed to be University) Delhi-NCR Campus, Ghaziabad, UP 201204, India.
| | - Mayank Raj
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Sushil K Upadhyay
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Sandeep Singh
- Department of Chemistry, Sri Guru Gobind Singh College, Sector -26, Chandigarh, India.
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Biotechnology Chandigarh University, Gharuan, Mohali, India.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India.
| | - Anil K Sharma
- Department of Biotechnology, Amity University, Sector 82 A, IT City Rd, Block D, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Shashi Kant Bhatia
- Biotransformation and Biomaterials Lab, Department of Biological Engineering, College of Engineering, KonkukUniversity, Hwayang-dong Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
7
|
Ali A, Ganguillet S, Turgay Y, Keys TG, Causa E, Fradique R, Lutz-Bueno V, Chesnov S, Tan-Lin CW, Lentsch V, Kotar J, Cicuta P, Mezzenga R, Slack E, Radiom M. Surface Cross-Linking by Macromolecular Tethers Enhances Virus-like Particles' Resilience to Mucosal Stress Factors. ACS NANO 2024; 18:3382-3396. [PMID: 38237058 PMCID: PMC10832050 DOI: 10.1021/acsnano.3c10339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/31/2024]
Abstract
Virus-like particles (VLPs) are emerging as nanoscaffolds in a variety of biomedical applications including delivery of vaccine antigens and cargo such as mRNA to mucosal surfaces. These soft, colloidal, and proteinaceous structures (capsids) are nevertheless susceptible to mucosal environmental stress factors. We cross-linked multiple capsid surface amino acid residues using homobifunctional polyethylene glycol tethers to improve the persistence and survival of the capsid to model mucosal stressors. Surface cross-linking enhanced the stability of VLPs assembled from Acinetobacter phage AP205 coat proteins in low pH (down to pH 4.0) and high protease concentration conditions (namely, in pig and mouse gastric fluids). Additionally, it increased the stiffness of VLPs under local mechanical indentation applied using an atomic force microscopy cantilever tip. Small angle X-ray scattering revealed an increase in capsid diameter after cross-linking and an increase in capsid shell thickness with the length of the PEG cross-linkers. Moreover, surface cross-linking had no effect on the VLPs' mucus translocation and accumulation on the epithelium of in vitro 3D human nasal epithelial tissues with mucociliary clearance. Finally, it did not compromise VLPs' function as vaccines in mouse subcutaneous vaccination models. Compared to PEGylation without cross-linking, the stiffness of surface cross-linked VLPs were higher for the same length of the PEG molecule, and also the lifetimes of surface cross-linked VLPs were longer in the gastric fluids. Surface cross-linking using macromolecular tethers, but not simple conjugation of these molecules, thus offers a viable means to enhance the resilience and survival of VLPs for mucosal applications.
Collapse
Affiliation(s)
- Ahmed Ali
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Suwannee Ganguillet
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Yagmur Turgay
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Timothy G. Keys
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Erika Causa
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Ricardo Fradique
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Viviane Lutz-Bueno
- Paul
Scherrer Institute (PSI), Villigen 5232, Switzerland
- Laboratoire
Léon Brillouin, CEA-CNRS (UMR-12), CEA Saclay, Université
Paris-Saclay, Gif-sur-Yvette Cedex 91191, France
| | - Serge Chesnov
- Functional
Genomics Centre Zürich (FGCZ), University of Zürich/ETH
Zürich, Zürich 8057, Switzerland
| | - Chia-Wei Tan-Lin
- Functional
Genomics Centre Zürich (FGCZ), University of Zürich/ETH
Zürich, Zürich 8057, Switzerland
| | - Verena Lentsch
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Jurij Kotar
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Pietro Cicuta
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Raffaele Mezzenga
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Emma Slack
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Milad Radiom
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
8
|
Hariharan A, Tran SD. Localized Drug Delivery Systems: An Update on Treatment Options for Head and Neck Squamous Cell Carcinomas. Pharmaceutics 2023; 15:1844. [PMID: 37514031 PMCID: PMC10385385 DOI: 10.3390/pharmaceutics15071844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world, with surgery, radiotherapy, chemotherapy, and immunotherapy being the primary treatment modalities. The treatment for HNSCC has evolved over time, due to which the prognosis has improved drastically. Despite the varied treatment options, major challenges persist. HNSCC chemotherapeutic and immunotherapeutic drugs are usually administered systemically, which could affect the patient's quality of life due to the associated side effects. Moreover, the systemic administration of salivary stimulating agents for the treatment of radiation-induced xerostomia is associated with toxicities. Localized drug delivery systems (LDDS) are gaining importance, as they have the potential to provide non-invasive, patient-friendly alternatives to cancer therapy with reduced dose-limiting toxicities. LDDSs involve directly delivering a drug to the tissue or organ affected by the disease. Some of the common localized routes of administration include the transdermal and transmucosal drug delivery system (DDSs). This review will attempt to explore the different treatment options using LDDSs for the treatment of HNSCC and radiotherapy-induced damage and their potential to provide a better experience for patients, as well as the obstacles that need to be addressed to render them successful.
Collapse
Affiliation(s)
- Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
9
|
Feura ES, Maloney SE, Conlon IL, Broberg CA, Yang F, Schoenfisch MH. Injectable polysaccharide hydrogels as localized nitric oxide delivery formulations. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201529. [PMID: 39211298 PMCID: PMC11361346 DOI: 10.1002/admt.202201529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 09/04/2024]
Abstract
A series of injectable polysaccharide hydrogels were prepared with oxidized dextran and diethylenetriamine-modified carboxymethylcellulose or hyaluronic acid. Rheological evaluation revealed that carboxymethylcellulose-based hydrogels achieved the largest storage moduli (>1 kPa) when prepared from 5 wt. % solutions. However, carboxymethylcellulose-based hydrogels with storage moduli >100 Pa were prepared from solutions with concentrations as low as 2 wt. %. Hyaluronic acid-based hydrogels demonstrated smaller storage moduli but had swelling ratios more than four times that of the carboxymethylcellulose systems at the same polymer concentrations. The incorporation of N-diazeniumdiolate NO donors into the hydrogels resulted in reduced hydrogel storage moduli as a function of NO donor concentration. The impact of the hydrogel architecture on NO-release kinetics proved dependent on the identity of the NO donor. Hydrogel degradation over 14 d was measured at pH 5.4 and 7.4 and indicated that hyaluronic acid-based hydrogels degraded more rapidly than carboxymethylcellulose hydrogels and that the addition of NO to the hydrogels increased the rate at which they degraded. In vitro cytotoxicity of hydrogel extracts was evaluated against five cell lines, with no observed toxicity except for that of hyaluronic acid-based hydrogel extracts against human gingival fibroblasts. The diverse properties, versatility, and non-toxic characteristics of these injectable hydrogels should facilitate local delivery of nitric oxide for a range of biomedical applications.
Collapse
Affiliation(s)
- Evan S. Feura
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Sara E. Maloney
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Ivie L. Conlon
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Christopher A. Broberg
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Feichen Yang
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| |
Collapse
|
10
|
Dinte E, Muntean DM, Andrei V, Boșca BA, Dudescu CM, Barbu-Tudoran L, Borodi G, Andrei S, Gal AF, Rus V, Gherman LM, Cadar O, Barabas R, Niculae M, Ilea A. In Vitro and In Vivo Characterisation of a Mucoadhesive Buccal Film Loaded with Doxycycline Hyclate for Topical Application in Periodontitis. Pharmaceutics 2023; 15:pharmaceutics15020580. [PMID: 36839899 PMCID: PMC9963859 DOI: 10.3390/pharmaceutics15020580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Mucoadhesive films loaded with doxycycline hyclate (Doxy Hyc), consisting of mixtures of hydroxypropylmethyl cellulose (HPMC) E3, K4 and polyacrylic acid (Carbopol 940), were prepared by casting method, aiming to design a formulation intended for application in the oral cavity. The obtained film formulations exhibited a Doxy Hyc content between 7.52 ± 0.42 and 7.83 ± 0.41%, which had adequate mechanical properties for application in the oral cavity and pH values in the tolerance range. The x-ray diffraction studies highlighted the amorphisation of Doxy Hyc in the preparation process and the antibiotic particles present on the surface of the films, identified in the TEM images, which ensured a burst release effect in the first 15 min of the in vitro dissolution studies, after which Doxy Hyc was released by diffusion, the data presenting a good correlation with the Peppas model, n < 0.5. The formulation F1, consisting of HPMC K4 combined with C940 in a ratio of 5:3, the most performing in vitro, was tested in vivo in experimentally-induced periodontitis and demonstrated its effectiveness in improving the clinical parameters and reducing the salivary levels of matrix metalloproteinase-8 (MMP-8). The prepared Doxy Hyc loaded mucoadhesive buccal film could be used as an adjuvant for the local treatment of periodontitis, ensuring prolonged release of the antibiotic after topical application.
Collapse
Affiliation(s)
- Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Vlad Andrei
- Department of Oral Rehabilitation, Faculty of Dentistry, ”Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Bianca Adina Boșca
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristian Mircea Dudescu
- Department of Mechanical Engineering, Faculty of Automotive, Mechatronics and Mechanical Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Gheorghe Borodi
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Sanda Andrei
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Adrian Florin Gal
- Department of Cell Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Luciana-Mădălina Gherman
- Experimental Centre of University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 400293 Cluj-Napoca, Romania
| | - Reka Barabas
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, 400028 Cluj-Napoca, Romania
| | - Mihaela Niculae
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, ”Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Constantin M, Lupei M, Bucatariu SM, Pelin IM, Doroftei F, Ichim DL, Daraba OM, Fundueanu G. PVA/Chitosan Thin Films Containing Silver Nanoparticles and Ibuprofen for the Treatment of Periodontal Disease. Polymers (Basel) 2022; 15:polym15010004. [PMID: 36616354 PMCID: PMC9824025 DOI: 10.3390/polym15010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
Local delivery of drugs or antimicrobial agents is a suitable approach in the management of periodontitis when the infection is localized deep in the pockets and does not adequately respond to mechanical debridement and/or systemic antibiotic treatment. In this context, the objective of this study was to prepare new biocomposite films with antimicrobial, anti-inflammatory, and good mechanical properties to be applied in periodontal pockets. The composite film is eco-friendly synthesized from poly(vinyl alcohol) (PVA) cross-linked with oxidized chitosan (OxCS). Silver nanoparticles (AgNps) were inserted during film synthesis by adding freshly chitosan-capped AgNps colloidal solution to the polymer mixture; the addition of AgNps up to 1.44 wt.% improves the physico-chemical properties of the film. The characterization of the films was performed by FT-IR, atomic mass spectrometry, X-ray spectroscopy, and SEM. The films displayed a high swelling ratio (162%), suitable strength (1.46 MPa), and excellent mucoadhesive properties (0.6 N). Then, ibuprofen (IBF) was incorporated within the best film formulation, and the IBF-loaded PVA/OxCS-Ag films could deliver the drug in a sustained manner up to 72 h. The biocomposite films have good antimicrobial properties against representative pathogens for oral cavities. Moreover, the films are biocompatible, as demonstrated by in vitro tests on HDFa cell lines.
Collapse
Affiliation(s)
- Marieta Constantin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
- Correspondence: (M.C.); (G.F.); Tel.: +40-332-880155 (M.C.); +40-332-880225 (G.F.); Fax: +40-332-211299 (M.C.); +40-332-211299 (G.F.)
| | - Mihail Lupei
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Sanda-Maria Bucatariu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Irina Mihaela Pelin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Florica Doroftei
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | | | - Oana Maria Daraba
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
| | - Gheorghe Fundueanu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
- Correspondence: (M.C.); (G.F.); Tel.: +40-332-880155 (M.C.); +40-332-880225 (G.F.); Fax: +40-332-211299 (M.C.); +40-332-211299 (G.F.)
| |
Collapse
|
12
|
Vaezi H, Rabbani S, Mortazavi SA, Kamalinejad M, Haeri A. Fabrication, in Vitro, and in Vivo Characterization of Mucoadhesive Berberine-Loaded Blended Wafers for Treatment of Chemotherapy-Induced Oral Mucositis. AAPS PharmSciTech 2022; 24:19. [DOI: 10.1208/s12249-022-02476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
|
13
|
Bianchi MB, Zhang C, Catlin E, Sandri G, Calderón M, Larrañeta E, Donnelly RF, Picchio ML, Paredes AJ. Bioadhesive eutectogels supporting drug nanocrystals for long-acting delivery to mucosal tissues. Mater Today Bio 2022; 17:100471. [PMID: 36345362 PMCID: PMC9636571 DOI: 10.1016/j.mtbio.2022.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Eutectogels (Egels) are an emerging class of soft ionic materials outperforming traditional temperature-intolerant hydrogels and costly ionogels. Due to their excellent elasticity, non-volatile nature, and adhesion properties, Egels are attracting a great deal of interest in the biomedical space. Herein, we report the first example of adhesive Egels loading drug nanocrystals (Egel-NCs) for controlled delivery to mucosal tissues. These soft materials were prepared using gelatin, glycerine, a deep eutectic solvent (DES) based on choline hydrochloride and glycerol, and nanocrystallised curcumin, a model drug with potent antimicrobial and anti-inflammatory activities. We first explored the impact of the biopolymer concentration on the viscoelastic and mechanical properties of the networks. Thanks to the dynamic interactions between gelatin and the DES, the Egel showed excellent stretchability and elasticity (up to ≈160%), reversible gel-sol phase transition at mild temperature (≈50 °C), 3D-printing ability, and good adhesion to mucin protein (stickiness ≈40 kPa). In vitro release profiles demonstrated the ability of the NCs-based Egel to deliver curcumin for up to four weeks and deposit significantly higher drug amounts in excised porcine mucosa compared to the control cohort. All in all, this study opens new prospects in designing soft adhesive materials for long-acting drug delivery and paves the way to explore novel eutectic systems with multiple therapeutic applications.
Collapse
|
14
|
Buccal films: A review of therapeutic opportunities, formulations & relevant evaluation approaches. J Control Release 2022; 352:1071-1092. [PMID: 36351519 DOI: 10.1016/j.jconrel.2022.10.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
The potential of the mucoadhesive film technology is hard to ignore, owing to perceived superior patient acceptability versus buccal tablets, and significant therapeutic opportunities compared to conventional oral drug delivery systems, especially for those who suffer from dysphagia. In spite of this, current translation from published literature into the commercial marketplace is virtually non-existent, with no authorised mucoadhesive buccal films available in the UK and very few available in the USA. This review seeks to provide an overview of the mucoadhesive buccal film technology and identify key areas upon which to focus scientific efforts to facilitate the wider adoption of this patient-centric dosage form. Several indications and opportunities for development were identified, while discussing the patient-related factors influencing the use of these dosage forms. In addition, an overview of the technologies behind the manufacturing of these films was provided, highlighting manufacturing methods like solvent casting, hot melt extrusion, inkjet printing and three-dimensional printing. Over thirty mucoadhesive polymers were identified as being used in film formulations, with details surrounding their mucoadhesive capabilities as well as their inclusion alongside other key formulation constituents provided. Lastly, the importance of physiologically relevant in vitro evaluation methodologies was emphasised, which seek to improve in vivo correlations, potentially leading to better translation of mucoadhesive buccal films from the literature into the commercial marketplace.
Collapse
|
15
|
Singh J, Steele TWJ, Lim S. Bacterial cellulose adhesive patches designed for soft mucosal interfaces. BIOMATERIALS ADVANCES 2022; 144:213174. [PMID: 36428212 DOI: 10.1016/j.bioadv.2022.213174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
The wet environment in the oral cavity is challenging for topical disease management approaches. The compromised material properties leading to weak adhesion and short retention (<8 h) in such environment result in frequent reapplication of the therapeutics. Composites of bacterial cellulose (BC) and carbene-based bioadhesives attempt to address these shortcomings. Previous designs comprised of aqueous formulations. The current design, for the first time, presents dry, shelf-stable cellulose patches for convenient ready-to-use application. The dry patches simultaneously remove tissue surface hydration while retaining carbene-based photocuring and offers on-demand adhesion. The dry patch prototypes are optimized by controlling BC/adhesive mole ratios and dehydration technique. The adhesion strength is higher than commercial denture adhesives on soft mucosal tissues. The structural integrity is maintained for a minimum of 7 days in aqueous environment. The patches act as selective nanoporous barrier against bacteria while allowing permeation of proteins. The results support the application of BC-based adhesive patches as a flexible platform for wound dressings, drug depots, or combination thereof.
Collapse
Affiliation(s)
- Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore; School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457, Singapore.
| | - Terry W J Steele
- School of Materials Science and Engineering (MSE), Division of Materials Technology, Nanyang Technological University (NTU), Singapore 639798, Singapore.
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457, Singapore.
| |
Collapse
|
16
|
Zhou Y, Wang M, Yan C, Liu H, Yu DG. Advances in the Application of Electrospun Drug-Loaded Nanofibers in the Treatment of Oral Ulcers. Biomolecules 2022; 12:1254. [PMID: 36139093 PMCID: PMC9496154 DOI: 10.3390/biom12091254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023] Open
Abstract
Oral ulcers affect oral and systemic health and have high prevalence in the population. There are significant individual differences in the etiology and extent of the disease among patients. In the treatment of oral ulcers, nanofiber films can control the drug-release rate and enable long-term local administration. Compared to other drug-delivery methods, nanofiber films avoid the disadvantages of frequent administration and certain side effects. Electrospinning is a simple and effective method for preparing nanofiber films. Currently, electrospinning technology has made significant breakthroughs in energy-saving and large-scale production. This paper summarizes the polymers that enable oral mucosal adhesion and the active pharmaceutical ingredients used for oral ulcers. Moreover, the therapeutic effects of currently available electrospun nanofiber films on oral ulcers in animal experiments and clinical trials are investigated. In addition, solvent casting and cross-linking methods can be used in conjunction with electrospinning techniques. Based on the literature, more administration systems with different polymers and loading components can be inspired. These administration systems are expected to have synergistic effects and achieve better therapeutic effects. This not only provides new possibilities for drug-loaded nanofibers but also brings new hope for the treatment of oral ulcers.
Collapse
Affiliation(s)
- Yangqi Zhou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Yan
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
17
|
Edmans JG, Ollington B, Colley HE, Santocildes-Romero ME, Siim Madsen L, Hatton PV, Spain SG, Murdoch C. Electrospun patch delivery of anti-TNFα F(ab) for the treatment of inflammatory oral mucosal disease. J Control Release 2022; 350:146-157. [PMID: 35973471 DOI: 10.1016/j.jconrel.2022.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Chronic ulcerative oral mucosal inflammatory diseases, including oral lichen planus and recurrent aphthous stomatitis, are painful and highly prevalent, yet lack effective clinical management. In recent years, systemic biologic therapies, including monoclonal antibodies that block the activity of cytokines, have been increasingly used to treat a range of immune-mediated inflammatory conditions such as rheumatoid arthritis and psoriasis. The ability to deliver similar therapeutic agents locally to the oral epithelium could radically alter treatment options for oral mucosal inflammatory diseases, where pro-inflammatory cytokines, in particular tumour-necrosis factor-α (TNFα), are major drivers of pathogenesis. To address this, an electrospun dual-layer mucoadhesive patch comprising medical-grade polymers was investigated for the delivery of F(ab) biologics to the oral mucosa. A fluorescent-labelled F(ab) was incorporated into mucoadhesive membranes using electrospinning with 97% v/v ethanol as a solvent. The F(ab) was detected within the fibres in aggregates when visualised by confocal microscopy. Biotinylated F(ab) was rapidly eluted from the patch (97 ± 5% released within 3 h) without loss of antigen-binding activity. Patches applied to oral epithelium models successfully delivered the F(ab), with fluorescent F(ab) observed within the tissue and 5.1 ± 1.5% cumulative transepithelial permeation reached after 9 h. Neutralising anti-TNFα F(ab) fragments were generated from whole IgG by papain cleavage, as confirmed by SDS-PAGE, then incorporated into patches. F(ab)-containing patches had TNFα neutralising activity, as shown by the suppression of TNFα-mediated CXCL8 release from oral keratinocytes cultured as monolayers. Patches were applied to lipopolysaccharide-stimulated immune-competent oral mucosal ulcer equivalents that contained primary macrophages. Anti-TNFα patch treatment led to reduced levels of active TNFα along with a reduction in the levels of disease-implicated T-cell chemokines (CCL3, CCL5, and CXCL10) to baseline concentrations. This is the first report of an effective device for the delivery of antibody-based biologics to the oral mucosa, enabling the future development of new therapeutic strategies to treat painful conditions.
Collapse
Affiliation(s)
- Jake G Edmans
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK; Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK
| | - Bethany Ollington
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Helen E Colley
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK.
| | | | - Lars Siim Madsen
- AFYX Therapeutics, Lergravsej 57, 2. tv, 2300 Copenhagen, Denmark
| | - Paul V Hatton
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Sebastian G Spain
- Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK
| | - Craig Murdoch
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| |
Collapse
|
18
|
Goldberg M, Manzi A, Birdi A, Laporte B, Conway P, Cantin S, Mishra V, Singh A, Pearson AT, Goldberg ER, Goldberger S, Flaum B, Hasina R, London NR, Gallia GL, Bettegowda C, Young S, Sandulache V, Melville J, Shum J, O'Neill SE, Aydin E, Zhavoronkov A, Vidal A, Soto A, Alonso MJ, Rosenberg AJ, Lingen MW, D'Cruz A, Agrawal N, Izumchenko E. A nanoengineered topical transmucosal cisplatin delivery system induces anti-tumor response in animal models and patients with oral cancer. Nat Commun 2022; 13:4829. [PMID: 35977936 PMCID: PMC9385702 DOI: 10.1038/s41467-022-31859-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022] Open
Abstract
Despite therapeutic advancements, oral cavity squamous cell carcinoma (OCSCC) remains a difficult disease to treat. Systemic platinum-based chemotherapy often leads to dose-limiting toxicity (DLT), affecting quality of life. PRV111 is a nanotechnology-based system for local delivery of cisplatin loaded chitosan particles, that penetrate tumor tissue and lymphatic channels while avoiding systemic circulation and toxicity. Here we evaluate PRV111 using animal models of oral cancer, followed by a clinical trial in patients with OCSCC. In vivo, PRV111 results in elevated cisplatin retention in tumors and negligible systemic levels, compared to the intravenous, intraperitoneal or intratumoral delivery. Furthermore, PRV111 produces robust anti-tumor responses in subcutaneous and orthotopic cancer models and results in complete regression of carcinogen-induced premalignant lesions. In a phase 1/2, open-label, single-arm trial (NCT03502148), primary endpoints of efficacy (≥30% tumor volume reduction) and safety (incidence of DLTs) of neoadjuvant PRV111 were reached, with 69% tumor reduction in ~7 days and over 87% response rate. Secondary endpoints (cisplatin biodistribution, loco-regional control, and technical success) were achieved. No DLTs or drug-related serious adverse events were reported. No locoregional recurrences were evident in 6 months. Integration of PRV111 with current standard of care may improve health outcomes and survival of patients with OCSCC.
Collapse
Affiliation(s)
- Manijeh Goldberg
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
- Privo Technologies, Peabody, MA, USA.
| | - Aaron Manzi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
- Privo Technologies, Peabody, MA, USA
| | | | | | | | | | - Vasudha Mishra
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Alka Singh
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | | | | | | | - Rifat Hasina
- Department of Surgery, Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, USA
| | - Nyall R London
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gary L Gallia
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simon Young
- Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vlad Sandulache
- Department of Otolaryngology-Head & Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - James Melville
- Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jonathan Shum
- Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sonya E O'Neill
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Erkin Aydin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Anxo Vidal
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Galicia, Spain
| | - Atenea Soto
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Galicia, Spain
| | - Maria Jose Alonso
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Galicia, Spain
| | - Ari J Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Mark W Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Anil D'Cruz
- Department of Oncology, Apollo Hospital, Mumbai, India
| | - Nishant Agrawal
- Department of Surgery, Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, USA.
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Li XJ, Li Y, Meng Y, Pu XQ, Qin JW, Xie R, Wang W, Liu Z, Jiang L, Ju XJ, Chu LY. Composite dissolvable microneedle patch for therapy of oral mucosal diseases. BIOMATERIALS ADVANCES 2022; 139:213001. [PMID: 35882148 DOI: 10.1016/j.bioadv.2022.213001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
A composite microneedle patch (MN patch) is developed for oral transmucosal administration. To improve the oral transmucosal drug delivery efficiency, the composite MN patch is designed to consist of an array of 100 dissolvable microneedles (MNs) with drug-loaded tips and a backing layer. The MNs are composed of two parts, the hyaluronic acid (HA) tip part and the polyvinylpyrrolidone (PVP) base part. Due to the small size and sufficient mechanical strength, the HA-PVP MNs can painlessly penetrate the oral mucosa barrier and deliver drugs directly to the basal layer or submucosa. Betamethasone sodium phosphate (BSP), as the model drug, is concentrated in the HA tip parts to avoid the drug waste caused by mucosa elasticity. Considering the special moist environment and saliva flow in the mouth, a double-layer backing layer composed of a poly(vinyl alcohol) (PVA) adhesive layer and an ethyl cellulose (EC) waterproof layer is designed and constructed, which could reduce the saliva flow effects. The in vitro and in vivo results demonstrate that the MN patch could achieve rapid and efficient BSP release in oral mucosa due to the rapid dissolution of HA. The proposed MN patch provides a novel strategy for the therapy of oral mucosal diseases.
Collapse
Affiliation(s)
- Xin-Jiao Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Yao Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Yang Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing-Qun Pu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Jia-Wang Qin
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China.
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| |
Collapse
|
20
|
Chowdhury AS, Geetha Bai R, Islam T, Abir M, Narayan M, Khatun Z, Nurunnabi M. Bile acid linked β-glucan nanoparticles for liver specific oral delivery of biologics. Biomater Sci 2022; 10:2929-2939. [PMID: 35471198 PMCID: PMC9949325 DOI: 10.1039/d2bm00316c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oral delivery remains one of the most convenient routes for drug administration compared to intravenous, intramuscular, and via suppositories. However, due to the risk of degradation, and proteolysis of molecules in the acidic gastric medium, as well as the difficulty of transporting large molecules through the intestinal membrane, more than half of the therapeutic molecules are prohibited for oral administration. Moreover, most of the large molecules and biological therapeutics are not available in oral dosage form due to their instability in the stomach and inability of intestinal absorption. To achieve expected bioavailability, an orally administered therapeutic molecule must be protected within the stomach, and transportation facilitated via the small intestine. In this project, we have introduced a hybrid carrier, composed of Taurocholic Acid (TA) and β-Glucan (TAG), that is shown to be effective for the simultaneous protection of the biologics in acidic buffer and simulated gastric juice as well as facilitate enhanced absorption and transportation via the small intestine. In this project, we have used an eGFP encoded plasmid as a model biologic to prepare particles mediated with TAG. TAG show the potential of enhancing transfection and expression of eGFP as we have observed two fold higher expression in the cell upon coincubation for 4 h. In vivo studies on orally dosed mice showed that eGFP expression in the liver was significantly higher in TAG containing particles compared to particles without TAG. The findings suggest that the TAG carrier is capable of not only preserving biologics but also transporting them more efficiently to the liver. As a result, this strategy can be employed for a variety of liver-targeted therapeutic delivery to treat a variety of liver diseases.
Collapse
Affiliation(s)
- Ayreen S Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA.
- Department of Bioscience, School of Science and Technology, Nottingham Trent university, Nottingham, NG11 8NS, UK
| | - Renu Geetha Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA.
- School of Natural Sciences and Health, Tallinn University, Tallinn, 10120, Estonia
| | - Tamanna Islam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA.
| | - Muhammad Abir
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX 79965, USA
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El paso, TX 79965, USA
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA.
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA.
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX 79965, USA
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, TX 79965, USA
| |
Collapse
|
21
|
Jeitler R, Glader C, Tetyczka C, Zeiringer S, Absenger-Novak M, Selmani A, Fröhlich E, Roblegg E. Investigation of Cellular Interactions of Lipid-Structured Nanoparticles With Oral Mucosal Epithelial Cells. Front Mol Biosci 2022; 9:917921. [PMID: 35677878 PMCID: PMC9170126 DOI: 10.3389/fmolb.2022.917921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Lipid-based nanosystems enable intracellular delivery of drugs in the oral cavity for the treatment of local diseases. To rationally design such systems, suitable matrix compositions and particle properties need to be identified, and manufacturing technologies that allow reproducible production have to be applied. This is a prerequisite for the reliable and predictable performance of in-vitro biological studies. Here, we showed that solid lipid nanoparticles (SLN, palmitic acid) and nanostructured lipid carriers (NLC, palmitic acid and oleic acid in different ratios) with a size of 250 nm, a negative zeta potential, and a polydispersity index (PdI) of less than 0.3 can be reproducibly prepared by high-pressure homogenization using quality by design and a predictive model. SLN and NLC were colloidally stable after contact with physiological fluid and did not form agglomerates. The in-vitro studies clearly showed that besides particle size, surface charge and hydrophobicity, matrix composition had a significant effect. More specifically, the addition of the liquid lipid oleic acid increased the cellular uptake capacity without changing the underlying uptake mechanism. Regardless of the matrix composition, caveolin-mediated endocytosis was the major route of uptake, which was confirmed by particle localization in the endoplasmic reticulum. Thus, this work provides useful insights into the optimal composition of lipid carrier systems to enhance the intracellular uptake capacity of drugs into the oral mucosa.
Collapse
Affiliation(s)
- R. Jeitler
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, Graz, Austria
| | - C. Glader
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - C. Tetyczka
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - S. Zeiringer
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, Graz, Austria
| | - M. Absenger-Novak
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - A. Selmani
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, Graz, Austria
| | - E. Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - E. Roblegg
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
- *Correspondence: E. Roblegg,
| |
Collapse
|
22
|
Pandey M, Choudhury H, Ying JNS, Ling JFS, Ting J, Ting JSS, Zhia Hwen IK, Suen HW, Samsul Kamar HS, Gorain B, Jain N, Mohd Amin MCI. Mucoadhesive Nanocarriers as a Promising Strategy to Enhance Intracellular Delivery against Oral Cavity Carcinoma. Pharmaceutics 2022; 14:pharmaceutics14040795. [PMID: 35456629 PMCID: PMC9025168 DOI: 10.3390/pharmaceutics14040795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Oral cancer, particularly squamous cell carcinoma (SCC), has posed a grave challenge to global health due to its high incidence, metastasis, and mortality rates. Despite numerous studies and favorable improvements in the therapeutic strategies over the past few decades, the prognosis of this disease remains dismal. Moreover, several drawbacks are associated with the conventional treatment; including permanent disfigurement and physical impairment that are attributed to surgical intervention, and systemic toxicity that results from aggressive radio- or chemotherapies, which impacts patients’ prognosis and post-treatment quality of life. The highly vascularized, non-keratinized oral mucosa appears as a potential route for cytotoxic drug administration in treating oral cancer. It acts as a non-invasive portal for drug entry targeting the local oral lesions of the early stages of cancer and the systemic metastasis sites of advanced cancer. The absorption of the poorly aqueous-soluble anti-cancer drugs can be enhanced due to the increased permeability of the ulcerous mucosa lining in the disease state and by bypassing the hepatic first-pass metabolism. However, some challenges in oral transmucosal drug delivery include the drugs’ taste, the limited surface area of the membrane lining the oral cavity, and flushing and enzymatic degradation by saliva. Therefore, mucoadhesive nanocarriers have emerged as promising platforms for controlled, targeted drug delivery in the oral cavity. The surface functionalization of nanocarriers with various moieties allows for drug targeting, bioavailability enhancement, and biodistribution at the site of action, while the mucoadhesive feature prolongs the drug’s residence time for preferential accumulation to optimize the therapeutic effect and reduce systemic toxicity. This review has been focused to highlight the potential of various nanocarriers (e.g., nanoparticles, nanoemulsions, nanocapsules, and liposomes) in conferring targeting, solubility and bioavailability enhancement of actives and mucoadhesive properties as novel tumor-targeted drug delivery approaches in oral cancer treatment.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.P.); (H.C.); Tel.: +60-166-048-589 (M.P.)
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.P.); (H.C.); Tel.: +60-166-048-589 (M.P.)
| | - Jenifer Ngu Shao Ying
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jessica Foo Sze Ling
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jong Ting
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jocelyn Su Szhiou Ting
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Ivory Kuek Zhia Hwen
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Ho Wan Suen
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Hazimah Syazwani Samsul Kamar
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India;
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida 201303, India;
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
23
|
Mangla B, Javed S, Sultan MH, Ahsan W, Aggarwal G, Kohli K. Nanocarriers-Assisted Needle-Free Vaccine Delivery Through Oral and Intranasal Transmucosal Routes: A Novel Therapeutic Conduit. Front Pharmacol 2022; 12:757761. [PMID: 35087403 PMCID: PMC8787087 DOI: 10.3389/fphar.2021.757761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Drug delivery using oral route is the most popular, convenient, safest and least expensive approach. It includes oral transmucosal delivery of bioactive compounds as the mucosal cavity offers an intriguing approach for systemic drug distribution. Owing to the dense vascular architecture and high blood flow, oral mucosal layers are easily permeable and can be an ideal site for drug administration. Recently, the transmucosal route is being investigated for other therapeutic candidates such as vaccines for their efficient delivery. Vaccines have the potential to trigger immune reactions and can act as both prophylactic and therapeutic conduit to a variety of diseases. Administration of vaccines using transmucosal route offers multiple advantages, the most important one being the needle-free (non-invasive) delivery. Development of needle-free devices are the most recent and pioneering breakthrough in the delivery of drugs and vaccines, enabling patients to avoid needles, reducing anxiety, pain and fear as well as improving compliance. Oral, nasal and aerosol vaccination is a novel immunization approach that utilizes a nanocarrier to administer the vaccine. Nanocarriers improve the bioavailability and serve as adjuvants to elicit a stronger immune response, resulting in increased effectiveness of vaccination. Drugs and vaccines with lower penetration abilities can also be delivered transmucosally while maintaining their biological function. The development of micro/nanocarriers for transmucosal delivery of macromolecules, vaccines and other substances is currently drawing much attention and a number of studies were performed recently. This comprehensive review is aimed to summarize the most recent investigations on needle-free and non-invasive approaches for the delivery of vaccines using oral transmucosal route, their strengths and associated challenges. The oral transmucosal vaccine delivery by nanocarriers is the most upcoming advancement in efficient vaccine delivery and this review would help further research and trials in this field.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Kanchan Kohli
- Director Research and Publication, Lloyd Institute of Management and Technology (Pharm.), Greater Noida, India
| |
Collapse
|
24
|
Singh J, Steele TWJ, Lim S. Fibrillated bacterial cellulose liquid carbene bioadhesives for mimicking and bonding oral cavity surfaces. J Mater Chem B 2022; 10:2570-2583. [PMID: 34981107 DOI: 10.1039/d1tb02044g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Topical treatments for oral wounds and infections exhibit weak adhesion to wet surfaces which results in short retention duration (6-8 hours), frequent dosing requirement and patient incompatibility. To address these limitations, aqueous composites made of fibrillated bacterial cellulose and photoactive bioadhesives are designed for soft epithelial surfaces. The aqueous composites crosslink upon photocuring within a minute and exhibit a transition from viscous to elastic adhesive hydrogels. The light-cured composites have shear moduli mimicking oral mucosa and other soft tissues. The tunable adhesion strength ranges from 3 to 35 kPa on hydrated tissue-mimicking surfaces (collagen film). The results support the application of bacterial cellulose hydrogel systems for potential treatment of mucosal wounds.
Collapse
Affiliation(s)
- Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, 637457, Singapore.
| | - Terry W J Steele
- School of Materials Science and Engineering (MSE), Division of Materials Technology, Nanyang Technological University (NTU), 639798, Singapore.
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, 637457, Singapore.
| |
Collapse
|
25
|
Rençber S, Köse FA, Karavana SY. Development of novel mucoadhesive gels containing nanoparticle for buccal administration of dexamethasone. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Huang M, Huang Y, LIU H, Tang Z, Chen Y, Huang Z, Xu S, Du J, Jia B. Hydrogels for Treatment of Oral and Maxillofacial Diseases: Current Research, Challenge, and Future Directions. Biomater Sci 2022; 10:6413-6446. [DOI: 10.1039/d2bm01036d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oral and maxillofacial diseases such as infection and trauma often involve various organs and tissues, resulting in structural defects, dysfunctions and/or adverse effects on facial appearance. Hydrogels have been applied...
Collapse
|
27
|
Hosseinpour-Moghadam R, Mehryab F, Torshabi M, Haeri A. Applications of Novel and Nanostructured Drug Delivery Systems for the Treatment of Oral Cavity Diseases. Clin Ther 2021; 43:e377-e402. [PMID: 34844769 DOI: 10.1016/j.clinthera.2021.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Novel drug delivery systems (DDSs) hold great promise for the treatment of oral cavity diseases. The main objective of this article was to provide a detailed overview regarding recent advances in the use of novel and nanostructured DDSs in alleviating and treating unpleasant conditions of the oral cavity. Strategies to maximize the benefits of these systems in the treatment of oral conditions and future directions to overcome these issues are also discussed. METHODS Publications from the last 10 years investigating novel and nanostructured DDSs for pathologic oral conditions were browsed in a systematic search using the PubMed/MEDLINE, Web of Science, and Scopus databases. Research on applications of novel DDSs for periodontitis, oral carcinomas, oral candidiasis, xerostomia, lichen planus, aphthous stomatitis, and oral mucositis is summarized. A narrative exploratory review of the most recent literature was undertaken. FINDINGS Conventional systemic administration of therapeutic agents could exhibit high clearance of drugs from the bloodstream and low accumulation at the target site. In contrast, conventional topical systems face problems such as short residence time in the affected region and low patient compliance. Novel and nanostructured DDSs are among the most effective and commonly used methods for overcoming the problems of conventional DDSs. The main advantages of these systems are that they possess the ability to protect active agents from systemic and local clearance, enhance bioavailability and cellular uptake, and provide immediate or modified release of therapeutic agents after administration. In the design of local drug delivery devices such as nanofiber mats, films, and patches, components and excipients can significantly affect factors such as drug release rate, residence time in the oral cavity, and taste in the mouth. Choosing appropriate additives is therefore essential. IMPLICATIONS Local drug delivery devices such as nanofiber mats, nanoparticles, liposomes, hydrogels, films, and patches for oral conditions can significantly affect drug efficacy and safety. However, more precise clinical studies should be designed and conducted to confirm promising in vitro and in vivo results. In recent years, novel and nanostructured DDSs increasingly attracted the attention of researchers as a means of treatment and alleviation of oral diseases and unpleasant conditions. However, more clinical studies should be performed to confirm promising in vitro and in vivo results. To transform a successful laboratory model into a marketable product, the long-term stability of prepared formulations is essential. Also, proper scale-up methods with optimum preparation costs should be addressed.
Collapse
Affiliation(s)
- Reza Hosseinpour-Moghadam
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Singh J, Tan NCS, Mahadevaswamy UR, Chanchareonsook N, Steele TWJ, Lim S. Bacterial cellulose adhesive composites for oral cavity applications. Carbohydr Polym 2021; 274:118403. [PMID: 34702445 DOI: 10.1016/j.carbpol.2021.118403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022]
Abstract
Topical approaches to oral diseases require frequent dosing due to limited retention time. A mucoadhesive drug delivery platform with extended soft tissue adhesion capability of up to 7 days is proposed for on-site management of oral wound. Bacterial cellulose (BC) and photoactivated carbene-based bioadhesives (PDz) are combined to yield flexible film platform for interfacing soft tissues in dynamic, wet environments. Structure-activity relationships evaluate UV dose and hydration state with respect to adhesive strength on soft tissue mimics. The bioadhesive composite has an adhesion strength ranging from 7 to 17 kPa and duration exceeding 48 h in wet conditions under sustained shear forces, while other mucoadhesives based on hydrophilic macromolecules exhibit adhesion strength of 0.5-5 kPa and last only a few hours. The work highlights the first evaluation of BC composites for mucoadhesive treatments in the buccal cavity.
Collapse
Affiliation(s)
- Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore 637457, Singapore.
| | - Nigel C S Tan
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798, Singapore.
| | - Usha Rani Mahadevaswamy
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore 637457, Singapore.
| | - Nattharee Chanchareonsook
- Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore (NDCS), 5 Second Hospital Avenue, Singapore 16893, Singapore
| | - Terry W J Steele
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798, Singapore.
| | - Sierin Lim
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore 637457, Singapore.
| |
Collapse
|
29
|
Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. Int J Mol Sci 2021; 22:ijms221910337. [PMID: 34638678 PMCID: PMC8508910 DOI: 10.3390/ijms221910337] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
The success of modern dental treatment is strongly dependent on the materials used both temporarily and permanently. Among all dental materials, polymers are a very important class with a wide spectrum of applications. This review aims to provide a state-of-the-art overview of the recent advances in the field of natural polymers used to maintain or restore oral health. It focuses on the properties of the most common proteins and polysaccharides of natural origin in terms of meeting the specific biological requirements in the increasingly demanding field of modern dentistry. The use of naturally derived polymers in different dental specialties for preventive and therapeutic purposes has been discussed. The major fields of application cover caries and the management of periodontal diseases, the fabrication of membranes and scaffolds for the regeneration of dental structures, the manufacturing of oral appliances and dentures as well as providing systems for oral drug delivery. This paper also includes a comparative characteristic of natural and synthetic dental polymers. Finally, the current review highlights new perspectives, possible future advancements, as well as challenges that may be encountered by researchers in the field of dental applications of polymers of natural origin.
Collapse
|
30
|
Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021; 13:1206. [PMID: 34452167 PMCID: PMC8399227 DOI: 10.3390/pharmaceutics13081206] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| |
Collapse
|
31
|
Kida D, Zakrzewska A, Zborowski J, Szulc M, Karolewicz B. Polymer-Based Carriers in Dental Local Healing-Review and Future Challenges. MATERIALS 2021; 14:ma14143948. [PMID: 34300865 PMCID: PMC8308048 DOI: 10.3390/ma14143948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/01/2023]
Abstract
Polymers in drug formulation technology and the engineering of biomaterials for the treatment of oral diseases constitute a group of excipients that often possess additional properties in addition to their primary function, i.e., biological activity, sensitivity to stimuli, mucoadhesive properties, improved penetration of the active pharmaceutical ingredient (API) across biological barriers, and effects on wound healing or gingival and bone tissue regeneration. Through the use of multifunctional polymers, it has become possible to design carriers and materials tailored to the specific conditions and site of application, to deliver the active substance directly to the affected tissue, including intra-periodontal pocket delivery, and to release the active substance in a timed manner, allowing for the improvement of the form of application and further development of therapeutic strategies. The scope of this review is polymeric drug carriers and materials developed from selected multifunctional groups of natural, semi-synthetic, and synthetic polymers for topical therapeutic applications. Moreover, the characteristics of the topical application and the needs for the properties of carriers for topical administration of an active substance in the treatment of oral diseases are presented to more understand the difficulties associated with the design of optimal active substance carriers and materials for the treatment of lesions located in the oral cavity.
Collapse
Affiliation(s)
- Dorota Kida
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-0315
| | - Aneta Zakrzewska
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Jacek Zborowski
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Małgorzata Szulc
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| |
Collapse
|
32
|
Baranov N, Popa M, Atanase LI, Ichim DL. Polysaccharide-Based Drug Delivery Systems for the Treatment of Periodontitis. Molecules 2021; 26:2735. [PMID: 34066568 PMCID: PMC8125343 DOI: 10.3390/molecules26092735] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Periodontal diseases are worldwide health problems that negatively affect the lifestyle of many people. The long-term effect of the classical treatments, including the mechanical removal of bacterial plaque, is not effective enough, causing the scientific world to find other alternatives. Polymer-drug systems, which have different forms of presentation, chosen depending on the nature of the disease, the mode of administration, the type of polymer used, etc., have become very promising. Hydrogels, for example (in the form of films, micro-/nanoparticles, implants, inserts, etc.), contain the drug included, encapsulated, or adsorbed on the surface. Biologically active compounds can also be associated directly with the polymer chains by covalent or ionic binding (polymer-drug conjugates). Not just any polymer can be used as a support for drug combination due to the constraints imposed by the fact that the system works inside the body. Biopolymers, especially polysaccharides and their derivatives and to a lesser extent proteins, are preferred for this purpose. This paper aims to review in detail the biopolymer-drug systems that have emerged in the last decade as alternatives to the classical treatment of periodontal disease.
Collapse
Affiliation(s)
- Nicolae Baranov
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
| | - Marcel Popa
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
- Academy of Romanian Scientists, 50085 Bucharest, Romania
| | | | | |
Collapse
|
33
|
Cordeiro Lima Fernandes P, David de Moura L, Freitas de Lima F, Henrique Rodrigues da Silva G, Isaias Carvalho Souza R, de Paula E. Lipid nanocapsules loaded with prilocaine and lidocaine and incorporated in gel for topical application. Int J Pharm 2021; 602:120675. [PMID: 33961954 DOI: 10.1016/j.ijpharm.2021.120675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023]
Abstract
Lipid nanocapsules (LNC) are special drug delivery system (DDS) carriers obtained by the phase-inversion temperature method (PIT). This study describes the encapsulation of the local anesthetics (LA) prilocaine (PLC) and lidocaine (LDC) in lipid nanocapsules (LNCPLC+LDC) optimized by 23 factorial design, characterized through DLS, NTA, CRYO-EM and release kinetics and incorporated in carbopol gel (GelLNC PLC+LDC) prior to in vivo anesthetic effect (in mice) evaluation. A very homogeneous population of small (50 nm; polydispersity index = 0.05) spherical nanocapsules with negative zeta potentials (-21 mV) and ca. 2.3 × 1015 particles/mL was obtained. The encapsulation efficiency was high (81% and 89% for prilocaine and lidocaine, respectively). The release rate profile was free PLC = free LDC > LNCPLC+LDC > GelLNC PLC+LDC. The hybrid system increased (4x) the anesthesia time in comparison to an equipotent gel formulation prepared without LNC. No tissue damage was detected on the tail skin of mice that received the formulations. This study shows that lipid nanocapsules are suitable carriers for PLC and LDC, promoting longer and safer topical anesthesia. GelLNC PLC+LDC is mucoadhesive and suitable for application in the mouth, where it could be used as a pre-anesthetic, to reduce pain of needle stick (infiltrative anesthesia).
Collapse
Affiliation(s)
- Priscila Cordeiro Lima Fernandes
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Ludmilla David de Moura
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Fernando Freitas de Lima
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | | | | | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
34
|
Camargo LG, de Freitas Rosa Remiro P, Rezende GS, Di Carla Santos S, Franz-Montan M, Moraes ÂM. Development of bioadhesive polysaccharide-based films for topical release of the immunomodulatory agent imiquimod on oral mucosa lesions. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Helmy AM. Overview of recent advancements in the iontophoretic drug delivery to various tissues and organs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Ré ACS, Martins JF, Cunha-Filho M, Gelfuso GM, Aires CP, Gratieri T. New perspectives on the topical management of recurrent candidiasis. Drug Deliv Transl Res 2021; 11:1568-1585. [PMID: 33469892 DOI: 10.1007/s13346-021-00901-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 12/24/2022]
Abstract
Candidiasis is a common opportunistic infection caused by fungi of the Candida genus that affects mainly mucocutaneous tissues (e.g., vaginal, oral, and mammary). This condition has been known for a long time; thus, innumerous topical and systemic treatments are already available on the market worldwide. Yet, recurrent superficial candidiasis (RSC) is an expected outcome, still lacking effective and convenient treatments. Although several individual conditions may contribute to disease recurrence, biofilms' presence seems to be the main etiological factor contributing to antifungal resistance. More than proposing novel antifungal agents, current research seems to be focusing on improving the pharmaceutical technology aspects of formulations to address such a challenge. These include extending and improving intimate contact of drug delivery systems with the mucocutaneous tissues, increasing drug loading dose, and enhancing topical drug permeation. This review discusses the current understanding of the RSC and the use of pharmaceutical technology tools in obtaining better results. Even though several drawbacks of conventional formulations have been circumvented with the help of nano- or microencapsulation techniques and with the use of mucoadhesive formulation excipients, many challenges remain. In particular, the need to mask the unpalatable taste of formulations for the treatment of oral candidiasis, and the necessity of formulations with a "dryer" sensorial feeling and improved performances in providing higher bioavailability for the treatment of mammary and vaginal candidiasis.
Collapse
Affiliation(s)
- Ana Carolina S Ré
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, 14040-903, Brazil
| | - Jayanaraian F Martins
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Marcílio Cunha-Filho
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Carolina P Aires
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, 14040-903, Brazil
| | - Taís Gratieri
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil. .,Campus Universitário Darcy Ribeiro, Asa Norte, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
37
|
Mucoadhesive Poloxamer-Based Hydrogels for the Release of HP-β-CD-Complexed Dexamethasone in the Treatment of Buccal Diseases. Pharmaceutics 2021; 13:pharmaceutics13010117. [PMID: 33477667 PMCID: PMC7831945 DOI: 10.3390/pharmaceutics13010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Oral lichen planus (OLP) is an ongoing and chronic inflammatory disease affecting the mucous membrane of the oral cavity. Currently, the treatment of choice consists in the direct application into the buccal cavity of semisolid formulations containing a corticosteroid molecule to decrease inflammatory signs and symptoms. However, this administration route has shown various disadvantages limiting its clinical use and efficacy. Indeed, the frequency of application and the incorrect use of the preparation may lead to a poor efficacy and limit the treatment compliance. Furthermore, the saliva clearance and the mechanical stress present in the buccal cavity also involve a decrease in the mucosal exposure to the drug. In this context, the design of a new pharmaceutical formulation, containing a steroidal anti-inflammatory, mucoadhesive, sprayable and exhibiting a sustained and controlled release seems to be suitable to overcome the main limitations of the existing pharmaceutical dosage forms. The present work reports the formulation, optimization and evaluation of the mucoadhesive and release properties of a poloxamer 407 thermosensitive hydrogel containing a poorly water-soluble corticosteroid, dexamethasone acetate (DMA), threaded into hydroxypropyl-beta-cyclodextrin (HP-β-CD) molecules. Firstly, physicochemical properties were assessed to ensure suitable complexation of DMA into HP-β-CD cavities. Then, rheological properties, in the presence and absence of various mucoadhesive agents, were determined and optimized. The hydration ratio (0.218-0.191), the poloxamer 407 (15-17 wt%) percentage and liquid-cyclodextrin state were optimized as a function of the gelation transition temperature, viscoelastic behavior and dynamic flow viscosity. Deformation and resistance properties were evaluated in the presence of various mucoadhesive compounds, being the sodium alginate and xanthan gum the most suitable to improve adhesion and mucoadhesion properties. Xanthan gum was shown as the best agent prolonging the hydrogel retention time up to 45 min. Furthermore, xanthan gum has been found as a relevant polymer matrix controlling drug release by diffusion and swelling processes in order to achieve therapeutic concentration for prolonged periods of time.
Collapse
|
38
|
Wahyuni IS, Sufiawati I, Nittayananta W, Puspitasari IM, Levita J. Efficacy and safety of plant-based therapy on recurrent aphthous stomatitis and oral mucositis in the past decade: a systematic review. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oral mucosal inflammation is one of the oral diseases causing pain and reducing the quality of human life. The types of oral mucosal inflammation that commonly found were recurrent aphthous stomatitis (RAS) and oral mucositis (OM). Anti-inflammatory drugs, both synthetic and plant-based, have been used to treat RAS and OM. Plant-based drugs have been attracted the attention of some researchers to minimize the side effects of synthetic drugs. However, a comprehensive review addressing the use of plant-based drugs for RAS and OM therapy, including drug formulation and species of plant, has not yet been reported. Here, we reported the article review of 9 publications derived from the databases of PubMed, ScienceDirect, Cochrane Library, and other additional relevant works, in order to find the effectiveness and safety of plant-based drugs for RAS and OM therapy. This review was written by following the PRISMA guidelines, and the risk of bias of the articles was evaluated using the Oxford Quality Scoring System. It was found that the effective and safe drugs for RAS therapy contained acemannan from Aloe vera and curcumin from Curcuma longa, both in an oral gel formulation. For OM therapy, drugs contained curcumin from Curcuma longa; licorice from Glycyrrhiza glabra; Aloe vera and black mulberry from Morus nigra, in soft tablet, mouthwash solution or mucoadhesive film formulation. In conclusion, the most effective and safest plant-based therapy for RAS is Acemannan 0.5% in oral gel, whereas for OM is Licorice root extract 0.18 mg in mucoadhesive film.
Collapse
Affiliation(s)
- Indah Suasani Wahyuni
- Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
- Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Irna Sufiawati
- Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Irma Melyani Puspitasari
- Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| | - Jutti Levita
- Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
39
|
Campos JC, Cunha D, Ferreira DC, Reis S, Costa PJ. Oromucosal precursors of in loco hydrogels for wound-dressing and drug delivery in oral mucositis: Retain, resist, and release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111413. [PMID: 33255015 DOI: 10.1016/j.msec.2020.111413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/02/2020] [Accepted: 08/15/2020] [Indexed: 12/31/2022]
Abstract
Oromucosal films and tablets were developed as multifunctional biomaterials for the treatment of oral mucositis. These are intended to function as a hybrid, performing as a controlled drug delivery system and as a wound-dressing device. The dosage forms are precursors for in loco hydrogels that are activated by the saliva. An anti-inflammatory and anesthetic activity is attained from budesonide tripartite polymeric nanoparticles and lidocaine, while the polymeric network allows the protection and cicatrization of the wound. Different biomaterials and blends were investigated, focusing on the capacity to retain and resist on-site, as well as achieve a long-lasting controlled release. As the limiting factor, the choice was made according to the films' results. A polymer mix of Methocel™ K100M and Carbopol® (974P, EDT 2020, or Ultrez 10) blends were used. Overall, regrading critical factors, Carbopol® increased films' elasticity and flexibility, mucoadhesion, and the strength of the hydrogels, while higher concentrations led to thicker, more opaque, and lower strain resistance products. Whereas 974P and Ultrez 10 performed similarly, EDT 2020 led to uniformity problems and weaker films, hydrogels and bioadhesion. The optimized products were enhanced with sodium hyaluronate and drug-loaded for further characterization. Concerning the dosage form, the films' hydrogels were more resilient, while the tablets had higher mucoadhesiveness and longer swelling. Although through different networks and mechanisms, both dosage forms and grades revealed similar release profiles. A Case II time-evolving stereoselectivity for the 22R and 22S budesonide epimers was found, and Fickian-diffusion for lidocaine. Ultimately, the developed formulations show great potential to be used in OM management. Both of the selected grades at 0.6% displayed excellent performance, while Ultrez 10 can be preferable for the films' production due to its lower viscosity before neutralization and higher after activation. Where the tablets are easier to produce and offer better adhesion, the films are more customizable post-production and have higher rheological performance for wound-dressing.
Collapse
Affiliation(s)
- João C Campos
- UCIBIO, REQUIMTE, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal.
| | - Davide Cunha
- UCIBIO, REQUIMTE, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Domingos C Ferreira
- UCIBIO, REQUIMTE, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Paulo J Costa
- UCIBIO, REQUIMTE, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| |
Collapse
|
40
|
Pornpitchanarong C, Rojanarata T, Opanasopit P, Ngawhirunpat T, Patrojanasophon P. Catechol-modified chitosan/hyaluronic acid nanoparticles as a new avenue for local delivery of doxorubicin to oral cancer cells. Colloids Surf B Biointerfaces 2020; 196:111279. [DOI: 10.1016/j.colsurfb.2020.111279] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/31/2022]
|
41
|
The role of sodium alginate and gellan gum in the design of new drug delivery systems intended for antibiofilm activity of morin. Int J Biol Macromol 2020; 162:1944-1958. [PMID: 32791274 DOI: 10.1016/j.ijbiomac.2020.08.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
The use of controlled drug delivery systems represents an alternative and promising strategy for the use of antimicrobials in the oral cavity. Microparticles, films and oral tablets based on alginate and gellan gum were developed also as a strategy to overcome the low aqueous solubility of morin. The systems were characterized in terms of morphological characteristics, mucoadhesion and in vitro drug release. Antibiofilm activity was analyzed for acidogenicity, microbial viability and the composition of the extracellular matrix of single-species biofilms. Scanning Electron Microscopy demonstrated that the microparticles were spherical, rough and compact. The film and the tablet presented smooth and continuous surface and in the inner of the tablet was porous. These systems were more mucoadhesive compared to the microparticles. The in vitro morin release profiles in artificial saliva demonstrated that the microparticles controlled the release better (39.6%), followed by the film (41.1%) and the tablet (91.4%) after 20 h of testing. The morin released from the systems reduced the acidogenicity, microbial viability, concentration of insoluble extracellular polysaccharides and dry weight of biofilms, when compared to the control group. The findings of this study showed that the morin has antibiofilm activity against cariogenic microorganisms.
Collapse
|
42
|
Cano A, Ettcheto M, Espina M, López-Machado A, Cajal Y, Rabanal F, Sánchez-López E, Camins A, García ML, Souto EB. State-of-the-art polymeric nanoparticles as promising therapeutic tools against human bacterial infections. J Nanobiotechnology 2020; 18:156. [PMID: 33129333 PMCID: PMC7603693 DOI: 10.1186/s12951-020-00714-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Infectious diseases kill over 17 million people a year, among which bacterial infections stand out. From all the bacterial infections, tuberculosis, diarrhoea, meningitis, pneumonia, sexual transmission diseases and nosocomial infections are the most severe bacterial infections, which affect millions of people worldwide. Moreover, the indiscriminate use of antibiotic drugs in the last decades has triggered an increasing multiple resistance towards these drugs, which represent a serious global socioeconomic and public health risk. It is estimated that 33,000 and 35,000 people die yearly in Europe and the United States, respectively, as a direct result of antimicrobial resistance. For all these reasons, there is an emerging need to find novel alternatives to overcome these issues and reduced the morbidity and mortality associated to bacterial infectious diseases. In that sense, nanotechnological approaches, especially smart polymeric nanoparticles, has wrought a revolution in this field, providing an innovative therapeutic alternative able to improve the limitations encountered in available treatments and capable to be effective by theirselves. In this review, we examine the current status of most dangerous human infections, together with an in-depth discussion of the role of nanomedicine to overcome the current disadvantages, and specifically the most recent and innovative studies involving polymeric nanoparticles against most common bacterial infections of the human body.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII, 27-31, 08017, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Unit of Biochemistry and Pharmacology, Faculty of Medicine and Health Sciences, University of Rovira I Virgili, Reus (Tarragona), Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII, 27-31, 08017, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Ana López-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII, 27-31, 08017, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Yolanda Cajal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII, 27-31, 08017, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Francesc Rabanal
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII, 27-31, 08017, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII, 27-31, 08017, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
43
|
Batra P, Dawar A, Miglani S. Microneedles and Nanopatches-Based Delivery Devices in Dentistry. Discoveries (Craiova) 2020; 8:e116. [PMID: 33094150 PMCID: PMC7561465 DOI: 10.15190/d.2020.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Needle-based devices are evolving as a promising diagnostic and therapeutic tool in the field of medicine. They can be used for drug delivery, as well as extraction of fluids, for systemic and local effects. The conventional methods of drug delivery require repeated dosing in the oral cavity due to the presence of saliva. Hence delivery systems, such as needle-based devices that could provide sustained release of the drug in the oral cavity, are required. These devices could also be a useful adjunct in diagnosis and therapy of oral cancers, delivering anti-cariogenic and antiplaque agents, for remote monitoring of oral health, and for administering painless and fearless local anesthesia. Since they offer many advantages, such as increased compliance, absence of needle phobia, they are painless, safe, self-applicable and are minimally invasive, they will have a major impact in the field of dentistry. This paper summarizes the various types of needle-based devices and their manufacturing technologies. The manuscript aims to serve as a foundational review that highlights and proposes several current and prospective impactful applications of these devices in various fields of dentistry.
Collapse
Affiliation(s)
- Panchali Batra
- Department of Orthodontics, Faculty of Dentistry, Jamia Millia Islamia, (Central University), New Delhi, India
| | - Anika Dawar
- Division of Periodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Miglani
- Department of Conservative Dentistry and Endodontics, Faculty of Dentistry, Jamia Millia Islamia (Central University), New Delhi, India
| |
Collapse
|
44
|
Jadidi A, Salahinejad E, Sharifi E, Tayebi L. Drug-delivery Ca-Mg silicate scaffolds encapsulated in PLGA. Int J Pharm 2020; 589:119855. [PMID: 32911045 DOI: 10.1016/j.ijpharm.2020.119855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
The aim of this work is to develop dual-functional scaffolds for bone tissue regeneration and local antibiotic delivery applications. In this respect, bioresorbable bredigite (Ca7MgSi4O16) porous scaffolds were fabricated by a foam replica method, loaded with vancomycin hydrochloride and encapsulated in poly lactic-co-glycolic acid (PLGA) coatings. Field emission scanning electron microscopy, Archimedes porosimetry and Fourier-transform infrared spectroscopy were used to characterize the structure of the scaffolds. The drug delivery kinetics and cytocompatibility of the prepared scaffolds were also studied in vitro. The bare sample exhibited a burst release of vancomycin and low biocompatibility with respect to dental pulp stem cells based on the MTT assay due to the fast bioresorption of bredigite. While keeping the desirable characteristics of pores for tissue engineering, the biodegradable PLGA coatings modified the drug release kinetics, buffered physiological pH and hence improved the cell viability of the vancomycin-loaded scaffolds considerably.
Collapse
Affiliation(s)
- A Jadidi
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - E Salahinejad
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - E Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - L Tayebi
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
45
|
Al-Taie A, Al-Shohani AD, Albasry Z, Altaee A. Current topical trends and novel therapeutic approaches and delivery systems for oral mucositis management. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:94-101. [PMID: 32742107 PMCID: PMC7373116 DOI: 10.4103/jpbs.jpbs_198_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/21/2019] [Accepted: 12/01/2019] [Indexed: 11/12/2022] Open
Abstract
Oral mucositis (OM) is an extremely serious and challenging complication of chemoradiotherapy, which may limit the efficacy of cancer treatment. Complications related to OM include potential nutrition impairment, high economic burden, and negative impacts on patients' quality of life. Current therapeutic options with local traditional pharmaceutical formulations are largely focused on controlling symptoms, and only few agents are available for treatment. Several local supportive and palliative agents are used for the prevention of OM; however, a standard treatment for the disease has not been confirmed yet. The efficacy of treatment could be improved through the introduction of new medical agents with updated dosage forms that can enhance and optimize local drug delivery and create greater therapeutic effects with fewer side effects. The focus of this review was to provide clear and direct information about the currently available topical therapeutic agents in clinical practice used to cure and/or reduce the incidence of ulcerative symptoms of OM, excluding the associated pain and other coexisting complications such as bacterial and fungal infections. The review also provides recent evidences regarding agents that could be used as promising novel therapies in updated local delivering systems. This will support further encouraging options and approaches for the management of OM and will improve compliance that could be translated in better disease control and survival.
Collapse
Affiliation(s)
- Anmar Al-Taie
- Pharmacy Department, Faculty of Pharmacy, Girne American University, North Cyprus, Turkey
| | - Athmar D Al-Shohani
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Zahraa Albasry
- Department of Clinical Pharmacy, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Ataa Altaee
- Department of Clinical Pharmacy, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
46
|
Liang J, Peng X, Zhou X, Zou J, Cheng L. Emerging Applications of Drug Delivery Systems in Oral Infectious Diseases Prevention and Treatment. Molecules 2020; 25:E516. [PMID: 31991678 PMCID: PMC7038021 DOI: 10.3390/molecules25030516] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/27/2022] Open
Abstract
The oral cavity is a unique complex ecosystem colonized with huge numbers of microorganism species. Oral cavities are closely associated with oral health and sequentially with systemic health. Many factors might cause the shift of composition of oral microbiota, thus leading to the dysbiosis of oral micro-environment and oral infectious diseases. Local therapies and dental hygiene procedures are the main kinds of treatment. Currently, oral drug delivery systems (DDS) have drawn great attention, and are considered as important adjuvant therapy for oral infectious diseases. DDS are devices that could transport and release the therapeutic drugs or bioactive agents to a certain site and a certain rate in vivo. They could significantly increase the therapeutic effect and reduce the side effect compared with traditional medicine. In the review, emerging recent applications of DDS in the treatment for oral infectious diseases have been summarized, including dental caries, periodontitis, peri-implantitis and oral candidiasis. Furthermore, oral stimuli-responsive DDS, also known as "smart" DDS, have been reported recently, which could react to oral environment and provide more accurate drug delivery or release. In this article, oral smart DDS have also been reviewed. The limits have been discussed, and the research potential demonstrates good prospects.
Collapse
Affiliation(s)
| | | | | | - Jing Zou
- State Key Laboratory of Oral Diseases& West China School of Stomatology& National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (J.L.); (X.P.); (X.Z.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases& West China School of Stomatology& National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (J.L.); (X.P.); (X.Z.)
| |
Collapse
|
47
|
Shtenberg Y, Goldfeder M, Prinz H, Shainsky J, Ghantous Y, El-Naaj IA, Schroeder A, Bianco-Peled H. Mucoadhesive Hybrid Polymer/Liposome Pastes Based on Modified Polysaccharides. J Pharm Sci 2019; 108:3814-3822. [DOI: 10.1016/j.xphs.2019.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022]
|
48
|
Wijetunge SS, Wen J, Yeh CK, Sun Y. Wheat germ agglutinin liposomes with surface grafted cyclodextrins as bioadhesive dual-drug delivery nanocarriers to treat oral cells. Colloids Surf B Biointerfaces 2019; 185:110572. [PMID: 31654890 DOI: 10.1016/j.colsurfb.2019.110572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/12/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
Abstract
Topical management of oral infection requires combined use of multiple classes of drugs and frequent dosing due to low drug retention rates. The sustained, co-delivery of drugs with different solubilities to cells using nanoparticle drug delivery systems remains a challenge. Here, we developed wheat germ agglutinin (WGA) conjugated liposomes with surface grafted cyclodextrin (WGA-liposome-CD) as bioadhesive dual-drug nanocarriers. We effectively encapsulated two physiochemically different drugs (ciprofloxacin and betamethasone) and demonstrated sustained co-drug release in saliva over a 24 h period in vitro. As proof of therapeutic utility in oral cells, we infected oral keratinocytes with Aggregatibacter actinomycetemcomitans, a bacterial pathogen responsible for chronic periodontal disease. Drug release, resulting from nanocarrier cell binding, produced a significant increase in oral cell survival and synergistically reduced inflammation. These results suggest that WGA-liposome-CD nanocarriers are novel cyto-adhesive candidates for delivering multiple drugs with sustained therapeutic activity for localized drug delivery to oral cells.
Collapse
Affiliation(s)
- Sashini S Wijetunge
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, United States
| | - Jianchuan Wen
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, United States
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio and Geriatric Research Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, 7400 Merton Minter Boulevard, San Antonio, TX 78229, United States
| | - Yuyu Sun
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, United States.
| |
Collapse
|
49
|
Tyagi V, del Río-Sancho S, Lapteva M, Kalia YN. Topical iontophoresis of buflomedil hydrochloride increases drug bioavailability in the mucosa: A targeted approach to treat oral submucous fibrosis. Int J Pharm 2019; 569:118610. [DOI: 10.1016/j.ijpharm.2019.118610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
|
50
|
Ketabat F, Pundir M, Mohabatpour F, Lobanova L, Koutsopoulos S, Hadjiiski L, Chen X, Papagerakis P, Papagerakis S. Controlled Drug Delivery Systems for Oral Cancer Treatment-Current Status and Future Perspectives. Pharmaceutics 2019; 11:E302. [PMID: 31262096 PMCID: PMC6680655 DOI: 10.3390/pharmaceutics11070302] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), which encompasses the oral cavity-derived malignancies, is a devastating disease causing substantial morbidity and mortality in both men and women. It is the most common subtype of the head and neck squamous cell carcinoma (HNSCC), which is ranked the sixth most common malignancy worldwide. Despite promising advancements in the conventional therapeutic approaches currently available for patients with oral cancer, many drawbacks are still to be addressed; surgical resection leads to permanent disfigurement, altered sense of self and debilitating physiological consequences, while chemo- and radio-therapies result in significant toxicities, all affecting patient wellbeing and quality of life. Thus, the development of novel therapeutic approaches or modifications of current strategies is paramount to improve individual health outcomes and survival, while early tumour detection remains a priority and significant challenge. In recent years, drug delivery systems and chronotherapy have been developed as alternative methods aiming to enhance the benefits of the current anticancer therapies, while minimizing their undesirable toxic effects on the healthy non-cancerous cells. Targeted drug delivery systems have the potential to increase drug bioavailability and bio-distribution at the site of the primary tumour. This review confers current knowledge on the diverse drug delivery methods, potential carriers (e.g., polymeric, inorganic, and combinational nanoparticles; nanolipids; hydrogels; exosomes) and anticancer targeted approaches for oral squamous cell carcinoma treatment, with an emphasis on their clinical relevance in the era of precision medicine, circadian chronobiology and patient-centred health care.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Meenakshi Pundir
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Fatemeh Mohabatpour
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
| | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lubomir Hadjiiski
- Departmnet of Radiology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Petros Papagerakis
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada.
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|